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Abstract –Inspired by the fact that opportunities in reality are heterogeneous for individuals
due to social selection, we propose an evolutionary public goods game model considering the
social selection of game organizers occurring on a square lattice. We introduce a simple rule
that, depending on the value of a single parameter µ, influences the selection of players that
are considered as potential game organizers. For positive µ players with a high payoff will be
considered more likely. Setting µ equal to zero returns the random selection of game organizers.
We find that increasing the probability of selecting the wealthier individuals as game organizers
can effectively promote cooperation. We show that the promotion of cooperation attributes to
the dominance of the clusters of cooperative organizers in the population by investigating the
evolution of spatial patterns.

Introduction. – Cooperation within groups of selfish
individuals is ubiquitous in human and animal societies.
Evolutionary game theory provides a powerful framework
to explain the emergence of cooperation among selfish
individuals [1–3]. The evolutionary public goods game
(PGG) in particular has attracted considerable attention
in previous studies [4–6]. In the public goods game, play-
ers decide simultaneously whether to contribute to a com-
mon pool or not. The total contribution is multiplied by a
synergy factor which is larger than one. Then the resulting
public goods are equally shared among all the participat-
ing players, no matter whether they contribute. It is clear
that it is best to defect (not contribute), yet the collective
interests are maximized when all individuals cooperate,
which results in the “tragedy of the commons” [7].

Since the pioneering work of Nowak and May [8], spa-
tial games have received much attention [9]. In the frame-
work of spatial games, ingredients such as the social di-
versity [10, 11], population density [12], variable multipli-
cation factor [13], optional participation [14,15], threshold
[16, 17], risk [4, 18] and continuous strategy [19–21] have

been considered. In addition, much efforts have been di-
rected toward the exploration of the effects of personal
features on cooperation, such as punishment [22–28], re-
ward and reputation [29–32], to name but a few. Other
ingredients, such as noise [33] have also been considered
(see Ref. [34] for a very recent review on the public goods
game).

Quite remarkably, in the early investigations, it has been
discovered that heterogeneity can greatly elevate the sur-
vivability of cooperators in the PGG, no matter the het-
erogeneity is associated with group size [10] or with other
factors, e.g., preferential selection [11]. On the other hand,
in most of previous studies, it is conventionally assumed
that the chance for organizing the game is equal, which
actually overlooks the role of social selection since in the
real world such chance is often closely related with one’s
wealth (or influence). Different individuals may have dif-
ferent amounts of wealth and influences, the chance may
therefore be different. For example, individuals are more
willing to participate in a social activity held by a wealthy
or an influential individual since the participation may be
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more profitable, which reflects the role of social selection.
Inspired by this idea, we consider a simple addition to the
public goods game that allows only a fraction of players
to organize the game, i.e., introducing the propensity of
designating the most successful individuals as the game
organizers. Is this beneficial for the evolution of coopera-
tion? The answer is not straightforward and it would be
significant and also interesting to answer this question.
Comparing with previous works the propensity of desig-

nating the most successful individuals as game organizers
is the most significant difference. Our aim is to study how
the social selection of game organizers affects the evolution
of cooperation in the spatial PGG. By means of system-
atic computer simulations we demonstrate that assigning
preferentially only a fraction of individuals the chance for
organizing the game can remarkably promote cooperation
in the spatial PGG.

Model. – We consider a spatial public goods game
among a population of individuals distributed over a
square lattice of size L×L with periodic boundary condi-
tions. Each individual occupies one site of the lattice and
no empty site exists. The evolution of the game is iter-
ated in accordance with the simulation procedure compris-
ing the following elementary steps. First, every individ-
ual plays the games within its von Neumann neighbour-
hood. Next, all individuals are allowed to modify their
strategies simultaneously by imitating a randomly chosen
neighbour’s strategy.
Before proceeding to the interaction stage, we first select

the game organizers. That is, in each time step, a fraction
f (0 < f ≤ 1.0) of individuals are selected as the potential
game organizers. For the sake of improving efficiency, we
adopt the following sequential selection algorithm. That
is, we select the organizers in sequence until the number
of game organizers reaches f × L × L. After each time
of selection, the selected individual is excluded from the
population. The probability for individual i to be selected
as an organizer is

Πi =
exp(µPi)∑
z exp(µPz)

