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ABSTRACT

Many problems that require decisions made over time can be
formulated as dynamic linear programs. Complications arise in
solving these programs when one allows stochastic elements to
alter the state to state transitions. Finding the stochastic
linear programming solutions may be very difficult since their
formulation often greatly increases the problem size. This
paper shows that, under certain conditions, a simple deterministic
solution technique obtains the same optimal controls as more
complicated stochastic methods.

Key words: Dynamic linear programming, stochastic programming,
large scale systems.
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SOl-1E CONDITIONS FOR OPTHlAL DETERHINISTIC
SOLUTIONS TO STOCHASTIC DYNM~IC LINEAR
PROGRAMS

John R. Birge

I. INTRODUCTION AND PROBLEM DESCRIPTION

Dynamic linear programming problems occur in a variety of

applications. They entail optimal control decisions made over

time. Complications arise when some stochastic variation occurs

in the transition of the process to subsequent states. In general,

complicated stochastic programming methods are required to solve

these problems optimally. In some instances, however, a deter­

ministjc approach involving expected values of the stochastic

elements is sufficient. We will show below conditions for this

result.

He write the basic dynamic linear programming problem in

the following form:

T-1
min I [c(t)x(t) + d(t)u(t)] + c(T)x(T)

t=O

(1. 1 )
s.t. G(t)x(t) + D(t)u(t) = f(t)

A(t)x(t) + B(t)u(t) = x(t+1)

for t = 0,1, ... , T-1

-1-
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where x(t) E Mn(t), a vector in n(t)-dimensional Euclidean space,

u(t) E ~p(t), and f(t) E ~(t), c(t) and d(t) are correspondingly

dimensioned vectors, and G(t), D(t), A(t) and B(t) are correspon­

ding matrices. In this problem, x(t) represents the state of

the system at time t and u(t) represents the optimal control

applied at that time. \ve, therefore, wish to minimize a linear

cost function of these variables over time.

Problems occur in this system when we introduce a stochastic

variation v(t), for some v(t) E V(t), where V(t) C ~(t). tve

consider that this error or noise term enters the state transition

equation as:

A(t)x(t) + B(t)u(t) + E(t)v(t) = x(t+1) (1. 2)

where E(t) is a corresponding given non-stochastic matrix. The

problem is then how to determine the optimal controls in order

to allow for this stochastic element. The best possible solution

would be to know the outcome of the stochastic variations through

time. The object then is to solve the problem:

T-1
J 1 (v(O), ... , v(T-1))::: min L [c(t)x(t)+d(t)u(t)] + c(T)x(T)

t=O

s.t. G(t)x(t) + D(t)u(t) = f(t)
(1. 3)

A(t)x(t) + B(t)u(t) + E(t)v(t) = x(t+1)

for t = 0, 1 , ... , T-1

for every realization (v(O), ... , V(T-1)). From these solutions,

one could take an expected value of the different J(v(O) , ... ,V(T-1))

values and find the best possible expected objective function

value as

J 1 :: jJ1 (V(O)/ ... , V(T-1))dF(v(O), ... , v(T-1))

V(O)x·· ·xV(T-1)

,(1.4)
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where F(v(O), ... , v(T-1)) is the joint distribution function of the

stochastic elel.lents.

This approach of perfect information is not implementable

because of our assumption that the stochastic variations cannot

be observed before the control in a period has been applied. ,qe

may, however, assurne that, at any stage of the process, we are

able to observe the past. We can, thereby, use a backwards

inductive method of solution in order to find an optimal control

trajectory. We start by solving:

J(T,X(T)) - c(T)x(T) (1. 5)

We then continue to iterate backward by solving for every t:

J ( t -1 ,x ( t -1 )) - min c (t-1 ) x ( t -1) + d ( t -1 ) u ( t -1 )

+ IJ(t,X(t))dF(V(t-1))

V (t-1 )

(1. 6)

s.t. G(t-1)x(t-1) + D(t-1)u(t-1) = f(t-1) (1.6a)

