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of the analyzed indicators and did not allow them to evaluate the spread of values. The paper also examines the problem of production 
competitiveness evaluation by the aggregation of the indices characterized by significant heterogeneity of indices relatively to a product 
chosen as a sample. The degree of such heterogeneity is posed to evaluate with criterion of balanced indices, where reckoning is based on 
the metrical analysis.  Competitiveness of production is a basic indicator for assessment of competitiveness of the enterprise, for making 
decisions on production, in foreign economic activity. 
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PROJECTION OF THE RUSSIAN ECONOMIC DEVELOPMENT  
IN THE FRAMEWORK OF THE OPTIMAL CONTROL MODEL  

BY INVESTMENTS IN FIXED ASSETS1

In this paper, we develop an economic growth model taking into account two factors of production: fixed 
capital and labor force, to study the dynamics of GDP growth. The dependence of the output of these factors 
is described by a production function of the exponential type. Within the framework of the optimal control 
theory, the optimization problem for investment levels is being solved to maximize the integral index of con-

1 © Tarasyev А. М., Usova А. А., Shmotina Yu. V. Text. 2014.
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Introduction

This paper is devoted to analysis of the eco-
nomic growth model based on methods of the 
optimal control theory with a view to construct 
the optimal investment strategies. The consid-
ered model in its design combines classical con-
structions of the economic growth theory [1], 
and advanced methods of analysis of the opti-
mal control theory [2], in particular, generali-
zations of Pontryagin’s maximum principle for 
problems with infinite planning horizon [3-11]. 
is Investments in fixed assets serve as control pa-
rameter and provide the output growth through 
the production function. In the balance equation 
the output is redistributed between consumption 
and investment, and this provides the model clos-
edness in terms of control investment parameters. 
In this statement, the maximized characteristics is 
consumption, as in all classical models of financial 
investments [12], for example, in the Fisher sta-
tionary model and the Sharpe capital asset pricing 
model (CAPM) [13-14].

Application of the Pontryagin maximum prin-
ciple in the model of economic growth gener-
ates the Hamiltonian system of differential equa-
tions, whose stationary points can be used to de-
scribe the equilibrium trajectories of an economy, 
and whose trajectories — to build prognostic esti-
mates of economic development. It is important to 
emphasize that the main element of the solution 
is the optimal programming control which can be 
interpreted as an optimal investment plan. We de-
velop high accuracy algorithms for constructing 
optimal investment plans as trajectories of the 
Hamiltonian systems.

The paper is organized as follows. The pattern 
of the economic growth model is given the opti-
mal control problem is posed for investments in 
fixed assets. Qualitative analysis of solutions is 
provided within Pontryagin’s maximum prin-
ciple, stationary points are constructed for the 
Hamiltonian system generating economy equi-
libria and stationary optimal investment plans. 
In conclusion, the model parameters are set to 
the real data in the framework of the econometric 

analysis of the production function, which com-
plements the study of the properties of the model 
Hamiltonian systems. A comparative analysis of 
the prognostic model trajectories and real time 
series is fulfilled on the basis of the Russian mac-
roeconomic data. Basic trends of model trajecto-
ries are identified and the key differences between 
these trends are indicated against the growth tra-
jectories trends of developed economies.

Model of economic growth and the problem 
of optimal investment control

The basis of the model in the production block 
is presented by the production function, which is 
considered in the dynamic process of economic 
development. The main variables of the model are 
levels of capital K(t) and labor L(t) at time t, and the 
production output Y(t), which is given by the expo-
nential production function of the Cobb-Douglas 
type [12]: ( ) ( )( ) ( ) ( )1,( .)  F K t L t aK t L tY t α -α= =  
Here a positive parameter a corresponds to the 
output which is provided by production fac-
tors unaccounted in the model — Total Factor 
Productivity (TFP), and a nonnegative parameter 
a (0 < a < 1) is the elasticity coefficient.

Using the property of the positive homogene-
ity of the first order1 for the production function, 
one can make transition to relative variables: cap-
ital ( ) ( ) ( )/k t K t L t=  and GDP ( ) ( ) ( )/y t Y t L t=  
per one worker (per capita)

( ) ( )
( )

( ) ( )( )
( )

( )
( ) ( )( ) ( )α

= = =

 
= = =  

 

, 

,1  ,

F K t L tY t
y t

L t L t

K t
F f k t ak t

L t
            (1)

where the function ( ) ( )( )y t f k t=  defines the la-
bor productivity as a function of the capital-labor 
ratio.

