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A U T H O R - H I G H L I G H T S
� In evolutionary suicide, selection drives a viable population to extinction.

� Evolutionary suicide is akin to the Tragedy of the Commons.
� Evolutionary suicide would thus appear to be incompatible with optimizing selection.
� We show that, contrary to intuition, optimizing selection can cause self-extinction.
� Even frequency-independent selection can cause self-extinction.
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Evolutionary suicide is a process in which selection drives a viable population to extinction. So far, such
selection-driven self-extinction has been demonstrated in models with frequency-dependent selection.
This is not surprising, since frequency-dependent selection can disconnect individual-level and
population-level interests through environmental feedback. Hence it can lead to situations akin to the
tragedy of the commons, with adaptations that serve the selfish interests of individuals ultimately
ruining a population. For frequency-dependent selection to play such a role, it must not be optimizing.
Together, all published studies of evolutionary suicide have created the impression that evolutionary
suicide is not possible with optimizing selection. Here we disprove this misconception by presenting and
analyzing an example in which optimizing selection causes self-extinction. We then take this line of
argument one step further by showing, in a further example, that selection-driven self-extinction can
occur even under frequency-independent selection.

& 2013 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Darwin (1859, p. 228) believed that natural selection “will
never produce in a being anything injurious to itself, for natural
selection acts solely by and for the good of each.” While modern
evolutionary theory (Lawlor and Maynard Smith, 1976; Metz et al.,
1992, 1996; Dieckmann and Law, 1996; Geritz et al., 1997) long
since left behind such Panglossian views, mechanisms by which
natural selection causes the extinction of an evolving population
have only recently been discovered in models of life-history
evolution (Matsuda and Abrams, 1994a,b; Ferrière, 2000;
Gyllenberg and Parvinen, 2001; Gyllenberg et al., 2002; Webb,
2003; Parvinen, 2007, 2010). Such processes of selection-driven
self-extinction have become referred to as “evolutionary suicide”
(Ferrière, 2000; Gyllenberg and Parvinen, 2001; Gyllenberg et al.,
tics and Statistics, FIN-20014
x: +358 2 231 0311.

-NC-ND license.
2002) or “Darwinian extinction” (Webb, 2003), and have been
observed also in various other models (Rousset and Ronce, 2004;
Zayed and Packer, 2005; Dercole et al., 2006; Hedrick et al., 2006;
Parvinen, 2007; Gandon and Day, 2009) and experiments (Fiegna
and Velicer, 2003). For recent reviews of the phenomenon, see
Dieckmann and Ferrière (2004), Parvinen (2005), and Rankin and
López-Sepulcre (2005).

The processes resulting in extinction through evolutionary
suicide are conceptually closely related to the “tragedy of the
commons” (Hardin, 1968; see also Rankin et al., 2007) in which
consumers accessing a public good overexploit it to their own
detriment. Selection operates at the level of individuals: those
genotypes accruing more offspring in a given environment will
increase in frequency. However, what is good for an individual is
not necessarily good for its population. ”Selfish” strategies that are
beneficial to individuals when rare, and which can thus invade
populations, may result in a deteriorating environment and
smaller population size once they become common (e.g., Wright,
1969, p. 127). This feature is also central to the modern inter-
pretation of Fisher's so-called fundamental theorem of natural
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selection (Frank and Slatkin, 1992; Okasha, 2008), which describes
only the direct effects of natural selection on average fitness, but
not indirect effects occurring through the change caused by
evolution to the environment. These indirect effects can go as far
as causing population extinction. Already Haldane (1932, p. 119)
noted that in a rare and scattered species, natural selection will
make an organism fitter in its struggle with the environment, but
“as soon as a species becomes fairly dense matters are entirely
different. Its members inevitably begin to compete with one
another.” For example, competition for light may result in tall
plants, although this implies high physiological costs that may
severely undermine the evolving population's viability.

Extinction of an evolving population is the exact opposite of
what one would expect from optimizing selection. Therefore it
would seem that evolutionary suicide cannot possibly occur for
evolutionary dynamics governed by an optimization principle
(Metz et al., 1996; Heino et al., 1998; Metz et al., 2008). In fact, a
possible outcome in such cases is that the population size of the
evolving population will be maximized (Roughgarden, 1976).
Contrary to this expectation, here we show that natural selection
can cause self-extinction even when evolution proceeds according
to an optimization principle. The new mechanism for evolutionary
suicide results from global bifurcations; its harbingers are strong
population fluctuations.
2. Methods

To establish the basis for our analyses below, we first recall
salient distinctions between different types of selection. The
following distinctions come on top of the more familiar distinc-
tions among directional, stabilizing, and disruptive selection, and
are independent of those:
�
 Frequency-dependent selection. Selection is frequency-depen-
dent, if a strategy's advantage varies with its overall frequency
within a population (Ayala and Campbell, 1974; Hartl and Clark,
2007). For a sample of alternative formulations, see Heino et al.
(1998).
�
 Optimizing selection. Selection is optimizing, if it will result in
the maximization of a measure of fitness (Metz et al., 2008).