(1)

where Pi is the overall payoff of individual i obtained in the
previous round of the game, and the sum runs over all in-
dividuals at the moment when the selection is performed.
Initially, all individuals’ payoffs are set to zero. The selec-
tion parameter µ is introduced to govern the weight of the
payoff in the organizer selection process. Here we assume
µ ≥ 0 considering that social selection favors wealthy in-
dividuals. Evidently, for µ = 0 the organizers are chosen
uniformly at random among the entire population. For
µ > 0, however, a preference toward the individuals who
have a higher payoff is introduced. Note that f = 1.0
recovers the conventional model [10].
After selecting the game organizers, each individual

plays the PGG within its von Neumann neighborhood.
That is, if an individuals is an organizer, it can organize

a PGG involving it itself and its four direct neighbors.
Moreover, it can also participate in the PGGs organized
by the direct neighbors. If there are no individuals having
the chance to organize a game within its neighborhood,
then nothing happens. In the PGG interactions, each in-
dividual decides whether to contribute to a common pool.
Cooperators contribute a fixed amount of investment 1.0,
while defectors contribute nothing. The total contribution
is multiplied by a synergy factor r > 1 and then is shared
equally among all players, no matter whether they con-
tribute or not. Thus, the payoff of player i per PGG is
pi = rni

N − 1 (pi = rni

N ) if it is a cooperator (defector),
where r is the synergy factor of the game, ni denotes the
number of cooperators in group i, and N = 5 represents
the size of group i, i.e., the number of participants in the
group. The overall payoff of each player is accumulated
from all PGG interactions, that is Pi =

∑
z pz, where the

sum runs all groups of PGG interactions of i.
After playing the games, each individual is allowed to

update strategy by learning a randomly chosen neighbor.
The probability for individual i to imitate a randomly cho-
sen neighbor j is

Wj→i =
1

1 + exp[(Pi − Pj)/κ]
(2)

where Pi and Pj denote the overall payoffs of i and j,
respectively, and κ introduces some noise to allow for irra-
tional choices, which is simply set to 0.1 for all simulations.

The evolution of the system starts from the initial setup
with 50% cooperators and 50% defectors who are homoge-
neously dispersed over the square lattice. The key quan-
tity for characterizing the system is the density of coop-
erators ρC among the population, which is the fraction
of cooperators in the entire population. We implement
the model with synchronous strategy update. Results of
computer simulations presented below are obtained for a
population comprising 50× 50 individuals. The density of
cooperators ρC is obtained by averaging over 100 realiza-
tions and for each realization, we average 10000 genera-
tions after a transient time of 1000000 generations where
the dynamical equilibrium has been reached. It is worth
pointing out that for µ ≥ 1, the density of cooperators in
a single realization of evolution is either 0 or 1. Thus, ρC
there is actually the probability for the system to reach
full C state instead of the actual cooperation level, which
is obtained by calculating the runs which lead to full co-
operation among the total runs.

Results. – We start by presenting the stationary den-
sity of cooperators in dependence on the synergy factor r,
as shown in fig. 1. It can be observed that cooperation is
overall remarkably enhanced for f < 1.0 as compared with
that for f = 1.0. The promotion of cooperation is more
pronounced for smaller f and with increasing f , the re-
sults increasingly move toward that for f = 1.0. µ can also
have an effect on the emergence of cooperation. When f is
small, small values of µ may result in a lower cooperation
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Fig. 1: Density of cooperators ρC in dependence on r for differ-
ent values of µ at different values of f : (a) f = 0.2, (b) f = 0.5,
(c) f = 0.8. For comparison, the result for f = 1.0 where all
individuals have the chance to hold the game is presented.

level [see panel (a)], whereas as f increases, small values of
µ become increasingly more beneficial to cooperation [see
panel (c)]. Moreover, cooperation for smaller values of µ
arises at smaller values of r. In particular, for µ = 0.0,
cooperation can emerge only when f is sufficiently large.
These results suggest that assigning individuals heteroge-
neous chance to hold the public goods game can effectively
promote the evolution of cooperation. In what follows, we
will systematically investigate the roles of f and µ in the
evolution of cooperation, respectively.

Figure 2 shows the density of cooperation as a function
of f . It can be observed that for intermediate values of µ,
cooperators can be optimally favored at an intermediate
value of f . For sufficiently high values of µ, full coopera-
tion can be achieved even at very small values of f (e.g.,
f = 0.02) and ρC declines with increasing f . While for
µ = 0.0, cooperators can survive only when both f and
r are very high. It is worth noting that cooperation for
larger values of µ ascends and descends at smaller values of
f in comparison with that for small values of µ. From fig.
3, one can find that preferential selection of game organiz-
ers (µ > 0.0) is the key for the promotion of cooperation.

