NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

NONPROCEDURAL COMMUNICATION BETWEE:! USER
AND APPLICATION SOFTWARE

Borivoj Melichar

September 1979
WP-79-115

Working Papers are interim reports on work of the
International Institute for Applied Systems Analysis
and have received only limited review. Views or
opinions expressed herein do not necessarily repre-
sent those of the Institute or of its National Member
Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

B, MELICHAR is Assistant Professor at the Czech University of
Technology, Department of Computers, Karlovo namesti 13, 12000
PRAGUE 2, Czechoslovakia.

-ii-

PREFACE

Rorivoj Melichar participated in IIASA Junior Scientist
Program three months during the summer 1979. This paper is one
of the results of his stay at IIASA where he joined the
Management and Technology Research Area. He was associated
with the study of the impact of small scale computers on
managerial tasks. Within this task the future of software
development has been identified as one of possible bottlenecks
to a healthy balance between cheap hardware and user-friendly
software. Nonprocedural languages are often mentioned as one
major way of reducing the potential problems. A comprehensive
survey of this field seems not so far to be available. The
present survey on nonprocedural communication between user and
application software is a contribution to £ill this gap.

Laxenburg,October 1979
Goeran Fick

-iii-

SUMMARY

The present paper is a survey of nonprocedural
communication between a wuser and application software in
interactive data processing systems. It includes a description
of the main features of interactive sytems, a classification of
potential users of application software,and a definition of the
nonprocedural interface. An annotated <classification of the
main types of nonprocedural languages 1is presented. Future
trends in user-computer interfaces and possible developments
of languages for managers are mentioned as well.

-y -

CONTENTS

1. Introduction, 1
1.1 Basic Concepts, 1
1.2 Interactive Systems, 2
1.3 Interface between the User and Application
Software, 5

Nonprocedural Oriented Action Languages, 9
2.1 Answer Languages, 9

2.2 Command Languages, 12

2.3 Query Languages, 16

2.4 Natural Languages, 20

2.5 Special Purpose Languages, 21

2.6 Two-Dimensional Positional Languages, 23

3. Main Features of Screen Languages, 25
3.1 Formatting of a Dialogue Document, 25
3.2 Assistance to the User during the Specification of an
Input, 25
Regular Feedback to the User Input, 26
Error Messages, 27
Help Facilities, 28

wWwWw
O s W

4. Conclusion, 29

REFERENCES, 31

-vii-

Nonprocedural Communication Between User
and Application Software

Borivoj Melichar

l. 1Introduction

1.1 Basic Concepts

Advances in semiconductor technology during the past
decade have dramatically increased the availability of low cost
computer hardware. One of the results of this expanded
availability has been the development of cheap but powerful
small scale computer systems,

According to Fick (1979a) the power of computer systems
has more than doubled every two years, while the cost has
remained constant. Wwith the "real" cost of computing
capability declining, it is, nonetheless, apparent that low
cost computer hardware does not necessarily mean "cheap"
computing. Computer hardware is only one part of computer
systems . The other part is software. Computer software is a
labor-intensive product, mainly customized for a small group of
users or even for an individual user (Fick 1979b). Therefore,
traditional software 1is more expensive than mass-producible
hardware. There is a number of problems with software for low
cost computer hardware. The main areas of problems associated
with software design, implementation, and utilization are as
follows:

a. Development of theoretical and methodological tools
useful for software design in different fields of
computer applications.

b. Development of tools for software realization
(programming languages, automatic program generation,
program debugging and verification, etc.).

-1-

-2

c. Development and production of media for software
distribution (semiconductor read only memories,
magnetic tapes, - magnetic discs, punched cards,
punched paper tapes, books, journals, etc.)

d. Development of means for communication between user

and the application software (input/output devices,
communication languages, etc.)

In this article we survey problems of communication
between a user and the application software. The manner of
communication between a user and the application software is
highly dependent on the method of access to the computer
system. In recent years there was much discussion of the issue
of "indirect access" vs. "direct access," e.qg., batch
processing systems vs. time sharing systems. The communication
between user and computer is very slow in a batch processing
system. The user can neither influence the way of running the
piogram nor intervene during the running of the program.

Therefore, the issue of batch processing systems vs. time
sharing systems has been resolved in favor of time sharing
systems. This means that communication between user and

computer has an interactive nature. Current discussions now
usually assume interactive systems and are directed to features
of such systems.

1.2 Interactive Systems

Many problems of batch processing systems are overcome by
the opportunity to communicate directly with the computer
through an interactive dialogue. However, some new problems
have appeared during the period of utilization of interactive
systems. These problems are being broadly discussed, and
requirements for basic features of interactive systems and the
basic principles of the interactive dialogue are being debated
(Miller and Thomas 1977, Watson 1976, Fitter 1979, Gaines and
Facey 1976). Here we offer a 1list of the most important
features of interactive systems and some principles of
interactive dialogue. Some of the following points may be also
relevant to a batch processing (non-interactive) environment,
but we focus only on interactive systems.

a. Systems Response Time

System response time is the time spent in processing of
user's input and in displaying response.. The question of how .
fast or slow response times should be is a difficult one. There
is no common agreement about the required absolute magnitude of
the system response time. There are several arguments for fast
response times:

+ human being works on mean of two seconds;
+ slow response times decrease throughput;
+ long delays are wusually disruptive and disturbing.

-3-

On the other hand, arguments exist against fast response
times:

- fast response times mean high investment in the system;
for more complex tasks slow response times might be
helpful;

fast responses may cause users to expect level of
service all the time.

It has been observed that the variability of the system
response time is one of the most distressing factors for users.

Rohlfs(1979) proposes,that systems should be designed so
that their response time 1is adjusted to user's individual
activity:

>15 sec intolerable,

> 4 sec too long in most cases,possibly tolerable after
termination of major work step,

> 2 sec too long for high concentration work,

< 2 sec necessary for work <consisting of more than one
step,

< 1 sec immediate reaction.

b. Availability and Reliability

A computer system may be available at any time for users.
This feature would be realized by personal computers. Because
the user will be unhappy with any system performance error or
degradation regardless of good normal performance, reliability
is also a very important feature of an interactive system. For
many computer applications almost no loss in availability or
degradation can be tolerated.

¢. Commonality

A software system is usually composed of a varying number
of subsystems. It may be assumed that in all subsystems
terminology and operations are applied consistently. This
means that the input language of each subsystem is an extension
of the common base language. Thus, the user will learn to use
only additional functions or statements when using a new
subsystem and not have to learn new "foreign" language. When
the wuser 1is 1in trouble, he/she can use help functions in a
standardized way.

d. Adaptability to User Proficiency

The interface between user and computer may be oriented to
users with different amounts of knowledge about a particular
subsystem. A sophisticated user may prefer to use mathematical
or formalized notation in his/her dialogue. On the other hand,

iy o

a novice user is likely to prefer less formalized notation and
use simpler system functions.