These notions lead to three types of selection, which are not
always clearly separated in the literature: frequency-independent
optimizing selection, frequency-dependent optimizing selection,
and frequency-dependent non-optimizing selection. This high-
lights that frequency-independent selection is always optimizing
(Appendix A.1), whereas frequency-dependent selection can be
either optimizing or non-optimizing.

Below, we define frequency-dependent selection and optimiz-
ing selection in more technical detail. Naturally, those definitions
must rely on a definition of fitness. For this purpose, we use the
general definition of invasion fitness (Metz et al., 1992), as the
long-term exponential growth rate rðs; EÞ of a rare strategy
(phenotype) s in the environment E set by the resident(s).
2.1. Frequency-dependent selection

Some textbooks only give a verbal definition of frequency-
dependent selection, such as “the direction of selection is […]
dependent on the gene frequency” (Falconer and Mackay, 1996,
p. 43) or “the fitness of phenotypes depends on their frequency
distribution” (Bürger, 2000, p. 289), while other textbooks (Crow
and Kimura, 1970; Ewens, 2004; Barton et al., 2007) have given
analogous definitions.
Wright (1932) famously suggested that adaptive evolution can
be seen as a hill-climbing process on a fitness landscape. Accord-
ing to the modern interpretation of Fisher's fundamental theorem
of natural selection (Frank and Slatkin, 1992; Okasha, 2008),
natural selection has a direct increasing effect on a population's
average fitness, whereas the evolutionary change in its strategy
composition affects fitness indirectly, by causing changes to the
environment. The latter effect is typically only implicitly included
in the traditional hill-climbing metaphor, whereas it is explicitly
taken into account in the definition of the invasion fitness rðs; EÞ.
Under this definition, frequency-dependent selection manifests
itself through the dependence of the environment E on a popula-
tion's strategy composition. To formalize the verbal definition of
frequency-dependent selection, we need to consider a strategy's
advantage relative to another strategy. Specifically, the fitness
advantage of strategy s1 relative to strategy s2 in the environment
E is measured by rðs1; EÞ−rðs2; EÞ. Therefore, a natural definition of
frequency-independent selection is as follows:

For all realizable environments E and strategies s1; s2;

the difference rðs1; EÞ−rðs2; EÞ does not depend on E: ð1Þ

By realizable environments, we mean all values of E that can result
from a population-dynamical attractor of an arbitrary set of
resident strategies.

For some models it is convenient to measure population
growth between generations by the basic reproduction ratio
R0ðs; EÞ, which is related to invasion fitness through the natural
logarithm, rðs; EÞ∝ ln R0ðs; EÞ when jrj is small. This concept was
originally defined for constant environments (Diekmann et al.,
1990). (For extensions to fluctuating environments, see Bacaër and
Guernaoui, 2006; Bacaër and AitDads, 2012; Inaba, 2012; Bacaër
and Khaladi, 2013.) Furthermore, in discrete-time models, popula-
tion growth is often measured by discrete-time fitness Rðs; EÞ,
which is also related to invasion fitness through the natural
logarithm, rðs; EÞ ¼ ln Rðs; EÞ. For R, and analogously for R0, condi-
tion (1) can thus be expressed as follows:

For all realizable environments E and strategies s1; s2;

the fraction Rðs1; EÞ=Rðs2; EÞ does not depend on E: ð2Þ

Let us now see how this definition relates to the dynamics of
the strategy frequencies p1 and p2 of the strategies s1 and s2,
respectively. In unstructured discrete-time population models, the
dynamics of the population density xi;t of strategy si can in general
be written as Xtþ1 ¼ Fðs1; s2;XtÞ, using the vector Xt ¼ ðx1;t ; x2;tÞ. In
the special case xi;tþ1 ¼ f ðsi;XtÞxi;t , only the strategy si affects the
population dynamics of xi. For the strategy frequencies
p1;t ¼ x1;t=ðx1;t þ x2;tÞ and p2;t ¼ 1−p1;t , this yields

p1;tþ1 ¼
vtp1;t

vtp1;t þ p2;t
; ð3Þ

with vt ¼ f ðs1;XtÞ=f ðs2;XtÞ. The discrete-time fitness of a rare
strategy s, when the resident population is on a population-
dynamical attractor characterized by the time series Xt for
t¼1,…,T, is

