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ABSTRACT

During the last few years, multiobjective optimization has
received growing attention: the number of publications related
to this subject between 1974 and 1979 exceeds 120. There are
many approaches, techniques and tools related to multiobjective
decision-making and optimization; however, not all approaches
are equally developed, and the resulting tools are often applied
because of certain traditions rather than their suitability for
solving a given problem. Therefore, this paper is devoted to
a comparative evaluation of various approaches and tools. This
evaluation is based, however, first on a classification of prob-
lems of multiobjective decision making and optimization. There-
after, the available approaches, methods, techniques and tools
are shortly presented and evaluated in terms of suitability
for various classes of problems.

The final part of the paper presents a broader description
of a relatively new approach based on reference objective levels,
not fully developed yet but applicable in many classes of prob-
lems. A new notion of extended threshold utility functions,
other basic theoretical results, applicational examples and
directions of further research related to this approach are
presented.
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A METHODOLOGICAL GUIDE TO
MULTIOBJECTIVE OPTIMIZATION

A.P. Wierzbicki

i. INTRODUCTION

Multiobjective decision making and optimization have many
fields of application today. Their roots result from economic
theory, but they are applied now in mathematical psychology,
praxeology, in many environmental, sociological, and technical
problems, in computer-aided design in engineering, and in control
problems. The theory of multiobjective optimization is now a
standard part of mathematical programming; however, its various
applications still result in vexing methodological and theoreti-

cal questions.

An abstract problem of multiobjective optimization is well-
defined for all but practical purposes, for its solution is a
set rather than a single point. To choose a single point out
of this set, additional information is required. Were this
information explicit and readily available, the problem would
not be a multiobjective one. The most important questions in
multiobjective optimization are where, how, and in what form
this additional information can be obtained. As to the question
where, there is a universally accepted answer: from a "decision
maker", that is, a person, an expert, a manager, or a group of

them, or even an organization involved in decision making. The



questions how and in what form are often answered in relation

to the existing theoretical approaches and resulting techniques

rather than, as they should be answered, in relation to the par-
ticular problem, to the needs of the decision maker or decision

making organization.

2. PROBLEMS OF MULTIOBJECTIVE DECISION MAKING AND OPTIMIZATION

Three notions are basic for multiobjective problems: alter-
natives or alternative decisions, their attributes and related
objectives, and a natural partial ordering of alternatives and
attributes. Alternatives are just possible actions; alternative
decisions are related to a choice of either an alternative, or
a subset of alternatives described by additional constraints.
For example, if alternatives are approvals of various nuclear
power plant sites, alternative decisions might be related to
the choice of sites for three power plants simultaneously,
which is a different problem than choosing the site for just one
of them. The generation of alternatives and alternative decisions
ié often a most difficult part of the problem, and requires

additional information, knowledge and ingenuity.

Attributes are various common characteristics of the alter-
natives, pertinent to the problem. Sometimes, several attributes
might be strongly correlated and can be aggregated into a compo-
site one; some attributes might not be relevant for the problem
at hand, some important attributes might be missing in the first
description of the problem. The choice of a minimal set of
pertinent attributes is again a most difficult part of the

problem, highly judgemental and relying on sufficient information.

It is usually assumed that attributes are quantifiable, that
is, they can be measured on some natural or artificial, numerical
or descriptional scales. Quantified and, if necessary, aggre-
gated attributes become objectives. A natural partial ordering
of objectives and thus underlying attributes and alternative
decisions is usually evident. For example, we can choose the
scales for relevant attributes to represent the concept of multi-

objective maximization, that is, such that an alternative



decision is better than another one if all objectives attained
under the first decision are not smaller and some are larger
than those attained under the second one; the objectives repre-
sent then gains, profits, wins, etc. Clearly we could also
choose the convention of multiobjective minimization by just
inverting the scales, but for the purpose of a unified descrip-

tion the convention of maximization is adopted in this paper.

The guantification of attributes and the choice of reasonable
scales again relies very much on available information. But the
most crucial step in further eliciting the information pertinent
to the problem is the stage of mathematical modelling, that is,
describing the dependence of objectives on alternative decisions

by functional relations.

There are many multiobjective problems where we cannot do it,
where the attributes and objective levels attained under alter-
native decisions can be assessed only by experts, for example,
when saome of the attributes are of aesthetical or political
nature. These problems shall be called the multiobjective
decision making problems, since an actual optimization can be
performed only implicitely in such a case. However, if a mathe-
matical model of the relations between alternative decisions
and all objectives can be built, then the available information
is aggregated in a convenient form for further analysis and
results in possibilities not only of multiobjective optimization,
but also of automatic generation of other alternative decisions,
etc. Naturally, the question of an adequate and reliable mathe-
matical model of the given problem has a paramount importance

here.

However, all the above questions and resulting classifications,
although basic, do not express the essence of difficulties re-
lated to multiobjective optimization or decision making. Even
if we eliminate by some procedure all dominated alternatives--
that 1is, such alternatives that a better one can be found in the
sense of the natural partial ordering of the objectives--the
set of remaining nondominated alternatives is usually large and
its elements are incomparable in the sense of the natural partial

ordering. To choose between them, to introduce a preference



ordering (a complete preordering, a complete ordering of equi-
valence classes) in the set of alternatives, additional infor-
mation must be obtained from experts or decision makers. The
central questions of multiobjective optimization are how and in
what form to obtain this additional information. The right
answer to these questions depends very much on the properties
of the problem and the attitudes of decision makers, and should

not be biased by available mathematical approaches and techniques.