Recent systems have been oriented to wusers with various
levels of proficiency by designing different levels of user
interfaces. As soon as the user becomes more proficient,
he/she can use more sophisticated functions or a more
formalized interface.

e. Immediate Feedback

A system may give the user feedback for each of his/her
requests by making an unambiguous response. This should be
sufficient to identify the activity of the system. In
situations where system response times are longer than usual,
it is highly desirable to confirm receipt of the user's command
immediately. It 1is very useful to display time information
(for instance,by a countdown clock) on the terminal to inform
the user of when the computer will produce a response.

f. Observability and Controlability

A system may be regarded as an automaton. When the user's
input is processed, than the following process is regarded as a
transition from one state to another. The user can be informed
about the current state of the system. It is important that
the user feels in control of the system, and in order to make
this control possible he/she must have knowledge about the
current state of the system.

g. Use the User's Model

All people rationalize their experience in their own
terms, and each user will model a computer system according to
his/her experience of it. This cannot be prevented and should
be made as easy as possible.dA system should use a model of the
activity which corresponds to that of the user. Interactive
dialogue should resemble a conversation between two users
accepting the same model. Given that we can somehow determine
the wuser’s model we should make the underlying processes
reflect it, and design the dialogue to reveal it as clearly as
possible.

h. Vvalidation

All input commands and data must be wvalidated by checking
syntax, semantics, and, if possible, values. The system must
clearly inform the user about errors and ambiguities in input
data and let the user update those in question before the
system acts upon them.

i. OQuery-in-depth

Information and tutorial and help material can be divided
according to possible user requests and accessed by the user
through a simple uniform mechanism.

j. Extensibility

There will never be enough professional programmers and
system developers to build all the tools that users may desire
for their work. Therefore, it shold be possible for users to
add new tools or extend the interface functions.

k. Written Documentation

In some cases it 1is necessary to produce high-quality
documents as a result of terminal interaction. This is
especially true for text processing.

1. System Activities

To maintain records of system performance and user's
activities, it 1is necessary to evaluate and improve the
behavior of the system.

1.3 Interface between the User and Application Software

The nature of a user-application software interface is
mainly determined by the medium used for communication. As
basic media for this communication we can use

—- alphanumeric texts, or
~- graphics.

More advanced media for communication,such as speech, eye
movement, brain wave control, and hand written script (Watson
1976), are being researched.

In this survey we focus on alphanumeric texts as a medium
for user-computer communication. It is supposed, that a usual
keybord and alphanumeric display (with/without hardcopy) are
available for the user.

The user-software interface has two sides (Watson 1976,
Sprague 1979):

-- the input side by which the user inputs information by
means of an action language;

-- the output side by which the computer provides feedback
and other assistance to the user by means of a screen

language.

- -

First let us survey the action languages. A wide range of
action languages have been designed to accommodate the variety
of users. The selection of a particular action 1language
determines the communication mode that is used. We can classify
action language and/or communication modes as follows:

a. low level machine-like programming languages,
b. high level universal programming languages,
C. high level programming languages with embedded new

syntax and semantic forms (Such languages can be used
as special purpose languages.),

4. self contained special purpose languages,
e, answer languages,

f. command languages,

g. query languages,

h. natural languages, and

i. two~dimensional positional languages.

This classification of communication modes follows the
range available from the artificial machine-oriented languages
to the natural human-oriented languages.

Because Jdiversity of user types may require a spectrum of
communication modes, it is very important during software
development and implementation to select communication modes
which are appropriate to the end-users.

According to Schneiderman (1978) we can categorize users
with respect to their skills, frequency of using application

software, and according to their professional fields as
follows:
a. Non~-trained intermittent users who infrequently use

application software. The user from this category is
called a "casual user" (Codd 1977) or "general user"
(Miller and Thomas 1977). These people are not
computer professionals, have no syntactic knowledge,
and have little knowledge of the application software
organization. At the same time it 1is assumed,
however, that these users have sound professional
knowledge in their fields and, therefore, that the
system should allow them to express themselves in the
terminology of their respective professional fields
(Lehmann, 1978). .

b. Skilled frequent users who make daily use of
application software. These users can learn a simple
syntax of communication action language, but they are
more interested in their own work than in computer

programming. This category includes skilled
secietaries, engineers, managers, etc.
C. Professional users whose main role is to develop and

maintain the application software. They apply their
long experience and accept substantial training and
are concerned with the efficiency and the quality of.
the computer system work. This category includes data
base administrators, software system programmers,
etc.

Although programming and communication with a computer in
high level programming languages like ALGOL, FORTRAN, COBOL,
PL/1 and PASCAL are a major advance over earlier methods
(programming in the machine-like low 1level programming
languages) ,such languages are not sufficient for current and
future software, given a cheap hardware. With the great
diffusion of cheap computer hardware it is expected that the
categories of the non~trained intermittent and the skilled
frequent users will expand very rapidly. These users will have
little or no data processing background. For such people it is
very hard and very time consuming to learn a method of
construction and description of an algorithm in programming
procedure oriented languages. Therefore, it is highly desirable
to make it possible for such categories of users to communicate
with an application software in a non-procedural manner.

There is very strong interest in the development of non-
procedural languages not only to facilitate communication
between the user and the application software, but also from
the point of view of application software implementation.

According to Winograd (1979) it is useful to distinguish
three types of specifications of computational processes:

a. Program specification. A formal structure which can be
interpreted as a set of instructions for a given
computer. This is the imperative style of traditional
procedure oriented programming languages.

b. Result specification. A process—independent
specification of the relationship between the inputs
(or initial state), internal variables, and outputs
(or resulting state) of the program.

¢. Behavior specification. A formal description of the
time~course of activity of a computer. Any such
description selects certain features of the machine
state and action without specifying in full detail
the mechanisms which generate these.

If we attempt to analyze an algorithm, we can regard it as
consisting of two components (Kowalski 1979), a

-- logic component, which specifies the knowledge to be
used in solving the problem and a

—— control component, which determines the problem solving
strategy by means of which the knowledge will be used.

An algorithm for computing factorials offers a simple
example. The definition of a factorial constitutes the logic
component of the algorithm:

1 is the factorial of 9O;
u is the factorial of x if v is the factorial of x-1 and u
is v times x.

-8-

This 1is a result specification of the computational
process (the knowledge which <c¢an be wused to compute the
factorial).

For comparison we introduce a procedure in ALGOL 6% as a
program specification to compute the factorial.

procedure factorial (x); value x; integer x;

if x = 0 then factorial : = 1 else
factorial : = factorial (x-1) * x;
In this procedure the logic component is blended with the
control component.

