THE PROPAGATION OF ERRORS AND
UNCERTAINTY IN FORECASTING WATER
QUALITY

-- PART I: METHOD

M. B. Beck, E. Halfon, and G. van Straten

September 1979
WP-79-100



M, B. BECK is a research scientist at the International Institute

for Applied Systems Analysis, Schloss Laxenburg, 2361 Laxenburdg,
Austria.

E. HALFON is a research scientist at the Canada Centre for Inland
Waters, Burlington, Ontario, Canada.

G. van STRATEN is a research scientist at the International
Institute for Aoplied Systems Analysis, Schloss Laxenburg,
2361 Laxenburg, Austria.

ii



PREFACE

In recent years there has been a considerable interest in
the development of nodels for river and lake ecological systems.
Much of this interest has been directed towards the develon-
ment of procressively larger and more complex simulation
models. In contrast, relatively little attention has been
devoted to the problems of uncertainty and errors in the
field data, of inadequate numbers of field data, of uncer-
tainty in the relationshivs between the important system
variables, and of uncertaintv in the model parameter estimates.
ITASA's PResources and Environment Area's Task on "Models for
Environmental Quality Control and Management" addresses
nroblems such as these.

This paper examines how the uncertainties of the model
calibration exercise -- essentially uncertainties associated
with the estinated model parameter values -- will affect the
confidence that can be placed in any predictions of future
behaviour obtained from the model. Earlier pavers (I’P-79-27
and 'JP-79-63) have examined similar topics with different
aoproaches. The purvose of this paner is to present a method
of analysis suitable for use with relatively large, comnlex
rmodels, an area in which it is pmarticularlv difficult to make
any rigorous and systematic studies of the effects of uncer-
taintyv and errors. For the time bein¢, therefore, our concern
is with model development and with methods of analvsis; in
the future we intend to consider the implications that these
analyses have for the proklems of environmental management.
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SUMMARY

A method is proposed for recursive computation of the
propacation of forecasting error covariances where the fore-
cast is derived from a nonlinear state smace rodel of water
quality dynamics. This particular method, based on the idea
of an extended Kalman filtering algorithm, is more cormonly
applied to the nroblem of real-time state and parameter esti-
mation and to the probklem of model calibration. This paner
exploits that connection in order to stress the close relation-
ship between model calibration and the use of models for
forecasting the future behaviour of a system. It is argued
that the analyst is frecuently unaware of the levels of uncer-
tainty in a calibrated water cuality model; nor is it obvious
"how this uncertainty is distributed among the individual
relationships that make up the model. Such uncertainty in
the model, i.e., the rodel parameter estimation errors,
has a siconificant effect on the confidence that can be
assigned to model-based forecasts. A partitioned form of the
alcorithm is presented. This not only nermits a considerable
saving in computational effort but it also provides useful
insight into the wav in which the various sources of uncer-
tainty propacate forward in time with the forecast.






THE PROPAGATION CF ERRORS AND UNCERTAINTY
IN FORECAETING VWATER QUALITY - PART I: METHOD

1. Introducticn

When forecasting the future behavior of water quality in
a lake or river, the customary practice is to use a determinis-
tic simulation; a sirulation, in fact, that orovides an appar-
ently unique trajectecry for future variations in the state of
the system. In spite of all the adqualifications that may be
openly attached to such a forecast, the forecast is by its
very appearance deceptive: a single line drawn across the page
is unavoidably a confident statement. In this paper we guestion
the confidence that can be placed in predictions about the
future long-term behavior of lake water cuality. Indeed,
rather than being interested in the prédiction or forecast
itself, we shall be more concerned with the propagation of
forecasting errors.

Other than as a concise representation of existing know-
ledae about a system's behavior, mathematical models are in-
tended for forecasting. Freguently this application to fore-
casting will be emrbedded in the solution of a management pro-
blem. If decisions are to be made on the basis of the model's
forecast, how certain can one be that this forecast is correct,
and what is the risk of makinrg a wrong decision? We would
argue that it is not possible to answer such guestions without
stepping back from the subject of model application and
examining the prior stage of model development. Model develop-
ment ideally includes the process of model calibration, in

which the model is evaluated bv reference to experimental



observations of historical patterns of the lake's behavior

(henceforth, the use of dynamic models and time-series field

data is assumed). Since all field data are subject to
measurement error (noise) & primary objective of mcdel calibra-
tion -- or system identification -~ is to discriminate against
this kind of uncertainty, and thus to discern the underlying
deterministic phenomena governing system behavior. Calibration
is not exactly a matter of "filtering.out" the uncerteinty

from the field data, although this may be a useful way of
visualizing system identification for the foliowing discussicn.
The important point is that the model, even when calibrated,

remains an uncertain approximation of reality. Consequently,

when the calibrated model is applied to the forecasting problem
such uncertainty ought somehow to be visible in the plotted
future trajectories of lake water quality.