Rðs; EÞ ¼ lim
T-∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTþ1=x1

T
p

¼ lim
T-∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏
T

t ¼ 1
f ðs;XtÞT

s
; ð4Þ

with E¼ ðX1;X2;…Þ. For fixed-point equilibria, this quantity thus
reduces to Rðs; EÞ ¼ f ðs;XÞ. Therefore, condition (2) results in a
constant vt in Eq. (3), which is the formal definition of frequency-
independent selection usually found in textbooks of population
genetics (e.g., table 6.1 on page 214 of Hartl and Clark, 2007).
Condition (3) is thus a special case of the more general conditions
(1) and (2). In particular, an important advantage of conditions (1)
and (2) is that they can be applied also to structured populations.
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2.2. Optimizing selection

As illustrated by the definition of invasion fitness above, the
environmental interaction variable E contains all information
necessary for determining the fitness of a strategy (phenotype) s.
The variable E can be a scalar, vector, or function, and its
dimension characterizes the dimension of the environment
(Heino et al., 1998). However, the definition of invasion fitness
only requires that E contain enough information to calculate
fitness, but not that this information be represented in maximally
compact form. Therefore, the dimension of an environment is that
of its minimal description. In the appendix we present a practical
method for determining this dimension.

In exceptional (and biologically unrealistic) cases without
density dependence, no information about the environment is
needed for determining fitness, but in any realistic model, 1 is the
smallest possible dimension of the environment. The main point
to appreciate is that selection is optimizing if and only if the
dimension of the environment is 1: according to Metz et al. (2008),
“It is necessary and sufficient for the existence of an optimization
principle that the strategy affects fitness in an effectively mono-
tone one-dimensional manner, or equivalently, that the environ-
ment affects fitness in an effectively monotone one-dimensional
manner.” Formally, this is equivalent to

rðs; E Þ ∼ z ðf ðsÞ; gðEÞÞ; ð5Þ
where f and g are scalar functions, the function z is increasing with
respect to both arguments, and the ∼ sign denotes sign-
equivalence (Metz et al., 1996). Although E may be multi-dimen-
sional, if (5) holds, E affects a strategy's fitness only through the
one-dimensional g(E), so the dimension of E is (at most) 1, and the
following optimization principle exists:

rðs′; EðsÞÞ40 if and only if f ðs′Þ4 f ðsÞ: ð6Þ
In that case, strategies s′ with f ðs′Þ4 f ðsÞ can invade a population
with strategy s. Consequently, evolution will maximize f ðsÞ: When
any strategy s has reached a population-dynamical attractor,
bringing about the environment E(s), the invasion fitness of this
strategy s in the environment E(s) equals zero, rðs; EðsÞÞ ¼ zðf ðsÞ;
gðEðsÞÞ ¼ 0: Therefore the fact that evolution maximizes f(s) implies
that g(E) is simultaneously minimized (Metz et al., 2008).

Intuitively, if selection is optimizing, one would expect that
evolutionary suicide cannot happen. Below we disprove this
tempting misconception.
3. Results

We now show that selection-driven self-extinction is possible
under frequency-dependent optimizing selection (Example 1) and
even under frequency-independent optimizing selection
(Example 2).

3.1. Example 1: Self-extinction under frequency-dependent
optimizing selection

The first model we study is a simple consumer–resource model
with an Allee effect (Allee et al., 1949) in the resource. An Allee
effect means that individuals benefit from the presence of con-
specifics, and these benefits are lost as population densities
decline. Here the Allee effect implies that the resource population
can no longer sustain itself when it becomes too small. We assume
that in the absence of consumers, the density N of the resource
population changes according to _N ¼NðaN=ð1þ NÞ−d− ~dNÞ, where
_N denotes the time derivative of N. The component aN=ð1þ NÞ is
the resource's per capita birth rate, which decreases through an
Allee effect from a at very high resource density to 0 at zero
resource density; for a discussion of possible mechanistic under-
pinnings, see Boukal and Berec (2002). The density-independent
and density-dependent components of the resource's per capita
death rate are d and ~dN, respectively.

To cover all aspects of frequency-dependent selection, we
consider several strategies i¼ 1;2;…;n of consumers with harvest
intensities si and densities Ci, which convert resource intake into
offspring with an efficiency e40. Consumers die because of
competition with other consumers (at a rate proportional to ~m)
and also for intrinsic causes (at rate m). Altogether, we obtain the
following differential equations for the resource and a poly-
morphic consumer population,

_N ¼N
aN

1þ N
−d− ~dN

� �
−N ∑

n

j ¼ 1
sjCj;

_Ci ¼ esiNCi− mþ ~m ∑
n

j ¼ 1
Cj

 !
Ci: ð7Þ

Notice that even for ~m ¼ 0, all consumer densities remain
bounded.