According to McCracken's (1978) ideas, we can characterize
non-procedural languages as follows:

a. The user cannot take any care of storing data.
Decisions that relate only indirectly to the
calculation are considered to be part of the internal
functioning of the system. These include decisions
about internal representation of numbers (fixed
point, floating point, octal, decimal), dimensions of
quantities that occur only as intermediate results,
input and output formats, etc. The representation of
data is selected by the system itself, and the
description of the data representation is stored with
the data. This is called data independence.

b. The user cannot tell the computer how to do a process
to obtain desirable results.Rather, he tells the
computer only what he wants. This means that user
input does not involve the loops and branches which
make up most of the computational steps in a program
written in procedural language. This we can call
control independence.

As an illustration of the non-procedural approach here is
a query on the data stored in a data base.

RETRIEVE (AGE>48 AND <65) AND SALARY >3,000;

FOR EACH
IF WEIGHT > TABLE (HEIGHT -50)
THEN SET OVERWEIGHT = "TROE"

PENSION = SALARY/3;
ELSE SET PENSION = SALARY/2;

On the basis of the ideas mentioned above we can give a
working definition of non-procedural language:

In a non-procedural language the computational process is
specified by the desired result (or Dbehawvior). This
specification is data independent and control independent.

We shall consider as a non-procedural oriented 1language
such a language which does not fully satisfy all conditions of
the definition of the non-procedural language, but which does
not require program specification.

From the <classification of communication modes 1listed
above we can consider answer languages, command languagdes,
query languages, natural languages, two-dimensional positional
languages, and partly special purpose languages as non-
procedural oriented action languages.

In the next section we introduce an annotated
classification and give examples of non-procedural action
languages available for the communication between non-trained
intermittent or skilled frequent wusers and application
software.

Communication in the direction from the system to the user
is realized by means of screen languages.

The description of the main features of the screen
languages is contained in the third section.

2. Nonprocedural Oriented Action Languages

In the last section we began to define the concept of
nonprocedural action 1languages and sketched the arguments for
using them for user—-application software communication. In this
section we shall give the basic characteristics of each
language type and introduce examples of them. Literature
references were chosen to provide examples of relevant
concepts, but the number of references is deliberately low.
This section 1is structured according to the following list of
the language types:

a) answer languages,

b) command languages,

¢) query languages,

d) natural languages,

e) special purpose languages,

f) two-dimensional positional languages.

2.1 Answer Languages

Answer language 1is the set of words, phrases, or
sentences, which may be used to answer questions asked by the
computer. This type of language we introduce first, because it
is the simplest language for the user-computer communication.

The answer languages used as action languages are very
closely related to screen languages. The screen language in
this case contains, among others, the set of questions which
are asked and which the user is obliged to answer. With respect
to the complexity of answers we can divide the action answer
languages into the following types:

13—~

a. binary answer language,

b. menu selection systems,

¢. instruction and response systems,
d. displayed format systems.

Binary answer language is composed of two answers, YES and
NO, often represented by their abbreviations (for example Y,
N).

The binary answer languages are used in software systems
in which the internal structure corresponds to a binary
oriented graph. In the binary oriented graph two oriented
branches 1leave each edge. Edges correspond to states of the
system, and in each such state the system asks a question, and
according to the answer (NO or YES) the first or the second
branch is selected by which to depart from the edge and reach a
new one. The binary answer language 1is used as an action
language mainly in simple systems like computer games.

As an example we use the popular game Black Jack (Thompson
and Ritchie 1975). The dealer (simulated by computer) might
ask the following questions:

New game?
Hit?
Insurance?
Split pair?
Double down?

Each question is answered by YES or NO.

From the above description it is clear that binary answer
language may be used only in systems in which a limited number
of questions may be asked.

In the case when the answers YES or NO are not sufficient
for answering all questions, we can use a menu selection system
(n-ary answer language).

In a menu selection system the set of possible answers to
each question is defined. Bach set of answers must be finite,
and from a practical point of view should be a small cardinal
number.

The set of answers to a particular question is called the
"menu". There are two ways for presentation of the menu to the
user. First, the definition of the menu for each question may
be contained in the description of the software system, and the
user is thus obliged to learn these menus before using the
system.

Much better is the second way, in which the menu is
contained in the question asked. This method fulfils a number
of important functions. The user need not learn the menus for
all possible questions, if a repetoire of answers from which to

~11-

choose is provided to the user as a part of the question. With
this method the user may not remember the answers or may not be
aware of the existence of possible answers.

Menu selection systems, analogously to binary answer
languages, are used in software systems in which the internal
structure corresponds to an ordinary oriented graph. In such a
graph a varying number of branches leave from each edge. Each
branch corresponds to one possible answer to the question which
corresponds to the edge from which the branch is leaving.

As an example we use some menus from Teitelman (1979). 1In
this paper is described a system which provides the user
assistance in the development of programs. As a part of the
user interface the menu selection system is used.

In this system, for example, the following question may be
asked:

MENUS: WINDOW

DOCUMENT

EDIT

LOOK

HISTORY

BREAK

OPERATIONS

(This menu is used to select further menus.)

WINDOW: READ
MOVE
GROW
SHRINK
PUT ON TOP
PUT ON BOTTOM
KILL
MAKE INVISIBLE

EDIT: INSERT
APPEND
DELETE
REPLACE
MOVE

—_——

(o

DONE

Questions with menus are displayed on a screen, and the
user can select an answer by means of the cursor.

When the number of answers to a particular question grows,
it is inefficient (or sometimes impossible) to display all
possible answers as a part of the question. We meet suech a
situation if the answer contains a number. In such cases we may
use an instruction and response system.

In an instruction and response system an explanation of
the content of an answer is a part of the question. The

-12-

following example of an instruction and response dialogue is
from Hebditeh (1979).

ORDER OR CREDIT? O
CUSTOMER NUMBER? 848923
CUSTOMER IS BROWN'S STATIONERS LTD
HIGH STREET
WATFORD
PLEASE CONFIRM (Y/N)? Y
DELIVERY ADDRESS IS AS ABOVE
PLEASE CONFIRM (Y/N)? Y
ORDER NUMBER? 77/34
DISCOUNT? 12.5
***12.5 PERCENT IS HIGHER THAN NORMAL TERMS
PLEASE (CONFIRM BY RE-ENTRY? 12.5 :
ENTER PRODUCT CODE. QUANTITY (END AFTER LAST ITEM)
?BO4,24 24 DOZ PENCILS (HB)
?2868,10 17 REAMS BANK PAPER
?B61,36 BALL-POINT PENS
***36 DOZ IS ABNORMAL QUANTITY FOR THIS ITEM. PLEASE CONFIRM
?B61,3 3 DOZ BALL-POINT PENS (BLUE)
?2215,1 1 DISPLAY STAND (BALL-POINT PENS)
?END ORDER COMPLETED (4 ITEMS)
DO YOU WISH TO SEE INVOICE PRINR TO PRINTING (Y/N)? N

In systems, which require a fixed format of an answer, the
description of the format may be contained in the gquestion.
Such a system is called a displayed format system.

