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Abstract

We analyze the evolution of specialization in resource utilization in a mechanis-
tically underpinned discrete-time model using the adaptive dynamics approach.
We assume two nutritionally equivalent resources that in the absence of con-
sumers grow sigmoidally towards a resource-specific carrying capacity. The
consumers use resources according to the law of mass-action with rates involv-
ing trade-off. The resulting discrete-time model for the consumer population
has over-compensatory dynamics. We illuminate the way non-equilibrium pop-
ulation dynamics affect the evolutionary dynamics of the resource consumption
rates, and show that evolution to the trimorphic coexistence of a generalist
and two specialists is possible due to asynchronous non-equilibrium population
dynamics of the specialists. In addition, various forms of cyclic evolutionary dy-
namics are possible. Furthermore, evolutionary suicide may occur even without
Allee effects and demographic stochasticity.

Key words: Adaptive dynamics, Resource utilization, Trade-off, Specialist,
Generalist, Evolution, Local adaptation

1. Introduction1

Evolution of life history traits interacts with population dynamics. Espe-2

cially well this interplay is known in the case of evolution of dispersal, where3

non-equilibrium population dynamics may forge dispersal and even enable evo-4

lutionary branching of dispersal strategies, but, on the other hand, dispersal5

may stabilize population dynamics (Gyllenberg et al., 1993; Holt and McPeek,6

1996; Parvinen, 1999; Ronce, 2007). However, recent results indicate that the7

type of population-dynamical attractor may affect the evolution of other life8

history traits as well (White et al., 2006; Hoyle et al., 2011). In this paper,9

we analyze the interplay between population dynamics and the evolution of10
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resource utilization using the adaptive dynamics approach (Metz et al., 1992;1

Geritz et al., 1998).2

In order to enable reasonable evolutionary analysis, we base our model on in-3

dividual level processes (Rueffler et al., 2006a). We first assume continuous-time4

resource-consumer dynamics within breeding seasons for consumers utilizing two5

alternative resources. With specialization between two substitutable resources,6

a trade-off is necessarily present: a consumer may utilize both resources, but7

the more efficiently it uses one resource, the less efficiently it is able to use the8

other.9

Following Geritz and Kisdi (2004), we assume time-scale separation between10

the dynamics of the resources and those of the consumers. This enables us to11

obtain a discrete-time model for the consumer population between breeding sea-12

sons. Different within-season resource dynamics result in different discrete-time13

between-season dynamics for the consumer population. We commit the major-14

ity of our analysis using a model that, in the case of only one resource, equates15

to the discrete logistic model, which is known to exhibit a wide range of differ-16

ent population-dynamical attractors from equilibrium to chaos (e.g. Holmgren17

(1994)). For comparison, we present also results obtained from models that18

correspond to the Ricker (1954) model and Hassell (1975) model. In all of these19

models, the type of the population-dynamical attractor affects the evolutionary20

dynamics of the consumers’ resource utilization strategies. On the other hand,21

different consumer strategies result in different types of population-dynamical22

attractors.23

The family of models we study has been extensively studied in the case of24

equilibrium dynamics by Nurmi and Parvinen (2008) who found three qualita-25

tively different evolutionary scenarios: evolution to a monomorphic specialist26

population, evolutionary branching resulting in the coexistence of two specialist27

strategies, and evolution to a monomorphic generalist population. This is in28

line with the majority of previous results (Levins, 1962, 1963; Meszéna et al.,29

1997; Ma and Levin, 2006; Rueffler et al., 2006b; Ravigné et al., 2009). Pre-30

vious work on other traits has shown that, under non-equilibrium population31

dynamics, evolutionary branching may be possible also in such ecological sce-32

narios that do not allow branching under equilibrium dynamics (Parvinen, 1999;33

White et al., 2006; Hoyle et al., 2011). Thus, non-equilibrium dynamics may34

result in enhanced biodiversity. In our model, evolutionary branching is possible35

already under equilibrium dynamics. However, non-equilibrium dynamics may36

still add in diversity by allowing a secondary evolutionary branching to occur,37

which results in the trimorphic coexistence of generalists and specialists. Fur-38

thermore, non-equilibrium dynamics may, in our model, result in evolutionary39

suicide (Ferrière, 2000; Parvinen, 2005).40

In the presence of only one resource, it is possible to investigate the evolution41

of the rate at which the consumer uses the resource. In this case, there are no42

costs involved in the utilization of the sole resource. Thus, in most cases, there43

is selection for ever increasing values of this rate until a physical maximum is44

reached. It is also possible that the resource population collapses or even goes45

extinct, e.g., because of Allee-effects or demographic stochasticity. This in turn46
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can cause the extinction of the consumer population, i.e. evolutionary suicide.1

In our model with logistic dynamics, too intensive use of resources can cause2

their collapse and thus the evolutionary suicide of the consumer population even3

in the absence of of Allee-effects and demographic stochasticity.4

There are several models where the ecological coexistence of a generalist and5

two specialists is possible (Wilson and Yoshimura, 1994; Kisdi, 2002; Abrams,6

2006b). However, such coexistence may be evolutionarily unstable. Even more7

rarely is such trimorphic coexistence evolutionarily attainable, i.e. reachable8

from an initially monomorphic population when mutations are assumed small.9

Egas et al. (2004) showed that evolution always destroys the trimorphic coexis-10

tence in the model of Wilson and Yoshimura (1994). Furthermore, Egas et al.11

(2004) showed that even in moderately modified versions of this model, evolution12

to the trimorphic coexistence is possible only in an extremely narrow param-13

eter domain. Abrams (2006a) showed that, if the resource dynamics fluctuate14

asynchronously and the time consumers need to handle the resources is taken15

into account, evolution to the trimorphic coexistence is possible and, in the16

parameter domain where the ecological coexistence is possible, even plausible.17

Abrams (2006a) deduced that asynchrony in the resource dynamics gives gener-18

alists an advantage due to reduced variance in resource intake. This advantage19

may, however, disappear when the generalists become more common since this20

may have a synchronizing effect on the resource dynamics. In spatially hetero-21

geneous models with global dispersal, evolution to the trimorphic coexistence22

is not possible under equilibrium dynamics (Nurmi and Parvinen, 2008; Nurmi23

et al., 2008) when only specialization can evolve, but recently Nurmi and Parvi-24

nen (2011) showed that the joint evolution of specialization and dispersal may25

result in the coexistence of an abundantly dispersing generalist and two scarcely26

dispersing specialists (see also Kisdi (2002)). Furthermore, when the resources27

are spatially aggregated, also distance-limited dispersal may enable evolution28

to the trimorphic coexistence where generalists live in the habitat boundaries29

(Debarre and Lenormand, 2011; Karonen, 2011).30

In this paper, we integrate the ideas concerning the adaptive dynamics un-31

der non-equilibrium population dynamics (Parvinen, 1999; White et al., 2006;32

Hoyle et al., 2011) and the idea that asynchronous resource dynamics may en-33

able coexistence of the specialists and generalists (Abrams, 2006a,b) with the34

mechanistic modeling approach used by Nurmi and Parvinen (2008, 2011) to35

analyze the evolution of specialization.36

2. Model and methods37

Following Geritz and Kisdi (2004), we assume that consumers hatch at the38

beginning of a breeding season and use resources to produce eggs that also39

encounter mortality during the breeding season. At the end of the season, all40

adults perish and only a fraction of the eggs survives to the following season.41

In the absence of consumers, continuous-time within-season dynamics of42

resource i are determined by the logistic differential equation with carrying43

capacity Ki, i.e.,44
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Ṙi = αi

(
1 −

Ri

Ki

)
Ri, (1)

where Ri denotes the density of the resource and αi > 0 denotes the resource1

renewal rate. Different resources affect each other only via shared consumers.2

We assume that between breeding seasons resource populations recover to their3

carrying capacities independent of the usage during previous seasons.4

The consumers use resources according to the law of mass action. The con-5

sumer individuals are all identical except for the specialization strategy s ∈ [0, 1]6

that affects only the resource consumption rates. An individual with strategy s7

uses resource 1 with rate β(s) and resource 2 with rate β(1 − s). The resource8

consumption (or trade-off) function β is an increasing function with β(0) = 09

and β(1) = 1. Thus, case s = 0 corresponds to a devoted specialist using only10

resource 2 and case s = 1 to a devoted specialist using only resource 1. Case11

s = 0.5 corresponds to an unbiased generalist. For example, if a consumer pop-12

ulation is monomorphic with strategy s and population size x, the dynamics13

of resource 1 are Ṙ1 = α1

(
1 − R1

K1

)
R1 − β(s)R1x. Within season, consumers14

produce eggs with rate proportional to their resource usage. The consumer pop-15

ulation in the following season consists only of eggs that survive the winter and16

hatch.17

When we, furthermore, assume that the resource dynamics are fast compared18

to the consumer dynamics such that the resources are always at the quasi-19

equilibrium determined by the consumer population sizes and strategies, we20

finally obtain the following logistic-type difference equation for the consumer21

between-season dynamics (Geritz and Kisdi (2004), see also Nurmi and Parvinen22

(2008)):23

xn+1 = λ1K1β(s)xn max
(
0, 1 −

β(s)
α1

xn

)
+ λ2K2β(1 − s)xn max

(
0, 1 −

β(1−s)
α2

xn

)
,

(2)

where λi ∈ R+ are compound parameters that depend on the details of the24

within season dynamics (Geritz and Kisdi, 2004).25

In order to illuminate the differences between specialists and generalists we26

assume that the resources are nutritionally equivalent (λ1 = λ2 = λ) and renew27

in equal rate (α1 = α2 = α). In this case, both λ and α can be scaled out and,28

for several consumers, equation (2) takes form29

x
(j)
n+1 = K1β(s(j))x

(j)
n max

(
0, 1 −

∑k

i=1 β(s(i))x
(i)
n

)
+ K2β(1 − s(j))x

(j)
n max

(
0, 1 −

∑k

i=1 β(1 − s(i))x
(i)
n

)
= f(s(j), S, Xn)x

(j)
n ,

(3)

where f(s, S, Xn) is the fecundity of a strategy s individual when strategies S =30