Let us denote by symbols C(t) and I(t) consump-
tion and investments in fixed assets at time t, re-
spectively. Under assumption of the closedness of 

1 The property of the positive homogeneity of the first order is 
defined as follows ( ) ( )∀ν > ν ν = ν 0 , , .F K L F K L

sumption. We study the qualitative properties of optimal trajectories as solutions of the Hamiltonian systems 
arising in Pontryagin’s maximum principle. The sensitivity analysis of the equilibrium solutions of the eco-
nomic system is implemented with respect to the elasticity coefficients of the production function, the depre-
ciation rate of the capital, and the discount factor, and growth trends are indicated. The econometric analy-
sis of the model parameters is provided basing on real data for the Russian economy. In accordance with the 
results of the regression analysis, the projection of economic development is constructed in conditions of the 
applicability of the economic growth model.

Keywords: dynamic models of economic growth, optimal control, Pontryagin’s maximum principle, economic 
equilibrium.



267А. М. Tarasyev, А. А. Usova, Yu. V. Shmotina

ЭКОНОМИКА РЕГИОНА № 3 (2014)

an economic system, one should require the bal-
ance relation in each time period

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )( )1 ,

Y t C t I t C t u t Y t

C t
c t y t u t

L t

= + = + ⇒

⇒ = = -

where the function u(t) corresponds to the share of 
GDP invested in fixed assets, i.e. ( ) ( ) ( ).I t u t Y t=  
The relative value of c(t) is the level of consump-
tion per one worker. One can derive restrictions on 
the investment levels from the balance equation, 

( ) ( ) ( )( ) ( )
( )

0 1 ,

0 1.

c t y t u t y t

u t u

≤ = - <

≤ ≤ <              (2)

This version of the model assumes that the 
growth of the capital stock K(t) is subject to the 
dynamics introduced by Solow [1]

( ) ( ) ( ) ( ) ( )
( )
( ) ( )

 0

0

  ,  0 ,

,

 

  ,    0

K t u t Y t K t K K

L t
n L L

L t

= -µ =

= =





where a positive coefficient µ is the depreciation 
rate of capital, and a constant value of n stands for 
the growth rate of the labor force L(t).

Passing to the relative values in the last rela-
tions, we obtain the following dynamics for k(t) 

( ) ( ) ( )( ) ( ) ( ) 0
0

0

  ,   0
K

k t u t f k t k t k k
L

= -δ = =    (3)

where the parameter nδ = µ +  is the degree of cap-
ital dilution due to its depreciation and increase in 
the labor force.

Let us consider the problem of optimal control 
of investment in which the objective functional 
is given by the integral of the logarithmic index 
of consumption, discounted on the infinite time 
interval:

( ) ( )

( )( ) ( )( )( )

+∞
-ρ

+∞
-ρ

⋅ = =

= + -

∫

∫

0

0

ln

  ln  ln 1 ,

t

t

J e c t dt

e f k t u t dt           (4)

where ρ is the discount factor. 
Let us note that in the utility theory, the log-

arithmic function describes the relative increase 
(in our case — the relative consumption) per unit 
of time. Under conditions of uncertainty the log-
arithmic function specifies the constant relative 
risk aversion.

Problem. It is necessary to construct such an 
investment strategy (k(t), u(t)) that satisfies the 
constraints (2) and maximizes the objective func-

tional (4) on trajectories of the dynamical system 
(3).

Analysis of the optimal control problem 
within the framework of Pontryagin’s 

maximum principle

The posed problem of optimal control is sub-
ject to a modification of Pontryagin’s maximum 
principle for the infinite time period [3-11].

