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Abstract

Strategy update may involve costs or risks in evolutionary games since the new
strategy may lead to a lower payoff and even a cascading failure in the future.
Therefore, individuals may be cautious in the strategy updating process. Here we
study the evolutionary prisoner’s dilemma game on a square lattice by the Fermi
updating rule, where each individual is assigned a cautiousness index that controls
its learning activity. Interestingly, it is found that cooperation can be significantly
promoted when individuals are cautious to update strategy. In particular, there
exists an optimal range of the degree of cautiousness resulting in the highest co-
operation level. The remarkable promotion of cooperation, as well as the emerging
phase transition is explained by the configuration analysis. We also demonstrate the
robustness of the promotion of cooperation with respect to the initial conditions con-
sisting of different fractions of cooperators. Our study uncovers the nontrivial effect
of individual cautiousness on cooperation, and thus provides an explanation of the
ubiquitous cooperation from the perspective of individual characteristics.
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1 Introduction

Cooperation is of great significance in both animal world and human soci-
ety. The advancement, development and prosperity of human society rely on
cooperation among individuals to a large extent [1,2]. Thus, exploring the
underlying mechanisms favoring the evolution of cooperation can make us
better understand the evolution of cooperation, and then apply them in prac-
tical social systems. Evolutionary game theory provides a powerful theoretical
framework for investigating the origin of cooperation among selfish and unre-
lated individuals [3–5]. The fundamental contradiction in biological and social
systems is the conflict of interests between individuals and their group [6]. The
prisoner’s dilemma game, as well as the public goods game can well charac-
terize this tension, and thus becomes the prominent mathematical metaphors
to investigate social dilemmas.

In this paper, we employ the prisoner’s dilemma game which describes pairwise
interactions to explore cooperative mechanisms. In this simple game, there are
two available strategies, i.e., cooperation (C) and defection (D), for each of the
two participating players. When playing the game, both players receive the
reward R for mutual cooperation, but the punishment P for mutual defection
(R > P ). In the case of a cooperator (who adopts C strategy) playing against
a defectors (who adopts D strategy), the former receives the lowest sucker’s
payoff S and the latter attains the highest payoff T (the temptation to defect),
thus T > R > P > S. It is also required that 2R > T + S, indicating that
if both players cooperate, the collective income is maximized. The prisoner’s
dilemma game can well characterize the tension between individual and group
interests: mutual cooperation guarantees the highest collective income, it is,
however, challenged by the unilateral defection, which results in the highest
individual payoff T .

Since the pioneering work of Nowak and May [7], spatial games have received
much attention [8]. Initially, players are arranged on simple lattices, such as
square lattices [9]. Afterwards, with the rapid development of studies of com-
plex networks, evolutionary games are gradually transplanting into complex
networks and have been extensively studied [10–19]. For spatial games, an
important impact on cooperation stems from the underlying network struc-
ture, and sometimes it is determinant for the success of cooperative behavior
[10,14]. Allowing individuals to switch their interaction partners adaptively
can also ensure the evolutionary success of cooperators [20–24]. For spatial
games, many other approaches facilitating the evolution of cooperation have
also been considered, including the introduction of noises to payoffs and up-
dating rules [25–29], asymmetry between interaction and replacement graphs
[30,31], interaction stochasticity [32], diversity [33,34], as well as differences
between time scales of game dynamics [35–38]. The factors supporting the evo-
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lution of cooperation in the individual level involve memory effects [39], het-
erogeneous teaching activity [40–42], preferential learning [43,44], aspiration
[45–47], migration [48–51], local contribution [52,53], and myopically selective
interactions [54,55], to name but a few examples studied in recent years. So
far, overall there exist five prominent mechanisms facilitating the emergence
and maintenance of cooperation, which are kin selection, direct reciprocity,
indirect reciprocity, network reciprocity, and group selection [56].