(s(1), s(2), . . . , s(k)) are present with population sizes Xn = (x
(1)
n , x

(2)
n , . . . , x

(k)
n ).31

A rare mutant with strategy smut and negligible population size Xmut
n will grow32
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according to xmut
n+1 = f(smut, S, Xn)xmut

n . Under equilibrium dynamics, we can1

determine the fitness of a rare mutant in the environment set by the residents,2

in the spirit of Metz et al. (1992), as3

r(smut, S, X∗) = ln
(
f(smut, S, X∗)

)
,

where X∗ denotes the vector of the equilibrium population sizes of the resi-4

dent strategies. Under non-equilibrium dynamics, the calculation of the fit-5

ness function is more complicated: Assume that the resident population com-6

prising strategies S = (s(1), s(2), . . . , s(k)) has settled to an attractor X =7

(X1, X2, . . . Xn, . . .), where each Xn is the vector of the population sizes at8

time n as above. Then9

r(s, S, X) = lim
t→∞

ln

⎛
⎝ t

√√√√ t∏
i=1

f(s, S, Xi)

⎞
⎠ = lim

t→∞

1

t

t∑
i=1

ln
(
f(s, S, Xi)

)
. (4)

If r(s, S, X) > 0, a mutant with strategy s is able to invade the resident popula-10

tion. In practice, it is possible to calculate fitness only in the case of p-periodic11

resident population dynamics. In this case,12

r(s, S, X) =
1

p

p∑
i=1

ln
(
f(s, S, Xi)

)
.

Some analytic results can be derived even without specifying the resource13

consumption function β (Nurmi and Parvinen, 2008). However, our results14

mostly rely on the numerical analysis of equations (3) and (4) together with15

evolutionary simulations. In the numerical explorations, we use16

β(s) =
1 − e−θs

1 − e−θ
, θ �= 0. (5)

This formula is not defined for θ = 0, but since limθ→0 β(s) = s it is natural to17

define β(s) = s when θ = 0. The trade-off parameter θ determines whether the18

resource consumption function β is convex (θ < 0), concave (θ > 0), or linear19

(θ = 0). In the case of concave resource consumption function, the resource20

consumption function increases deceleratingly. This case is sometimes referred21

as the case of weak trade-off since a generalist can use resources more efficiently22

than a linear combination of the two specialists (β(0.5) >
β(0)+β(1)

2 ). Analo-23

gously, in the case of convex resource consumption function, the resource con-24

sumption function increases acceleratingly (strong trade-off, β(0.5) <
β(0)+β(1)

2 ).25

In the terminology used by, e.g., White et al. (2006) and Hoyle et al. (2011),26

the case of concave resource consumption function corresponds to a trade-off27

with accelerating costs, and the case of convex resource consumption function28

corresponds to a trade-off with decelerating costs.29

The resource consumption function is the only ingredient in our model that30

has no mechanistic interpretation. We use negative values of θ to phenomenolog-31

ically model the situations where there is an additional cost of generalism, and32

5



positive values of θ to model those situations where there is an additional ben-1

efit of generalism. The linear resource consumption function (β(s) = s, θ = 0)2

is an important special case since it can be interpreted, for example, as the3

search time allocation between the two resources. With the formulation (5), we4

obtain resource consumption functions that are almost similar to the case with5

β(s) = sθ, but avoid artificial singularities in the borders of the strategy space.6

The derivative of r(s, S, X) with respect to the mutant strategy s (fitness7

gradient), determines the direction of evolution in a monomorphic population.8

The points where the fitness gradient vanishes are called evolutionarily singular9

strategies. There exists no directional evolution at a singular strategy. If evo-10

lution, in a neighborhood of a singular strategy, directs towards (or away from)11

this strategy, it is called evolutionarily attracting (or repelling) strategy. If no12

other nearby strategy cannot invade the resident population with this strategy,13

it is called an evolutionarily stable strategy (ESS, Maynard Smith and Price14

(1973)). In the case of frequency-dependent selection, however, it is possible15

that an evolutionarily attracting singular strategy can be invaded by any other16

nearby strategy. In this case, evolutionary branching occurs, i.e., the popula-17

tion splits into two distinct morphs that start to evolve further apart from each18

other. Evolutionary attractiveness and stability are independent properties, and19

all combinations are possible. For more information on singular strategies and20

their classification see Geritz et al. (1998).21

Above, we assumed that the resources are equivalent, i.e. λ1 = λ2 and22

α1 = α2. If we, furthermore, assume that K1 = K2, the environment becomes23

completely symmetric with respect to the resources. In a symmetric environ-24

ment, the unbiased generalist strategy s = 0.5 is always singular. We analyze25

mainly the case of symmetric environments since in this case it is easy to illu-26

minate the differences between specialists and generalists and to observe how27

changes in the other ecological parameters affect the evolutionary dynamics.28

3. Evolution of specialization in the logistic model29

3.1. Evolution of specialization under equilibrium population dynamics30

In our model, the trade-off parameter θ dominates the evolutionary dynam-31

ics. Under equilibrium population dynamics, there are only three qualitatively32

different evolutionary scenarios: if θ is assumed to have high enough values, the33

evolution of a monomorphic population directs towards generalism, and if low34

enough values, towards specialism. In other words, concave resource consump-35

tion function promotes generalism whereas strongly convex resource consump-36

tion function promotes specialism (compare with Nurmi and Parvinen (2008,37

2011)). In the intermediate case with weakly convex resource consumption func-38

tion, a monomorphic population evolves towards generalism where evolutionary39

branching takes place. Figure 1 illustrates evolutionary simulations from all dif-40

ferent evolutionary scenarios possible under equilibrium population dynamics.41

42

When the parameter values are such that the population shows equilibrium43

dynamics for all specialization strategies, we find the evolutionary bifurcation44
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Figure 1: Evolutionary scenarios under equilibrium population dynamics.
Strategies present in the population as a function of the evolutionary time. One unit of evo-
lutionary time corresponds to one loop of the simulation procedure depicted in the Appendix.
Thus, it is only applicable for comparison between different simulations using the same pro-
cedure.
Panel A: Concave resource consumption function – Evolution leads to generalism.
Panel B: Weakly convex resource consumption function – Evolution of a monomorphic pop-
ulation leads to generalism where evolutionary branching takes place. The evolution of a
dimorphic population leads to the combination of the two devoted specialists.
Panel C: Strongly convex resource consumption function – Evolution leads to the nearest
devoted specialist strategy.
Other parameter values: K1 = K2 = 1.5, α1 = α2 = 1, λ1 = λ2 = 1.

diagrams illustrated in Figure 2. The generalist strategy turns from a branching1

point to an evolutionarily stable strategy at θ = 0 where the resource consump-2

tion function turns from convex to concave. A simple calculation shows that3

under equilibrium population dynamics this is a rather general result (Nurmi4

and Parvinen, 2008). Under non-equilibrium dynamics, this relation no longer5

holds (See e.g. Figure 9A). Corresponding results have been obtained also by6

White et al. (2006); Hoyle et al. (2011). The parameter domains colored black7

in Figure 2 are such that the population is not viable due to low resource intake:8

when the resources are scarce, the additional cost of generalism (negative θ) may9

cause extinction. When some strategies in the strategy space are not viable, it is10

worthwhile to consider, whether evolutionary suicide is possible. Evolutionary11

suicide may occur when evolution drives the strategy of the evolving population12

towards the unviable part of the strategy space. This is possible when muta-13

tions that are beneficial at the individual level are harmful at the population14

level (e.g. ”tragedy of commons” (Hardin, 1968)). At the extinction boundary,15

it is possible that the resident population is invaded by a ”kamikaze mutant”16

that can outcompete the other strategies but is not viable alone and thus the17

species dies out. However, if the population-dynamical attractor, as a function18

of the resident strategy, approaches zero continuously, the resident population is19

almost absent in the neighborhood of the extinction boundary. This means that20

the invasion fitness of a mutant is the same as the fitness in a virgin environment.21

Thus, only mutants that are viable alone are able to invade, and evolutionary22

suicide is impossible. Therefore, a necessary condition for evolutionary suicide23

is that the population-dynamical attractor drops discontinuously from a viable24

non-trivial attractor to the trivial attractor corresponding to extinction. This25

result has been proven algebraically for a wide class of models by Gyllenberg26

et al. (2002), see also Parvinen (2005).27

7



A)K1 = K2 = 1.5 B)K1 = 1.55, K2 = 1.45 C)K1 = 2.8, K2 = 1.1
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Figure 2: Evolutionary bifurcation diagrams in the case of equilibrium population
dynamics. Singular strategies as a function of the trade-off parameter θ. Thin black curve
indicates evolutionary repellors, thick grey curve branching points and thick black curve evo-
lutionarily stable strategies. The arrows indicate the direction of evolution in a monomorphic
population. In the black-colored parameter domain, the population is not viable due to low
resource intake. Other parameter values: α1 = α2 = 1, λ1 = λ2 = 1.