We use this model to illustrate and to show how models with
non-optimizing and optimizing frequency-dependent selection
can drive a population to extinction. According to Eq. (7), the
invasion fitness (Metz et al. 1992) for the harvesting intensity s
evolving in Example 1 is

rðs′; EÞ ¼ es′N−m− ~mC ; ð8Þ

where s′ is the harvesting intensity of the mutant, C is the time-
averaged resident consumer population density, and N is the
corresponding time-averaged resource population density. The envir-
onmental interaction variable E¼ ðN ;C Þ is at most two-dimensional.
In the appendix we show that it is two-dimensional when ~m40,
and one-dimensional when ~m ¼ 0. In the latter case, there is
frequency-dependent optimizing selection.

Since fitness is an increasing function of s′, for an individual
consumer it is always advantageous to harvest resources more
intensively, so the intensification of harvesting is always favored
by natural selection (Fig. 1a). This, however, inevitably leads to
decreased resource availability, which is harmful to all consumers.
Therefore, when selection drives harvesting intensity beyond a
threshold, both resource and consumers go extinct (Fig. 1a–c). This
is a typical example of self-extinction caused by non-optimizing
selection. Fig. 2 illustrates the population-dynamical bifurcation
resulting in extinction. As long as the harvesting intensity is low,
consumer–resource dynamics can attain a stable equilibrium
(yellow circle), allowing for sustainable exploitation of the
resource by the consumer (Fig. 2a). This is shown by the set of
trajectories (thin curves) ending up at the stable equilibrium.
Other trajectories lead to the origin, implying that certain initial
conditions lead to extinction. Isoclines (red curves) separate
ranges of increasing resource or consumer density from those in
which these densities decrease. Notice that, in addition to the
equilibrium at the origin, the stable interior equilibrium coexists
with an unstable one (a saddle point, blue circle). Natural selection
drives up the harvesting intensity until these two equilibria collide
(Fig. 2b), resulting in their mutual annihilation and thus in the
inevitable collapse of the consumer–resource system (Fig. 2c). It is
not accidental that the transition to extinction seen in Fig. 2a–c is
discontinuous, with gradual evolutionary change leading to sud-
den extinction. In fact, it has been shown that evolutionary suicide
cannot occur if the transition to extinction is continuous
(Gyllenberg et al., 2002). In other words, a discontinuous transi-
tion to extinction is a necessary condition for selection-driven self-
extinction.
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Fig. 1. Evolutionary suicide through non-optimizing selection ( ~m ¼ 6), panels a–c, and through optimizing selection ( ~m ¼ 0), panels d–h (Example 1). Evolving harvesting
intensities (a, d) increase over time until evolutionary suicide occurs. Other panels illustrate corresponding changes in resource densities (b, e, g) and consumer population
densities (c, f, h). Whereas in the non-optimizing case (a–c) population densities monotonically decrease prior to sudden extinction, evolutionary suicide in the optimizing
case (d–h) is preceded by characteristic density fluctuations (g, h). Parameters: a¼18, d¼1, ~d ¼ 8, e¼0.9, and m¼0.1.
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More in general, it has been shown (Gyllenberg and Parvinen,
2001) that, in models with one-dimensional environmental inter-
action variables, and thus with optimizing selection, evolutionary
suicide cannot occur through the collision of two equilibria. This
precludes evolutionary suicide under optimizing selection through
the route shown in Fig. 2a–c. Nevertheless, we will show below
that even optimizing selection can cause self-extinction. For this
purpose, we consider the consumer–resource model introduced
above with ~m equal to zero, thus neglecting the effects of direct
competition between consumers. Under these conditions selection
continues to favor the intensification of harvesting. Can this then
still lead to evolutionary suicide? Surprisingly, the answer is yes:
again, resource and consumer go extinct, once the evolving
harvesting intensity becomes too high (Fig. 1d–h).