A(t-1)x(t-1) + B(t-1)u(t-1) + E(t-1)v(t-1) = x(t)

In (1.6), the constraint (I.6a) implicitly enters the inte­

gral, so that x(t) is a function of v(t-1). This program finds

the lowest expected remaining cost, given that we are in state

x(t-1) at t-1. This standard dynamic programming problem gives

us the value:

J 2 - J(O,x(O)) (1. 7)

If we consider the controls involved in solving the problem

by this method for different realizations of (v(O), ... , v(T-1)),

we obtain J 2 (v(O), v(1), ... , v(T-1)) for every

(v(O), v(1), ... , V(T-1)) E V(O) x V(1)ooo x V(T-1). The expected

value is then:
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rJ
2

- jJ
2

(v(O), ... , v (T-1) )dF(v(O), ... , V(T-1))

V ( 0 ) x •••x V (T'" )

(1. 8)

The method employed in finding J 2 yields an excellent

expected solution value, but the solution of problems in the

form of (1.6) are extremely difficult since x(t) depends on

both v(t-1) and u(t-1). For general distributions of v(t-1),

the objective value function represents a complicated integral

formula. Linear programming methods cannot, therefore, be

applied to this problem with a non-linear objective function.

By applying a discrete distribution for each v(t); (an approxi­

mation of the actual distribution), the problem can, however,

be transformed into a stochastic linear program. We assume,

for this next approach, that v(t) is independent of V(T) for

all L ~ t. He also assume the following probability distribution

for each t and some x E ~(t):

if x = v 1 (t)

6'{v(t) = x}=

o

x = v 2 (t)

all other x

(1. 9)

We assume further, without loss of generality, that k is the same

for all t.

(1.6) becomes, according to this distribution:

*J «t-1),x(t-1)) _ min c(t-1)x(t-1) + d(t-1)u(t-1)

k
+ L p. (t-1)c (t)x. (t)

. 1 1 11=

(1.10)
s.t. G(t-1)x(t-1) + D(t-1)u(t-1) = f(t-1)

A(t-1)x(t-1) + B(t-1)u(t-1) + E(t-1)v i (t-1) = xi(t)

for i = 1, ... , k
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The solution to the problem of optimal control over the

*entire planning horizon is, therefore, J (O,x(O», where x(O)

is some given initial state. Solution by the iterative dynamic

programming technique may be quite complicated, however, because

*we must find J (t,~(t» for every possible x(t) at every point

in time t. This is especially difficult since x(t) is not even

discrete. The following theorem allows us to consider instead

a single linear program.

*Theorem 1. The problem of finding J (O,x(O» derived above is

equivalent to:

J 3 - min c( 0) x (0) + d (0) u (0) + I p. (0) [c ( 1 ) x . ( 1 ) +d (1 ) u. (1)]
i

O
1 0 1 0 1 0

+ , I p . . ( 1) [c (2) x . . ( 2 ) +d ( 2 ) u . . ( 2) ]
. . 1 0 ,1 1 1 0 ,1 1 1

0
,1 111'~0

+

+ I
i T - 1 ' ••• ,

p. . (T-1)fc(T)X. . (T)]
i 0 1 0, ... , 1 T-1 L 1 0 ' .•• , 1T- 1

s.t.
G(O)x(O) + D(O)u(O) = f(O)

A(O)x(O) + B(O)u(O) + E(O)v. (0) = x. (1)
1 0 10

i O = 1, ••• , k

G(1)x. (1) + D(1)u. (1) = f(1)
1

0
1

0

i O = 1, •.. , k

i O = 1, ... , k

i
1

= 1, ... , k

(1.11)
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we do not necessarily assume independence.
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G(T-1)x. (T-1 ) + B(T-1)u. (T-1 ) = f (T-1 )
1. 0 i T- 2 1. 0

... ..
i T- 2

i O = 1 , ... , k.
= 1 , ... , k

i T- 2

A(T-1)x.
i T- 2

(T-1 ) + B(T-1)u.
i T- 2

(T-1 )
1. 0

. 1.
0

+E (T-1 )v . (T-1 ) = x ..
i T- 1

(T)
1.T- 1 1. 0

...

i O = 1 , ... , k.

i T- 1 = 1, ••• ,k

where p. 'k(3) represents
1.)

v k (3)) occurring. Here,

If independence is present, then we have Pijk(3) = Pi(1) •

p j (2) • Pk (3) .