Let us construct the stationary Hamiltonian 
function of the control problem which due to the 
dynamics (3) and the objective functional of the 
control process (4) has the following form with the 
conjugate variable ψ

( ) ( ) ( ) ( )( ),  ,   ln  ln 1   .H k u f k u uf k kψ = + - +ψ -δ  (5)

Let us calculate the control u0, delivering max-
imum to the Hamiltonian H (5)

( ) ( )

( )
( )

( ) ( )

( )

∂ ψ
= - +ψ ⇒

∂ -

 < ψ ≤


⇒ ψ = - ≤ ψ ≤
-ψ


 ψ ≥

-

0

,  ,  1 
1

0,                     0 1,
1 1,  1 , 1  ,

1

1,                       .
1

H k u
f k

u u

f k

u k f k
uf k

u f k
u

 (6)

The maximum control ( )0 , u k ψ  (6) divides the 
domain of variables ( ), k ψ  into three domains 
with the different structure of the Hamiltonian 
dynamics defined by relations

( ) ( ) ( ) ( ) ( )( )( )

( ) ( )( ) ( )( ) ( )

∂ ψ ψ
= =

∂ψ

= ψ -δ

0

0

,  ,  , 

  ,    ,

H k t t u k t tdk t
dt

u k t t f k t k t      (7)

( ) ( )
( ) ( ) ( ) ( )( )( )

( ) ( )
( ) ( ) ( ) ( )( ) ( )( )( )

∂ ψ ψψ
= ρψ - =

∂

= ρψ - -ψ ψ -δ

0

'
0 '

,  ,  , 

,  .

H k t t u k t td t
t

dt k
f k

t t u k t t f k t
f k

Let us consider the Hamiltonian system (7) for 
three different control modes.

Zero control mode

The domain of the zero control mode 
( )0 ,  0u k ψ =  is determined by the relations 

( )0 1f k< ψ ≤ . The Hamiltonian system with this 
control can be written as

( ) ( )
( ) ( ) ( ) ( )

( )

= -δ

ψ
= ρ+ δ ψ -

'

  ,

.

dk t
k t

dt
d t f k

t
dt f k
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Passing to the normalized dynamics, we obtain 
the system of differential equations in variables 
( ), k z  where z k= ψ

( ) ( )
( ) ( ) ( )

( ) ( )

= -δ

= ρ - = ρ -α

  ,

'
.

dk t
k t

dt
dz t f k

z t k z t
dt f k

         (8)

As one can see from the structure of the sys-
tem (8), its solution declines exponentially to zero 
at the rate of depreciation of fixed assets δ with re-
spect to the phase component of capital k(t). Thus, 
the lack of the investment component leads to re-
duction of the capital stock up to the zero level.

Transient control mode

The transient control mode is characterized by 
a non-zero share of output invested in fixed assets 
that is calculated by the formula 

( ) ( ) ( )
0 1,  1 1 ,  k

u k z k
f k f k z

ψ = - = - = ψ
ψ

and meets restrictions: 
( )

≤ ≤
-
11 .

1
f k z

k u
The Hamiltonian system in the variable control 

mode has the following structure

( ) ( )( )
( ) ( ) ( )

( ) ( )( ) ( )( )
( ) ( )

( )
( )( )
( ) ( )

 
 = - -δ
 
 

 
 = ρ- + - =
 
 
 
 = ρ+ -α -
 
 

'

1   ,

1

1 1.

f k tdk t
k t

dt k t z t

f k tdz t
f k t z t

dt k t

f k t
z t

k t
    (9)

Saturated control mode

The saturated control mode is presented by the 
highest possible level of investments in fixed as-
sets ( )0 , u k uψ = , and is constrained by the limi-
tations ( ) 1 / (1   )f k uψ ≥ - . Under these conditions, 
the Hamiltonian system (7) in the variable (k, z) 
has the following form

( ) ( )( )
( ) ( )

( ) ( )( ) ( )( )
( ) ( )

( )( ) ( )
( )( ) ( )

( )( )
( ) ( )

 
 = -δ
 
 

 
 = ρ- + -
 
 

 
 - = ρ+ -α -α
 
 

  ,

'

'
1 .

f k tdk t
u k t

dt k t

f k tdz t
uf k t u z t

dt k t

f k t k t f k t
u z t

k tf k t
 (10)

In the last formulas, we use the following prop-
erties of the Cobb-Douglas production function of 
the exponential type:

( ) ( ) ( )
( )

α
α-= α = α = α ⇒ = α

'
1'        .

f k f k kak
f k a k

k k f k

Equilibrium of economy in the maximum 
principle

Stationary levels of the Hamiltonian system 
(7) determine the equilibrium positions of the 
economic system. In order to find these levels we 
equate the right sides of the Hamiltonian systems 
(8)–(10) to zero and solve the system of non-lin-
ear algebraic equations in variables (k, z) under 
conditions 0,   0,   0k z> > ψ > .