The following simple and self explanatory example
(Hebditch 1979) shows the question with the format description
and answer.

BOOK ORDER

ENTER AUTHOR / TITLE / PUBLISHER / ISBN / NO. OF COPIES /
CUSTOMER NAME / CUSTOMER ADDRESS / POST OR COLLECT?

HEBDITCH/DATA COMMUNICATIONS: AN INTRODUCTORY GUIDE/
ELEX SCIENCE LTD/NX/4/A WISEMAN/NA/COLLECT

2.2 Command Langquages

Command languages in one form or another have been in use
since the earliest operating systems of the late 1950's. The
name command languages was used in the past for job control
languages used as the interface between users and operating
systems. Today command languages encompass a wide <class of
languages used for user-interfaces in many kinds of software
systems.

The command language consists of a set of commands. A
command of a typical command 1language is composed of the
following parts:

-]3=-

a) command prefix,

b) operation specification,
¢c) parameter part, and

d) command completion.

The first part of the command, the command prefix is used

as

~- command indication (a symbol or string of symbols to
distinguish the command from other inputs),

-~ command identification (a 1label or number used for
reference purposes in other commands), and

~- condition, which must be satisfied to execute the
command (for example: IF TIME < MAXTIME THEN)

As an operation specification a reserved command word |is
frequently used (Miller and Thomas 1977).

Watson (1976) proposes an operation specification of the
form verb-noun pair. In this case we obtain a verb-noun matrix
as for example in an editing system:

| character | line | page

‘insert

change

move

Each element of such a matrix 1is a normal English
imperative mood created according to the paradigm

do this.

Layout of the operation specification in this form seems
to be very useful for users with no data processing background
(Keen and Hackathorn 1979). Hebditch (1973) proposes a more
structured operation specification layout wusing adverb and
adjective to create an operation specification with three forms
(V-verb, N-noun, 2a~adverb, J-adjective):

VAN (PRINT CONDENSED RECORD)
VNJ (FIND EMPLOYEES WITH A DEGREE)
V AN J (PRINT ALL LINES BEGINING WITH +)

Further, Hebditch (1973) proposes that a set of basic
operation specification verbs of the command language be used
as an interface to a data base:

~14—

Function _ Operation Short Alternatives
specification form
verb

Initiation START S Begin, Sign-on, Initiate,

Go, Set up, Evoke

Location of FIND F Locate, Get, Search,

logical record Read, Obtain, Pick (good
for inventory data base?)

Display of PRINT P DISPLAY (for VDUs), Show,
data item {(for hard . Query, Give, List,

copy) Present
Amendment of ALTER A Change, 2mend, Modify,
data item Replace, Convert, Set
Addition of new INSERT 1 Add, New, Assign, Include
record or item Originate, Form
Movement of MOVE M Transfer, Shift, Relocate,
record (or data) Convey, Reallocate,
from one logical Transpose

location to another

Obtain EXPLAIN E Assist, Why?, Expand,

assistance Clarify, Help, Interpret
Termination HALT 2| End, Finish, Done, Close

Terminate, Conclude

— " ———— ———— —— G} S S S G S Tt e S N G —— - — S S — —— S v} U - S M TS G S WUN WUR U N S WUR WU My e S S WUN e —

The parameter part involves operand specifications and
various options or alternatives for the execution of the
particular command. There are two distinct methods of
formatting the arguments for commands: positional format or
keyword format.

If the positional format is used, then specific kinds of
information must appear in a fixed, relative, or absolute
position in the parameter part.

In the case of the keyword format the parameter part is a
permutable string of arguments and each argument contains the
special word, keyword, indicating the argument type and,
sometimes, its value.

Both types of argument format occur in today's systems.
From the wuser's point of view the keyword format is more
acceptable, because the wvalues of the arguments must be
remembered in both cases, and because remembering the position
in the case of the positional format is additional memory 1load
for the user.

~]15-

The arguments in the parameter part are composed from
several types of items:

-- keywords,

-~ constants (numeric, boolean,...),

-- text strings,and

-- expressions (regqular, arithmetic, boolean,...).

There remains the question of what to do when the user
does not specify some arguments or any other information that
either could or should have been provided. There are several
options for prompting the user for missing information:

a) listing of the missing argument names with all
potential values for each of them to allow the user
to choose from;

b) assigning a default value automatically to some of
the missing arguments and asking the user for
agreement;

c) supplying missing information on the basis of the
arguments supplied to previous commands.

Related to argument specification 1is the problem of
choosing argument delimiters. The following are delimiting
functions (Watson 1976):

a) delimiting command words,
b) delimiting arguments, and ,
c) delimiting optional arguments or arguments with

default values.

It is recommended to use the same symbol for delimiting
command words and arguments and to use a different symbol to
delimite optional or default arguments.

The last part of the command is a command completion.
According to Watson (1976) there are three types of command
completions.

a) Command accept: Completion of the command indicating
the execution of the command and the return to the
base state to receive the next command.

b) Repeat: Completion of the command and return to an
intermediate command state for quick repetion of the
command with or without request. This mode is useful
when an operation is repeated several times.

c) Insert: Completion of the c¢ommand and entry to
insert-command mode for insertion of some new
parameters and repeat.

For each type of command completion a different symbol has
to be used.

~16-

2.3 Query Languages

Many software products include parts consisting of data
bases. The main operations that users wish to perform on data
bases can be listed as follows (Schneiderman 1978):

a) insertion of one or more items of information;

b) deletion of one or more items of information;

c) retrieval of information from data base;

d) locking and unlocking of items to provide integrity
during concurrent processing;

o) privacy check to ensure that user is permitted to
perform the operation requested;

f) data definition to create a schema or subschema of
the data base; and,

g) utility functions including administration operations

such as initial 1load, physical reorganization,
logical restructuring, data translation, performance
statistics collection, and data wvalidation.

According to Olle (1973) there are four 1levels of user
interface with a data base:

a) At the top level is the data administrator, that is,
the person responsible for the data base.

b) At the conventional level, there is the applications
programmer.

c) At the next level is the non-programmer, who is the

individual who understands how to formulate questions
about data stored in data base.

4d) At the lowest level is the individual, who does not
know how to formulate a question.

Data administrators and applications programmers use
mainly programming languages in their work. For users who do
not know how to formulate a question the answer languages are
available.

For users who are non—-programmers but understand how ¢to
formulate questions the guery languages are avilable.