In this paper we present an algorithm for computing the
propagation of uncertainty and errors in water quality model
forecasts. Part I of the parer cdescribes the method and its
origins. Part II of the paper will illustrate the capakilities
of the algorithm using both simple examples and also a more
complex model of water quality variations in Lake Oﬁtario
(see also Di Toro and van Straten, 1979). Further results of
the application of the algorithm with an alternative model
of Lake Ontario are given in Halfon and Beck (1979). There
are two main reasons for using the proposed algorithm, the
extended Kalman filter (e.g., Jazwinski, 1970). First, the
extended Kalman filter (EKF) is more usually associated with
the problem of system identification, as in Beck and Younc

(1976) and Beck (1979%a). Hence we shall be able to emphasize



the crucial and intimate connection between model calibration
and model-based prediction. Second, a principal target of
this analysis is an ability for relatively rapid evaluation

of the errors of predictions fror large complex models, with-
out excessive computational requirements. 1le suggest that the

EKF is capable of fulfilling that role.

2. Calibration and Prediction - Insevarable Problems.

2.1 Deterministic and Uncertain Predictions.

The prcblem we wish to address is the computation of a
(lono-term) forecasting error covariance ratrix. This can be
stated as follows. Suppose the model of lake water guality
behavior is defined by a set of nonlinear ordinary differential

eguations, i.e., in vector notation,

x(t) = £{x(t),u(t),a(t)} + £(t) , (1)

together with an accompanying set of nonlinearly related

cutput observations,
y(t) = hix(eg )} + n(t) . (2)

In equations (1) and (2) u, x, and y are respectively vectors
representing the measured input (forcing) disturbances, the
state variables, and the measured output (response) variables;

£ and n are respectively vectors of random unmeasured input
disturbances, i.e., system noise, and random output measurement
errors, i.e., measurement noise; f and h are nonlinear vector
functions; o is a vector of model parameters, which may pos-
sibly be time-varying; and t is the independent variable of

time, where t, is the kth discrete sampling instant. The dot

k
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notation in (1) denotes differentiation with respect to t, and
tne discrete-time formulation of (2) indicates the assumption
that sampled measurements of water quality are available.

It is necessary to distinguish between a deterministic

prediction and an uncertain prediction. A deterministic

prediction of lake water quality behavior at a future time

(t. + 7) may be defined from equation (1) as:

0

(ty + 1) = £{R(ty + ) ,0(t  + T)'E(t_o + 1)} (3)

0

given the initial conditions at the (current) time t i.e.,

o’
Z(to), and assuming that G(t) and a(t) are knovn functions of
time for to <t < tO + 1. It is further assumed that there are
no unknown disturbances of the system behavior between times
to and tO + T since a comparison of ecuation (3) with equation
(1) shows that §(t) = 0 has been substituted in equation (3).
Let us now dismantle these assumptions one by one. First,
we are not certain about the present state (E(to)) of water
quality in the lake. Neither can it be assumed that there are
no unknown disturbances (§(t)) of the lake's behavior in the
future, and clearly one cannot have knowledge of a dompletely
determined pattern of future measured input disturbances (u(t)),
such as incident solar radiation and nutrient loadiﬁgs. But
most significantly for our argument here, it is highly unlikely
that one can be completely confident about the accuracy of
the model and hence, by implication, about the accuracy of
the parameter values (a(t)). 1In view of these sources of

error and uncertainty, let us thus state the desired form of

an uncertain prediction, i.e.,




Rttty = g{g(tonito) ,g(to+rito) eyl } + E(E+D) (4a)
Ps(to+~r|to) = E{(x(tg+1) = R(tgtt|ty)) (x(tg+T) - g(to+r|to))T} (Ub)

where E{+} is the expectation operator and superscript T denotes
the transpose of a vector or matrix. According to equation (4a)