Now we would like to concentrate on another intrinsic property of individuals—
cautiousness. Cautiousness is ubiquitous in real-life society but is largely ig-
nored in previous studies. The cautiousness of individuals is induced by the
risk or cost of strategy update since strategy update may lead to a lower payoff
and even a cascading failure in the future. It corresponds to the phenomenon
that to avoid the risk or failure in game interactions, individuals are cautious to
update strategy. For example, cautious individuals usually begin to learn their
neighbors only when the payoff difference exceeds a certain threshold rather
than immediate learn their neighbors as long as the neighbors perform better.
As we will show, introducing the cautiousness of individuals in the strategy up-
dating process can unexpectedly and remarkably promote cooperation among
individuals, and interestingly, there exists an optimal range of the parameter
of cautiousness leading to the highest level of cooperation. Moreover, we also
investigate the problem regarding the initial conditions comprising different
fractions of cooperators, and find that our results are very robust with respect
to the initial conditions.

2 The model

We employ the prisoner’s dilemma game (PDG) to model game interactions
between individuals. The evolution of the game is taking place on a N = L×L
square lattice with periodic boundary conditions where each site is occupied
by an individual. The evolutionary process is iterated in accordance with the
simulation procedure comprising the following interaction and strategy updat-
ing stages:

In the interaction stage, each individual performs PDG interactions with all
immediate neighbors in the von Neumann neighborhood. The overall payoff
of an individual is the accumulation of payoffs over all interactions. Following
previous studies [7,10], each individual calculates its payoff according to the
following payoff values: T = b, R = 1, and P = S = 0, where b is typically
constrained to the interval 1.0 ≤ b ≤ 2.0. Alternatively, another set of payoff
parameters, i.e., T = b, R = b − c, S = −c and P = 0 can also be adopted,
where c is the cost an individual incurs to provide a benefit b to the opponent
[56]. Extensive simulations have confirmed that the following results are robust
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with respect to the changes in the payoff formulation.

After the interactions, each individual has an overall payoff obtained with the
current strategy, and then the evolution of the game enters the updating stage.
At this stage, each individual is allowed to update its strategy by learning a
randomly chosen individual among immediate neighbors. For example, indi-
vidual i (0 ≤ i < N) imitates the randomly chosen neighbor j. The probability
for individual i to imitate individual j is

Wj→i =
1

1 + exp[(Pi − Pj + σ)/κ]
(1)

where κ characterizes the noise introduced to permit irrational choices, and Pi

(Pj) denotes the payoff of individual i (j). Moreover, σ is a dimensionless real
number called cautiousness index, indicating the extent of the cautiousness of
individuals, with values ranging from 0 to +∞. Here for the simplicity but
without loss of generality, we assume that all individuals have the same index
of cautiousness. For σ = 0, the traditional model where individuals have no
cautiousness is recovered such that they begin to update their strategy as
long as the payoff difference Pj − Pi > 0 [9]. For σ → +∞, individuals have
the highest level of cautiousness and will never change their strategy in the
evolution.

The simulation of the evolution is performed with a synchronous updating rule
on a L = 100 lattice. We have verified that the presented results are robust to
variations of the system size, as well as to the variation of the simulation pro-
cedure (e.g., by using random sequential updating rather than synchronous
updating). The evolution of the system can reach a dynamical equilibrium
after a suitable transient time (t < 5000), and then the density of coopera-
tors reaches its asymptotic value and remains there within small fluctuations.
We take this asymptotic value to describe the cooperation level in the whole
population. The initial condition is also crucial for the evolutionary outcomes.
Here we first consider the commonly used setup for the initial condition, that
is, initially, 50% of the individuals are cooperators and 50% are defectors,
who are randomly distributed over the square lattice. Then, we study the ef-
fect of different initial fractions of cooperators on the equilibrium frequency
of cooperators. The key quantity for characterizing the system is the density
of cooperators, which is defined as the fraction of cooperators in the whole
population.