Query languages are high level non-procedural data base
languages, which provide the user with a simple interface to
express operations on the data base, namely operations 1like
insertion, deletion, and retrieval. Strong emphasis is placed
on the retrieval operations on the data base.

In view of this fact, a finer categorization of retrieval
operations is appropriate (Schneiderman 1978):

a) Simple werification of the ©presence, absence, or
acceptability of a specified item.

b) Single record retrieval when a key is provided.

c) Record collection retrieval when a key or boolean

predicate is provided.
d) Total report listing of all information stored.

-]7=-

For the same reason, that the retrieval operations are
most frequently used, we 1list gquery features (Schneiderman

1978):

a)

b)

c)

d)

£)

g)

h)

i)

Simple mapping returns data values when a known data
value for another field is supplied. Example: Find
the names of employees in department 549.

Selection of all data wvalues associated with a
specified key value. Example: Give the entire record
for the employee whose name is John Jones,

Projection in the relational model 1is an entire
column or domain of a relation. Example: Print the
names of all employees.

Beoolean queries are those which permit AND/OR/NOT
connections, Example: Find the names of employees
who work for Smith and are not in department 50.

Set operation queries are those which permit set
operators like intersection, union, symmetric
difference, etc.

Built-in functions provide special-purpose functions
to aid in question formulation. These are functions
like MAXIMUM, MINIMUM, AVERAGE, SUM,... Example:
Print the sum of salaries in department 58.
Combination (composition) queries are the result of
using the output of one query as the input for
another. Example: Find the names of all departments
which have more than 38 employees and then find the
names of the department managers.

Grouping of items with a common domain value,

- Example: Print the names of departments where the

average salary is greater than 15,000,
Universal quantification corresponding to the "for
all" concept of the first-order predicate calculus.

The query features listed are available in most query

languages

that have been designed for data bases with various

models of data (relational, hierarchical, network).

In order to provide examples of queries we introduce an

example

of the data base with a relational model of data

(Chamberlin 1976):

PRESIDENTS

NAME PARTY HOME-STATE
Eisenhower Republican Texas
Kennedy Democrat ‘Mass.
Johnson Democrat Texas
Nixon Republican Calif.
Carter Democrat 3eorgia

This relation PRESIDENTS has domains NAME, PARTY and
HOME-~STATE.

-18-

ELECTIONS-WON

YEAR WINNER-NAME
1952 Eisenhower
1956 BEisenhower
1968 Kennedy
1964 Johnson
1968 Nixon

1972 Nixon

1976 Carter

This relation ELECTIONS-WON has domains YEAR and WINNER-
NAME.,

The two relations PRESIDENTS and ELECTIONS-WON are the
only relations in our example data base.

According to Chamberlin (1976) we <can illustrate the
variety of the query languages by presenting examples of four
classes of them:

a. relational calculus based languages,
b. relational algebra based query languages,
c. mapping-oriented languages,and

d. graphics—-oriented languages.

An example of a relational calculus based query language
is the language QUEL (Stonebracker et al. 1976).

A typical query'in QUEL has three parts:

-—= result name, which is the name of the relation which
will be retrieved into,

-~ target list, which specifies the particular domains of
the relation which are to be returned,

-- qualification which selects particular tuples from the
target relation by giving a condition which they must
satisfy. -

A QUEL interaction includes at least one RANGE statement
to specify the relation over which each variable ranges.

Two examples of queries are:

What was the home state of President Xennedy?
RANGE OF P IS PRESIDNETS

RETRIEVE INTO X (STATE = P.HOME-STATE)

WHERE P.NAME = "KENNEDY"

List the election years in which a Republican from Ilinois
was elected?

-19-

RANGE OF F IS ELECTIONS-WON
RANGE OF P IS PRESIDENTS
RETRIEVE INTO Y (YEARS = E, YEAR)
WHERE P.PARTY = "REPUBLICAN"
AND P.HOME-STATE = "ILLINOIS"
AND P.NAME = E.WINNER-NAME

Relational algebra based query languages use a collection
of operators that deal with relations, vyielding new relations
as a result. The major operators of relational algebra incluce
the following:

-—- projection,

-— restriction, and

-- set-theoretic operators (union, intersection and
symetric difference).

The same two examples of queries as above in relational
algebra based query language are:

What was the home state of President Kennedy?
PRESIDENTS [NAME = "KENNEDY"] [HOME~STATE]

In the above example we use projection and restriction
operations.

List the election years in which a Republican from
Illinois was elected!

(ELECTIONS-WON [WINNER-NAME = NAME] PRESIDENTS)
[PARTY = "REPUBLICAN"] [HOME-STATE = "ILLINOIS"] [YEAR]

In this example we use join, projection and restriction
onerations.

The basic¢ building block of mapping oriented query
languages is the "mapping" which maps a known domain or set of
domains into a desired domain or set of domains by means of
some relation. The same two examples as above are in language
SEQUEL (Astrahan et al. 1976).

what was the home-state of President Kennedy?

SELECT HOME-STATE
FROM PRESIDENTS
WHERE NAME = "KENNEDY"

List the election years in which Republican from 1Illinois
was elected! -

SELECT YEAR

FROM ELECTIONS-WON

WHERE WINNER-NAME =
SELECT NAME
FROM PRESIDENTS

—-20-

WHERE PARTY = "REPUBLICAN"
AND HOME-STATE = "ILLINOIS"

Graphics oriented gquery languages are in this survey
mentioned are in this survey mentioned later in the section
dealing with two-dimensional positional languages.

The mapping and graphics oriented query languages are
directed to the wusers with no data processing background and
offer power equivalent to relational algebra or relational
calculus based languages while avoiding mathematical concepts
such as quantifiers and operations on relations.

2.4 Natural Languages

Natural language communication with computers has provoked
discussion from the early years of machine translation. While
the concept of natural language interface with computers is
obviously attractive, to implement it is another matter.

According to Addis (1977) natural 1language is the -
technique of verbal communicaton betwen people. Natural
l2nguage is extremely complex in its structure because it
reflects the way men think.

The wutilization of natural 1language for man-computer
communication has several principle advantages (Man/Computer
Communication 1979):

a) It provides an already familiar way of forming
questions. This means that the natural 1language
interface is available to a 1large number of |users
without special training or learning even of a high
level non-procedural formal language.

b) There are often many ways to extract the same data.
The user can usually communicate his/her knowledge in
natural language augumented by specialized notations
and vocabularies particular to his/her domain.

c) The formulation of more complicated gqueries may be
easier compared with formal 1lanquages or menu
selection methods.

d) The user does not have to learn a formal syntax and

his/her departures from accepted grammar may be
tolerated without comments.