Evidently, the Hamiltonian system (8) for the 
zero control regimes does not have stationary lev-
els satisfying the constraints 0,   0k z> > . However, 
in domains of the transient and saturated control 
regimes steady states exist and their coordinates 
are determined analytically through the model 
parameters.

Proposition. The equilibrium points in the do-
main of the transient control and the domain of 
the saturated control are given by the formulas

( ) ( )

( )

-α

-α

α


 α αδ = <  δ +ρ δ +ρ = 
 
 =  δ 

α
= =
ρ+ -α δ

= -

 

   

1
1

*

*
1

1
*

* * *

* * *

  ,

, ,

,   ,

,

 
1

1 .

a
u u

k
ua

u u

z y a k

c y u

Proof. 1) Let us calculate the coordinates of 
the equilibrium point in the transient control re-
gime. It is necessary to equate the right sides of 
the Hamiltonian system (9) to zero

( ) ( )

( ) ( )

( )

( )
( )

-α

- -δ = ⇒ = δ+

 
ρ+ -α - = ⇒  
 

  ⇒ ρ+ -α δ+ =  
  

α ρ+ δ
= ⇒ = ⇒

αρ+ -α δ

 α
⇒ =  δ +ρ 

*

* *

*
*

*

1
1

*

1 1  0 ,

1 1 0

11 1,

1

.

f kf k
k z k z

f k
z

k

z
z

f k
z

k

a
k
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Let us calculate the control value correspond-
ing to the equilibrium level

( )
( )( )

( )
*

*
* *

1
1 1 1k

u
f k z

α ρ+ -α δ αδ
= - = - = <

δ +ρρ+ δ α
.

The equilibrium point is located in the domain 
of the transient control if *u u< . Therefore, if the 
model parameters meet the constraints

u
αδ

<
δ +ρ

,

the equilibrium point * * *( , , )k z u  is attained in the 
domain of the transient control.

2)	Let us calculate the coordinates of the equi-
librium point in the domain of the saturated con-
trol when ( )u t u= . In order to do this, one should 
resolve the system of nonlinear algebraic equa-
tions determined by the right hand sides of the 
Hamiltonian dynamics (10)

( ) ( )

( ) ( )

( )( )

( )

-αδ  -δ = ⇒ = ⇒ =  δ 
 
ρ + -α -α = ⇒  
 

⇒ ρ+ -α δ = α⇒

α
⇒ =

ρ+ -α δ

1*
1

*
*

*

*

  0  

1 0

1

.

,

1

f kf k au
u k

k uk

f k
u z

k

z

z

The equilibrium control coincides with the 
maximum possible investment level into capital, 
i.e. *u u= .

The equilibrium level of the output is calcu-
lated by the formula (1)

( ) ( )* * *y f k a k
α

= = .

The equilibrium level of consumption, ex-
pressed through the balance equation, is given by 
the following relation

( )* * *1c u y= - .

Proposition is proved.
Analytical expressions for the values of in-

vestment u*, capital k*, output volume y* and con-
sumption c* allow to analyze the sensitivity of 
the stationary equilibrium state in terms of the 
elasticity coefficients for the model parameters 
α, δ, ρ. Signs of elasticity coefficient indicate of 
the growth and decrease trends. Their absolute 
values indicate the change rates in percentage 
terms.

Calculation of the logarithmic values of deriv-
atives of investments k* at the equilibrium point 
provides the following values for the elasticity co-
efficients with respect to the model parameters

α δ

ρ

α ∂ δ ∂ ρ
e = = e = = <

∂α ∂δ δ +ρ
ρ ∂ ρ

e = = - <
∂ρ δ +ρ

* *

, ,* *

*

, *

1,   1,

0.

u u

u

u u
u u

u
u

Coefficients of elasticity show that the equi-
librium investments in capital u* increases to-
gether with the growing elasticity α of the pro-
duction function and the growing capital depre-
ciation rate δ, and it decreases when the discount 
factor ρincreases.