4



3 Results

We first study the variation of the density of cooperators ρC with the pa-
rameter σ for different values of κ, as shown in Fig.1. The simulation results
(left panel) are complemented by the pair approximation predications (right
panel) [57,58]. One can observe from the simulation results that ρC changes
non-monotonically with increasing σ, irrespective of the value of κ. In partic-
ular, there exists a range of σ (i.e., 0.3 < σ ≤ 0.8) resulting in the highest
cooperation level (ρC ≈ 0.82). As σ → ∞, ρC approaches 0.5. This is because
as σ → ∞, no individuals will imitate their neighbors and therefore the ini-
tial density of cooperators is maintained. By comparing the results for σ = 0
and σ > 0, one can clearly find the remarkable promotion of cooperation.
Varying the values of κ can also have an effect on ρC . Specifically, in most
of the range of σ increasing κ leads to the decline of ρC , although at mod-
erate values of σ cooperation can also be comparatively promoted. The most
pronounced phenomenon should be the discontinuous phase transitions of ρ
with σ for κ = 0. For κ > 0, because of the introduction of the stochasticity,
the phase transitions disappear. From the right panel, one can observe that
the pair approximation predications qualitatively agree with the simulation
results, especially for σ < 1.5, where the changing tendency of the simulation
results is exactly captured by pair approximation, despite of the difference in
the cooperation levels. Furthermore, the phase transitions are recovered, and
all the phase transition points are well reproduced, which are 0.1, 0.2, 0.3, 0.8,
0.9, 1.1, 1.2, 1.3, 1.4, 1.9, 2.2, 2.3 and 2.4, respectively.
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Fig. 1. Density of cooperators ρC as a function of the parameter σ for different
values of κ. The left panel shows the simulation results and the right panel the pair
approximation predications and both panels have the same vertical coordinate scale.
The simulation results are obtained by averaging over 100 different realizations, and
for each realization, we average over 5000 time steps after 10000 time steps. The
simulation results are obtained for b = 1.1.

In Fig.2, we show the density of cooperators ρC as a function of the tempta-
tion to defect b for different values of κ. One can find that, for the simulation
results, overall ρC changes non-monotonically with increasing b, and in partic-
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ular, for small κ (e.g., κ = 0 and κ = 0.01), high cooperation levels (ρC > 0.8)
can maintain up to b = 1.2, which is in sharp contrast with the result asso-
ciated with σ = 0, for which cooperators die out when b is in the very close
vicinity of b = 1.0. For κ = 0, phase transitions occur as well with increasing
b. For κ > 0, the variation of ρC becomes smooth at the phase transition
point due to the introduction of noises. From the right panel which shows the
pair approximation predications, one can find that ρC descends monotonically
with b. Thus, the pair approximation predications can only characterize the
variation tendency of the simulation results for small values of b. Despite this,
the phase transitions and the phase transition points are well recovered, which
are 1.2, 1.3, 1.4, 1.6, and 1.8, respectively.
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Fig. 2. Density of cooperators ρC as a function of the temptation to defect b for
different values of κ. The left panel shows the simulation results and the right
panel the pair approximation predications and both panels have the same vertical
coordinate scale. The simulation results are obtained in the same way as in Fig.1.
Here the parameter σ is set to σ = 0.6.

To demonstrate the effect of b and σ on cooperation comprehensively, we
present a contour plot of the density of cooperators for 1.0 ≤ b ≤ 2.0 and
0 ≤ σ ≤ 3.0, as shown in Fig.3. Since the results for κ = 0 are typical
and the results for other values of κ can be deduced from those for κ =
0, we present the results for κ = 0. From the simulation results, one can
find that the density of cooperators changes along certain lines (or, more
generally, hyperplanes), which indicates the occurrence of phase transitions.
Additionally, the pair approximation predications can overall characterize the
profile of the simulation results, particularly for small values of b and σ.