At the same time we must note the following disadvantages:

a) The use of natural language interface encourages an
unrealistic expectation of the system power.
b) The linguistic limitations of such a system are not

as well defined as they are with a formal language.
They can arise as a result of an unknown word, a
grammatical construction, or a misunderstanding.

c) In natural 1languages sentences are frequently
ambiguous. Implementation is difficult if all
possibilities of meaning of a sentence must be

-21-

considered.

d) Because much of the vocabulary may be specific to the
particular domain, the system has to be partially
recast for each new domain of discourse.

e) The system with a natural 1language interface is
inherently much more complicated to implement to
provide an acceptable interface.

These disadvantages do not imply that natural 1language
interface 1is useless, only that its domain of application is
less broad than is common opinion. Moreover, natural langquage
“interface may not be preferable in every situation.
Schneiderman (1978) describes a "natural versus artificial
query language experiment" concerning communication with data
bases and concludes that user knowledge of the applicaton
domain 1is critical. Without this prerequisite natural language
usage would be difficult. The user has to know the semantics of
the information of the data base. When a user learns a query
language, he/she at the same time learns the semantics of the
information stored in the data base.

On the other hand, WNewsted and Wynne (1976) describe a
decision system support called AIDS with a user interface of
the natural language type, and they state that the system was
successfully applied to a wide range of topics.

2.5 Special Purpose Languages

Specific kinds of formalisms are defined in some areas to
provide a formalized description of the problems. It is a good
idea to use such formalisms directly as special purpose
languages for an interface with specialized software systems.

We introduce an example of one class of such a formalism
widely used for language design and implementation. Special
purpose languages based on such a formalism are used as
interfaces in translator writing systems. The notion of a
context-free grammar is a base for these. A context-free
grammar is a set of rules of the form:

left part : right part
where left part is one nonterminal symbol called a syntactic

category or name of a syntactic structure and the right part is
a string of nonterminal and terminal symbols.

The way to derive sentences from one distinguished
nonterminal symbol, start symbol, 1is defined.Sentences are
composed from terminal symbols. The set of all sentences which
can be derived from the start symbol is a formal language
generated by the grammar. '

To illustrate a notion of a context-free grammar we
provide a simple example. In this example nonterminal symbols

-22=

are mnemonic names between symbols < and >. The terminal
symbols are: 0,1,2,3,4,5,6,7,8,9, and /. The rules are:

<date> : <number>/<number>/<number>
<number> : <digit>

<number> : <number><digit>

<digit> : 1

<digit> ¢ 2

<digit> : 3

<digit> : 9

<digit> : 10

The start symbol of this grammar is <date>.
An example of a derivation using the above grammar is (the
symbol => is used for one step in the derivation):

<date> => <number>/<{number>/<{number>
=> <digit>/<number>/<number>

=> 1 /<number> /<number>

=> 1 /<digit>/<number>

=> 1 / 2 /<number>

=> 1 / 2 /<number><digit>
=> 1 / 2 /<digit><digit>
=> 1 / 2 / 7<digit>

=> 1 / 2 / 79 '

A language generated by this grammar is a set of sentences
of the form number/number/number/, which can be read as dates.

Context-free grammars are often used for desceribing syntax
structures of formal and natural languages. Moreover, they can
be used as a base for special purpose languages used in
translator writing systems.

The following example is the input of the YACC translator
writing system (Johnson and Lesk 1978):

% token DIGIT
% %
date: number '/' number '/' number
{date ($1, §$3, $5)7}7
number: DIGIT
{$$ = $1;1};
number: number DIGIT
{$$ = 10 * $1 + $2;};

The nonterminal symbols of this grammar are date and
number. Terminal symbols are DIGIT and /. A program fragment is
appended to each rule of the grammar. These program fragments
compute. the meaning or value of the nonterminal symbols. The
variables $$, S1, $2, S$3, etec. refer to the left side
nonterminal of the rule, first, second, ete¢. symbol of the
right side of the rule, respectively.

—_—23=

If this input text is processed by YACC parser dJenerator,
a program is generated which is able to read dates, convert
them and store in the computer, provided that digits are read
by another program returning the value of each digit.

2.6 Two-Dimensional Positional Languages

Two dimensional positional languages are 1languages in
which input information contains indication of position in
two-dimensional space. This space is displayed on a screen.
One inputs the position information by means of a cursor
controlled by a keyboard, throgh a joystick, or a mouse. Other
ways include using a lightpen or finger touching of the screen.

Two-dimensional positional languages are useful in many
applications. We may mention here some of the more important
systems:

a. form filling systems,

b. screen oriented editors, and

c. two-dimensional query systems.

In form filling systems the user is provided by format map
displayed on a screen and can then key data in free areas. The
format map is protected and cannot be inadvertently altered
from the keyboard. After filling in the form the user presses a
special key and all input data are transmitted to the computer.
Such techniques are very easy to use. As an example we take the
following form:

NAME []
FIRST NAME []
BIRTHDATE
DAY [] MONTH [] YEAR []
PERSONNEL CODE []

In such a form the user can put data between symbols [and
] only.

The second type of two-dimensional positional system is
the screen oriented editor. A screen oriented editor displays a
portion of the file on the user's screen and allows him/her to
make changes in the place where the cursor is. There are three
principal groups of commands in a typical screen oriented
editor action language (Pearson 1978):

a. ¢ursor movement commands,
b. text movement commands, and
c. text modification commands.

In some cases cursor movement commands can be substituted
by special keys on the keyboard (Altair word processing package
1577).

The last two-dimensional positional system to be mentioned
here 1is two-dimensional query system. An example of such a
system is the Query-by-example (Zloof 1976). This system is

-24-

used for user-interface with a data base. In order to query the
data base the user fills in an example of a possible answer in
a skeleton of the logical structure of the data base displayed
on the screen.

An example of the skeleton structure for the data base is
as follows:

— i S S A S e e e et e S T e T S A A e A A A A e S S S S S M e
4+ 3 1t - 2 2 t A - 3+ F - 1 2 5

where PRESIDENTS is the name of relation, and
NAME, PARTY,and HOME-STATE are the names of the domains.

The user can fill in such a skeleton of a relation by
using the following two entities:

a. The "example element" (variable) which must be
underlined and
b. the "constant element" which should not be

underlined.

In addition, the function denoted ¢ty "P." stands for
"print," and the user 1inserts "P." before the data he/she
wishes to output.

Here is an example of the user's query in the relation
PRESIDENTS mentioned above:

—— ——— o — — —— —————— — — -t TS M ———— — — - —— . ————— ————— T ————— ——— " ——t - —

| P. NIXON | DEMOCRAT | |

_ The user needs only to fill in the skeleton with P. NIXON
and DEMOCRAT. The answer of the system may be:

- — st —— n —— —

| XENNEDY |
| JOHNSON |
| CARTER |

B o L

3. Main Features of Screen Languages

In this section we focus on the output side of the user-
application software interface. The information produced by the
computer to provide the user with feedback and other assistance
we shall call the screen language.