Elasticity coefficients for the equilibrium out-
put of production y* with the respect to the model 
parameters have the following expressions

α

δ

ρ

α ∂ α α e = = + ∂α -α -α 
δ ∂ α δ

e = = - ⋅ <
∂δ -α δ+ρ

ρ ∂ α ρ
e = = - ⋅ <

∂ρ -α δ+ρ

*

, *

*

, *

*

, *

ln1 , 
1 1

  0,
1

0.
1

y

y

y

y
y

y
y

y
y

Negative signs of the elasticity of the equilib-
rium production level y* with respect to changes 
in the capital depreciation rate δ and the discount 
factor ρ indicate the decline trend. As for the sign 
of the elasticity of the equilibrium production 
level y* with respect to changes in the elasticity α 
of the production function, it is worth to note that 
small values of the elasticity a make it negative 
and large values of the elasticity of a make it pos-
itive. It means that here both decreasing and in-
creasing trends can be obtained.

If the equilibrium level of capital satisfies the 
constraint u* < u, then one can observe the decline 
trend over time of the optimal investments to the 
level of u*. Otherwise, the maximum level of in-
vestments is the best possible value on the en-
tire time interval until the time of stabilization of 
the dynamical system. In all development scenar-
ios the pattern of optimal solutions is configured 
in the expressed S-shape, which is ensured by the 
presence of the parameter constraints u on invest-
ments u(t). In addition, one can note that the op-
timal trajectories have a tendency to the satura-
tion growth.

An algorithm for constructing optimal model 
trajectories

Let us give a brief description of the algorithm 
for constructing the optimal trajectories as solu-
tions of the Hamiltonian systems (8)–(10). We 
should note the integration peculiarity of the 
Hamiltonian systems, which involves boundary 
conditions for the phase variable of capital k(t), 
given on the left side, and the boundary condi-
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tions for the adjoint variable z(t) are given on the 
right side of the time interval. In this connection, 
a two-step integration procedure is developed.

1.	The first step. The system is integrated by 
the Runge-Kutta method in the reverse time from 
the equilibrium point in the direction of the ei-
genvector of the Jacobian matrix corresponding 
to the negative eigenvalue. Integration is imple-
mented until the integrated trajectory reaches the 
initial point of the phase variable. 

2.	The second step. Integration is performed in 
the direct timeline from the initial point. During 
this process, the components of the optimal model 
trajectory are reconstructed including the optimal 
investment plan u0(t).

It is important to emphasize that the two-step 
integration process provides a highly accurate al-
gorithm for constructing optimal model trajec-
tory with the order higher than the time step of 
integration.

Econometric analysis of the parameters of the 
production function

It is worth to emphasize that construction of 
prognostic model trajectories and econometric 
analysis of the production function and other pa-
rameters of the model are complementary tasks, 
but they are carried out in separate blocks with 
different functions. The econometric analysis is 
based on the classical methods of econometrics 
[15-16] and is used to identify the model parame-
ters, in particular, the elasticity coefficients of the 
production function and setting the total factor 
productivity. The numerical algorithms, after sub-
stituting parameters identified in the econometric 
analysis, work offline producing optimal trajectory 
of endogenous growth. Another important issue is 
that the simulation procedure does not attempt to 
construct the trajectories of the best approxima-
tion of the real time series. It builds namely the 
optimal investment plan and the optimal trajec-
tory of economic growth. If the optimal model tra-
jectory is close to the real data of economic de-
velopment, then this fact indicates the optimal 
economic growth of the analyzed economic sys-
tem in the sense of the integral consumption in-
dex. In the case of deviations of the optimal model 
trajectory from the data in the “upper” or “lower” 
direction, it is reasonable to discuss a phenome-
non of underinvestment or overinvestment in the 
economic system. In this context, the model con-
structs the optimal investment plan that indi-
cates imbalances with the real data. Therefore, the 
model trajectories could be called optimal prog-
nostic trajectories to distinguish them from fore-
casts of econometric models.

The calibration procedure for the production 
function (1) is fulfilled on the basis of the statisti-
cal data [17-18] of the Russian economy in the pe-
riod from 1990 to 2011 using the paired-regres-
sion model

i iw x= α +β,

where 1,22 ln ,   ln ,   ln ,  i i i iw y x k a i= = β = = .
Estimates of the paired-regression model pa-

rameters are calculated by the least squares 
method:

( )
( )

α = = β = -α = ⇒
σ

⇒ =

 2

0,836

cov , ˆˆ   0,836, ˆ 0,249 

ˆ     1 .,283

w x
w x

x

y k
Curves on Figure 1 show the real data (in black) 

and the trajectory constructed using the regres-
sion model (in grey).