we shall refer to f{_(tO + T|t0) as a best estimate of the

future state of water quality, given all measured information

from the past and up to the current time t The matrix

0"
Ps(tO + Tlto) therefore represents the variance-covariance

matrix of the errors of prediction between the future state

x(ty + 1) and this best estimate gkto + t|ty) of that future
state. P° and & jointly characterize the uncertain prediction.
For the case where Gaussian distributions are assumed for
the random processes { and n -- the system and measurement
noises respectively -- & and P° are likewise the mean and
variance of a Gaussian probability distribution for the future
state of the lake. The uncertain prediction thus seeks to
specify the time-evolution of a probability distribution;
Figure 1 shows a simple scalar interpretation of such a predic-
tion. The notable assumptions required for an uncertain predic-
tion are that:
(i) We have available average estimated trajectories
(patterns) for future variations in the inputs, para-
meters, and noisy disturbances of the system, that

is G(t),4(t), and £(t), respectively, where t, < t

(0]
< t., + T
(ii) A mean value can be specified for the current state

of the lake, i.e., g(to|to);



(iii) And, although not explicitly indicated in equation
(4), it will be recuired that variance-covariance
matrices can be specified for the expected uncer-
tainty (i.e., errors, or confidence bounds) in the
estimates of u, a, §, and ﬁ(to)' |

In the following it will be apparent that the deterministic
prediction can usefully be viewed as a scenario forecast,
whereas the uncertain prediction more closely resembles an

a posteriori sensitivity analysis of such a scenario forecast.
Here "a posteriori" is used in the sense of "after havinc cali-
brated the model against experimental field data," (a priori
sensitivity analysis would be a sensitivity analvsis carried
out without calibration of the model).

There is nothing radically novel about our definition of
an uncertain oprediction, though it is not a common feature of
studies in ecolocical modeling. An earlier examination of the
sare kind of problem is reported by Mankin et al. (1976). They
use a Monte Carlo simulation method to analyze the responses
of a restricted class of linear dynamic models that are subject
to uncertainty in the estimated values for the model parameters.
This work has since been extended to cover a nuch more compre-
hensive investication (O'Neill and Gardner, 1979) of sources
of uncertainty in ecological nodels, for example, the uncer-
tainty arisinc from model structure inadequacy, parameter errors,
and natural variability of ponulation attributes (e.c., genetic
variability) and meteorological conditions. For models of
lirited size and complexity theoretical analysis can yield
closed-form solutions for the effects of natural variability

on model predictions (0O'Neill, 1978). In general, however,



it is extremely difficult to obtain exact analytical solutions
for an uncertain prediction. The customary numerical solution
is to generate a sample of random realizations of future
behaviér using Monte Carlo simulation (for example, Whitehead,
1979, Tiwari et al., 1978), although somewhat more sophisticated
simulation algorithms are available (Harris, 1977). From the
sample distributions generated by the simulations the means
and covariances of equations (#a) and (4b) may thus be calcu-
lated.

In a recent and closely parallel studv Di Toro and
van Straten (1979) have analyvzed the vrediction errors resulting
from parameter uncertainty in a phytoplankton model for Lake
Ontario. Their method of computing the orediction error
variances, which derives from linear regression analysis,
shows a clear link with the notion of sensitivity analysis.
Essentially, the prediction error variance is a function of
sensitivity coefficients -- in our terms the sensitivity of
the nominal predicted state trajectory to chances in the para-
meter values -- and the covariance of estimation errors for
pairwise combinations of the parameters. Since we also treat
the case of Lake Ontario, althouch with a different model in
the companion paper by Halfon and Beck (1979), we shall have
more to say about the results of Di Toro and van Straten in

Part II of the paper.

2.2. State and Parameter Estimation

The key feature of the method we shall propose for an un-

certain predictor is its intimate connection with the problem




of rnodel calibration, i.e., with system identification and
parameter estimation. Let us now, therefore, digress fronm
the subject of prediction in order to consider the essential
purposes and properties of calibration procedures.

The main concern of model calibration and verification

Py

is one of obtaining estimates & for the model parareter

A

values, and of comparing estinates § of the model outputs

with the actually observed historical patterns of behavior y.

-

Formally, the problem can be defined as:

Given - a set of experimental field data comprising
time-series of the measured inputs u(t) and measured
outputs y(t);
Determine - values for the parameters o and the states
x of the model chosen to characterize the system's
behavior.
If we recail the form of equaticns (1) and (2), it is clear
that computation of both state estimates X and parameter
estimates & is required. This is because (usually) calibration
seeks the minimization of the errors between observed and com-

puted outputs, i.e.,

e(ty) = z(tk) - 2(tk) = X(tk) - g{g(tk)} ' (5)
where g(tk) may be computed from u(t) -- given &(t) -- by solving
2ty = £{&(0),u(t),8()} . (6)

It is helpful to visualize the procedure of calibration as a

process of restructuring measured information: information

about the "external" description of the system, u and y, is
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translated into information about the model-related "internal"
description of the system, & and 2. We may note in passing
that there is no unique choice of variables and coefficients
to be included in the state and parameter wvectors of the model.
On the other hand, the historical field data imply that the
external description of the system's behavior is the fixed,
immutable basis for calibration.