The following classification is proposed here to express these

properties and attitudes:

1°. Aggregate preferences. One of the basic questions in eco-
nomic theory is how to represent a large number of decision
makers ("economic agents") making independent but in a sense
similar decisions. Another question, typical for mathematical
psychology, is the description of a single decision maker making
repetitively similar decisions under the assumption of non-vary-
ing preference pattern. The basic and intensively studied ques-
tion is then how to represent the preference pattern, revealed
by a large number of actual decisions, in an aggregated form,
suitable for further analysis. Most of the extensive work on
utility and value theory--see, e.g., [6]1, [10], [M4]1--is con-

cerned with this question.

2°. Unknown preferences in single decisions. Very often,
important and novel decisions--such as siting nuclear energy
plants, or setting standards for some new type of pollution--

are to be made by a body of decision makers who had not quite
formulated a firm opinion on what type of decision they really
like, had no clear opinion about the relevance of various attri-
butes, simply because of lack of experience in such decisions

or because of various uncertainties or even possible psychological
biases related to such truly important and rare decision. The
main task of a multiobjective decision theory in such cases
(similar applications of multiobjective optimization are rather
exceptional) is to help the decision makers to make up their
minds. To do this a series of hypothetical alternative decisions
can be constructed and evaluated by decision makers; the revealed

preference patterns are helpful when making the actual decision.



Extensive research is related to this class of problems and
resulted in several successful applications, see e.g. [21, [12],
(141, [(30].

3°. Conscious preferences 1in single or repetitive decisions,
with possibly varying preference patterns. It is quite a common
situation that decision makers have clear opinions about what
they would like to achieve, have concious but possibly varying
preferences. For example, planners in a planning office perform
their task every year in varying economic situations. Very
often in such cases mathematical models can be constructed and
multiobjective optimization could be useful--provided that ade-
quate procedures for the interaction between the decision maker
and the model are developed. The model could be helpful to the
decision-maker by generating new nondominated alternatives,
meeting new requirements. However, there has been very little
success in applying multiobjective optimization in such cases.
There might be many reasons for this fact--see, e.g., [ 1 ]--but
one of them is that the approaches and techniques useful for the
classes 1° and 2° were usually adapted to solve problems of class
3°, where they cease to be useful. The decision makers, when
certain that they could choose the best alternative provided
they are presented with a reasonable set of them, do not like

to waste time on hypothetical questions revealing their changing
preference patterns; they simply would like to get new alterna-
tives, closer to their changing requirements. This is a reason
for the hypothesis that everyday single decisions are not made
by maximization of utility functions but rather by establishing
certain reference levels for objectives and trying to satisfy
them [26]. This also motivated research looking for new approaches
and tools of multiobjective optimization, alternative to the

classical approaches and tools.

3. HISTORICAL PERSPECTIVE

Pareto's original work in 1896 [18] was motivated by economic
problems. He introduced not only the basic notion of multiob-
jective optimality, but also that of preference; clearly, the

problems he considered belong to the aggregated preference class.



He was also the first to use weighting coefficients in multiob-
jective optimization. In the classical basic theory of multi-
objective optimality, weighting coefficients play a central
role: necessary and sufficient conditions of multiobjective
optimality, equilibria and trade-offs, and utility maximization

are basically related to weighting coefficients.

Further work on economic theory was strongly related to the
notion of preference and its representation by utility functions.
Inthe foundations of general economic equilibrium theory, a
consumer is assumed to maximize a utility function representing
his preference ordering on commodity bundles. However, he is
clearly an average consumer and aggregate preferences of large
numbers of consumers are really of interest here. An individual
consumer in his everyday decisions does not think in terms of
maximizing utility, but in terms of goals, lists of things he
is going to buy. The study of aggregate preferences and utility
functions has reached a high mathematical level, with deep axio-
matic basis, careful distinction between cardinal and ordinal
utility functions, fine theorems on representations of prefer-
ences by utility functions, an aégregations of many utility
functions, on revealing preference patterns in many decision,
~etc.--see e.g., Debreu 1959 [6], Fishburn 1970 [10]. This
development stimulated a broad mathematical psychology research
on individual decision maker's behavior--see e.g. Hogarth
1975 [13]. As long as repetitive decisions under nonvarying
preferences (and thus, aggregate preferences, averaged in time)
were studied, the use of utility functions has been proved
successful. However, certain behavioral phenomena were found
not to be quite consistent with the utility approach--given a
status quo, or reference objective levels, individuals adopt
different, asymmetrical attitudes to the possibilities of
losses as compared to gains with respect to the status quo.

This is another confirmation of the hypothesis that individuals
in everyday decisions think rather in terms of goals, reference

objective levels, than in terms of maximizing utility.
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However, tne assumption of individual utility maximization
also guided other broad researches on individual and group deci-
sion making. Interpersonal utility comparisons, transforming '
utility functions in the presence of uncertainty or in proba-
bilistic choice situations, interactive procedures of group
decision making based on utility identification, etc., were
studied extensively and even applied successfully--see, for
example, Keeney and Raiffa 1975 [14], Bell, Keeney and Raiffa 1977
[2] . The successful applications of this broad theory are re-
lated, however, to the cases of unknown preferences, where
the decision makers were willing to take part in psychometric
experiments in order to learn about their own preferences. 1In
other cases, where the decision makers knew their preferences
better, attempts to apply this theory have failed--see, for
example, Clarke 1979 [3].