To assess the quality of the regression model 
the coefficient of determination 2 0,909R =  is cal-
culated whose value indicates a good “matching” 
with the real data. The results of testing the signif-
icance hypothesis of the regression model suggest 
that the fixed capital has a significant impact on 

Fig. 1. Comparison of real data and predictive values of GDP 
(black) on the simple regression model (grey)

Fig. 2. Share of GDP invested in fixed capital, u, %
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the level of country’s GDP, and this is confirmed by 
the following calculation:

1.	Evaluation of the error variance: 
2 21  0,03

2 is e
N

= =
- ∑ .

2.	Evaluation of the variance for the elasticity 
coefficient, ( )σ α2 ˆˆ :

( ) ( )
σ α = =

-∑

2
2 ˆ 0,0032.ˆ

i

s

x x

3.	The observed value of the Student’s statis-
tics for 2 20N - =  degrees of freedom:

( )
α

= =
σ α

ˆ 14,86.
ˆˆ

t

4.	The critical value at the level of the statisti-
cal reliability, 95%γ = :

( )1
2

2  2,086    k kt t N t t-γ= - = ⇒ > .

Prognostic model trajectories and comparison 
with econometric time series

Returning to the described model of economic 
growth, let us construct its solutions numerically 
[4-11], and compare these solutions with real data. 
To construct the prognostic trajectories we use re-
sults of the regression analysis for the production 
function, as well as data on the Russian economy 
for the period from 1990 till 2011 [17-18]. The es-
timated indices of economic development are cal-
culated at the levels:

= = = =* * * *5.97,     5.74,    0.443,    3.195,k y u c

taking into account the economic indicators [17-
18] given in the list.

1.	The level of depreciation of fixed assets ac-
cording to Rosstat [18] is estimated as 42% in av-
erage, thus, the parameter µ is equal to 0.42.

2.	The growth rate of the labor force n is esti-
mated at the level of 0.004 in the period from 1990 
to 2011.

3.	The discount factor ρ according to the data 
[18] of the Central Bank of the Russian Federation 
on the refinancing rate is fixed at the level of 0.08.

4.	The level of investments in fixed assets, ac-
cording to Rosstat [18] has a clearly expressed in-
creasing trend (see Figure 2). Therefore, to con-
struct the prognostic trajectory the maximum 
level of investments u is chosen at a sufficiently 
high level of 44.3%. However, even the investment 
limit of 44.3% does not meet the inequality 

αδ
= <

δ +ρ
0,703   .u

This fact indicates that the investment trajec-
tory does not decrease during the forecast period. 

And selection of a smaller value u for the maxi-
mum investment level leads to the economy with 
practically zero growth. 

The model shows that the optimal level of in-
vestments in the Russian economy in the current 
period is implemented on the upper level of con-
straints. Let us note that a series of experiments, 
with different restrictions on the maximum level 
of investments have been conducted and the out-
come remained the same: the optimal level of in-
vestments is realized at the upper limit. This 
means that investments in fixed assets in the econ-
omy are insufficient and require increase even for 
the upper threshold. For comparison, in modeling 
developed economies such as economies of the US 
[8-11], Japan [4-7], and the UK [4-5], one can ob-
serve a qualitatively different picture. Namely, the 
model investment plans have the tendency to de-
crease to the stationary equilibrium level u* < u, 
which indicates the situation of over-investment 
in fixed assets in these countries.

Fig. 3. Prognostic growth rates (black) of fixed capital per cap-
ita of working population in comparison with real data (grey)

Fig. 4. Prognostic growth rates (black) of GDP per capita of 
working population in comparison with real data (gray)
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On Figures 3 and 4 the prognostic model tra-
jectories of the Russian economic development 
with projections to 2050 are presented in compar-
ison with the real data. 