What kind of population-dynamical bifurcation can allow for
evolutionary suicide under optimizing selection? Bifurcations as
the one in Fig. 2a–c are called local, because the full bifurcation
structure can be understood simply by considering a small
neighborhood around the collision point. By contrast, a stable
limit cycle or a chaotic attractor can disappear through a global
bifurcation (see Bazykin et al., 1998; Kooi, 2003 for detailed
analyses), and through such a bifurcation evolutionary suicide
can occur even if selection is optimizing. Fig. 2d–g illustrate this for
the case ~m ¼ 0: at low harvesting intensity (Fig. 2d) the situation is
akin to the previous case with ~m40 (Fig. 2a). However, we see
that now the population-dynamical attractor is not always an
equilibrium, but instead changes from a stable equilibrium
(Fig. 2d) to a stable limit cycle (Fig. 2e). A global bifurcation occurs
when the unstable manifold of the right saddle at (1, 0) (thick
yellow curve) and the stable manifold of the left saddle at (0.125,
0) (thick blue curve) collide (thick green curve). Before the
bifurcation (Fig. 2e), the yellow curve connects to the limit cycle
and the blue curve acts as a separatrix (separating initial condi-
tions from which the dynamics converge either to the limit cycle
or to the origin). At the bifurcation (Fig. 2f), the two curves
coincide, forming a so-called heteroclinic orbit. After the bifurca-
tion (Fig. 2g), the yellow curve connects to the origin and the blue
curve to the unstable equilibrium such that all trajectories now
lead to extinction. Webb (2003) observed a similar phenomenon
in another consumer–resource model, see her Eqs. (5) and (6), and
her Figs. 9 and 10 (although one can show that selection on mean
predator mortality is optimizing in the model (Webb, 2003), the
types of selection causing self-extinction were not examined in
her model).

We thus conclude that even optimizing selection can result in
evolutionary suicide.

3.2. Example 2: Self-extinction under frequency-independent
optimizing selection

As another example of evolutionary suicide under optimizing
selection we present a modified Ricker (1954) model in which the
population's growth rate is evolving. In addition, this model shows
that evolutionary suicide is possible under frequency-independent
selection. The model is defined in discrete time, with a popula-
tion's density xtþ1 in the next time step being dependent on its
current density xt according to xtþ1 ¼ hðxtÞxt . The original Ricker
(1954) model is given by hðxÞ ¼ ae−kx, where a is the fecundity at
low population densities and k measures the strength of density
regulation. Discrete-time models with an Allee effect can be
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derived from first principles in many ways: our choice of
hðxÞ ¼ sxe−kx can be motivated, for example, with difficulties in
mate finding (Eskola and Parvinen, 2007). For several strategies
i¼ 1;2;…;n with different growth rates si, the population
dynamics are given by

xi;tþ1 ¼ sixi;tNte−kNt with Nt ¼ ∑
n

j ¼ 1
xj;t : ð9Þ

This implies that the discrete-time invasion fitness of a mutant
with growth rate s′ is

Rðs′; EÞ ¼ lim
T-∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTþ1=x1

T
p

¼ s′ lim
T-∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏
T

t ¼ 1
Nte−kNt

T

s
; ð10Þ

where Nt is the total population size at time t. The dynamics of the
modified Ricker model is rich and can even be chaotic. Even
though the full time-course of densities therefore is needed in Eq.
(10), and the dimension of the environmental interaction variable
E¼ ðN1;N2;…Þ hence is infinite, this is not the minimal description
of the environment. In the appendix we show that individuals only
perceive the environment through a one-dimensional variable.
The environment is thus one-dimensional and the invasion fitness
(10) can be written as in (5). Therefore, selection is optimizing. In
the appendix we also show that selection in this model is
frequency-independent.

The invasion fitness (10) is an increasing function of the growth
rate s′. Thus, natural selection always favors increases in this
strategy, taking the population through a period-doubling route
to chaos. Similar to the first example, there is a threshold value for
the growth rate s at which natural selection abruptly drives the
population to extinction by way of evolutionary suicide (Fig. 3).
When s exceeds this threshold (for k¼1, this happens at
s≈19:6316), a global bifurcation occurs, in which the population's
stable chaotic attractor collides with an unstable equilibrium. As a
result, the chaotic attractor disappears and the population goes
extinct.

We have thus confirmed that evolutionary suicide can occur
even in models with frequency-independent optimizing selection.
4. Discussion

Although it may seem paradoxical at first sight, in this paper
we have shown that evolutionary suicide is possible under
frequency-dependent optimizing selection (Example 1) and even
under frequency-independent optimizing selection (Example 2).
Evolutionary suicide means that selection forces strategies to
evolve towards and beyond an extinction boundary. The
population-dynamical bifurcation through which viability is lost
can be of fairly simple type in models with non-optimizing
selection. In the simplest case, a stable equilibrium collides with
an unstable one and thus disappears. However, this bifurcation
does not allow for evolutionary suicide under optimizing selection
(Gyllenberg and Parvinen, 2001). Nevertheless, as illustrated here,
more complicated bifurcations involving non-equilibrium attrac-
tors or repellors can allow for evolutionary suicide also under
optimizing selection.