The need for an alternative approach, particularly for multi-
objective optimization problems and for the case of conscious
but varying preferences, has been perceived for a long time.
Attainable reference objective levels have been used by Dyer
1972 [7], Kornbluth 1973 [15] and others in so-called goal pro-
gramming. Far unattainable aspirations objective levels have
been used by Sakluvadze 1971 [20] Yu and Leitmann 1974 [27] as
so-called utopia-type points. Wierzbicki 1975-1979 [22], [23],
[25], [26], developed an alternative basic theory of multiob-
jective optimization where weighting coefficients and utility
functions are replaced by any reference objective levels (attain-
able or not, utopia-type or not) and by related penalty scalar-
izing functions. Penalty scalarizing functions are in fact
ad hoec constructed, only rough approximations of the preference
patterns of a decision maker. However they depend heavily on
and stress the importance of the information provided by him
in the form of his desired objective levels. Therefore, they
are particularly useful tools in case of varying preferences.
These tools, although proved to be successful in several appli-
cations, have not been widely tested yet. Moreover, there are

still further developments of this theory to be investigated,



as, for example, the consideration of uncertainties and proba-
bilistic situations. Nevertheless, this theory represents well
many observations on everyday, individual decision-maker's
behavior: his thinking in terms of desirable goals or reference
objective levels, his unsymmetrical attitude towards losses

and gains in respect to the reference objective levels, his
readiness to vary reference objective levels in varying situa-
tions. The theory is not entirely separated from the classical
theory: weighting coefficients might be determined a posterior:
after a penalty scalarizing function has been used, and a penalty
scalarizing function can be interpreted not only as an ad hoec
approximation to a varying utility function, but even as a new

type of utility function with stronger properties.

4. BASIC THEORY

Let EO be the set of alternative admissible decisions and G
the space of objectives x € EO, g € G. Let a mapping f:E0 - G
be given--either in the form of a mathematical model, for multi-
objective optimization, or only implied by the specification of
outcomes of any alternative decision, in a more general case.
: Q0 = f(EO) is then called the set of attainable objectives. 1If
G = R® and all objectives are to be maximized, the natural
partial ordering in QO is implied by the positive cone
?; = {E € Rn:q1 >0,..., g, >0} and the strong positive cone
R; = R \{0}.

2 1 1

2
9 »4d *q -9 1

2, 1., 2 .
€R) ; g°>q ®q°-q €R] . (1)

A Pareto-maximal decision % € E, and objective § = f(R) € Qg
and the set 60 of all Pareto-maximal objectives are then defined

by:

A — O B! — o~ — ay Ja ~n
qa=£(@&) , (@ + R+) F\QO =9¢ i Q0 = {g € QO:(q + R+) N Q0=¢}.
(2)
If G is more abstract space, for example, a Hilbert space
of trajectories of a dynamic model of national economic growth,

then the above definitions can be easily extended by substituting
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Ri by a chosen positive cone D C G, see, for example, [23].
However, the description in the paper is mostly restricted to

the case G = Rn and D = Ri.

Weighting coefficients
If the objectives q; = fi(x) are simply added with weighting

coefficients Aroa linear scalarizing function is obtained

n

s, (qQ) = <A,q> = 3L1 A9y - (3)

The weighting coefficients are assumed to be at least nonnegative,

n
A€ Ri? they are also usually normalized by requiring } Ay =1
i=1

or || A|]| = 1 with any chosen norm in R".

Classical sufficient and necessary conditions of Pareto-

optimality are usually stated in terms of weighting coefficients.

n "''n
If § € Arg max .J A.q., & € Arg max } A,f.(x) with
. idi . iti
qEQ0 i=1 xEE0 i=1

»E€R} = {x€RMA, >0,..., \ >0}, then g € 60, % and § = £ (%)
are Pareto-maximal. If § = f(R) is Pareto-maximal and the set

Q0 is convex then there exists X € ﬁi such that

n
g € Arg 2§x 'Z A;4:. See, e.g., [5], [11].
q Q01=1

Observe, however, that if the necessary conditions of Pareto-

maximality should be checked, we know that there should exist

and appropriate A€ ii (provided the set Q0 is convex) but it

is difficult to find it. 1In fact, § is Pareto-optimal if Q0 is

R n
convex and (A,§) € Arg min max ) X.(g, - §.). Even
| x|l =1,2€R} qEyi=1 * T+ *

the sufficient condition of Pareto-maximality isAnot qguite
operational, if we parametrisize the Pareto-set Q by defining

n
§()) = arg max | x93
qEQOi=1

continuous even if the set Q0 is convex, see Figure 1.

i the resulting §(\) can be easily dis-
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Therefore, the parametrization §(A) is badly suited for

scanning the Pareto set by changing A.

Q2 4 a7 4
A?

Ly
%
7 ~
0
«
a) LSS s > b)
a1
Figure 1. The use of weighting coefficients in multiobjective

optimization: R

a) the difficulty of finding the appropriate ) for
a given Pareto-optimal §;

b) the discountinuity of &§()).

Moreover, the interpretations of weighting coefficients Ai,
though mathematically easy as the derivatives of a utility func-
tion, relative prices or trade-off coefficients (see next para-
graph) are not readily intuitive: without knowing the set QO
well, it is difficult to say which § would correspond to a
given \. All the drawbacks of weighting coefficients are more
of pragmatical than theoretical character; but they result in
serious difficulties when actually applying weighting coeffi-

cients in multiobjective optimization.

Despite these pragmatical drawbacks, the theory of the multi-
objective optimization based on weighting coefficients has been

extensively developed. Weighting coefficients are, in fact, a
type of Lagrange multipliers; all existing theory on separation

of sets by linear functionals can be used here, infinite-dimen-
sional cases, saddle-points and duality theorems can be investi-
gated--see, e.g., [8], [31]. Much has been done in the use of

weighting coefficients in multiobjective linear programming,
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including various theoretical investigations and computational
algorithms--see, e.g., [4], (9], [19]1, [28], [30]. However,
because of the pragmatical drawbacks mentioned above, it is

not clear yet whether the algorithms based on weighting coeffi-
cients are the most practical ones. Some possibilities of

alternative formulations will be presented in the next paragraphs.