In the case of equilibrium population dynamics (Figure 2), the transition to1

extinction takes place continuously: The equilibrium population size decreases2

continuously to zero when the specialization strategy approaches the extinction3

boundary (see Figure 4A). The continuous transition to extinction guarantees4

that the extinction boundary is evolutionarily repelling, and thus evolutionary5

suicide is not possible in the neighborhood of this parameter domain.6

3.2. Non-equilibrium population dynamics7

If resource carrying capacities have large values, the population dynamics8

may be periodic or even chaotic. Furthermore, the population-dynamical at-9

tractors may be qualitatively different for consumers using different strategies10

(see Figure 4). For a strategy s = 1 consumer utilizing solely resource 1, the11

type of the population-dynamical attractor is determined solely by the param-12

eter K1 similarly to the logistic recurrence equation xn+1 = K1xn(1 − xn). If13

0 < K1 < 1, the corresponding specialist with strategy s = 1 is not viable. If14

1 < K1 < 3, a monomorphic specialist population shows equilibrium dynamics.15

If 3 < K1 < 4, a monomorphic specialist population shows periodic or chaotic16

dynamics. If 4 < K1, a devoted specialist with s = 1 is not viable, because17

the population growth is fast enough to exhaust resource 1 (see equation (2)).18

Furthermore, note that the trade-off parameter θ does not affect the population19

dynamics of a monomorphic population of devoted specialist since β(1) = 120

independent of θ. Analogous results hold for strategy s = 0 specialists.21

For an unbiased generalist strategy (which is singular if K1 = K2), the22

attractor type is analogously determined by the sum β(0.5)(K1 +K2). Figure 323

illustrates the population-dynamical attractors of the unbiased generalist (s =24

0.5) population as a function of the trade-off parameter θ. In panel A, the25

generalist population is unviable for low values of θ due to low resource intake26

(low resource carrying capacities and the additional cost of generalism) whereas27

in panel B, the population is unviable for large values of θ since both resources28

8



A) K1 = K2 = 2.6 B) K1 = K2 = 3.8
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Figure 3: Population-dynamical attractors of an unbiased generalist population
(s = 0.5) as a function of the trade-off parameter θ. The panels correspond to those of
Figure 5. Other parameter values: α1 = α2 = 1, λ1 = λ2 = 1.

become exhausted because high resource carrying capacities and the additional1

benefit of generalism result in overly fast consumer population growth.2

Figure 4 illustrates the population-dynamical attractors as a function of3

the specialization strategy s. In Figure 4A, the transitions to extinction at4

θ ≈ 0.36 and θ ≈ 0.74 occur continuously and thus evolutionary suicide is not5

possible, whereas in Figure 4D, these transitions at θ ≈ 0.43 and θ ≈ 0.57 occur6

discontinuously, which means that evolutionary suicide may be possible in this7

setting. Below we show that evolutionary suicide actually happens. Figures 4B8

and 4C illustrate that the resource consumption strategy may affect population9

dynamics in a variety of ways.10

3.3. Evolution of specialization under non-equilibrium population dynamics11

Figure 5 illustrates the evolutionary dynamics in the case of possibly periodic12

or chaotic population dynamics. It shows the evolutionary singular strategies13

as a function of the trade-off parameter θ together with the endpoints of the14

corresponding evolutionary simulations (see the Appendix for the description of15

the simulation procedure). In Figure 5A, devoted specialists have equilibrium16

population dynamics, whereas in Figure 5B, they have chaotic dynamics.17

We are not aware of any algebraic means for calculating fitness under chaotic18

population dynamics. The population-dynamical route to chaotic dynamics19

takes place via a series of period-doubling bifurcations (see Figures 3 and 4).20

For the population-dynamical attractors of period 1, 2, 4, 8 or 16 we base our21

analysis on fitness gradient using equation (4). In (the neighborhood of) the22

parameter domain where population dynamics are chaotic, this method is not23

applicable. There we are forced to rely solely on evolutionary simulations. Such24

parameter domains are colored grey in Figure 5. Note, that in a dimorphic25

or polymorphic population, the parameter domains with chaotic population26

dynamics may be completely different. Note also that the search for attractors27

could be extended, but the increase in the size of the analytically treatable28

parameter domain would be rather small and the increase in computational29

time would be substantial.30

9



A) K1 = K2 = 1.5, θ = −1.5 B) K1 = K2 = 2.6, θ = 1.7
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Figure 4: Population-dynamical attractors as a function of the specialization strat-
egy s.
Panel A: Continuous transition to extinction when the resource carrying capacities are low
such that, due to the additional cost of generalism, the resource intake by generalists is not
high enough to maintain viability of the population (cf. Figure 2).
Panel B: Specialists have equilibrium population dynamics but, due to the additional benefit
of generalism (θ > 0), generalists have chaotic population dynamics (cf. Figure 5A).
Panel C: Specialists have chaotic population dynamics but the usage of two resources to-
gether with the additional cost of generalism stabilizes the population dynamics (cf. Figure
5B).
Panel D: Discontinuous transition to extinction. High resource carrying capacities and ad-
ditional benefit of generalism accelerate the growth of the consumer population. Finally
resources are exhausted and the consumer population goes abruptly extinct. Note, that bi-
ased usage of two resources may still stabilize population dynamics (cf. Figure 5B).
Other parameter values α1 = α2 = 1, λ1 = λ2 = 1.
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All the simulations illustrated in Figure 5 start with an initially monomor-1

phic population with a random initial strategy and population size. When an2

evolutionary simulation ends in a monomorphic population, we illustrate this3

endpoint using a �-sign. When evolutionary branching takes place, we illustrate4

the strategies present at the end of the simulation using ∗-signs. Since all the5

simulations are run over only a finite time, it is possible that some of them have6

not yet reached an evolutionarily stable strategy.7

The parameter domains colored black in Figure 5 are such that the pop-8

ulation is not viable. In Figure 5A this unviability is caused by low resource9

intake (see Figure 4A), and as explained above, evolutionary suicide is not pos-10

sible. In Figure 5B unviability occurs since high resource carrying capacities11

together with the additional benefit of generalism result in population growth12

fast enough to exhaust the resources. As assumed in the model description, the13

resources recover next time unit after being exhausted. The consumer popula-14

tion, however, cannot recover, and extinction results. In this case, the transition15

from viable parameter domain to extinction occurs discontinuously (see Figure16

4D) and evolutionary suicide occurs whenever θ � 0.3. In Figures 5B and 9B17

the †-sign at the boundary of this black area illustrates the last viable strategy18

before extinction in an evolutionary simulation.19

When the resource consumption function is sufficiently convex (the trade-off20

parameter θ low), the evolution of specialization leads to a population compris-21

ing one or two devoted specialist strategies both under equilibrium population22

dynamics (Figures 2 and 5A) and under non-equilibrium population dynamics23

(Figure 5B). For weakly convex resource consumption function (−1 � θ � 024

in Figure 5), however, the evolutionary dynamics differ qualitatively between25

the cases with equilibrium (panel A) and non-equilibrium (panel B) population26

dynamics. Under equilibrium population dynamics, the evolution of a monomor-27

phic population leads to generalism where evolutionary branching takes place28

and finally evolution ends in a combination of the two devoted specialist strate-29

gies. Under non-equilibrium population dynamics, as well, the evolution of a30

monomorphic population leads to generalism and evolutionary branching takes31

place. However, after branching the evolution of the dimorphic population does32

not lead to the combination of the devoted specialist strategies. Instead, either33

another evolutionary branching results in the trimorphic coexistence of a gen-34

eralist and two devoted specialists, or the population remains dimorphic, but35

does not evolve to the coexistence of two devoted specialists. Next we discuss36

these two cases in detail.37

3.4. Dimorphic evolution of specialization under non-equilibrium population dy-38

namics39

When the strategies s(1) and s(2) in a dimorphic population are symmetric40

(s(1) = 1 − s(2)), and the environment is symmetric (K1 = K2), then it follows41

directly from equation (3), that the diagonal x(1) = x(2) in the population-42

dynamical state-space is invariant, i.e., if x
(1)
n = x

(2)
n , then also x

(1)
n+1 = x

(2)
n+1.43

Such an in-phase orbit is called a symmetric orbit. It is possible to show al-44

gebraically (See the Appendix) that in such a case, the dimorphic population45
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Figure 5: Evolutionary bifurcation diagrams in the case of possibly non-equilibrium
population dynamics. Singular strategies and the endpoints of evolutionary simulations
as a function of the trade-off parameter θ. Thin black curve indicates evolutionary repellors,
thick grey curve branching points and thick black curve evolutionarily stable strategies. The
arrows indicate the direction of evolution in a monomorphic population. In the black-colored
parameter domain, the population is not viable. In the grey-colored parameter domain, the
monomorphic population dynamics are (nearly) chaotic. If an evolutionary simulation ends
in a monomorphic population, the end-strategy is denoted by �. If it ends in a dimorphic
or polymorphic population, the strategies comprising the endpoint are denoted by ∗-signs. If
evolutionary suicide occurs, the last viable strategy is denoted by †-sign. The corresponding
population dynamics are illustrated in Figures 3 and 4.
Panel A: Specialists have equilibrium population dynamics but high benefit of generalism
enables non-equilibrium population dynamics for generalists when θ is sufficiently large.
Panel B: Specialists have chaotic population dynamics. Biased usage of two resources may
stabilize population dynamics, but high benefit of generalism enables chaotic dynamics and
even evolutionary suicide.
Other parameter values: α1 = α2 = 1, λ1 = λ2 = 1.