It remains to explain why individual cautiousness can promote cooperation in
the prisoner’s dilemma game. Before presenting the reason for the promotion
of cooperation, let us first look at the typical snapshots for different values of
σ, as shown in Fig.4. One can find that each value of σ has its representative
stationary pattern. Now we explain the promotion of cooperation induced by
individual cautiousness. Assume that the imitation behavior occurs between
a cooperator and a defector, as shown in Fig.5. Let us further assume that the
cooperator has n1 (0 ≤ n1 ≤ 3) cooperative neighbors and n2 (1 ≤ n2 ≤ 4)

6



��� ��� ��� ��� ��� ��� ���

���

���

���

���

��	

���

�

� �

�

�

���

���

���

��


��	

�

��� ��� ��� ��� ��� ��� ���

�

� �

�

Fig. 3. Dependence of the density of cooperators on b and σ. The left panel shows the
simulation results and the right panel the pair approximation predications and both
panels have the same vertical coordinate scale. The simulation results are obtained
in the same way as in Fig.1. The depicted results are obtained for κ = 0.

defecting neighbors (n1 + n2 = 4), and the defector has n3 (1 ≤ n3 ≤ 4)
cooperative neighbors and n4 (0 ≤ n4 ≤ 3) defecting neighbors (n3 + n4 = 4).
The payoffs of the cooperator and the defector are n1R + n2S and n3T +
n4P , respectively. When individual cautiousness is considered, the imitation
between the cooperator and the defector can be hampered when their payoff
difference is smaller than σ, i.e., |(n1R + n2S) − (n3T + n4P )| < σ, which
is responsible for the promotion of cooperation. For example, when n1 = 1,
n2 = 3, n3 = 1, and n4 = 3, it is the case of σ = 0.15 in Fig.4 (left panel)
where two cooperators adjacent to each other are surrounded by defectors.
In this scenario, the payoff of the cooperator is 1.0 and that of the defector
is b = 1.1. Therefore, when σ = 0.15, since the payoff difference is smaller
than the cautiousness index, the cooperators do not imitate their neighboring
defectors such that the cooperators have the chance to survive. The rationale
is similar for other values of σ (see Fig.4).
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�

Fig. 4. Typical snapshots of the spatial patterns of cooperators (blue) and defectors
(red) for L = 100, κ = 0, b = 1.1 and σ = 0.15 (left), σ = 0.25 (middle left), σ = 0.5
(middle right), and σ = 1.0 (right) in the stationary state.

From Figs. 1, 2, and 3, one can observe that the level of cooperation changes
along certain lines (or hyperplanes) where phase transitions occur with the
variations of b and σ. The emerging phase transitions can be explained by
configuration analysis as above. Actually, the hyperplanes are all of the linear
form n1R+n2S = n3T+n4P−σ and n1R+n2S−σ = n3T+n4P . According to
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the strategy updating rule, for κ = 0, the cooperator will imitate the defector
if n1R+ n2S < n3T + n4P − σ. Similarly, when n1R+ n2S − σ > n3T + n4P ,
the defector will learn the cooperator. Given that T = b, R = 1, and P =
S = 0, the above two inequalities can be simplified as n1 < n3b − σ and
n1 − σ > n3b, respectively. Thus, the phase transition points can be obtained
by b = (n1+σ)/n3 and b = (n1−σ)/n3. Given all possible combinations of n1,
n2, n3, and n4, we can obtain all the appropriate values of σ and b at which
phase transitions occur. According to our analysis, σ = n3b − n1. Thus, for
b = 1.1, the phase transition points can be 0.1, 0.2, 0.3, 1.1, 1.2, 1.3, 1.4, 2.2,
2.3 and 2.4. Similarly, from σ = n1 − n3b, we can obtain the transition points
0.8, 0.9 and 1.9. Thus, one can find from Fig.1 that all the phase transition
points exactly are predicted.

Fig. 5. Illustration of the imitation between a cooperator and a defector. The un-
specified individuals can be either a cooperator or a defector.

Given that the initial condition regarding the proportion and distribution of
cooperators and defectors on the square lattice plays an important role in the
evolution of cooperation [47,59–61], we also studied the dependence of the
equilibrium frequency of cooperators on random initial states with different
fractions of cooperators fIC (note that fIC = 0.5 in most of previous studies).
The density of cooperators ρC as a function of fIC is shown in Fig.6. One
can find that the density of cooperators saturates at small values of fIC . For
example, for L = 100, ρC increases monotonically with fIC , and approximately
saturates at fIC = 0.1. Note also that for different L, ρC increases to the
saturation along different trajectories with increasing fIC . Specifically, the
larger the population size, the less the initial cooperators are required for the
saturation of the density of cooperators. That is, for the same fIC , larger
population sizes lead to a higher cooperation level when fIC is small (see
Fig.6).