In fig. 3, we show the density of cooperators as a func-
tion of µ. When r is small, small values of f are more
favorable to cooperation, and there exists an intermediate
value of µ best favoring the evolution of cooperation. As
r increases, the phenomenon of optimal cooperation oc-
curring at intermediate values of µ happens for larger val-
ues of f , and cooperation for smaller values of f tends to
increases monotonically. Furthermore, with increasing r,
cooperation for larger values of f can be higher than that
for smaller values of f . Interestingly and surprisingly, a
local minimum of ρC occurs when r is large (which will be
explained later).

Thus far, we have demonstrated the effects of the pa-
rameters f and µ, respectively. The underlying mecha-
nism, however, is unclear. To this end, we investigate the
time evolution of spatial patterns focusing on the effects
of f and µ, as shown in figs. 4 and 5. Let us first look at
fig. 4 which concentrates on the effect of f . Initially, the
four types of players randomly distribute over the square
lattice [see panels (a), (f), (k)]. However, due to the differ-
ent values of f , the evolutionary trends are quite different.
For small values of f , the cooperative organizers have the
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Fig. 2: Density of cooperators ρC in dependence on the fraction
of organizers f for four different values of µ at four different
values of r: (a) r = 3.4, (b) r = 3.6, (c) r = 3.8, and (d)
r = 4.5.

chance to unite each other and lead the system to full
cooperation. Eventually, a single cluster comprising all
cooperative organizers is established. While for large val-
ues of f , the cooperative organizers are usually besieged
by the defecting organizers and have no chance to expand
their territories. Eventually, cooperators disappear. It is
worth noting that the established cluster of cooperative
organizers [see figs. 4(e) and (j)] is dynamically drifting
over the square lattice instead of being stationary due to
the stochasticity in the game organizer selection process.

One can find that the core mechanism for the promo-
tion of cooperation has two key ingredients: the forma-
tion of cooperative organizer clusters and the random drift
at the interface separating the cooperative and defecting
non-organizers. The formation of the cooperative orga-
nizer cluster is attributed to the current organizer selec-
tion method which favors individuals with higher payoffs.
Cooperators can collect higher payoffs by forming clusters,
which makes them to be selected as game organizers with
a high probability. The promotion of cooperation can be
attributed to the leadership of the clusters of cooperative
organizers. The random drift is supported by the current
Fermi strategy updating rule for which the probability for
the cooperative and defecting non-organizers (whose pay-
offs are both zero) to learn each other is 0.5. Both factors
guarantee the success of cooperators.

Besides the evolutionary outcome, the time scale for
the evolution is also noteworthy. One can find that with
increasing f , the evolutionary time scales for different val-
ues of f are distinct. Specifically, as f increases, the
time for the system to reach the stationary state reduces.
For example, for f = 0.02, 0.2 and 0.8, the time steps
for the system to reach the stationary state are approx-
imately 160000, 1300 and 120, respectively. The above
phenomenon can be easily understood. When f is small,
the size of the established cooperative organizer cluster is
small, thus the surface of the contact between the cooper-
ative and defecting non-organizers is small, which makes
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Fig. 3: Density of cooperators ρC in dependence on the se-
lection parameter µ for different values of f at four different
values of r: (a) r = 3.4, (b) r = 3.6, (c) r = 3.8, and (d)
r = 4.5.

the transient process become longer.

In what follows, we return to the effect of f on coop-
eration. We must understand that what determines the
final evolutionary outcome is the competition between co-
operative and defecting organizers. Varying f leads to the
change in the density of organizers and thus changes the
comparative advantages between cooperative and defect-
ing organizers. The rationale is as follows. When f is large
(consider the extreme case of f = 1.0), most individuals
among the population are game organizers. The case, to
a large extent, returns to the traditional case where coop-
eration is comparatively unfavorable since at the bound-
ary defectors usually have advantages over cooperators in
collecting payoffs [37]. When f is very small, the game or-
ganizers usually isolatedly dispersed on the square lattice
which is favorable for a cooperative organizer to expand its
territory since the menace coming from the adjacent de-
fecting organizers can be avoided. On the other hand, the
small number of cooperative organizers in turn increases
the probability for them to be eliminated. Another key
problem is that even the small cooperative organizer clus-
ter can be formed, the time for the system to reach full
cooperation may be very long. While for intermediate val-
ues of f , the cooperative organizers have a high survival
probability, and at the same time, due to the cooperative
and defecting organizers have comparatively low proba-
bilities to encounter each other, the direct menace coming
from the latter is small. All these lead to the flourish of
cooperation in the population.