12



always evolves towards the coexistence of the two devoted specialists given that1

the resource consumption function is convex. This result holds also for other2

models with similar underpinnings, e.g., the Ricker model (8).3

When evolutionary branching occurs, the dimorphic population ”inherits” its4

population-dynamical attractor from the preceding monomorphic population.5

For example, if the monomorphic population was on a two-periodic population-6

dynamical attractor, the dimorphic population is, immediately after branching,7

on an in-phase two-periodic orbit (See Geritz et al. (2002) for more information8

on attractor inheritance. Corresponding phenomenon has also been observed by9

Hoyle et al. (2011)). Thus, after evolutionary branching in a symmetric envi-10

ronment, the dimorphic population is always initially on a symmetric attractor.11

Therefore, the dimorphic population evolves towards the coexistence of the two12

devoted specialists, as long as the population-dynamical attractors remain sym-13

metric. However, the symmetry of the population-dynamical attractors may be14

lost for several reasons:15

• The symmetric population-dynamical orbit (equilibrium, cycle or chaotic)16

may become population-dynamically unstable. In this case, population17

switches to a new population-dynamical attractor with new, possibly dif-18

ferent, evolutionary dynamics.19

• Even though the symmetric population-dynamical orbit would remain20

population-dynamically stable, it can be chaotic. In such a case, stochastic21

mutations (although they are small) will eventually take the population22

dynamics away from the domain of attraction of the symmetric orbit, and23

again the population switches to another population-dynamical attractor.24

• In the symmetric case s(1) = 1 − s(2) the evolutionary forces acting on25

these strategies are also symmetric, which means that average evolution-26

ary trajectories would be along s(1) = 1 − s(2) to full specialism. Due27

to mutational stochasticity, the dimorphic population may evolve away28

from this trajectory. Furthermore, deviations from this trajectory may be29

enhanced by different evolutionary forces.30

We have not found any means for algebraic analysis of the evolutionary dynamics31

in the case of asymmetric chaotic population-dynamical attractors. Therefore,32

we have to rely on evolutionary simulations. In symmetric environments, we33

have found three qualitatively different evolutionary scenarios for the dimorphic34

population:35

• The population evolves to the coexistence of the two devoted specialists36

similarly to the case with equilibrium dynamics (Figure 1B).37

• The population remains dimorphic, but does not evolve to devoted spe-38

cialism. Results of such evolutionary simulations are illustrated in Figures39

6 and 7.40

• Another evolutionary branching occurs and the population becomes tri-41

morphic. One result of such an evolutionary simulation is illustrated in42

Figure 8.43
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In order to illuminate how the population dynamics affect the evolution-1

ary dynamics, we need to illustrate the population-dynamical attractors during2

the evolutionary time together with the evolutionary tree in the strategy space.3

However, the evolutionary simulations we present here are never completely mu-4

tation limited. Instead, the population is, in practice, always polymorphic dur-5

ing the simulation. Therefore, in order to illustrate the population-dynamical6

attractor of the entire population, we need to calculate how much extant strate-7

gies use resources, which in turn allows us to calculate the availabilities of the8

resources. If strategies (s(1), s(2), . . . , s(k)) are present at time unit n with pop-9

ulation sizes (x
(1)
n , x

(2)
n , . . . , x

(k)
n ), then the availabilities A1(n) and A2(n) of the10

resources R1 and R2, respectively, are11

A1(n) = K1 max
(
0, 1 −

∑k

i=1 β(s(i))x
(i)
n

)
A2(n) = K2 max

(
0, 1 −

∑k

i=1 β(1 − s(i))x
(i)
n

)
.

(6)

When the population is on a non-equilibrium attractor, these availabilities12

fluctuate as the consumer population sizes fluctuate. Based on these availabili-13

ties, it is often possible to deduce the type of the population-dynamical attractor14

of the consumer population as a whole. For example, if the population is on15

a two-periodic in-phase orbit (symmetric attractor), the sum of the resource16

availabilities takes two different values on the population-dynamical attractor17

whereas their difference is close to zero. If the population is on a two-periodic18

out-of-phase orbit (asymmetric attractor), the differences alternate between a19

positive and a negative value on the population-dynamical attractor whereas20

the sum remains virtually constant. More generally: the more asynchronous21

are the resource fluctuations the larger are the absolute values of the differences22

in the resource availabilities.23

Figure 6 illustrates the result of an evolutionary simulation ending in a sin-24

gular dimorphic strategy pair (not devoted specialists) under periodic popu-25

lation dynamics. Figure 6A illustrates the strategies present during an evo-26

lutionary simulation: for each unit of the evolutionary time, we plot a black27

point to each strategy present at that time unit. Panels B-D illustrate the28

resource availabilities. At the end of each loop of the evolutionary simula-29

tion procedure (i.e. for each evolutionary time unit) we observe the strategies30

present (s(1), s(2), . . . , s(k)) and their population sizes (x
(1)
0 , x

(2)
0 , . . . , x

(k)
0 ). The31

population-dynamical attractor
(
(x

(1)
n , x

(2)
n , . . . , x

(k)
n ), n = 0, 1, 2, . . .

)
, that cor-32

responds to this unit of evolutionary time, can then be calculated iteratively33

using equation (3) (for 20 steps in Figure 6). Furthermore, we can calculate34

the corresponding resource availabilities A1(n) and A2(n) using equation (6)35

and calculate their sum A1(n) + A2(n) and difference A1(n) − A2(n) for each36

population-dynamical step. For each evolutionary time unit in Figure 6B, we37

plot a black point for each different sum of the resource availabilities observed38

on the population-dynamical attractor at the end of the corresponding loop of39

the evolutionary simulation. In Figure 6C, we plot the difference of the resource40

availabilities in a similar way, and in Figure 6D, we plot the availability A1 of41

14



resource 1.1

In Figure 6, evolutionary branching takes place while the population is on a2

two-periodic attractor. As a consequence, after branching the dimorphic popu-3

lation is on an in-phase two-periodic orbit, i.e. it is on a symmetric attractor.4

However, as the two branches specialize further, this population-dynamical at-5

tractor becomes unstable, and the population switches to a new, four-periodic6

out-of-phase orbit (which is asymmetric). This creates asynchrony to the avail-7

abilities of the resources, which in turn, benefits generalism and stops the evolu-8

tion towards specialism. Finally, evolution leads to a dimorphic singular strategy9

pair (s(1) ≈ 0.16488, s(2) ≈ 0.83512)10

Also Figure 7 illustrates the result of an evolutionary simulation, where evo-11

lution does not lead to the combination of the two devoted specialists. Contrary12

to the simulation illustrated in Figure 6, the population dynamics in Figure13

7 are chaotic, which ensures that the symmetry of the attractors in the di-14

morphic population is lost almost immediately. However, the two branches15

continue to specialize further until 0.13 � s(1) � 0.23 in one branch and16

0.77 � s(2) � 0.87 in the other. Once the strategies of the evolving population17

have reached this dimorphic intermediate strategy region, they remain there.18

However, the population does not settle to any evolutionarily singular strategy19

combination. When the population dynamics are chaotic, several (even infinitely20

many) different population-dynamical attractors may exist simultaneously, and21

furthermore, even small random mutations may induce population-dynamical22

attractor switchings. When the population-dynamical attractor changes, it is23

possible that also the evolutionary forces acting on the population change. This24

phenomena is exemplified also in Figure 6 where attractor switches from an25

in-phase orbit to an out-of-phase orbit halts the dimorphic evolution towards26

devoted specialism. Similar examples have also been observed for other traits27

(Parvinen, 1999; Dercole et al., 2002; White et al., 2006; Hoyle et al., 2011).28

In Figure 7, population-dynamical attractor switching sometimes affects the29

evolutionary dynamics such that the dimorphic population evolves to a new30

strategy combination within the same dimorphic intermediate strategy region.31

Chaotic population dynamics prevent us from analyzing these switchings in de-32

tail. Figures 7B and 7C suggest that attractor switching occur rather frequently.33