In order to expound the reason for the phenomenon above, we investigate the
time evolution of the typical snapshots for L = 100, as shown in Fig.7. One
can find that, first, several very small patches of cooperators are established,
and then larger cooperator clusters can be formed around these “nucleuses”.
Eventually, cooperators dominate the entire population. Actually, a small 2×2
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Fig. 6. Density of cooperators ρC as a function of the initial fraction of cooperators
fIC for different values of L. The results are obtained in the same way as in Fig.1.
Depicted results are obtained for b = 1.1, κ = 0, and σ = 0.5.

cluster of cooperators is enough for cooperators to flourish, as shown in Fig.8.
One can find that originating from a 2 × 2 cooperator cluster, the evolution
leads to the flourish of cooperators, reflected by the contiguous cluster with
embedded strands of defectors (right panel of Fig.8). According to the present
strategy updating rule, for b = 1.1 and σ = 0.5, as long as cooperators can
simultaneously invade defectors at least two neighboring defectors, cooperators
can eventually dominate the population (see the middle right and the right
panels in Fig.9). The above fact indicates that the current results are very
robust with respect to the initial condition.

� �
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�

�
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Fig. 7. Typical snapshots of the spatial patterns of cooperators (blue) and defectors
(red) in the evolutionary process for L = 100, κ = 0, b = 1.1, σ = 0.5, and fIC = 0.1.
The snapshots are taken at t = 0 (top left), t = 10 (top middle), t = 20 (top right),
t = 100 (bottom left), t = 300 (bottom middle), and t = 500 (bottom right),
respectively.

Now we can explain why for the same fraction of the initial cooperators,
cooperation is more likely to emerge and thrive for larger population sizes.
This is because for the same value of fIC , when the population size is large, the
number of the initial cooperators is larger such that the chance for cooperators
to form small clusters (e.g., a square of four cooperators) initially is higher. As
long as such “seeds” for the dominance of cooperation are formed, cooperation
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can thrive. Therefore, cooperation rises more quickly for larger population
sizes.

� � �

Fig. 8. Typical snapshots of the invasion of cooperators (blue) in a world of defectors
(red) for L = 100, κ = 0, b = 1.1, and σ = 0.5. The snapshots are taken at t = 0
(left), t = 100 (middle left), t = 300 (middle right), and t = 500 (right), respectively.

Fig. 9. Illustrations of the typical initial configurations of cooperators (blue) and
defectors (red). Each small square corresponds to a single player. Denoted values
correspond to the payoffs of individual players, as obtained for the presented con-
figurations.

4 Discussion and conclusion

In summary, we have studied the impact of individual cautious strategy up-
date on the evolution of cooperation in the spatial prisoner’s dilemma game. It
is found that when the cautiousness of individuals is introduced, cooperation
can be remarkably promoted. Especially for small values of the cautiousness
parameter, e.g., 0.3 < σ < 0.8, the dominance of cooperators can be achieved.
This is in sharp contrast to the results obtained with no individual cautious-
ness, where the traditional version of the spatial prisoner’s dilemma game is es-
sentially recovered. The observed promotion of cooperation has been explained
by configuration analysis. The promotion of cooperation can be attributed
to the equilibrium between cooperators and defectors induced by individual
cautiousness. Specifically, when individual cautiousness is introduced, cooper-
ators can survive when the advantage of defectors over cooperators is smaller
than the parameter characterizing the cautiousness of individuals. Thus, co-
operators win the chance to subsist and even invade defectors. We have also
investigated the sensitivity of the density of cooperators to the initial states
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consisting of different fractions of cooperators. It is found that cooperation is
very robust with respect to the initial condition reflected by the fact that a
small faction of cooperators can lead to the dominance of cooperators. For the
same unfavorable initial condition, larger lattice sizes are more beneficial to
cooperation. We have also employed the pair approximation method to sup-
port our simulation results with semi-analytical calculations and to explain the
observed transitions to different levels of cooperation on the square lattice.