In fig. 5 we focus on the role of µ in the evolution of co-
operation. According to our game organizer selection rule,
the stochasticity in the game organizer selection decreases
with increasing µ, that is, with increasing µ, individuals
with higher payoffs are more likely to be selected as game
organizers. According to the above rationale, when µ is
small, the game organizers are almost selected randomly.
This cannot guarantee that the selected individuals have
high payoffs. Therefore, the selected cooperative orga-
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Fig. 4: Time evolution of spatial patterns of cooperative or-
ganizers (orange), cooperative non-organizers (blue), defecting
organizers (light yellow) and defecting non-organizers (cyan)
for f = 0.02 [(a) t = 0, ρC = 0.5, (b) t = 10, ρC = 0.3546,
(c) t = 1000, ρC = 0.4736, (d) t = 156000, ρC = 0.9224, (e)
t = 160000, ρC = 1.0], f = 0.2 [(f) t = 0, ρC = 0.5, (g) t = 5,
ρC = 0.3344, (h) t = 30, ρC = 0.5024, (i) t = 200, ρC = 0.7036,
(j) t = 1300, ρC = 1.0], f = 0.8 [(k) t = 0, ρC = 0.5, (l) t = 2,
ρC = 0.2212, (m) t = 4, ρC = 0.082, (n) t = 20, ρC = 0.0184,
(n) t = 120, ρC = 0.0]. Other parameters are r = 3.6, µ = 1.0.

nizers cannot shoulder the role of leaders and lead to the
spreading of cooperation. For high values of µ, individuals
with high payoffs are almost selected with certainty. Since
cooperators in the clusters of cooperative organizers and
the boundary defecting organizers (who collect payoffs by
exploiting cooperators) usually have high payoffs, they are
more likely to be selected, as shown in fig. 5(j). Since the
cooperative organizers are completely surrounded by the
defecting ones, and the selected defecting organizers have
highest payoffs, the cooperative organizers are gradually
eliminated. While for intermediate values of µ, one the
one hand, the selection is not random, and on the other
hand, the selected defecting organizers do not necessarily
have the highest payoffs (as can be seen from fig. 5(f)
where a number of isolated defecting organizers are se-
lected). As another effect resulting from the stochasticity,
the defecting organizers attached to the cooperative or-
ganizers are not always selected. This makes there exist
gaps surrounding the cooperative organizer clusters. All
these ingredients lead to the promotion of cooperation.

In our model, f denotes the density of organizers in the
population, and it thus determines the chance for cooper-
ative and defecting organizers to meet each other. While
µ determines the weight of payoffs in the selection of orga-
nizers. One can find from figs. 5(j) and (k) that increasing
µ makes the defecting organizers who are adjacent to the
cooperative organizers be selected with a high probability,
which is unfavorable to cooperation. Therefore, for high
values of µ, in order for the promotion of cooperation, the
chance for the cooperative and defecting organizers to en-
counter each other should be small, which corresponds to
small f . This is why the region of f where cooperation is
promoted for increasing µ moves toward left.

It remains to explain the local minimum of ρC shown
in figs. 3(c) and (d). We take the case of r = 4.5, f = 0.5
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Fig. 5: Time evolution of spatial patterns of cooperative or-
ganizers (orange), cooperative non-organizers (blue), defecting
organizers (light yellow) and defecting non-organizers (cyan)
for µ = 0.0 [(a) t = 0, ρC = 0.5, (b) t = 4, ρC = 0.286, (c)
t = 20, ρC = 0.054, (d) t = 50, ρC = 0.0], µ = 1.2 [(e) t = 0,
ρC = 0.5, (f) t = 10, ρC = 0.3052, (g) t = 60, ρC = 0.6592, (h)
t = 1000, ρC = 1.0], µ = 5.0 [(i) t = 0, ρC = 0.5, (j) t = 10,
ρC = 0.296, (k) t = 38, ρC = 0.0896, (l) t = 100, ρC = 0.0]
[see fig. 3(a)]. Other parameters are r = 3.4, f = 0.2.