By using hypothetical questions, "do you prefer the vector
outcome q1 to q2, or vice-versa, or are you -indifferent to the
choice between them?", it is possible to establish indifference
sets in the space G, see Figure 2. The indifference sets are
ordered in increasing preference; under some additional assump-
tions, they could be represented as level-sets of a function
called (cardinal) utility function. Naturally, the same level
sets can correspond to many functions; the class of all functions
having the same level sets coinciding with given indifference
sets 1s called an ordinal utility function. The preference rela-
tion and utility function should be consistent with the natural
partial ordering of the space G; in other words, the utility

function u(g) should be order-preserving

g’ pa =»u@® >ua@h ()
or even strictly order preserving

«* > q »u@® > u@h . (5)

The fundamental though simple consequence of strict order pre-
servation is that each maximal point of a strictly order-pre-
serving utility function in Q is Pareto maximal,
§ € Arg max u(g) C 60' Therefore, the indifference set corre-
a€Q,

sponding to § is tangent to 60 at §, and can be weakly separated
from Qy under additional convexity assumptions.

Clearly, if § = arg max u(q) and u is differentiable at g,

a<Q,

then

N ou , ou ,
=S4 su (6
)\ q(q)/llaq a il . _ )
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Figure 2. 1Indifference sets, utility function and Pareto-
maximality.
is a weighting coefficient vector corresponding to §. Thus, in
Figure 2, A expresses the optimal trade-off or marginal rates
of substitution between d4 and q, at §. Moreover, <X,g-g>+u(§q)
is a linear approximation at § to the ordinal utility function
u(g). It is usually required (6] that a utility function satis-
fies many additional axioms, related to its symmetry, convexity,
etc. However, those properties of a utility function are not
very pertinent for the purpose of this paper. Many further
interesting questions, related to aggregating utility functions
of many decision makers, including uncertainties, etc., [14],
are also not discussed here. We should note only that the notion
of a utility function, though powerful, is not fully operational
in many questions of multiobjective optimization. The knowledge
of a utility function corresponds to full information about the

optimization problem and transforms it to a single-objective one.
But suppose we have less information and would like only to know

whether a given § is Pareto-maximal or not. Can we construct
an ad ncc utility function that has maximum precisely at §?
The answer to this question, though positive, does not result

from classical utility theory.
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Extended threshold utility furnctions

If an individual decision maker behaves differently in situ-
ations when he cannot attain certain goals (the threshold of
‘subsistence of a consumer gives an appropriate example here)
than in situations when he can attain all goals and has to
allocate surplus, then his utility function should express this
behavior. In the maximization convention, given a threshold
or reference objective level g € R?, he does attain all
goals if q € q + Ri; suppose a utility function u((qg - E)+)
is defined for this case, where (g - q)+ = (max(O,q2 —q1),...,
max (0,q - q,)); suppose u((q - q),) > 0 and u((q - q)y) =0
if some of the components of (g - q)+ are zero. If g € §+R2,
he just tries to attain his goals as closely as it is possible,

that is, minimizes a norm || (q - q)+| .  This extended utility

function takes the form:
s(q-q) = u((a-@),) - ofl (@ Il . (7

where p > 0 is a parameter. This function, which might be
called an extended threshold utility function, is not only
order-preserving, but possesses in fact a much stronger property
than the classical forms of utility functions. This property
might be called strict order representation and consists in the

following relation:

Sq i 14 e R":s(g-7) > 0} = g + Ri_l . (8)

The strength of this property results from the following lemma:

Generalized necessary condition of Pareto-maxzimality. If a

. n 1 .
function s:R° +» R possesses the strict order representation
property (8), and § € Q, is Pareto-maximal, then

~

§ = arg max s(g-4) ; max s(g-§g) =0 , (9)
a=Q, agQ,

no matter whether the set Q0 is convex or not. Moreover, if
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_ = on . .
q ¢ Qq - R;, then max s(g-g) < 0, and if g € @, - R, (which
9=Q
implies q € Q,)+ then max s(g-q) > 0.
qEQO

The proof is elementary: since (@+R§) N Q, = {4} due to (2),
then s(g-§) < 0 for all g € QO’ g # § due to (8). Clearly,
— + . — _+
s(§-§) = 0. If q ¢ Q, - R, then dist(Q,, g+R ) > 0 and

— i o
I(q-q)+|[< 0 for all gq € QO_ If g € Q, - Rn'

s (q-q)
— o + — —
then there exists g€Q, such that q&q+R_and s(g-q) = u((gq-q),) >0.

This generalized necessary condition of Pareto-maximality,
illustrated by Figure 3, is particularly operational: given any

g € Rn, one can choose any utility function u((q—§)+) of desired
n

properties--for example, u((q-E)+) =T (qi-ai)+——and any norm--
i=1
for example, || (g-q) || = max(ai—qi)+-—to formulate the extended
i
utility function (8). By maximizing the function, the attain-

ability and Pareto-maximality of g is easily checked. Since
this function is order-preserving, its maximal points are Pareto-

maximal except in some degeneratecases, see Figure 3.