Proof. The proof follows directly by induction on T, the number

of periods.

This characterization, because it does not require indepen­

dence, is more general than the dynamic programming solution in

*finding J (O,x(O)). It is also more easily implemented since

each state need not be specified.

Again, if we solve (1.11) and find J 3 , we use the given

controls and obtain different objective values for different

realizations of (v(O), ... , v(T-1)). The expected value is then

rJ3 :: JJ3 (V(0), ... ,V(T-1))dF(V(0), ... ,V(T-1))

V ( 0 ) x··· ~~ V (T - 1 )

In this multistage stochastic linear

~on-zero partitions of the program matrix

different realizations of v(t), appear.

program, many blocks,

corresponding to

The number of separate
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blocks increases exponentially with thenumber of periods.

Tnis complication makes problems with a great number of transi­

tions very difficult to solve. One, therefore, us~ally requires

that the blocks are aggregated or that expected values are

substituted for the assumed distribution. The most simplified

approach would be to consider only expected values for each of

the stochastic variables, v(t).

The resultant deterrninistic problem can then be written

simply as:

T-1
J 4 =min! [d(t)u(t)+c(t)x(t)] + c(T)x(T)

t=O

s.t. G(t)x(t) + D(t)u(t) = f(t)

A(t)x(t) + B(t)u(t) + E(t)v(t) = x(t+1)

for t = 0,1, ... ,T-1

(1.12)

where v(t) = f v(t)dF(v(t)).

V (t)

Again, we take expected values for actual realizations of

v(t) to find:

J 4 =J J 4 (v(O), ... ,v(T-1) )dF(v(O), ... ,v(T-1))

V(O) x···x V(T-1)

A hierarchy exists among the four solutions to the stochastic

linear prograwning problem posed here. The following theorem

establishes this.

Theorem 2. The optimal values for solutions to pr~blems such

as (1.1) with stochastic transition equation (1.2) are ordered

as:

(1.13)
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where V(t) is assumed convex for all t.

Proof. The inequalities follow by observing that the successive

complications from J 4 to J 1 involve inclusions of the previous

solution. The first inequality, J 1 ~ J 2 , follows from our use

of the optimal solution for any realization, (v'(O) , ... ,v'.(T-1))

in J,. Hence, J 1 (v ' (O), ... ,v'(T-1)) ~ J 2 (v'(O), ... ,V'(T-1))

for any (v'(O), ... ,v'(T-1)). Integration preserves the inequality,

so J 1 ~ J 2 .

Since V(t) is assumed convex, in J 3 , the discrete approach

is, at best, an approximation. By definition, therefore, the

solutions by J 2 are always better. Hence, J 2 ~ J 3 .

For the remaining inequality, observe that ~(t) is included

in any J
3

solution because it is in V(t) and is a member of the

discrete approximation for J 3 . If ~(t) is realized, one opti­

mizes in J 3 . This is the only realization, for which, the

solution in J 4 must be optimal. For all other v'(t), we have

J 3 (v ' (O), ... ,V'(T-1)) ~ J 4 (v'(O), ... ,V ' (T-1)). Again, integration

yields J 3 ~ J 4 . ~ve then have J 1 ~ J 2 ~ J 3 ~ J 4· II
The question of choosing which of the above four solutions

to use depends on the complexity of the problem, the difficulty

of using the various techniques, and the actual differences

that may occur in the inequalities. If, for example, one

considered a problem, for which, J 1 = J 4, the value of perfect

information is zero and a deterministic solution technique is

adequate and recommended.