The screen language is composed of several kinds of text.
We can list the main parts of the screen language as follows:

a. formatting of the dialogue document;

b. assistance to the user during the specification of an
input;

¢. regular feedback to the user input;

d. error messages;

e. help facilities.

In this section we dicuss desirable features of the parts
of the screen languages listed above.

3.1 Formatting of the Dialogue Document

First we introduce factors which contribute to a good
design of dialogue document formats (Hebditeh 1979):

-=- Logical sequencing. The dialogue document contains
different kinds of information. The sequence of the
information should be as 1logical as possible. An
example of bad sequencing is the blending of input and
output text.

~- Distinguishing of input and output. It is very useful
and improves legibility to distinguish inputs (action
language phrases) and outputs (screen language
phrases). The methods to do this depend on the type of
terminal used. Methods which can be used include lower
case-~upper case, underlining, different colors,
different densities, etc.

~~ Spaciousness. The whole two-dimensional space of the
dialog document can be used for output. Use of a table
format improves legibility. If, for example, a menu is
a part of an output, it could be presented in a table
format.

3.2 Assistance to the User During the Specification of an
Input

Assistance to the wuser may be of different kinds in
various user-computer interface systems. If an answer language
is used as an action language, the specification of the desired
input is contained in the question produced by the computer.

In the case where an input language contains keywords, the
system can assist during their specification.

-26=-

Five forms of keyword recognition could be provided.

a. A whole keyword mode. The user must type the whole
keyword.
b. An anticipatory mode. This mode requires the user to

type Jjust enough characters for the command to be
uniquely specified. The system then automatically
fills in the remainder of the keyword.

C. A fixed mode. Xeywords in the system are picked in
such a manner that the recognition of the keyword is
possible on entry of a known number of characters.

d. A demand mode. This mode require a special character

to initiate recognition after typing the initial part

of the keyword.

A single-character mode. This modn allows high speed

single-character recognition of the most commonly

used keywords. This mode may be used only when unique
first characters of keywords are defined.

D

Another method of system assistance is the presentation of
noise words. When the system recognizes the first part of
the user input phrase, it can generate some words, called
noise words, so the user can distinguish between what he/she
has entered and what is awaited by the system. For example in
the input command

CREATE LINE®E from x1 to x2

the words from and to could be generated by the system as the
noise words. The noise words aid the user to remember what
to do next.

When the system assigns default values to some missing
arguments, or supplies missing information on the basis of
previous commands, it should inform the user about values
assigned and ask him/her for confirmation.

3.3 Regqular Feedback to the User Input

Regular feedback to the user input is the reaction of the
system on valid requests. We can specify the following points
concerning the contents of the system response:

a. Confirmation of input receipt. The system should
confirm that the user input is valid and accepted. In
cases where misunderstanding 1is possible, as for
example with natural language interfaces, the system
can output a question and ask the user for
confirmation.

b. Information about the non-~availability of resources.
If a process, which 1is 1initialized, needs some
resources like files, peripheral devices, etc., the
user must be informed that resources desired are not
available and why they are not.

c. Output data of the process. The output data can

-7 -

either be presented on the user terminal or by means
of some other output devices. 1In the latter case the
user needs information about where and how to obtain
his/her results.

d. End information. If the process created as a result
of the wuser input finishes, information about the
mode of termination (normal, failure of the system,
error in input, etc.) will be useful.

3.4 Error Messages

In every piece of the input the system must anticipate
errors. Therefore, sophisticated techniques must be used to
handle user's errors. Three levels of error handling can be
identified:

a. Error detection. The system must take great care to
ensure the detection of any error.

b. Error recovery. After the detection of the error in
an input text, it 1is desirable to continue the
processing of the remainder of the input without
"pseudo-error" indications.

c. Error correction. Some kinds of errors may be
corrected automatically, but in any case of automatic
correction the system must ask the user for
agreement, because automatic error correction may
introduce an unsolvable problems.

After error detection the system must report a message,
which displays exactly and clear the character of the error.

Hebditch (1979) provides some guidelines on devising error
reporting technique:

a. Avoiding coding error messages and the need to refer
to manuals.

b. Making error messages as self-explanatory as
possible.

c. Error messages should be pre-specified by the system
designer and checked for understanding and

effectiveness with the potential users.

d. Detection of errors must be as early as possible.

e, Avoiding the need to re-key valid inputs during the
error correction process.

f. Rechecking everything after correction.

-28-

3.5 Help Facilities

Any software system must be properly documented in order
to be usable (Cohen 1976). Documentation for a large system is
not an easy task. It is still worse if the system is designed

to be

extended by means its users. Any printed documentation

for such a system would be ocutdated before it 1is published.

therefore,
facilities

the system itself has to be capable of providing
that supply documentation in a way that is

guaranteed to be up to date.

There are three main areas (Watson 1976) in which the user
needs information to help him/her:

To

to know where he/she has been,
to know where he/she is, and
to know where he/she can go from here.

keep the user informed in these three areas, it is

desirable to offer information in the following spaces:

a.

b'

Information space. The user needs to know where
he/she 1is in information space and which part of the
many possible information is being displayed to
him/her. The user arrived at his/her present position
from previous points, and he may want to be able to
return to previous points or views as well as to move
on. It is possible to achieve this goal by organizing
heln facilities in a tree structure. Each information
node in the tree contains a text document which
explains a specific part of the system. The tree
structure provides quick access to information about
a specific topic. :

Subsystem or tool space. 1In systems containing many
tools and commands, the user needs to know which
tools are active, which ones he/she used previously,
and which ones he/she can enter from here. Each
subsystem has a name and contains a number of related
commands. It is very useful for all the tools to
work on information in the same file structure in
order to facilitate moving from one tool to another.
The wuser need to be informed about subsystems
available to him/her and about the subsystems in
which he/she has previously been, ' as well as about
the name of the current subsystem.

Input syntax space. Several types of assistance to
the wuser 1in formulating input have been described
above as a help to the user during the specification
of an input. If the facilities are not sufficient
beause of uncertainty about the basic concepts or the
vocabulary, the user can enter the help facilities
described above by specifying either a specific
concept of interest or the general need of help only.
In the latter c¢ase the system could utilize the
information, which has been input up to this point in
order to select information which the user needs.

-29-

In data base management systems it is useful to keep the
user informed about the semantics of the data stored in the
data base.

In the data base management system INGRES (Stonebraker, et
al. 1976) information about relations is included and may be
used in the same way as other help facilities specifying the
names of the relations only.