A0 | \ 4 qy G € Arg max s(q — Q)
| \ a€Qq
| \
I \\
: -~
\E\ﬂq—®>0
q + R+ T
LS LSS LSS S
___Sa-@<0
/ ——————————————
2 7
7 -
/] 4
/R . R?
2 M
VA LSS > LSS S >
a) b)

Figure 3. The use of an extended threshold utility function:
a)necessary condition of Pareto-maximality for noncon-
vex problems, b)a degenerate case where a maximal
point g of an order-preserving function is not
Pareto-maximal.
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An extended threshold utility function can be treated as an
cardinalutility function and be subject to psychometric identi-
fication, though its identification might be more difficult than
that of classical utility functions (the basic question is then
how to identify the threshold g?). However, its main use is as
an ad hoc constructed utility function, stressing the information
contained in a threshold q specified by experts or decision
makers. For the maximal points of s(g-q) depend mainly on g,
although technically they depend also on the choice of u((q—§)+),

p, and the norm.

Consider, for example, the dependence on the choice of norm.

If the weighted sum of absolute values were chosen, || (g-q) || =
n —

= Z ki(qi—qi)+, then, clearly, the choice of the norm would be
i=1

(almost) equivalent to the choice of weighting coefficients,
and would present some vexing problems. However, if the weighted

maximum norm is chosen, ||(E—q)+][= max ni(Ei-qi)+, then the

weighting coefficients n; > 0 play quite a different role--they
correspond to the choice of scales and not to the choice of
trade~offs, and a reasonable choice of scales is a basic problem
in all computations and measurements, much more typical to be

solved intuitively than the choice of trade-offs. Similarly,
. . . — 2 — 2172
in the weighted Euclidean norm ||(q-q)+|]= iz1£i(qi_qi)+ ’

the coefficients Ei correspond to the choice of scales though
they imply a posteriori weighting coefficients Ai--since, if
s(g-q) 1is differentiable at its maximal point §, the corre-
sponding weighting coefficients A can be determined as in (6)

with s in place of u.

All these details——choice of the norm, of the penalty coef-
ficient p, of the utility function u--play a truly technical
role if the threshold or reference objective level g and the
corresponding § = arg ﬂgn s(g-q) are used as the main infor-

q=Q,

mation exchanged between the decision maker and an optimization
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model in an interactive procedure generating nondominated alter-
natives corresponding to the requirements of the decision maker.
The choice of the norm determines only the sense in which attain-
able Pareto-maximal § are close to unattainable reference levels
g. The choice of the utility function u determines only the
sense in which surplus §-q is allocated between various objectives,
if the reference level is attainable. However if these details
are chosen, a decision-maker in an interactive procedure learns
quickly how to change his requirements g to obtain a desirable
§--see Figure 4. The reason for this is that g is formulated

in terms much more readily understandable to the decision-maker
(no weighting coefficients, no trade-offs, just desireable

levels of objectives) and that the parametrization §(q) =

= arg max s(g-q) is usually much more stable than the parametri-

qsQ,
zation §(A) = arg max <i,qg>.
quo
1%
?
2 TRl
” 2
;R
v
PP/ ISP 4
> a1
Figure 4. An ;terative procedure generating nondominated alter-
natives &1 = arg max s(f(x)-gl) and objectives
xeX
i i ‘ 0 ,
g = £(X7) 1in response to varying requirements El of

a decision maker.
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Examples of some possible forms of extended threshold utility

functions are as follows:

n
s(g-q) = iz1(qi'qi)+ B Q1T?§n(qi-qi)+ ’ (10a)
_ n _ 2 n - 2
s(g-q) = 111(qi_qi)+ ) pi£1(qi'qi)+ ' (10b)

The latter function is differentiable, though the underlying
ordinal function is not. Both functions are convex, both use
the unmodified multiplicative utility function. However, this

function can also be modified, for example:

S(q—a) = min(o min (q_a) ’ ( i —d
1<i<n Lo i=1 *

.:lzj
1Q
|

) = P max (Ei—qi)+,

i .
1<i<n

(10c)

to express the concept that the utility is related also to the
smallest surplus min (g.-qg.).; if the smallest surplus is less
1<i<n 1

than the product of other surplusses multiplied by 1/p2, then
u(g-g) = p min (qi-Ei). When allocating the surplus, the

1<i<n
smallest one has thus a "guaranteed" share. The indifference
sets for the function (10c) are presented in Figure 5. Similar
modification can be used also for linear utility functions, for
two reasons: not only to "guarantee" a certain share of the
smallest surplus, but also to modify the linear utility function
continuously to zero if the smallest surplus becomes zero. This
modified linear utility function results in the extended thresh-
old function:

s(g-q) = min (p min(qi—qi),
1iiin i

N~z

1(qi—Ei)) i P >n ,(104)

which is particularly well suited for linear programming purposes,
since its maximization is equivalent to a linear programming

problem:
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maximize y , 9 €Q, , vy € Yo(q—a) = (10e)

1 — . n —
= {y€R :y<p(q;-q;), i=1,...,n; y_<_i_Z_1(qi-qi)}

After solving this problem, the weighting coefficients A can be
a posteriori determined from the dual program. All the functions
(10a,...,d) are order preserving and strictly order representing,

for arbitrary q € R".

Penalty scalarizing functions

The extended threshold utility functions actually form a
subclass of a broadgr class of functions of the form s(g-q),
constructed in order to ad hoe approximate the preferences of
a decision maker who has stated a desireable reference objective
level q € R® (attainable or not). These functions should satisfy

the following requirements:

1°. They should be order preserving and, if possible, strictly
order preserving in g.