Assuming that the structure of the model, i.e., the form

of the functional relationships £ and h in equations (5) and (%),

is known or has been identified -- this may in fact be quite

a strong assumption (Beck, 1979a) -- the calibration procedure
is intended to improve the accuracy of the parameter estimates.
At the beginning of the procedure the accuracy of the a priori
parameter estimates may range between the accuracies of guesses,
of wvalues quoted in the literature, of values determined from
laboratory chemostat experiments, and of values estimated from
previous in situ field experiments. Though it is rarely
acknowledged, it is desirable, and it ought to be possible,

to specify confidence bounds for these a priori estimates.

A simple measure of this kind would be the variance-covariance

matrix of a priori estimation errors for the parameters, i.e.,
P _ A N A T, -
P¥(0]0) = E{(a(0) - &(0]0))(a(0) = &(0|0O))" "} , (7)

in which g(O) is the vector of "true" parameter values at time

t

0, the beginning of the experiment, and superscript p denotes
a matrix associated with the parameters. The calibration pro-
cedure would thus, in principle, use the observed input/output

information not only to provide improved estimates & of the
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parameters, but alsc to reduce the levels of uncertainty in the

a priori estimates. In other words, for the ideal case where
the experiment continues until the current time tO (the beginning

of the forecasting period), we could expect that
pP. (t.|t.) < p%.(0]0) (8)
ii*70' "o ii

where the subscript ii indicates the 1th diagonal element of
the matrix PP. Eéuation (8) states simply that the a posteriori
error variance for parameter oy p?i(tolto), is less than the
a priori parameter estimation error variance.
So the calibration procedure increases our confidence
in the accuracy of the model parameter estimates. But
can we accept such a statement without qualification? Suppose
there is a method that allows the changes in p?i to‘be followed

as the experimental data for the period 0 < t < t. are pro-

0
cessed sequentially by an estimation algorithm, as in Figure
2. There are two illustrative examples to be considered.
First, for the trajectory of p€1 in Figure 2 a significant

reduction in the uncertainty of the parameter estimate &1
is achieved, and the rate at which this uncertainty is reduced
is especially rapid during the period At. We might suggest
here that such an accelerated rate of decrease in error

variance is due to the existence of a substantial amount of

information in the data that refers to the system behavior

p

associated with parameter oy Second, the trajectory of P5,

displays a negligible decrease in the uncertainty of the
related parameter estimate, &2. Assuming the opposite of
the argument for the p€1 trajectory it might be concluded

that there is virtually no information in the data that con-
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firms the type of behavior simulated by a, and its associated

2
sector of the model.

If the examples of Figure 2 are now seen from the different
prospective of a Venn diagram, a useful generalization can
be made about the calibration problem. This same device has
been used elsewhere in order to sketch the features of the
model validation problem, Mankin, et al. (1977). Thus in
Figure 3 P represents the set of all possible behavior patterns
exhibited by the system; A denotes the somewhat more restricted
sample behavior observed in the historical field data; and
M characterizes the set of behavior patterns simulated by the
model. It is not difficult to imagine that actual (A) and
simulated (M) behavior do not correspond exactly so that there
is only a partial overlap between A and M. From the example
of Figure 2z let us say that parameter_a1 is associated with a

part of the behavior covered by the shaded area of Figure 3,

while a, is related to that part of M that does not intersect

2
with A. When the model is calibrated against the field data

one would expect the uncertainty of parameter estimates associ-
ated with the intersectionof A and M to decrease significantly.
But for parameters associated with the non-intersecting remainder

of M estimation error variances should not decrease because

there is no information in the historically observed data with

which to evaluate the existence of such behavior.

2.3 Uncertainty Transactions.

We see therefore that calibration serves the purpose of
reducing the uncertaintv in the model parameter estimates.

At the same time, any procedure used for this purpose must be
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capable of discriminating against the unwanted effects of error
and uncertainty in the field data (i.e., uncertainty associated
with £ and n in equations (1) and (2)). The reduction in the
uncertainty of the parameter estimates will also be approximately
inversely related to the number of historical field observaticns.
The varianées of the a posteriori parameter estimation errors
represent, therefore, a kind of "fingerprint" of the calibra-
tion proéess; they indicate, amona other things, the relative
decrees of uncertainty in the various sectors of the model rela-
tionships.