4. Conclusion

Although we have discussed many issues concerning a user-
application software interface, there are numerous aspects we
have not mentioned. We have focused on such an interface only,
in which alphanumeric texts are used as a medium for
communication. The main problem in a communication with a
computer using alphanumeric texts is a great difference between
speed of an input and output. While the speed of an output can
be very high (thousands of characters per second), the speed
of the input via keyboard is very low (some characters per
second) . This drawback can be partly reduced by using single
letters in an action langquage; for example, 'f' for FIND, 'p'
for PRINT, and so on. But this 1is in conflict with the
legibility of a dialog document and <¢an be wused for the
frequent users only.

Another promising medium for interfaces 1is graphics.
Graphiecs <can be wused as a part of a sereen language or an
action language or both as well. We have mentioned one type of
systems, two-dimensional positional languages, 1in which a
simple graphic is used as a part of a screen ‘language. A
communication in such systems is not only more simple but it is
also faster.This fact could be seen from comparison of a line
orieted editor with a screen oriented editor.

The second problem with a communication with an
application software 1is the selection of an appropriate
language type and its design. Computers and, especialy, small
scale computers are used and/or will be used, among else, as a
tool for office automation, for business systems, and for
managerial systems. Most people, who use and/or will use such
systems, have no or 1little data processing background.
Therefore, it is desirable to design such software systems with
a non-procedural interface. 1In such a situation the use of
natural language seems to be most appropriate. But because
problems to implement natural language interfaces even on small
scale computers, we must suppose that formal languages will
still be widely used in the future. 1In those cases it 1is very
important to design the lanquage in such a way that it follows

a natural language as close as posible. Some remarks on the
user languaga design of an office automation automation can be
found in Rohlfs (1979). Keen and Hackathorn (1979) and

Blanning (1979) describe ways to design 1languages for
managerial systems.

- 30 -

Acknowledgements

I would like to thank Goeran Fick for many useful and
helpful comments. Thanks also to Miyoko Yamada for her help in
preparation of this paper.

-31-

REFERENCES

Addis, T.R. (1977) Machine understanding of natural language.
International Journal of Man-Machine Studies 9:207-222.

Altair Word Processing Package (1977) Atlanta, Georgia:Altair
Software Distribution Company.

Astrahan,M.M. et al.(1976)System R: Relational approach to
database management. ACM Transactions on Database Systems
1(2):97-137.

Blanning, R.W. (1979) A 1language for describing decision
support systems. Informal Workshop on Decision Support,
Departement of Decision Sciences, The Wharton School,
University of Pensylvania.

Chamberlin,D.D. (1976) Relational data-base management
systems.Computing Surveys 8(1):43-63.

Codd, E.F. (1977) Seven steps to rendezvous with the <c¢asual
user. Pages 179-199, Data Base Management, edited by J.W.
Klimbie and K.L. Koffeman. Amsterdam: North-Holland Pub.
Co.

Cohen, S. (1976) Speakeasy--A window into a computer. Pages
1939-1047, AFIPS Conference Proceedings.

Fick, G. (1979a) The challenge of low cost computers to the
organization. Introduction to a Working Group. Second
IFIP Conference on Human Choice and Computers, June
4-8,1979. Laxenburg, Austria: International Institute for
Applied Systems Analysis. :

-32=-

Fick, G. (1979b) The challenge of low cost computers to the
organization. Report from Working Group No.1l3, Second
IFIP Conference on Human Choice and Computers. Laxenburg,
Austria: International Institute for Applied Systems
Analysis.

Fibber, M. (1979) Toward more "natural" interaction systems.
International Journal of Man-Machine Studies 11:339-350.

Gaines, B.R. and P.V. Facey (1976) Programming interactive
dialogues. Computing and People. Papers submitted to the
conference at Leicester Polytechnic. Leicester :Edward
Arnceld.

Hebditeh, D.L. (1973) Terminal languages for data base access.
Data Base Management. Infotech State of the Art Report 15.
Maidenhead, Rerkshire, England:Infotech International
Limited.

Hebditeh, D.L. (1979) Design of dialogues for interactive
commercial applications. Pages 973-992, Man/Computer
Communication, Infotech State of the Art Report.
Berkshire, England:Infotech International Limited.

Keen, P.G. and R.D. Hackathorn (1979) Decision support systems
and personal computing. Working Paper 79-01-03. Department
of Decision Sciences, The Wharton School, University of
Pennsylvania.

Kowalski, R. (1979) Algorithm = Logic + Control. Communicatioﬁ
of the ACM 22(7):424-436.

Lehmann, H. (1978) Interpretation of natural 1language in an
information system. IBRM Journal on Research and
Development 22:560-572.

Man/Computer Communication (1979) Infotech state of the art
report. Vol.1l: Analysis and bibliography. Berkshire,
England:Infotech International Limited.

McCracken, D.D. (1978) The changing face of applications
programming. Datamation ‘(November 15):25-3€.

Miller, L.A. and J.C. Thomas (1977) Behavioral issues in the
use of interactive systems. International Journal on Man-
Machine Studies 9:509-536.

N¢ewsted, P.R. and B.E. Wynne (1976) Argumenting man's judgment
with interactive computer systems. International Journal
of Man~Machine Studies 8:29-59.

Olle, T.W. (1973) A summary of the state of the art in data
base management. Pages 215-233, Data Base Management,
Infotech State of the Art Report. Maidenhead, Berkshire,
England:Infotech Information Limited.

-33-

Pearson, M. (1978) A users' guide to "edx". Laxenburg,
Austria:International Institute for Applied Systems
Analysis.

Rohlfs,S. (1979) User interface requirements.Pages 165-199,
Convergence:Computers, Communications and Office
Automation, Infotech State of the Art Report.Maidenhead,
Berkshire, England: Infotech International Limited.

Schneiderman, B. (1978) Improving the human factors aspect of
data base interactions. BACM Transactions on Database
Systems 3(4):417-439, ‘

Sprague, R.H. (1979) A conceptual model of information
technology support for managerial tasks. Seminar given in
Management and Technology Area, International Institute
for Applied Systems Analysis, July 1979, Laxenburg,-
Austria.

Stonebraker, M., E. Wong, P. Kreps and G. Held (1976) The
design and implementation of INGRES. ACM Transactions on
Database Systems 1(3):189-222,

Teitelman, W. (1979) A display oriented programmer's assistant.
International Journal of Man-machine Studies 11:157-~187.

Thompson, XK. and D.M. Ritchie (1975) Unix programmer's manual.

Watson, R.W. (1976) User interface design issues for a large
interactive systems. Pages 357-369, AFIPS Conference
Proceedings.

Winograd, T. (1979) Beyond Programming Languages.
Communications of the ACM 22(7):391-407.

Zloof, M.M. (1976) Query-by-example--Operations on hierarchiecal
data basis. Pages 845-853, AFIPS Conference Proceedings.