However, from Figure 7A one can observe that only some of the seem to have34

evolutionary effects. This is natural, because an attractor switching may be35

evolutionarily ineffective, or it may be succeeded by another attractor switching36

that balances its effects.37

In Figure 5B, we observe evolutionary dynamics described above (Figure38

7) within the parameter interval −0.585 � θ � 0. The evolutionary simula-39

tions lead to dimorphic populations where the strategies of the two branches40

do not evolve to the devoted specialism. They do not evolve to any singular41

strategy combination either. Instead, they remain in some intermediate strategy42

region (which naturally depends on the trade-off parameter θ) and undergo infre-43

quent evolutionary transitions within this strategy region caused by population-44

dynamical attractor switchings. Therefore in Figure 5B, the endpoints of evo-45

lutionary simulations do not form any clear pattern for −0.585 � θ � 0.46
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Figure 6: The result of an evolutionary simulation leading to a dimorphic singular
strategy pair under periodic population dynamics.
Panel A: Strategies present in the population as a function of the evolutionary time. One
unit of evolutionary time corresponds to one loop of the simulation procedure depicted in the
Appendix. Thus, it is only applicable for comparison between different simulations using the
same procedure.
Panels B, C, and D: Resource availabilities A1 and A2 as defined in equation (6) as a
function of the evolutionary time. For each evolutionary time unit, Panel B illustrates the
sum of the resources availabilities during each step on the population-dynamical attractor.
Panel C illustrates the differences of the resource availabilities and panel D the availability of
resource 1.
Parameter values: K1 = K2 = 3.5, θ = −0.1, α1 = α2 = 1, λ1 = λ2 = 1.
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Figure 7: The result of an evolutionary simulation where a singular strategy com-
bination is never reached because the population-dynamical attractor switchings
induced by chaotic population dynamics affect evolutionary dynamics.
Panel A: Strategies present in the population as a function of the evolutionary time. One
unit of evolutionary time corresponds to one loop of the simulation procedure depicted in the
Appendix. Thus, it is only applicable for comparison between different simulations using the
same procedure.
Panels B and C: Resource availabilities A1 and A2 as defined in equation (6) as a function
of the evolutionary time. For each evolutionary time unit, Panel B illustrates the sum of
the resources availabilities during each step on the population-dynamical attractor. Panel C
illustrates the differences of the resource availabilities.
Parameter values: K1 = K2 = 3.8, θ = −0.3, α1 = α2 = 1, λ1 = λ2 = 1.
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In Figure 5B with −0.86 � θ � −0.586, evolution leads to the trimorphic1

coexistence of a generalist strategy and two devoted specialist strategies, as il-2

lustrated in Figure 8. In well-mixed populations, evolution to this coexistence3

has been shown possible when the resources fluctuate asynchronously (Abrams,4

2006a). In our model, the resources have simple equilibrium dynamics in the5

absence of consumers. However, the availability of the resources is determined6

not only by the equilibrium value of the resource dynamics (resource carrying7

capacity) but also by the population sizes and strategies of the consumers uti-8

lizing the resources. When the population comprises two specialist branches9

that fluctuate asynchronously, a generalist strategy may be viable due to the10

reduced variance in the resource intake: due to the asynchronism in the fluctu-11

ations of the resource availabilities, at least one of the two resources will usually12

be available for the generalist whereas the specialists suffer frequently from low13

resource availability. Therefore, the higher the absolute value of the difference14

between the resource availabilities, the more likely the generalist strategy can15

coexists with the specialists.16

Based on Figure 8, it is possible to deduce the population-dynamical route17

to the coexistence of a generalist and two specialists. The monomorphic pop-18

ulation first evolves to generalism, where evolutionary branching occurs under19

periodic population dynamics. After branching, the population-dynamical at-20

tractors of the two branches are first symmetric (negligible difference between21

the resource availabilities) due to attractor inheritance (Geritz et al., 2002). As22

the branches specialize further, their population dynamics undergo a series of23

period-doubling bifurcations and finally their population dynamics looks rather24

chaotic. Meanwhile, the symmetry of the attractors is lost. However, the di-25

morphic population dynamics are not completely chaotic, and after a while,26

the population settles to an out-of-phase two-periodic orbit (the sum of the27

resource availabilities remains constant whereas the difference alternates be-28

tween two values). On the out-of-phase orbit, the generalists can coexist with29

the specialists. The dimorphic population evolves to a singular strategy pair30

(s(1) = 0, s(2) ≈ 0.919), which is an evolutionary branching point for strategy31

s(2) ≈ 0.919. Thus, second evolutionary branching starts slowly taking place.32

The out-of-phase orbit maintains its population-dynamical stability during the33

second branching and, finally, the population comprises the unbiased generalist34

strategy together with two devoted specialist strategies. Although we illustrate35

this phenomenon only for symmetric environments, it is present also in asym-36

metric environments. The generalist in this trimorphic coexistence, however, is37

the unbiased generalist only in symmetric environments.38

3.5. Evolution of specialization under non-equilibrium population dynamics and39

asymmetric environments40

Figure 9 illustrates the case where the environment is asymmetric and chaotic41

population dynamics are possible. In Figure 9A, chaotic population dynamics42

are exclusively due to the high carrying capacity of resource 1, while the carrying43

capacity of resource 2 is barely high enough to ensure the viability of the corre-44

sponding devoted specialist. In Figure 9B, the carrying capacity of resource 2 is45
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Figure 8: The result of an evolutionary simulation leading to the coexistence of
generalist and specialists.
Panel A: Strategies present in the population as a function of the evolutionary time. One
unit of evolutionary time corresponds to one loop of the simulation procedure depicted in the
Appendix. Thus, it is only applicable for comparison between different simulations using the
same procedure. Initial population is monomorphic practicing strategy s = 0.1. Simulation
ended in a trimorphic population practicing strategies s1 = 0, s2 = 0.5, and s3 = 1.
Panels B and C: Resource availabilities A1 and A2 as defined in equation (6) as a function
of the evolutionary time. For each evolutionary time unit, Panel B illustrates the sum of
the resources availabilities during each step on the population-dynamical attractor. Panel C
illustrates the differences of the resource availabilities.
Parameter values: K1 = K2 = 3.8, θ = −0.72, α1 = α2 = 1, λ1 = λ2 = 1.
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Figure 9: Evolutionary bifurcation diagrams in the case of possibly chaotic popu-
lation dynamics and asymmetric environments. Singular strategies and endpoints of
evolutionary simulations as a function of the trade-off parameter θ. Thin black curve indicates
evolutionary repellors, thick grey curve branching points and thick black curve evolutionarily
stable strategies. The arrows indicate the direction of evolution in a monomorphic popula-
tion. In the black-colored parameter domain, the population is not viable. In the grey-colored
parameter domain, the monomorphic population dynamics are (nearly) chaotic. If an evo-
lutionary simulation ends in a monomorphic population, the end-strategy is denoted by �.
If it ends in a dimorphic or polymorphic population, the strategies comprising the endpoint
are denoted by ∗-signs. If evolutionary suicide occurs, the last viable strategy is denoted by
†-sign.
Other parameter values: α1 = α2 = 1, λ1 = λ2 = 1.

higher. This stabilizes the population dynamics when consumers are partially1

specialized on resource 1 (0.65 � s � 0.85). On the other hand, in the cases with2

high benefit of generalism (θ � 0), the sum of the resource carrying capacities3

is high enough to enable chaotic dynamics and even evolutionary suicide.4

Figure 10 illustrates the case with K1 > 4. This means that specialists5

with strategy sufficiently close to 1 will exhaust resource 1. When resource 16

is exhausted, devoted specialists with strategy s = 1 will vanish. If devoted7

specialists can invade the population and outcompete all the other strategies,8

evolutionary suicide may occur. However, there are several factors that may9

prevent evolutionary suicide in this setting. Most of all, when resource 1 is10

exhausted and devoted specialist wiped out, all the other strategies (s < 1) are,11

however, able to survive due to their ability to use resource 2. The population12

sizes of almost devoted resource 1 specialists will, naturally, drop to very low val-13

ues. However, since resource 1 recovers the next time unit after being exhausted,14

all the strategies that survived will start to increase in population size again.15

Furthermore, if K1 � 4, resource 1 is frequently exhausted already by special-16

ists using strategy s < 1. The more specialized an individual is (on resource 1)17

the more vulnerable the individual is to these occasions. This, in turn, may halt18

evolution such that the devoted specialism never enters the population. In other19

words, there exists an almost devoted specialist singular strategy in the regime20

of the chaotic population dynamics. (compare with Hoyle et al. (2011)). Even21

when devoted specialist are able to invade the population, it is not guaranteed22

that they can outcompete the other strategies (s < 1) before being wiped out by23

the next resource depletion. Even in the cases where evolutionary suicide might24

20



happen, it depends on the details of the simulation procedure whether evolu-1

tionary suicide is observed or not: In ”the standard simulation procedure” used2

generally in the studies utilizing the adaptive dynamics approach (Kisdi, 1999;3

White and Bowers, 2005; White et al., 2006; Nurmi and Parvinen, 2008, 2011),4

the simulation step, where ”extinct” strategies are removed from the popula-5

tion, is usually immediately followed by a step where a new mutant (resembling6

one of the extant strategies) is added to the population. This means that it is7

never possible for the devoted specialist strategy to be the only strategy present8

in the population when the population dynamics are iterated. If resource 1 is9

exhausted, the devoted specialists vanish and the population size of the newly10

added mutant becomes extremely small. However, this extremely rare mutant11

now constitutes the whole population and thus it won’t be considered extinct in12

the ”standart simulation procedure”. In order to observe evolutionary suicide, it13

is necessary to add to the simulation procedure some additional iteration of the14

population dynamics (see the Appendix for details). Note that for evolution-15

ary suicide to occur via generalist strategies, the situation is different (Figures16