2°. They should be order representing or, at least, order
approximating. Order approximation property is a relaxation

of the requirements of order representation, expressed by the

following relation:

af

g+R Pis(q-g G+ 11
g+R_ C s, {g€R :s(q-q) > 0} C g+R__ (11)

af

R {geR": dist(q,R)) < ¢ |lq]|}

n
+€
In other words, the set S, should closely approximate §+Ri

from above, where the closeness is expressed in terms of a conical
neighborhood Rie of the cone Ri. Observe that the cone Rie can

be used to define an e-Pareto-maximality by the requirement
(§+§2€) N Q0 = ¢, and that the generalized necessary condition

of Pareto maximality from the previous paragraph can be easily
restated in terms of the order approximation property (11) and

the e-Pareto maximality, see also Wierzbicki 1977 [23].
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3°. They should represent a concept of distance minimization
— . — n
between q and q, if q € g + R, .
4°. They should represent either a concept of surplus allocation,

or a concept of surplus maximization, if q € q + RE.

Functions which satisfy the above requirements are called
penalty scalarizing functions. While the first two require-
ments have strict mathematical meaning and result directly in
sufficient and necessary conditions of Pareto-maximality in terms
of penalty scalarizing function maximization, the last two re-
quirements are merely guidelines to construct such functions.
If we use a utility function in E+Ri to construct a penalty
scalarizing function, we usually obtain an extended threshold
utility function related to some concept of surplus allocation.
But we can as well use other order-preserving functions in
q+R2, for example, a norm. This results in the basic form of

a penalty scalarizing function:

s(q-q) = |l q=qf| -oll @) Il ., e >1 . (12)

The function is order-approximating with e > 1/p for arbi-
trary norm. If the norm is Euclidean, the function is strictly
order preserving (hence, each maximal point is Pareto-maximal)
but not even quasi-concave. If the norm is the sum of the ab-
solute vales, the functions is strictly order-preserving and

quasi-concave or even cancave far o > 2.

It is, in fact, the simplest extension of the linear utility
. .=+ . . — :
function in q+Rn to other linear forms if g & q+R;, see Figure
6b. Its maximization is equivalent to a linear programming

problem of the form:

n
Ly,  9€Q , y€Y(@q ; (13)
i=1
=y - n, _= _ay _= o )
Y(q-q) = {y€R :y;<q;-q;, y;<(p-1) (g;-q;), all i=1,...,n} .
The arbitrary choice of the weighting coefficients Xi = 1 in the

sum of absolute values norm has only a technical character here,
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since the solutions of (13) are usually at vertices of Y (q-q)
and the a posteriori determined weighting coefficients Xi’
corresponding to a Pareto-maximal § and obtained from a dual

program, are different than 1.

If the norm in (12) is maximum norm, the the functions is
only order preserving and not quasi-concave, see its level sets
in Figure 6c. However, it is a convenient function when the
surplus g-9 should be maximized in its norm subject to the
soft constraint g-gq € Ri, expressed by the penalty term
-oll (@-a) |
goal programming [7], [15] and utopia point [21], [27] approaches.

. The function (12) extends and generalizes known

Morever, the function (12) can also be used if the objective

space is infinite-dimensional, for example, a space of dynamic
trajectories. In a Hilbert space, the vector (Ef-q)+ should be
then understood--see [24]--as the projection of g-g on the dual
cone D* = {q*EG:<q*,q> > 0 for all g€ED}, where D is the cone

used instead of RE in the extended definition of Pareto-maximality;
and additional condition D S.D* should be also satisfied. More
generally, in any linear lattice space, the function (12) takes

a little more complicated form--see Wierzbicki 1977 [23].

Another group of penalty scalarizing functions is more
closely related to the concept of goal programming (7], [15].
Suppose an objective q, is chosen to be maximized under con-
straints dy 2 dpreeer 9y > an’ These constraints could be
treated as soft ones and expressed by the penalty function:

a = (ay.-.0q) € R,
(14)
where g, does not influence the maximization of the function

—_ _ -I r
S(q-q) = q1“Q1'Q|| (q -q )+“ n—‘];
R

but is subtracted for the sake of complete presentation. 1In the
original goal programming formulation, an = (Ez,...,an) should
be attainable reference objective levels. However, the function
(14) is (strictly) order-preserving in g for any norm in Rn_1
(not strictly, if the maximum norm is used), any p > 0 and
any, not necessarily attainable § = (61,§n)-—see Wierzbicki
1978 [25]. This function is also order-approximating with

€ > 1/p. Therefore, it is a penalty scalarizing function
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expressing the concept of surplus maximization in one coordinate

if g is attainable, and a concept of distance minimization if

g is not attainable.
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The function (14) is concave; if either the sum of absolute
values or the maximum norm is used, its maximization is equiva-
lent to a linear programming problem. For example, if the

maximum norm is used, the equivalent problem is:

maximize (q1-§1—py) , 9 € Qy r ¥ € Yo(qr—ar) ; (15)

Yo (qr—Er) = {YER1 :yio, yi-(ii-ql, all l=2, « o ,n}

Again, after finding a solution & to this problem, the corre-
sponing weighting coefficients X o= (1,X2,...,in) can be obtained
from the dual program.

The function (14) can be also generalized to an objective
space G = R1XGr, where G¥ is a Hilbert space, a linear lattice

space, etc.