II. CONDITIONS FOR OPTII~L DETE~lINISTIC SOLUTIONS

The solution to dynamic linear programming problems usually

seeks an optimal control for the entire planning horizon, [O,T].

This solution can, however, usually be altered after a certain

period of time. By following this procedure, one can observe

the behavior of stochastic variables in this first period and

use the information to make better projections for the future.

The problem in this framework becomes one of finding the optimal
I
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first period control, given future controls and future uncer­

tainties. An entire optimal control trajectory is found, but

only the first period control must be implemented before one

allows for a changing environment. This method appears well

adapted to real world applications of optimal decision making

over time.

Within this repeated solution technique, one may still

have difficulties in finding the first period control because

of the large number of possibilities for future controls and

t,he first period's dependence on this future. We will give

conditions, under which, the first period controls can be

found optimally by a deterministic approach as in (1.12). In

other words, we have the same u(O) controls for J 1 and J 4, and

need only solve deterministic· problems over time in order to

find the best possible control trajectory.

The following lemma will be used in finding these conditions

for a deterministid optimal control solution. It follows from

sensitivity analysis on the standard primal li~ear program:

min cx

s.t. Ax = b

x > 0

(11.1)

Lemma 1. If B is an optimal basis for (11.1) and if B remains

feasible for all possible right hand side variations, then B

will remain an optimal basis.

Proof. We partition the matrix A and cost vector c into basic

and non-basic parts. (11.1) becomes:

(11.2)
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Now, if B is an optimal feasible basis for some h, then we

have associated prices, TI, such that

(IIo2)

and we have

x = 0
N

(IIo3)

-1- -1
If x

B
remains feasible for b + 6b, i.e., if B b+B 6b > 0,

then the prices TI remain unchanged and the optimality conditions

(II.2) and (II.3) remain also. B is, therefore, still an optimal

basis. II
This lemma leads to a theorem for the optimal basis in a

stochastic linear program. For this general program, we let b

in (II.1) be b (~), a random variable, where ~ E =:.

Theorem 3. If B is a feasible basis for (II.1) for any b(~),

~ E =:, then B is an optimal basis for all b(~), ~ E ~.

Proof. Apply Lemma 1 directly to the problem (II.1) with

constraints

x > 0

Now, by the assumption, no variation in ~ will make BxB
b(~)=

infeasible. Therefore, by Lemma 1 , B is an optimal basis for

all b (~) , ~ E =:. II
This last result gives conditions under which the optimal

basis for every realization (v(O), ... , v(T-1)) in (I.3) will

be the same. ~e write the optimal basis for (I.3) as
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uB(O) B uB (1)- -- ___ XB(T)x (1)

DB (0) = f(O)-G(O)x(O)

BB(O)
B

- 1(2) = -A(O)x(O)-E(O)v(O)

GB (0) DB (1 ) = f (1 ) (11.4)

AB (1 ) BB (1 )
B

-I( 2)

B
-I(T) = -E(T-1)v(T-1)

Inverting this matrix gives unique values for the basic variables

for each realization (v(O) , ... , v(T-1). The objective value

is then

J = a(0)v(0)+···+a(T-1)v(T-1) + k
1

where a(O) , ... ,a(T-1) and k are constant over ranges of

(v(O), ... , v(T-1») if the same basis remains. Therefore, if

the basis remains unchanged, from integration in (1.4),

J 1 = a(O)v(O)+···+ a(T-1)v(T-1) + k (11.5)

Now, if v(t) E V(t) for all t, then an optimal solution of (1.12)

gives us the same value for J 4 as (11.5), since the optimal basis

is the same, implying the same weights a(O) , ... , a(T-1) and

constant k. We then have the following corollary to Theorem 3.