Broadly speaking, we can thus conclude that evolutionary
suicide can occur via two mechanisms. In the first one, there is a
clear dissociation of individual and common good, like in the
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Fig. 3. Evolutionary suicide through frequency-independent optimizing selection (Example 2). Evolutionary dynamics of growth rates s (a) and corresponding population
sizes N (b). (c) Population-dynamical attractor and unstable equilibrium (dashed curve) as a function of the growth rate s. Parameters: k¼1.
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“tragedy of the commons” (Hardin, 1968), mentioned already in
the introduction. This situation is traditionally linked with
frequency-dependent selection, and there are close conceptual
similarities with the emergence of selfish strategies in studies
addressing the evolution of cooperation (Nowak and Sigmund,
2005; Nowak, 2006; Hauert et al., 2007; Parvinen, 2010, 2011).

Here we have identified a second mechanism for evolutionary
suicide. Even under optimizing selection, evolutionary suicide can
occur, provided that population viability is lost through a global
bifurcation (defined by the fact that the full bifurcation structure
cannot be understood simply by considering a small neighborhood
in the state space around a collision point). We have presented
two prototypical models in which the new mechanism operates.
Note that this novel class of evolutionary phenomena may not
have been detected before because models of optimizing selection
are often so simple in their population dynamics that they do not
allow for cyclic or chaotic dynamics, such that global bifurcations
are excluded. In systems of ordinary differential equations, sim-
plicity in population dynamics coincides at least partly with the
number of equations: for one-dimensional differential equation,
all attractors are fixed-point equilibria, whereas two dimensions
are needed for cycles, and three dimensions for chaos. In discrete
time, however, even simple-looking models can have complex
population dynamics, such as those illustrated in our Example 2.
Against this background and in the context of evolutionary suicide,
it might thus be worthwhile to consider ecological mechanisms
enhancing or preventing complex dynamics. For example, Ruxton
(1995) suggested that sexual reproduction may reduce a popula-
tion's likelihood to exhibit chaos. Note also, that under complex
dynamics, seemingly viable population dynamics may just be on a
chaotic transient, eventually resulting in population extinction
(Mc Cann and Yodzis, 1994).

Naturally, the presence of an extinction boundary does not
guarantee that evolutionary suicide occurs. This is because in
addition, selection must force strategies to evolve towards and
beyond such an extinction boundary. In case extinction is brought
about by a global bifurcation, complex dynamics precede extinction.
Therefore, the question under what circumstances natural selection
favors traits that result in more complex (chaotic) dynamics or less
complex (equilibrium) dynamics (Gatto, 1993; Doebeli and Koella,
1995; Ebenman and Johansson, 1996; Johst et al., 1999) is relevant in
the study of evolutionary suicide. Already without natural selection,
a population experiencing chaotic dynamics can repeatedly reach
very low densities, which exposes it to chance extinction. With
natural selection towards an extinction boundary, such exposure is
especially fatal, like in our Example 2, in which the chaotic attractor
collides with an unstable equilibrium.

As mentioned earlier, selection is optimizing if it will result in
the maximization of some measure of fitness (Metz et al., 2008).
As explained in the Methods section, a measure of environmental
quality will always be minimized under optimizing selection.
A special case of such pessimization is Tilman's Rn principle
(Tilman, 1982, p. 47; Tilman, 1988, p. 21), according to which,
among several consumers limited by a single resource, the one
consumer that engenders the lowest equilibrium resource level Rn

competitively excludes all the others. From this observation one
may get the impression that, under optimizing selection, the best
strategy is selected for, and because it can survive in the worst
environment, optimizing selection cannot result in extinction. A
more careful look at this matter makes the observed phenomenon
of evolutionary suicide under optimizing selection understand-
able. In order to appreciate what happens in our Example 1, a
consumer–resource model, we only need to restate the Rn princi-
ple as “the consumer that is most efficient in the use of the
resource will displace all others”, and notice that the most efficient
consumer may indeed be too efficient: overharvesting may then
result in the collapse of the resource population. In our model, no
consumers can survive in such a situation, so evolutionary suicide
happens. This may help to understand, at a more intuitive level,
why evolutionary optimization and suicide do not exclude
each other.