5. APPLICATION FIELDS OF REFERENCE OBJECTIVE SCALARIZATION
Analysis of multiobjective optimization models

When building a multiobjective optimization model, the ana-
lyst must experiment with it and scan the Pareto-set, that is,
obtain a representation of it. Since the nature of the Pareto-
set is, as a rule, not a priori known, an application of weighting
coefficients to scan the set can lead to quite inconclusive
results while the use of a penalty scalarizing function with
changing reference objective levels gives reasonable represen-
tation of the set--see, for example, [22]. Experience in
application of this method to some nonconvex problems of engi-
neering design shows that the scalarizing penalty function of
the form (14) is best suited for this purpose. By maximizing
independently various objectives, approximate ranges of their
change in the Pareto-set can be established. It is reasonable
then to choose as q, the objective with the most uncertain
range of change- for other objectives, a grid of reference
levels can be constructed, and used consecutively in the function
(14).
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If the problem is nonlinear, it might be worthwhile to use

instead of the function (14) its differentiable variant

2

En-1 !

s(g-q) = qq - qy - ';_QH (@ =a") | (16)
with the Euclidean norm. The function, though not quite order-
approximating, is still strictly order-preserving for all

p > 0. The maximal points of this function, although they
usually violate the assumed reference levels slightly (depending
on the choice of the penalty coefficient p) are Pareto-maximal
points, hence neither an iterative increase of the penalty
coefficient nor other iterative techniques of constrained
optimization are needed here. Since the function (16) is
differentiable, at each Pareto-maximal point & the corresponding
vector of weighting coefficients A can be computed from a formula
analagous to (6).

If a multiobjective linear programming problem is investi-
gated, a similar procedure based on the formula (15) can give
more reasonable representation of the Pareto-set than a para-
metrization via weighting coefficients. The assumed reference
objective levels are then precisely satisfied (as long as they
are attainable and the obtained Pareto points are also e-Pareto
optimal with € = 1/p), since the function (14) equivalently

represented by (15) is an exact penalty function.

Interactive procedures of multiobjective optimization

The main strength of reference objective scalarization
consists in the possibility of contructing efficient interactive
procedures of multiobjective scalarization. There are many
possible variants of such procedures, though all of them are
based on the principle explained in Figure 4. The decision-
maker specifies a reference objective point, and the optimization
model responds with one or more Pareto-maximal alternatives,
in a sense close to the decision maker requirements (or better,
if the requirements are attainable). Then the decision-maker
either chooses one of the alternatives, or modifies his reference

objective point.
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Various variants of such a procedure were described and
analyzed in Wierzbicki 1979 [26] and Kallio and Lewandowski

1979 [16]. For example, given a reference objective point EJ,
the optimizaiton model determines first QJ = arg max s(q—Ej),
. aQ
then d, = || @°-§7|| and additional reference points
g2t = Ej+djei together with additional alternatives
@3’l= arg max s(q-aj'l). Here e, = (0,...,1i,...,0) is the
asQ,

i-th unit basis vector, and for each reference objective point

EJ the procedure responds with n+1 alternative Pareto-maximal

points §7, §3'*. 1If dj = ||EJ—QJ||is large, at the beginning
of the procedure, then the alternatives Qj’l are more widely
spread. If the decision-maker moves his requirements EJ to-

wards the Pareto-se;,'then dj decreases and the procedure gener-
ates alternatives Qj’l more finely describing the Pareto-set
in the region of decision makers' interests. Additional condi-
tions which guarantee the convergence of this procedure are
given in [26]. However, it is practically sufficiept to ask

J

the decision maker that he moves his requirements g- generally

in the direction of the Pareto-set (described to him by the

alternatives qj, qj'i), and he usually terminates the procedure
after a small number of iterations. Moreover, if we assume
that the decision-maker has a preference relation described

by a utility function, it is easy to show that the terminal
point of this procedure does approximately maximize his utility,
since the n+1 alternatives could be used to identify his préE—
erences, and indifference sets. Such an interpretation is,
however, not necessary: the decision maker is not asked about
his preferences during this procedure, he modifies only his

requirements in a natural and easily understandable fashion.

Trajectory optimization

In typical formulations of dynamic optimization, single or
multiple objectives are obtained through aggregating the dynamic
_ trajectorieé by integral functionals. This technique is moti-
vated, however, by the traditional mathematical approaches to
dynamic optimization, and not necessarily by the needs of the
real world. Experienced analysts, economists and decision makers
often evaluate intuitively entire trajectories, functions of

time, better than aggregate integral indices. Adopting the



viewpoint of the classical utility theory, we could say that

they do have their own utility functionals, expressing their
preferences over trajectories. However, how one can identify
experimentally a utility function depending on an infinite

number of objectives, or, after a discretization of time, even

a utility function depending on a very large number of objec-
tives? Clearly, we need here an ad hoc approximation of decision
maker's preferences, constructed with the help of the best
available information. Once the decision maker is experienced

in evaluating trajectories, he can state his requirements in
terms of a reference trajectory g(t), a scalar- or vector-valued
function of time (for example, the gross national product and

the inflation rate versus time, see [26]). Since the penalty
scalarizing functions can be directly generalized to infinite-
dimensional spaces, hence, if a dynamic model of the problem is
available, it is possible to choose an appropriate objective
space, to fomulate a penalty scalarizing functional, to apply

any known dynamic optimization technique, and thus to construct
an optimization model. The model responds to the decision-
maker's requirements by (generalized) Pareto-optimal trajectories,
in a sense close to the required if the latter are not attainable,
and in a sense better than the required if the latter are attain-
able.

The simplest choice of the objective space is the space of
square interable functions L2[O;T] where T is the time horizon,
with the positive cone D = {qELz[O;T]:q(t) > 0 almost everywhere
on [0;T]}. The corresponding penalty scalarizing functional

similar to (12) becomes then:
o ’ P 2 = 2 17
s(g-q) = f (@(t)=q(t))” - plq(t)-q(t)) 4t . (17)

If the time is discretized, then the sum replaces the integral;
the problem becomes finite-~dimensional, but it is still more
convenient to think in terms of trajectories than in terms of
separate objectives. I[Many other choices of the objective space,
of the scaling of trajectories (for example, in terms of de-

flation rates), etc., are possible.
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The concept of trajectory optimization via penalty function
scalarization has been applied by Kallio and Lewandowski 1979
[16) in a study of alternative policies for the Finnish forestry
industrial sector. The results of this study confirm the view-
point that, in some cases, reference trajectories provide for a

better information than aggregate scalar indices.