for example. It can be observed from fig. 3(d) that the
density of cooperators for f = 0.5 first increases to 1.0 at
µ = 0.15 and then drops to 0.62 at µ = 0.25. After that,
the density of cooperators reverts to 1.0 again quickly.
Similar phenomena can also be observed in fig. 3(c). Note
also that such phenomenon can only be observed for large
values of r. Moreover, the phenomenon occurs at small
values of µ. Here we also resort to the spatial patterns
to explore the underlying reason for the phenomenon, as
shown in fig. 6. One can find that different values of
µ lead to distinct stationary spatial patterns. Since the
selection of game organizers depends both on µ and in-
dividual payoff P (which in turn depends on the value of
r), investigation of the distribution of exp(µP ) may be
helpful for our analysis. The results are shown in fig. 7.
One can find that since r = 4.5 is large (which results
in high payoffs of individuals), small variations of µ can
lead to great changes of exp(µP ). For example, although
µ = 0.25 has small change with respect to µ = 0.15, the
change of exp(µP ) is large. Consequently, the effect of
random selection for µ = 0.15 is strong while for µ = 0.25,
the randomness of selection of game organizers is weak.
The spatial patterns are closely correlated with the extent
of the stochasticity. For µ = 0.15, due the stochasticity,
the cooperators in cooperator clusters are not necessarily
selected while the cooperative non-organizers in the last
time step may be selected, which results in the pattern
shown in fig. 6(a). While for µ = 0.25, individuals with
higher payoffs are more likely to be selected such that
the cooperative organizers can form a large cluster with
the cooperative non-organizers lying at the interface sep-
arating the cooperators and defectors. Since there exist
defecting organizers in the defector areas, the boundary
cooperative non-organizers are not capable to invade the

(c)(b)

 

(a)

  

Fig. 6: Stationary spatial patterns for r = 4.5, f = 0.5, and
(a) µ = 0.15, (b) µ = 0.25, and (c) µ = 1.0, respectively.

defectors, which establishes an equilibrium between the
cooperators and defectors. While for µ = 1.0, the ran-
domness of the organizer selection is very weak. At this
moment, we should emphasize the large value of r, which
gives cooperators more chance to survive. In combination
with large values of r which favors cooperators, the co-
operative organizers can wipe out the defecting ones and
eventually dominate the population. It must be aware
that the large values of r play a crucial role. Large val-
ues of r make individuals have high payoffs such that even
small change in µ (i.e., from 0.15 to 0.25) leads to large
change of exp(µP ). This is why the local minimum occurs
at small values of µ. One the other hand, large values of r
favor cooperators. If r is small, the cooperative organizers
may be eliminated by the neighboring defecting ones.

Discussions and conclusion. – The promotion of
cooperation in the present work can be attributed to the
heterogeneity in organizing the pubic goods games result-
ing from the social selection. The difference in individuals’
organizing chance leads to the heterogeneity in the num-
ber of PGGs in which individuals participate. The present
mechanism responsible for the promotion of cooperation
is similar to that reported in Ref. [10] where the authors
investigated the public goods game taking place on the
scale-free networks. In Ref. [10], individuals also partici-
pate in different number of PGGs due to individuals have
different number of neighbors.

It is also worth noting that in Ref. [12], the authors
studied how the population density affects the evolution of
cooperation in the spatial public goods game occurring on
a square lattice. The population density there corresponds
to the fraction of game organizers here and they have sim-
ilar effects on the evolution of cooperation although the
mechanisms facilitating cooperation are different.

Note also that here the payoff in the last time step is
used for determining the organizing chance. In the real
society, however, one’s wealth can be better characterized
by its accumulative payoff [35, 36]. We have checked that
when organizers are selected according to the accumula-
tive payoff, cooperation can be better favored. Due to the
intrinsic mechanism for the promotion of cooperation, the
population size and the strategy updating rule can also
have effects on the evolution of cooperation. Regarding
the population size, we found that smaller population size
can better promote cooperation for small values of µ (e.g.,
µ < 1.0). For large values of µ, the difference of the den-
sity of cooperators for different population sizes is small.
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Fig. 7: Stationary distribution of exp(µP ) on the square lattice
for r = 4.5, f = 0.5, and (a) µ = 0.15, (b) µ = 0.25, and (c)
µ = 1.0, respectively.

Concerning the strategy updating rule, we also apply the
“proportional imitation” rule and the “choosing the best”
rule. It is found that these two rules, cooperation can
be promoted mainly for small values of r. An important
difference of these two rule from the currently employed
Fermi rule is that the latter supports the imitation be-
tween individuals with the same payoff while the former
do not, which may be responsible for the inhibition of co-
operation for the “proportional imitation” rule and the
“choosing the best” rule at large values of r.
In summary, we have studied the evolution of coopera-

tion in the spatial public goods game with the social se-
lection of organizing chance which results from the payoff-
based preferential selection. We have shown that coopera-
tion can be significantly promoted when only a fraction of
preferentially selected individuals are assigned the chance
of organizing public goods games. Our results elucidate
the effect of social selection of organizing chance on the
evolution of cooperation in the spatial public goods games,
which appears to enable the tragedy of the commons to
be avoided.
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