5B, 9B). There evolution directs towards generalism until both resources are17

exhausted simultaneously and all consumers are wiped out which happens for18

any reasonable simulation procedure.19

When the evolution of a monomorphic population directs towards an evolu-20

tionary branching point, even cyclic evolution is possible. After branching, the21

two morphs evolve towards devoted specialism. When the branch specializing22

on resource 1 reaches the strategy s = 1, it is wiped out due to the depletion23

of resource 1. The other branch remains intact, but since the population has24

become monomorphic, it starts to evolve towards generalism and a new branch-25

ing results (compare with Kisdi et al. (2001); Dercole (2003)). This process is26

illustrated in Figure 10B. Note that cyclic evolution does not have an endpoint.27

Therefore in Figure 10A, we have chosen such a procedure for evolutionary sim-28

ulations that evolutionary suicide is not possible. In Figure 10B, the simulation29

procedure is chosen such that evolutionary suicide is possible.30

Note furthermore that, the mechanisms described above may, also in the evo-31

lutionary time-scale, enable the viability of populations that use two resources,32

even in environments where both devoted specialists strategies are unviable due33

to resource depletions caused by overly efficient resource usage.34

21



A)K1 = 4.01, K2 = 2.6 B)K1 = 4.01, K2 = 2.6, θ = −1

S
tr

a
te

g
ie

s

� �

0.5

−3 0

1

11 22

����������

��

�����������

��

�

∗
∗

∗

∗

∗

∗∗

∗

∗

∗

∗

∗∗

∗∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

θ

††
††

†

††††
†† 0.5

0

1

300 600

Trade-off parameter Evolutionary time

Figure 10: Evolutionary bifurcation diagram in the case when devoted resource 1
specialist is not viable due to resource depletion.
Panel A: Singular strategies and endpoints of evolutionary simulations as a function of
the trade-off parameter θ. The simulation procedure does not enable evolutionary suicide
via specialism. Thin black curve indicates evolutionary repellors, thick grey curve branching
points and thick black curve evolutionarily stable strategies. The arrows indicate the direc-
tion of evolution in a monomorphic population. In the black-colored parameter domain, the
population is not viable. In the grey-colored parameter domain, the monomorphic population
dynamics are (nearly) chaotic. If an evolutionary simulation ends in a monomorphic popula-
tion, the end-strategy is denoted by �. If it ends in a dimorphic or polymorphic population,
the strategies comprising the endpoint are denoted by ∗-signs. If evolutionary suicide occurs,
the last viable strategy is denoted by †-sign.
Panel B: Strategies present in the population as a function of the evolutionary time when the
simulation procedure enables evolutionary suicide via specialism. One unit of the evolutionary
time corresponds to one loop of the simulation procedure depicted in the Appendix. Thus, it
is only applicable for comparison between different simulations using the same procedure)
Other parameter values: α1 = α2 = 1, λ1 = λ2 = 1.
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4. Evolutionary dynamics in other mechanistically underpinned pop-1

ulation models2

Following Geritz and Kisdi (2004), also other resource dynamics than the3

logistic differential equation (1) can be used to obtain discrete-time population4

models for the consumer. If the resources, in the absence of consumers, grow5

according to the Gompertz equation6

Ṙi = αi

(
Ln(Ki) − Ln(Ri)

)
Ri, (7)

one obtains the famous Ricker (1954) model that, in the case of two resources7

(with α1 = α2 = 1) and k consumer strategies, has the form8

x
(j)
n+1 =λ1K1β(s(j))x(j)

n exp

(
−

k∑
i=1

β(s(i))x(i)
n

)

+λ2K2β(1 − s(j))x(j)
n exp

(
−

k∑
i=1

β(1 − s(i))x(i)
n

)
,

(8)

where the notations correspond to the ones in equation (3). Analogously, one9

can derive, for example, different variants of Hassell (1975) or Beverton and Holt10

(1957) models. Beverton-Holt model that shows only equilibrium dynamics has11

been extensively analyzed by Nurmi and Parvinen (2008). We analyzed the12

evolutionary dynamics also in Hassell model (not illustrated). According to13

our observations, they are qualitatively similar to those of the Ricker model14

(illustrated below). Note, that our parametrization of the Gompertz equation15

(7) is slightly different from the parametrization used by Geritz and Kisdi (2004).16

In the parametrization used by Geritz and Kisdi (2004), it is not straightforward17

to interpret the parameters Ki as resource carrying capacities. This would18

unnecessarily complicate the evolutionary analysis and hence we have chosen to19

use parametrization (7) resulting in model (8).20

Under equilibrium population dynamics, the evolutionary dynamics in the21

Ricker model are qualitatively similar to those of the logistic model (illustrated22

in Figure 2). Figure 11 illustrates the evolutionary dynamics in the Ricker23

model in the case of possibly periodic or chaotic population dynamics. The24

evolutionary dynamics are mainly qualitatively similar to those of the logistic25

model (illustrated in Figure 5). There are, however, some differences. The most26

obvious one is that the complete exhaustion of the resources is not possible in the27

Ricker model (compare equations (3) and (8)). Thus, deterministic evolutionary28

suicide is not possible. However, if demographic stochasticity was involved, evo-29

lutionary suicide would be possible. Another rather apparent difference between30

Figures 5B and 11 is that the bifurcation structure in the parameter domain31

where the generalist strategy turns from a repellor into a branching point, is32

different, with Ricker model showing even three alternative branching points for33

the same trade-off parameter value (e.g. θ = −4.5). However, similar bifurca-34

tion structure can be found in the logistic model, as well, with slightly different35

parameter values (e.g. λ = 1.1 and other parameters as in Figure 5B).36

23



Similarly to the logistic model, also in the Ricker model, there exists a pa-1

rameter domain (−2.7 � θ � 0) where evolutionary branching first takes place2

and then the dimorphic population evolves neither to any singular strategy3

combination nor to devoted specialism. Instead, the strategies of the dimorphic4

population fluctuate in an intermediate strategy region, because chaotic popula-5

tion dynamics result in frequent population-dynamical attractor switchings that6

affect the evolutionary dynamics. When −3.6 � θ � −2.9, another evolution-7

ary branching takes place and evolution leads to the trimorphic coexistence of8

generalists and specialists. These phenomena are qualitatively similar to those9

observed in the logistic model even though they occur in different parameter10

domains. However, the transition between these two phenomena is different. In11

the logistic model, the transition occurs instantly without any intermediate phe-12

nomena, whereas in the Ricker model, there exists an intermediate parameter13

domain (θ ≈ −2.8). In this intermediate parameter domain, second evolutionary14

branching takes place, but the appearance of the generalist strategy, however,15

affects the population dynamics such that the generalist dies out. When the16

population becomes dimorphic again, it evolves back to the singular dimorphic17

strategy pair and a new evolutionary branching takes place. This results in18

cyclic evolution as illustrated in Figure 12.19
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Figure 11: Evolutionary bifurcation diagram of the Ricker model with possibly
chaotic population dynamics. Singular strategies and endpoints of evolutionary simu-
lations as a function of the trade-off parameter θ. Thin black curve indicates evolutionary
repellors, thick grey curve branching points and thick black curve evolutionarily singular
strategies. The arrows indicate the direction of evolution in a monomorphic population.
In the grey-colored parameter domain, the monomorphic population dynamics are (nearly)
chaotic. If an evolutionary simulation ends in a monomorphic population, the end-strategy is
denoted by �, else the strategies comprising the endpoint are denoted by ∗-signs.
Other parameter values: K1 = 18, K2 = 18, λ1 = λ2 = 1, α1 = α2 = 1.
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A) Strategies present during the evolutionary time
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B) Sum of the resource availabilities
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Figure 12: The result of a cyclic evolutionary simulation in Ricker model.
Panel A: Strategies present in the population as a function of the evolutionary time. One
unit of the evolutionary time corresponds to one loop of the simulation procedure depicted in
the Appendix. Thus, it is only applicable for comparison between different simulations using
the same procedure. Initial population is monomorphic practicing strategy s = 0.4.
Panels B and C: Resource availabilities A1 and A2 (for the logistic model corresponding
availabilities are defined in equation (6)). For each evolutionary time unit, panel B illustrates
the sum of the resources availabilities during each step on the population-dynamical attractor.
Panel C illustrates the differences of the resource availabilities on the population-dynamical
attractor for each evolutionary time unit.
Parameter values as in Figure 11 with θ = −2.8.
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5. Discussion1