Corollary 1. If B is a feasible basis for every (v(O), ... , v(T-1»

E (V(O), , V(T-1) in (1.3) and if B is optimal for some

(v(O), , v(T-1») E (V(O),. - -, x(T-1), then J 1 = J 4 -

The equality would imply that using the expected values of

stochastic variables and a deterministic solution would be optimal_

We note, however, that implementation of the entire deterministic

control program may be infeasible. Different realizations of
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the stochastic elements may lead to this infeasibility. We would

therefore like to find conditions for which the optimal controls

are independent of the stochastic elements. Otherwise, an in­

feasible value may result from a control that is ~ function of

an expected value, Le., when uB(O) ('l(O)) ~ uB(O) ('l(O) + E').

To this end, we have another corollary:

Corollary 2. If B is a feasible basis for every

(v(O), ... , v(T-1)) E (V(O), ... , V(T-1)) in (1.3), and, if B is

optimal for some ('l(O), ... , 'l(T-1)) E (V(O), ... , V(T-1)), then

a set of optimal first period controls uB(O) does not depend

on (v(O), ..• , v(T-1)).

Proof. We consider a set {v. (0), ... , v. (T-1)} for i = 1, ... ,k,
~ ~

as realizations of vet) in problem (1.10). Since B is feasible

for all (v(O), ... , v(T-1)), we obtain a feasible 'basis for (1.11)

as

(11.6)

o

r---- -
I G

B
(k)

o

o

o
-------1

I
I
I

1- - - - - -t- - - -
I
I
J
I I
I -~ ,,

DB(O)
_----L.

BB (0) ;
I

- - - --I

o
BB(O)

_B~ ~O)_
o

.
-------

I
Io ,

-- ... _----
I· I

where

DB(O): 0
-- - -'---------
BB (0) :
- ---I

o :

= B for all i
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The result is equivalent to showing that DB(O) in (II.6) is

§quare (m(O) x m(O». We let DB(O) be (m(O) x m), where m > m(O)

in order to satisfy all inequalities for f(O) G(O)x(O) in (II.4).

Since B is square, we assume it is [m(O) + n] x [m(O) + n].

The basis in (II.6) is [m(O) + kn] x [m(O) + kn]. GB(i) is

n x n(O). If m = m(O) + l, for l > 0, then n(O) = n - l. This

would mean the basis in (II.6) is [m(O) + kn] x [m (O)+,Q,+kn-kl],

a contradiction for k > 1. Therefore, DB(O) is m by ro, and uB(O) =

= [DB (0)]-1(f(0) - G(O)x(O» is independent of (v(O), ... , v(T-1».

By Corollary 1, these are optimal. II
We had to specify that the entire basis B was feasible

above. Below, we only fix the first period controls and consider

feasibility from there. This seems more realistic, given that

we do not know what we will do in the future.

We consider the 2-stage stochastic linear program, (I.11)

with T = 1. We do not consider any fixed distribution in

writing (I.11). Any discrete approximation is allowed. In

other words, if the solutions for ~ and J 2 are impossible to

find, then we let (I.11) be the best possible solution.

The following theorem shows the 2-stage equivalence of a

stochastic and deterministic program:

Theorem 4. If the basic control values u(O) are feasible for

all v(O) E V(O) in (I.3) where T = 1 and x(O) is fixed, and if
-Bu (0) are optimal basic values for some v(O) E V(O), then u(O)

are optimal basic values for any characterization of the 2-stage

stochastic linear program in (I. 11) . [Here, "characterization"

refers to any discrete approximation of the distribution of

v(O)].

Proof. We assume (I.11) has the form

k
mi n (c (0 ) x (0» + d (0 ) u (0 ) + I p. c ( 1 ) x. (1 )

i=1 1 1

s.t. D(O)u(O) = f(O)-(;(O)x(O)
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B(O)u(O) - Ix 1 (1 ) = -E(0)v
1

(0)

-A(O)x(O)

B(O)u(O) - IX
2

(1) = -E(0)V
2

(0)
(II. 7)

• -A(O)x(O)
•
•

B(O)u(O) -Ix
k

(l) = -E(O)Vk(O)

-A(O)x(O)

Where x(O) is given.