Previous studies have already shown that individual characteristics can pro-
foundly affect the evolution of cooperation in evolutionary games. Here we
show that cautiousness as an important individual characteristic can favor
the emergence of cooperation. The concept of cautiousness has been proposed
in Ref.[62], which is referred to as the cost of strategy change. Since with
increasing σ, the strategy updating behavior is increasing inhibited, which re-
flects the cautiousness or hesitation of individuals in strategy update in the
real world, we therefore call it the index of individual cautiousness. How-
ever, Ref.[62] primarily investigated the role of the voluntary participation in
the public goods game instead of the so-called “cost of strategy change”. In
Ref.[63], the authors proposed the concept of inertia and investigate its effect
on the evolution of cooperation. The inertia there is similar to the cautious-
ness here in the sense that they both can control and regulate the learning
activity of individuals. However, they are different in the controlling way of
the learning activity. In Ref.[63], the inertia is an artificially created index
which is closely correlated with individual number of neighbors. While here
the cautiousness is concerned with the payoff of individuals and has the same
dimension as payoff. Given that individuals are usually sensitive to the payoff,
the cautiousness here is of great practical significance.

Moreover, unlike in the majority of previous works, in our case the strategy
update is not unconditional but depends on individual cautiousness. If the
payoff difference between an individual and the selected neighbor is higher
than the index of individual cautiousness, the imitation of the individual to-
wards its neighbor occurs. Otherwise, nothing happens, that is, individuals
try to update their strategy only if the strategy update is indeed profitable.
While in most of previous works, the strategy update is reckless to some ex-
tent, since individuals update their strategy as long as the neighbors perform
better. In Refs.[46,47], Liu et al. investigated the aspiration-based conditional
learning, which is similar to the present work in the sense that the strategy
updates are both conditional. On the other hand, the introduction of indi-
vidual cautiousness can result in different time scales of individuals between
interactions and strategy update [35–38]. We hope that this study will enrich
our knowledge on how to successfully resolve the prisoner’s dilemma, and is
also helpful in understanding the ubiquitous cooperative behavior in the real
world where the conflict of individual and collective interests widely exists.
Our work may also have potential implications in designing coordination and
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cooperation mechanisms in multi-agent systems.
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Appendix: Pair-approximation

According to the pair approximation method [57,58], the rate equations of
cooperator-cooperator (c,c) and cooperator-defector (c,d) edges are as follows:

ṗc,c=
∑

x,y,z

[nc(x, y, z) + 1]pd,xpd,ypd,z ×

∑

u,v,w

pc,upc,vpc,wf [Pd(x, y, z), Pc(u, v, w)]

−
∑

x,y,z

nc(x, y, z)pc,xpc,ypc,z ×

∑

u,v,w

pd,upd,vpd,wf [Pc(x, y, z), Pd(u, v, w)]

ṗc,d=
∑

x,y,z

[1− nc(x, y, z)]pd,xpd,ypd,z ×

∑

u,v,w

pc,upc,vpc,wf [Pd(x, y, z), Pc(u, v, w)]

−
∑

x,y,z

[2− nc(x, y, z)]pc,xpc,ypc,z ×

∑

u,v,w

pd,upd,vpd,wf [Pc(x, y, z), Pd(u, v, w)]

where x, y, z each are either a cooperator or a defector and nc(x, y, z) denotes
the number of cooperators among them. Moreover,

f(Pi, Pj) =
1

1 + exp[(Pi − Pj + σ)/κ]
(2)
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where Pi and Pj are the payoffs of the two neighboring individuals i and j,
σ denotes the index of the cautiousness, and κ represents the intensity of
selection. By performing numerical integration for the above two differential
equations and in combination with the symmetry condition pc,d = pd,c, as well
as the constraint pc,c + pc,d + pd,c + pd,d = 1, we can obtain ρC = pc,c + pc,d.
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