The observation that evolutionary suicide can result from com-
mon evolutionary phenomena, such as selection for higher harvest-
ing intensity or for higher growth rate, raises a fundamental question.
If this phenomenon is widespread, then why does life generally
persist? Answers are many fold. First, evolutionary suicide may
actually be rather common, resulting in relatively frequent extinc-
tions. According to the fossil record, an enormous amount of species
is known to have gone extinct, and it is difficult to assess whether
their extinctions have resulted from evolutionary suicide or from
other causes. Second, there are many mechanisms that can poten-
tially prevent evolutionary suicide. In the context of avoiding the
tragedy of the commons (Hardin, 1968), various behavioral and
regulatory mechanisms have been proposed, including “mutual
coercion, mutually agreed upon” by Hardin (1968, 1998). Evolution-
ary suicide in natural populations, however, is not a phenomenon
that can be avoided through regulatory interventions. The simplest
natural ecological mechanisms for preventing evolutionary suicide
are additional costs or benefits implied by the evolving traits, such as
a cost of harvesting in our Example 1 or a cost of growth in our
Example 2. Also joint evolutionary dynamics can prevent extinction.
For example, the joint evolution of female resistance and male
harassment can prevent evolutionary suicide occurring through
excessive male harassment (Rankin et al., 2011). Spatial structure,
such as in a metapopulation, can also prevent selection-driven
extinction: for example, dispersing individuals may escape unfavor-
able situations, such as excessive harassment (Eldakar et al., 2009).
Furthermore, the relatedness between individuals in small local
populations can be high, which may select for more cooperative
strategies (Fletcher and Doebeli, 2009; Parvinen, 2011) and thus
prevent evolutionary suicide. This requires low dispersal, which in
turn may be the outcome of evolution (Parvinen, 2013).
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Can evolutionary suicide be anticipated? When it occurs
through the collision of a stable and an unstable equilibrium in a
one-dimensional model, population densities smoothly decrease
to a finite value before the extinction takes place (Gyllenberg and
Parvinen, 2001). For examples, see Gyllenberg and Parvinen (2001,
Fig. 3), Gyllenberg et al. (2002, Figs. 1c and 7b), Webb (2003,
Fig. 4), Parvinen (2005, Fig. 8), and Parvinen (2010, Fig. 3).
Whatever the reason for a population decline is, they receive the
attention of managers. Such a decline can then be interpreted as
an early warning signal for triggering management actions. By
contrast, when evolutionary suicide occurs under non-equilibrium
population dynamics, a gradual decline cannot be relied upon as a
warning signal. Instead, changes in the fluctuations of population
density (Fig. 1g and h), either of oscillatory or chaotic nature,
precede the transition to extinction, see also Webb (2003, Figs. 6,
8, and 10), Parvinen (2010, Fig. 6). Such fluctuations, and changes
in the period of the oscillations, can thus herald the danger of
imminent evolutionary suicide.
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Appendix A

A.1. Testing for optimizing selection

A first operational method of testing for optimizing selection
requires finding the dimension of an environment's minimal
description, with respect to a given fitness function. This dimen-
sion is defined by the rank of the fitness function rðs; EÞ with
regard to the environmental interaction variable E. In many
models, this rank is independent of E, but when it depends on E,
it suffices to investigate this rank around rðs; EÞ ¼ 0. Mathemati-
cally (e.g., Tu, 2008), said rank is given by the rank of the
derivative of r with respect to E¼ ðE1;…; EnÞ, where the n compo-
nents of E are independent. Thus, the sought dimension equals the
maximum number, for all feasible si and E, of linearly independent
vectors

∇Erðsi; EÞ ¼
∂

∂E1
;…;

∂
∂En

� �
rðsi; EÞ; ðA:1Þ

for i¼1,…,n. Hence, we can simply construct the matrix M with
rows given by the vectors in (A.1) and then evaluate its rank. This
implies that the sought dimension equals n, if and only if M has
full rank, i.e., if its determinant is not vanishing. A similar
construction was already considered by Meszéna et al. (2006).

Sometimes, a model's (not necessarily minimal) representation
of the environmental interaction variable is infinite-dimensional.
The infinite-dimensional version of the gradient (A.1) may then
consist of zero elements only: This happens if each element of E
changes r only infinitesimally. In such cases, it will be helpful to
study a finite-dimensional approximation.

We can prove that, under frequency-independent selection, the
number of linearly independent vectors ∇Erðsi; EÞ always exactly
equals 1: From (1) it follows that for all s1 and s2 the derivative
ð∂=∂EkÞ rðs1; EÞ−rðs2; EÞð Þ ¼ 0 for k¼1,…,n, and therefore ∇Erðs; EÞ
does not depend on s. Hence, the dimension of the environment
in models with frequency-independent selection always equals 1,
meaning that selection in such models is always optimizing.