Next, we assume u
l

(0) is optimal for (II. 7). For any

x
i
(l), we have

D(O)u ' (0) = f(O) - G(O)x(O)

B (0) U I (0) - Ixi (0) = -E(O)v. (0)
~

-A(O)x(O)

(11.8)

as a feasibility condition. Now,

(II. 8) is true for v. (1) = v(l).
~

since v(l) = v. (1) for some i,
~

But u(O) is optimal here, so

d(O)u(O) + c(l)x(l) < d(O)u' (0) + c(l)x ' (1) (II. 9)

where x(l) = E(O)v(O) + A(O)x(O) + B(O)u(O) and

Xl (1) = E(O)v(O) + A(O)x(O) + B(O)u' (0). (11.9) is, therefore,

equivalent to

d ( 0 ) u ( 0 ) + C ( 1 ) B( 0 ) u ( 0 ) 2. d (0) u ' (0) + C ( 1 ) B ( 0 ) u I (0)

(11.10)

From (11.10) we have

p. (d(O)u(O)+c(l) [B(O)u(O)+A(O) x(O)+E(O)v. (0)])
~ ~

(11.11)

< p. (d(O)u ' (O)+c(l) [B(O)u ' (O)+A(O)x(O)+E(O)v. (0)])- ~ ~
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and summation and the substitution, xi (1)=E(0)v i (O)+A(O)x(O)+

B(O)u(O), yields

k k
d(O)u(O) + I p.c(1)x.(1) < d(O)u'(O) + I p.c(1)x'i(1), (II.12)

'1~ ~ '1~
~= ~=

where xi and xli are feasible by assumption for (11.7).

Therefore, u(O) are optimal basic values for any distri­

bution approximation in (I.11) ·11

The significance of this theorem is that, if one knows

that a given solution will not give infeasible results in the

next periods, then one need only solve a deterministic problem,

in which, the stochastic element has been replaced by an expected

value. The solution found in this manner will then be as good

as any stochastic programming solution in finding the best first

period controls. Problems, of course, arise if the first period

controls do lead to future infeasibilities.

It would also be beneficial to know what characteristics

a basis for (1.11) must have, if one set of first period controls

is optimal for all characterizations in (1.11). We show this in

the following theorem.

Theorem 5. If basic controls u(O) are optimal and constant

for all characterizations of (I. 11) (for T = 1), then u (0) is

feasible for all v(O) E V(O) in (1.3) and optimal for some

V(O) E V(Q).

Proof. We again have the form (11.7) and for v. (0) arbitrary
~

in (II.8), for u(O) feasible in (I.11), we must have u(O) feasible

for (1.3) and any v(O) E V(O).

Optimality for some v(O) is trivial, since we can take

our problem (1.11) to be the case of k = 1, where only v(O)

is assumed in a degenerate distribution. II
Theorems 4 and 5 lead directly to the following Corollary.

Corollary 3. Basic controls, u(O) are optimal for all charac­

terizations in (1.11) for T = 1, if and only if the u(O) values

are feasible for all v(O) E V(O) and optimal for some

v(O) E V(O).
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This result gives necessary and sufficient conditions for

J 1 and J 4 to lead to the same optimal first period controls. It

should be noteq, however, that v(O) must belong to the set of

possible V(O). This is always true if v(O) is an expected value

and the distribution of v(O) is continuous. If v(O) has a dis­

crete distribution, the mean may not belong to the domain of

the variable and the result will not necessarily hold.

This result may be useful in solving problems where future

uncertainties are involved. If one can formulate these problems

so that infeasibilities are removed, then one may be assured

that a deterministic approach in which the mean value is in

the domain of the stochastic elements is best. The problem of

dealing with infeasibilities necessitates a stochastic approach

and a more complicated solution procedure in the form of Problem

(1.11).
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