In this paper, we have examined the evolution of resource specialization2

under non-equilibrium population dynamics. We use a model that is mechanis-3

tically underpinned on individual level ingredients, which makes it suitable for4

evolutionary analysis (Rueffler et al., 2006a). Furthermore, for a mechanisti-5

cally underpinned model, it is easy to interpret parameters biologically, as well6

as consider, whether the model assumptions are satisfied in different biological7

scenarios. On the other hand, our model involves several simplifications that8

may affect model predictions:9

• In our evolutionary analysis, we focus exclusively on the resource con-10

sumption rates β and assume that consumers use resources according the11

law of mass-action with these rates. This allows us to focus on the evo-12

lutionary effects of non-equilibrium population dynamics. However, the13

model would be biologically more realistic if non-linear functional response14

was assumed, or if the behavioral elements affecting the evolution of spe-15

cialization were taken into account (Rueffler et al., 2007; Abrams, 2010).16

• Our previous results concerning the evolution of specialization under equi-17

librium metapopulation dynamics (Nurmi and Parvinen, 2008, 2011) sug-18

gest a strong interplay between dispersal and specialization. Thus, one19

should study also the consequences of non-equilibrium population dynam-20

ics for the joint evolution of dispersal and specialization in metapopulation21

models.22

• We assume rather simple resource dynamics. However, the evolutionary23

changes in the consumer strategies are likely to cause evolutionary changes24

also in the resource populations resulting in co-evolution of resources and25

consumers (see e.g. Abrams (2000) and references therein).26

• Our evolutionary analysis is based on clonal reproduction and the rather27

simple genetic architecture assumed by the adaptive dynamics approach.28

There are several studies indicating that the phenotypic models of evo-29

lution are capable to predict the course of evolution also in monomor-30

phic sexually reproducing populations (Weissing, 1996; Kisdi and Geritz,31

1999a,b; Geritz and Kisdi, 2000). However, when the monomorphic popu-32

lation encounters disruptive selection, sexual reproduction usually hinders33

branching in the absence of assortative mating or some other source of34

reproductive isolation (Dieckmann and Doebeli, 1999; Geritz and Kisdi,35

2000; Doebeli et al., 2007).36

• We have studied a large family of resource consumption functions with37

different curvature. However, the function is always either everywhere38

concave or everywhere convex. Trade-offs play an essential part in the39

evolution of specialization. Therefore, the usage of trade-off independent40

methods (de Mazancourt and Dieckmann, 2004; Bowers et al., 2005; Geritz41
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et al., 2007) could reveal useful additional information concerning the1

evolutionary dynamics.2

Under equilibrium population dynamics in a well-mixed population, the evo-3

lution of specialization, in the case of two alternative resources, always leads to4

a monomorphic generalist population when the resource consumption function5

is concave (trade-off weak, θ > 0) and to a population comprising one or two6

specialist strategies when the resource consumption function is convex (trade-off7

strong, θ < 0) (Levins, 1962, 1963; Schreiber and Tobiason, 2003; Ma and Levin,8

2006; Nurmi and Parvinen, 2008; Zu et al., 2011a,b). Our results show that9

under non-equilibrium population dynamics this result no longer holds (even10

evolution to the trimorphic coexistence is possible). White et al. (2006) and11

Hoyle et al. (2011) have reached a similar conclusion when analyzing the case12

of trade-off between reproduction and survival. In fact, the results by Nurmi13

and Parvinen (2008) indicate, that also spatial (metapopulation) structure may14

break the relation between concavity of the resource consumption function and15

evolution to a monomorphic generalist population.16

Furthermore, White et al. (2006) and Hoyle et al. (2011) showed that ad-17

ditional singular strategies may appear due to the non-equilibrium dynamics.18

Similar phenomena is present in our model: evolution to the dimorphic sin-19

gular strategy pair (Figure 6), as well as evolution to the trimorphic coexis-20

tence (Figure 8) are evolutionary scenarios that are not possible under equilib-21

rium population dynamics in a well-mixed population. Furthermore under non-22

equilibrium population dynamics, cyclic evolution is possible (Figures 10 and23

12), and evolution may even lead to a dimorphic population with evolutionary24

fluctuations, where chaotic population dynamics enable population-dynamical25

attractor switchings that affect the evolutionary forces such that the dimorphic26

population evolves to another nearby intermediate strategy combination (Figure27

7).28

Hoyle et al. (2011) committed also thorough algebraic analysis of the tran-29

sition from equilibrium to periodic population dynamics. Unfortunately, both30

of the phenomena we observe involve dimorphic populations and chaotic pop-31

ulation dynamics. This prevents the in-depth analysis in the spirit of Hoyle32

et al. (2011). Especially, the interplay between evolutionary and ecological dy-33

namics resulting in evolutionary fluctuations as depicted in Figure 7 would be34

interesting, since it seems that rare randomly occurring mutations may disturb35

the population dynamics and change the population-dynamical attractors such36

that also the evolutionary dynamics are affected, and the population evolves to37

another nearby strategy pair, but never to devoted specialism or to any singular38

strategy combination. Within the scope of this article, we can only present sim-39

ulations indicating that such evolutionary scenarios exist; to fully understand40

them is an interesting task for further research.41

Evolution starting from a monomorphic population may, under non-equilibrium42

population dynamics, also lead to the trimorphic coexistence of a generalist and43

two specialists. In such coexistence, each of the specialists uses the correspond-44

ing resource more efficiently than the competing strategies. The viability of45
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the generalist strategy, on the other hand, is based on the asynchronous non-1

equilibrium population dynamics of the specialists. The population sizes of the2

specialist strategies fluctuate, and hence they are repeatedly rather low, which3

means that the corresponding resource is abundantly available allowing the gen-4

eralist to increase in population size. This phenomenon was originally observed5

by Abrams (2006a) in a continuous-time model involving Holling type II func-6

tional response in the case where the dynamics of the two resources are different,7

which creates sufficient asynchrony to the resource dynamics. However, non-8

linear functional response is known to have an essential part in allowing species9

coexistence, e.g., several species can coexist even on a single resource under10

non-equilibrium dynamics (Armstrong and McGehee, 1980; Kisdi and Liu, 2006;11

Geritz et al., 2007; Tachikawa, 2008). In our model, consumers use resources12

according to the law of mass-action with a linear functional response. Further-13

more in our model, evolution to the trimorphic coexistence is possible also in the14

case of similar resources. Thus, our results indicate that non-equilibrium pop-15

ulation dynamics really is the main factor enabling evolution to the trimorphic16

coexistence. As can be observed from Figure 5, evolution ends in the trimorphic17

coexistence in a rather small parameter domain. It is, however a robust phe-18

nomena that can be observed without fine-tuning of the parameters since it is a19

fundamental part of the evolutionary dynamics on chaotic population-dynamical20

attractors. It is always present in the parameter domain with transition from21

the evolution dynamics leading to generalism into evolution to the combination22

of the two devoted specialists.23

It is also noteworthy that we observed evolution to the trimorphic coexis-24

tence only for such ecological scenarios where monomorphic devoted specialist25

populations have chaotic population dynamics. In these scenarios, the evolu-26

tionary path to the out-of-phase two-periodic population-dynamical orbit that27

allows the coexistence, always involves a series of period-doubling bifurcations28

and seemingly chaotic population dynamics. However, we are not aware of any29

theoretical reasons why chaotic population dynamics should necessarily be in-30

volved with the evolutionary path to the trimorphic coexistence, because sym-31

metric attractors may become population-dynamically unstable even without32

chaos, and furthermore, the population-dynamical out-of-phase orbit is often33

stable in scenarios where the in-phase orbit is unstable.34

Under equilibrium population dynamics, evolution leading to a singular di-35

morphic strategy pair comprising two partially specialized strategies is possible36

in well-mixed populations, but requires rather complicated forms of trade-off37

(Zu et al., 2011a,b). Under non-equilibrium dynamics, evolution to a singular38

dimorphic strategy pair is possible even when the resource consumption func-39

tion is everywhere convex (see e.g. Figure 5A). In metapopulation models with40

equilibrium local dynamics, evolution to a singular strategy pair has been ob-41

served, but evolution to the trimorphic coexistence requires joint evolution with42

dispersal (Nurmi and Parvinen, 2008, 2011).43

In our model with logistic resource dynamics, evolutionary suicide is possible44

when resources are abundantly available (high resource carrying capacities K145

and/or K2). Evolutionary suicide may take place via generalist strategies (e.g.46
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Figure 5B) or via a specialist strategy (Figure 10). In the former case, both1

resources are exhausted simultaneously, and all the strategies are wiped out.2

This extinction occurs in all reasonable evolutionary simulation procedures. In3

the latter case, only one resource is exhausted, and only the devoted specialists4

are wiped out whereas all the other strategies survive and start to grow in pop-5

ulation size again, even though the population size may visit very low values. It6

depends on the details of the simulation procedure whether a devoted special-7

ist is able to outcompete all the other strategies before being destroyed due to8

the depletion of the only resource it is able to utilize. Especially, evolutionary9

suicide is not possible in the ”standard” simulation procedure used generally10

in adaptive dynamics studies (see the Appendix). When evolutionary suicide11

may take place via a specialist strategy, even evolutionary cycles of successive12

branching events and extinctions of one branch are possible (Figure 10). Note13

that the possibility of evolutionary suicide originates from the special charac-14

teristics of discrete logistic population dynamics. For example, the bifurcation15

diagram of the Ricker (as well as Hassell) equation (see equation (8)) is to large16

extent similar to the one of the logistic equation (see equation (2)), but there17

the resources are never completely exhausted, and evolutionary suicide is not18

possible in the absence of Allee-effects and demographic stochasticity (compare19

with Parvinen (2005)).20

A large fraction of the studies combining evolutionary dynamics with fluctu-21

ating population dynamics have focused on co-evolution in predator-prey models22

(see e.g. a review by Abrams (2000)). Our model corresponds to these models in23

the case where only predator can evolve. According to Abrams (1992, 2000), the24

evolution of predator may sometimes cause predator-prey cycles, but usually it25

stabilizes the population dynamics. Our results contrast with this since the con-26

sumer evolution often destabilizes population dynamics. However, in line with27

our results, Abrams (1992, 2000) concluded that increasing prey/resource carry-28

ing capacity increased the probability for non-equilibrium population dynamics.29