Semi-regularization of solutions of optimization models

If a single-objective optimization model possesses many
comparable solutions, a standard technique of choosing between
them is to find that one which is closest to a given reference
point--not necessarily in the solution space, but in any space

of chosen indices in which a reference point can be found from

earlier experience and expertise. Denote the original objective
by g, = £;(x) and the additional indices by (q2,...,qn) =
= qr = fr(x) and let the reference point Er be given; we obtain

thus, in fact, a multiobjective problem. The typical technique
of choosing between various x € X, nearly maximizing £,(x) is

to maximize a penalty function, for example:

1 —r 2
p(x,p) = £,(x) = ol £7(x) - qr|;En_1 , (18)

or, for linear problems:

p(x,p) = £,(x) - p max |£;(x) - i (19)

5 i
2<1<n

for sufficiently small p > 0. This general technique is a case
of Tikhonov regularization of solutions of badly determined
problems. It also has various deep interpretations. For example,
we are often sure that a mathematical model describes the reality
surficiently well for decisions and their outcomes known from
experience. However, the optimal solutions for the model can be

. far from those known from experience, and we can doubt whether

the model is sufficiently exact in this new region of decisions
and outcomes. This question arises particularly often if linear
programming models are used, and we consider only some vertices

of the admissible set, corresponding either to optimal or nearly
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optimal solutions. Clearly, if there are many solutions which
differ only a little in the objective function level q, = f1(x),
we should choose the one that is in a sense closest to those

known from experience.

Observe, however, that the penalty functions (18), (19)
are special cases of the scalarizing functions (14), (15), (16)
if we are sure that the reference point &r,is not attainable.
If it is attainable, we do not always want only to be close to
ar: we might as well like to exceed-ar in some or all of its
components (examples of such indices might be some energy con-
servation indices, gross national product, etc.). Denote,
therefore, gq- = (3%,3%) where 3° contains those components which
are to be exceeded, if possible, and Et those ones which should
only be kept close to. Then the following penalty scalarizing
function:

- £y t_=t
(@®-g) |l =e"ll a™=a |l (20)

L . . . t__t
expresses the principle of semiregularization: keep g =f

(x) close
to E? and either keep close to or exceed Esby qs=fs(x). Other
forms of this function, as in (15), (16), are also possible.
Similarly as in equation (14), the reference level 51 does not
have any meaning but of theoretical convenience in formulating
an order approximation property. We can define a new positive
cone D in R" by D = {qERn:q1iO,qiiO for i€s, q;= 0 for i€t}
where s and t denote the sets of indices for g® and qt, and
prove that the function (20) is De—order approximating, that is
if Soq;{q Rn:s(q—a)iO}, then g + DCs,C g + D_,

D, = {g€R™:dist (q,D) < ellall }, € = max(1/pS,1/0t). The
function (20) is also D-order preserving. These notions can

be generalized as well to the case when qS and qt are elements

of infinite dimensional spaces.

The semireqgularization of solutions of optimization models
is thus a special case of multiobjective optimization with
appropriately defined positive cone, and the techniques of
scanning the Pareto-set, interactive procedures or trajectory
optimization techniques described in the above paragraphs can

be used here.
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Compromise-aiding procedures for cooperative games

If the decisions represented in a multiobjective optimization
model can be made in reality by several distinct decision-makers,
then the model is actually a game model: to accept a solution
proposed by the model the decision makers have to agree about
goals. It is natural, therefore, to construct compromise-aiding
procedures where the decision makers bargain only in terms of
reference objective levels and an optimization model provides
them with various alternative Pareto-maximal solutions in re-
sponse to their desired reference objective levels. Several
variants of .such a technique has been analyzed recently in
Kallio and Lewandowski 1979 [16] and Wierzbicki 1979 [26]; the
latter paper also contains a convergence analysis of such a

procedure.

6. CONCLUSIONS AND POSSIBLE EXTENSIONS

An alternative approach to multiobjective optimization,
based on the notion of reference objective levels rather than
on welghting coefficients or utility functions, has many aspects.
On one hand, it is a pragmatical approach: the information that
is most likely to be obtained from the decision makers is used
in order to construct rough, ad hoc approximations of their
possibly varying preference patterns. However, this approach
is also consistent with some practically observed behavioral.
properties of decision makers, namely, with the non-symmetrical
attitude to the prospects of not attaining or to exceeding
stated goals. On the other hand, the approach is well-founded
mathematically: all basic theorems of multiobjective optimi-
zation, including sufficient and necessary conditions of Pareto-
optimality, etc., can be equivalehtly Oor even more generally
stated in terms of reference objective levels and penalty
scalarizing functions than in terms of weighting coefficients

and utility functions.

Although this approach is certainly not "the one" best
suited to solve all classes of multiobjective decision-making

and optimization problems, however sorie problems of repetitiwve
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decisions based on mathematical models, with varying preferences
of decision makers, can be much more conveniently solved by this
approach than by other known approaches. Much remains to be done,
however, in a wider testing of this approach in many applicational
fields. There are also important mathematical questions to be
further investigated: the use of reference objective levels

in stochastic optimization, in situations of uncertainty, a

possible treatment of risks by this approach, etc.
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