The presented plots clearly indicate that in 
the 90th years there is a rapid reduction in pro-
duction and investments in fixed assets, which is 
expressed in sharp drops of real statistical trends. 
At the same time, the prognostic model trajecto-
ries clearly demonstrate a growing trend, since the 
model is inherently focused on the search for such 
an investment strategy that leads the economy 
to the growth domain. The investments growth 
is positively reflected in the statistics of the dy-
namics, as one can see on the presented graphs. 
Namely, starting from 2000 clear growth trends 
are shaped for the main considered factors (ex-
cepting the recession of 2008), and by the end of 
the analyzed period the actual data almost reach 
the model trends. 

It should be noted that the comparative anal-
ysis of modeling results for the macroeconomic 
data on countries’ economies in different groups 
shows that the values of the identified model pa-
rameters in these groups are qualitatively differ-
ent by clusters. These differences affect, first of 
all, the dynamics of investment plans. In econo-
mies of developed countries, one can observe the 

decline trend in investments (in percentage) with 
higher initial levels to lower stationary equilib-
rium levels. For economies of developing countries 
there is a bifurcation and qualitatively different 
trends are observed when the value of the equilib-
rium investments is very high in comparison with 
the actual current levels. This leads to the situa-
tion when the model optimal investments should 
reach the highest possible limit values.

Conclusion

The paper deals with analysis of the model of 
economic growth within the framework of the op-
timal control theory. The problem of optimizing 
the investment levels is considered, the solutions 
are constructed within the Pontryagin maximum 
principle, and analysis of trends is fulfilled for the 
optimal model trajectories. Identification of pa-
rameters and analysis of significance of the re-
gression model are implemented for the produc-
tion function. Basing on algorithms for numerical 
construction of optimal prognostic trajectories, 
the model growth trends are identified; equilib-
rium points of major economic indicators are cal-
culated and compared with real statistical data of 
the Russian economy. Major differences are in-
dicated between the identified trends and the 
growth trajectories in developed economies.

The study is supported by the grant of the Russian Scientific Fund (project No. 14-18-00574 “Information and analytical “Anti-
crisis” system: diagnostics of regions, threat assessments, and scenario forecasting for the purpose of maintaining and strengthening of 
economic security and improve welfare of Russia”).
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IMPACTS OF THE FAIRLY PRICED REDD-BASED CO2 OFFSET OPTIONS 
ON THE ELECTRICITY PRODUCERS AND CONSUMERS1

This paper deals with the modeling of two sectors of a regional economy: electricity and forestry. We show 
that CO2 price will impact not only the profits of the CO2 emitting electricity producer (decrease), but also the 
electricity prices for the consumer (increase), and, hence, some financial instruments might be implemented 
today in order to be prepared for the uncertain CO2 prices in the future. We elaborate financial instrument 
based on the Reduced Emissions from Deforestation and Degradation (REDD+) mechanism. We model op-
timal behavior of forest owner and electricity producer under uncertainty and determine equilibrium fair 
prices of REDD-based-options.

Keywords: CO2, REDD+, Option Pricing, Optimization, Firm Behavior, Cost Minimizing, Uncertaint 

Introduction

This research is focused on developing finan-
cial instruments supporting activities within 
the framework of the Reducing Emissions from 
Deforestation and Forest Degradation Plus 
(REDD+) program. The basic idea of the program 
is that REDD+ would provide payments to juris-
dictions (countries, states, or provinces) that re-
duce forest emissions below agreed-upon bench-
mark levels2. In a recent review [1] authors discuss 
the potential of REDD+ and show that there are 
many research needs and opportunities for ana-

1 © Krasovskii A. A., Khabarov N. V., Obersteiner M. Text. 2014.
2 United Nations Framework Convention on Climate Change 
[UNFCCC] 2010, https://unfccc.int/.

lyzing REDD+ policy designs at the global, na-
tional, and subnational levels including examin-
ing land use planning and other applications for 
ongoing REDD+ policy processes. The economic 
modeling tools provided in the literature reflect 
various REDD+ applications, and model the im-
pacts of REDD+ at various scales and dimensions 
for scenarios of future CO2 prices. The fixed market 
models are site-specific and mostly estimate the 
benefits of REDD+ for forests [2]. The partial equi-
librium models are sector specific (forest, agricul-
ture) and focus on particular regions, e.g. [3], in 
long-term perspective 50–100 years. The general 
equilibrium models are economy-wide and near-
er-term (e. g., 20 years) [4]. There are also inte-
grated assessment models which link global econ-
omy and biophysical systems at a very long-run 