In fact, our results relate to the paradox of enrichment (Rosenzweig, 1971), since30

increasing resource carrying capacity destabilizes population dynamics and may31

even cause extinction.32

To sum up, we have systematically analyzed the evolution of specialization33

in resource utilization under non-equilibrium population dynamics. We have34

shown, that several evolutionary phenomena that are not possible under equi-35

librium population dynamics, may be possible under non-equilibrium population36

dynamics: additional singular dimorphic strategy pairs may appear, and fur-37

thermore, a secondary evolutionary branching may occur and evolution may38

lead to the trimorphic coexistence of two specialist strategies and a generalist39

strategy.40

A. Simulation procedure41

The simulations we commit are not individual based simulations. Instead,42

we iterate the population dynamics (3) with infrequent insertions of new mutant43

strategies and removals of strategies that have diminished sufficiently in order44
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to be considered extinct. The simulation procedure differs slightly from the1

assumptions used by the adaptive dynamics machinery since simulations are not2

completely mutation limited as new mutants may appear before the population3

has reached an attractor. The simulation procedure is:4

1. Iterate the population dynamics according to the equation (3). Here this5

is typically done 2000 times.6

2. Remove all the strategies that can be considered extinct. Note, that under7

chaotic population dynamics, it is difficult to determine which strategies8

to remove since the whole population may occasionally be very small. We9

have chosen to base the removal of a strategy on its relative proportion of10

the entire population. When strategies go extinct due to resource depletion11

this is not a problem because in this case the population size is exactly12

zero. Here we typically consider a strategy extinct if its population size is13

less than 0.0001 times the total population size.14

3. In order to speed up calculations, we set a maximum number of strategies15

present in the simulation. If the number of strategies is not below this16

limit, go back to step 1. Here the maximum number of strategies was17

typically 20. However, this almost never affects results.18

4. Pick one strategy that will mutate. The probability to pick a certain19

strategy is determined by the strategy’s population size divided by the20

total population size.21

5. Pick the size of the mutation using uniform distribution U[−m, m], where22

m is the largest possible mutation. Here typically m = 0.01.23

6. Check that the new strategy belongs to the strategy space and differs suf-24

ficiently from the extant strategies. If not, go back to step 4. Several25

occurrences of almost similar strategies in a simulation would unneces-26

sarily slow down the simulation. We usually require minimum difference27

0.001.28

(7.) Iterate the population dynamics.29

(8.) Remove the extinct strategies. Now it is possible that the population30

becomes monomorphic comprising devoted specialists only.31

(9.) Iterate the population dynamics. Now it is possible that a resource deple-32

tion wipes out devoted specialists and the population goes extinct.33

10. Continue from step 1 if the population persists.34

One loop of this procedure corresponds to one unit of the evolutionary time35

in the figures that illustrate results of evolutionary simulations (Figures 1, 8,36

10 and 12). In these figures, the illustrated length of the evolutionary time37

has been chosen such that the figures illuminate the question in focus in the38

optimal way. The actual simulations did run much longer than the illustrated39

31



evolutionary time interval in order ensure that the system has really reached its1

evolutionary endpoint (which can never be guaranteed, however).2

When steps 7–9 are not included in the simulation procedure, it corresponds3

to the ”standard adaptive dynamics simulation” (Kisdi, 1999; White and Bow-4

ers, 2005; White et al., 2006; Nurmi and Parvinen, 2008, 2011) and evolutionary5

suicide via specialism is not possible since the population never comprises solely6

devoted specialists. Assume that the devoted specialists can outcompete the7

other strategies in step 1. The other strategies are removed in step 2. However,8

immediately in steps 3-6 a new mutant enters the population. Thus, when the9

population dynamics are iterated again in step 1, the population comprises de-10

voted specialists and a rare mutant that is also a specialist, but not a devoted11

one. If one resource is exhausted, the devoted specialists vanish. The mutant12

population becomes extremely small, but it survives because of its ability to use13

the other resource. However, this extremely rare mutant now constitutes the14

entire population and it will not be removed in step 2. Devoted specialists may15

later again outcompete this strategy, but devoted specialists can never consti-16

tute the whole population. Thus, evolutionary suicide via specialism is possible17

only when steps 7-9 are included to the simulation procedure. In step 7 devoted18

specialists may outcompete other strategies that are then removed in step 8,19

leaving only devoted specialists alive. If resource depletion is encountered dur-20

ing the iteration of the population dynamics, devoted specialists are wiped out21

and thus the whole population goes extinct.22

Note that in step 2, we use a relative extinction threshold, i.e., we declare a23

strategy extinct if its population size is small compared to the size of the entire24

population. Alternatively, we could have used an absolute extinction threshold,25

i.e., declare a strategy extinct when its population size is small (independent of26

the size of the entire population). The type of the extinction threshold affects27

essentially the possibility of evolutionary suicide as well as the evolutionary28

dynamics under chaotic population dynamics. Using an absolute extinction29

threshold involves the implicit assumption of demographic stochasticity: once30

a population becomes extremely small, it will be wiped out by demographic31

stochasticity. An absolute extinction threshold, although it might be biologically32

more realistic, is problematic when combined with chaotic population dynamics,33

since the chaotic population-dynamical fluctuations may then drive otherwise34

viable strains or the entire population to extinction, and thus the size of the35

extinction threshold might affect the evolutionary dynamics. Moreover, in this36

paper, we considered the possibility for deterministic evolutionary suicide, and37

hence we need to exclude stochasticity. Thus, we have chosen to use a relative38

extinction threshold. It is noteworthy that this may slightly favor increased39

efficiency in average resource usage (generalists in Figures 5, 9B, and 11, resource40

1 specialists in Figure 10).41
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B. Algebraic proof: Dimorphic evolution on symmetric population-1

dynamical attractors directs towards devoted specialism.2

Assume that the environment is symmetric with K1 = K2 = K, λ1 = λ2 =3

λ, α1 = α2 = α and the population is dimorphic with strategies s(1) = sres and4

s(2) = 1− sres, where sres < 0.5. Assume further that the dimorphic population5

is on a symmetric attractor such that x
(1)
n = x

(2)
n = xres

n for each time unit n.6

Then, for a mutant with strategy smut and population size xmut
n , the equation7

(3) determining fecundity has the form xmut
n+1 = f(smut, Sres, Xres

n )xmut
n , where8

f(smut, Sres, Xres
n ) =K max

{
0, 1 − xres

n (β(sres) + β(1 − sres))
}

·
(
β(smut) + β(1 − smut)

)
=H(Sres, Xres

n )
(
β(smut) + β(1 − smut)

)
,

where Sres =

(
sres

1 − sres

)
, Xres

n =

(
xres

n

xres
n

)
, and H(Sres, Xres

n ) stands for a9

shorthand notation for all the terms that do not involve the mutant strategy10

smut. Other mechanistically underpinned models, such as (8), result in analo-11

gous expressions with a different function H . Therefore, the following applies12

to other models as well. The fitness of a mutant in the environment determined13

by this dimorphic symmetric resident population is, according to the equation14

(4),15

r(smut, Sres, Xres) = lim
t→∞

1

t

t∑
i=1

ln(f(smut, Sres, Xres
i ))

= ln
(
β(smut) + β(1 − smut)

)
+ lim

t→∞

1

t

t∑
i=1

ln (H(Sres, Xres
i )) .

Now it is already obvious that the fitness function is convex whenever the re-16

source consumption function β is convex (θ < 0). Furthermore, the fitness17

gradient at the strategy sres is18

∂r

∂smut

∣∣∣∣
smut=sres

=
β′(sres) − β′(1 − sres)

(β(sres) + β(1 − sres))
,

which is negative for a convex resource consumption function since we assumed19

that sres < 0.5. Thus the strategy smut can invade and outcompete strategy20

sres if and only if smut < sres. Analogously, the fitness gradient at the strategy21

1 − sres is22

∂r

∂smut

∣∣∣∣
smut=(1−sres)

=
β′(1 − sres) − β′(sres)

(β(sres) + β(1 − sres))
,
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which is positive for a convex resource consumption function since 1−sres > 0.5.1

Thus the strategy smut can invade and outcompete strategy 1− sres if and only2

if smut > 1 − sres.3

Altogether, the two branches will evolve further away from the unbiased gen-4

eralist strategy until devoted specialism is reached, or the symmetry of strategies5

is lost, or the symmetry of the population-dynamical attractors is lost.6
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