Based on the results of Gyllenberg and Service (2011), a second
operational condition for the presence of an optimization principle
exists. First, it is straightforward to see that an optimization
principle (6) excludes mutual invadability,

rðs1; Eðs2ÞÞ≥0 if and only if rðs2; Eðs1ÞÞ≤0; ðA:2Þ
and also that the invasibility relation is transitive,

rðs1; Eðs2ÞÞ≥0 and rðs2; Eðs3ÞÞ≥0 together implies rðs1; Eðs3ÞÞ≥0;
ðA:3Þ

which means that if the strategy s1 can invade the strategy s2, and
the strategy s2 can invade the strategy s3, then necessarily the
strategy s1 will be able to invade the strategy s3. In other words,
there are no rock-paper-scissors triples of strategies. Gyllenberg and
Service (2011) proved that under rather general conditions, condi-
tions (A.2) and (A.3) together are equivalent to condition (6), which
provides another method for testing for optimizing selection.

A third operational method has been discussed by Metz et al.
(2008) and Gyllenberg et al. (2011). This method is based on the
visual inspection of the sign-structure of pairwise invasibility plots
(PIPs). Condition (A.2) corresponds to skew-symmetry, which
means that a PIP does not change when it is mirrored across its
diagonal and the signs of invasion fitness are inverted. Further-
more, the transitivity condition (A.3) implies that for any resident
strategy s, strategies si that satisfy rðsi; EðsÞÞ ¼ 0 are equivalent to
the strategy s in the sense that they must have the same sign
structure, rðs′; EðsiÞÞ∼rðs′; EðsresÞÞ for all s, which is also readily
inspected visually.

Here we have listed various methods of testing for optimizing
selection. The first method, which is based on (A.1), is relatively
easy to apply, if invasion fitness can be written in explicit form.
Concerning the second method, transitivity (A.3) cannot be ver-
ified in finitely many operations. The third method is easy to apply
numerically, but a rigorous test requires that the curves satisfying
rðs′; EðsÞÞ ¼ 0 be expressed analytically.

A.2. Selection in Example 1

We can see from Eq. (8) that the fitness difference (1) in
Example 1 equals

rðs1; EÞ−rðs2; EÞ ¼ eNðs1−s2Þ; ðA:4Þ
which does depend on the component N of the environmental
interaction variable E¼ ðN;C Þ, so selection in this model is
frequency-dependent. The gradient of the fitness function (8) with
respect to E¼ ðN;C Þ is ∇Erðs; EÞ ¼ ðes;− ~mÞ. For any two strategies
s1≠s2, these vectors are linearly independent if the determinant
��� es1 − ~m

es2 − ~m

���¼ e ~mðs2−s1Þ ðA:5Þ

does not vanish. For ~m40 the environment is thus two-
dimensional and selection is not optimizing, whereas for ~m ¼ 0
the environment is one-dimensional and selection is optimizing.

A.3. Selection in Example 2

From Eq. (10), we see that the fitness ratio (2) in Example
2 equals

Rðs1; EÞ=Rðs2; EÞ ¼ s1=s2; ðA:6Þ
and thus never depends on the environmental interaction variable E.
Furthermore, we observe that Eq. (3) holds with a constant v¼ s1=s2.
Therefore, selection in this model is frequency-independent. When
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the population-dynamical attractor ðN1;N2;…Þ of the resident is
cyclic, NTþ1 ¼N1; the invasion fitness (10) is

Rðs′; EÞ ¼ s′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏
T

t ¼ 1
Nte−kNt

T

s
ðA:7Þ

The gradient of the fitness function (A.7) with respect to the
environmental interaction variable E¼ ðN1;N2;…;NT Þ is

∇ERðs; EÞ ¼
s
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏
T

t ¼ 1
Nte−kNt

T

s
1−kN1

N1
;
1−kN2

N2
;…;

1−kNT

NT

� �
: ðA:8Þ

We observe that upon variation of s, this vector remains the same,
except for a changing multiplication factor in front. Therefore, all
vectors ∇ERðsi; EÞ, for i¼1,…,n, are linearly dependent, and the
dimension of the environment is 1. This implies optimizing selection.
Using the notion of Eq. (5), the optimized function g is given by

Rðs′; EÞ ¼ s′gðN1;N2;…Þwith gðN1;N2;…Þ ¼Nge−kN a ; ðA:9Þ
involving the geometric mean Ng and the arithmetic mean Na of
densities in a population with strategy s. For non-cyclic resident
attractors, i.e., in the limit T-∞, the effect of each single element of
the environmental interaction variable on fitness, and therefore also
all elements of the vector (A.8), approach zero. Nevertheless,
also in this case, invasion fitness can be written with a one-
dimensional environmental interaction variable according to
Eq. (A.9). To conclude, in this model selection is both optimizing
and frequency-independent.
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