In order to discuss the notion of "uncertainty transactions"”
let us consider Figure 4. For this ficure, uncertainty trans-
actions are understood as the transactions of uncertainty
between the activities of model calibration and subsecuent
forecasting with the model. It is clear that the matrix of
a posteriori parameter estimation errors is the key factor
that connects calibration with prediction. vHow, then, might
one expect to see the influence of the a nosteriori narameter
estimation errors on the error bounds of forecasts about the
future? Again, a Venn diagram is a useful startinc point.

Figure 5 shows a possible situation in which, for example, the
future behavior of the system lies within the set of patterns
represented by F. The sets P, 2, and M have the same interpre-
tations as previously, although the definition of M may be
further qualified by stating that M represents simulated behavior
of both the past and the future. Let us consider, in particu-
lar, what happens when at initial time tO the model sinulates

behavior that is characteristic of the set 8 (MM A M F) and
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then at time tO + T it simulated behavior characteristic of
the set marked vy (M N F) in Figure 5. 1In other words, a
well calibrated sector of the model is initially dominant in
the simulated behavior, 1i.e., a pattern of behavior observed
in the past, although subseguently a poorly identified sector
of the model becomes dominant in the simulated behavior. With
a nonlinear model such a transition could be easily brought
about, for example, by a slightly modified combination of
commonplace input disturbances that force the state of the
model into a quite different region of the state smace. Figure
6 illustrates the associated, hypothetical trajectory of one
of the state variable forecasts, 8, and its error bounds, which
here are simply denoted by & t+ o, where ¢ is the standard
deviation of the forecasting error (compare with Figure 1).
Thus, as the state variable trajectory crosses the "boundary"
between "past" and "future" behavior patterns the error bounds
on the forecast expand rapidly. This occurs because the re-
sponse of the model is becoming very sensitive to relatively
uncertain parameter estimates and their respective sectors
of the model. Of course, it might also be that the future
forcing functions are also unlikely events, in which case the
sudden ioss of confidence in the model forecasts arises both.
from the uncertainty of these functions and from the parameter
estimation errors.

A second example of uncertainty transactions-—this time
transactions within the model -- due to the relative errors of
the parameter estimates can be demonstrated with a @réy-predator

model. Suppose that the behavior of the prey is well known,
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whereas the behavior of the predator is highly uncertain.

An uncertain quantity of predator preying upon an initially
certain quantity of prey leads to an increasingly uncertain
quantity of remaining prey. This sort of situation is reflected
in Figure 6.

To summarize, let us note that a most important feature,
from the forecaster's point of view, is that when forecast-
error bounds are computed it is possible to deduce where the
model is making predictions fcr which there is very little
historical empirical justification. Likewise, when calibrating
large models against (probably inadequate) field data it will
not be at all obvicus which sectors of the model are properly
calibrated, if the a posteriori parameter estimation errors

are not calculated.

3. The Algorithm.

We mentioned already in the introduction of the paper that
the extended Kalman filter (EKF) will be used to compute the
uncertain prediction defined by equation (4). The argument
supporting such an application of this algorithm requires first
a discussion of state estimation and then introduction of the
problem of combined state and parameter estimation. The
idea of the (linear) Kalman filter (Kalman, 1960, Kalman and
Bucy, 1961) originated in the field of control theory at
a time when stochastic process control was a topic of increasing
importance. Although its origins are in control theory, the
Kalman filter has come to enjoy considerable application in
non-technical fields, and particularly so in hydraulics, hydrology,

and water resources, Chiu (1978), Wood and Sz#ll&si-tlagy (1979).
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The linear filter was cdesicned to compute the state estimates
for a system whose behavior could be described by linear dynamic
eguations. The filter provides estimates g(tk\tk) where,
according to the notation introduced previously for eguation
(4), this denotes an estimate at time tk given all measured
input/output information, u and y up to and including that
available at time tk.

However, our general description of lake water quality
behavior, equations (1) and (2), is nonlinear and in principle
reguires a nonlinear filtering algorithm for computation of
the state estimates. The extended Kalman filter (see, for
example, Jazwinski, 1970, or Gelb, 1974) is a linear filter
that gives a first-order approximation to the non-linear filter
that would ideally be required. Our present interest lies
not so_much in the computation of state estimates for nonlinear
systems, but more in the problem of combined state and parameter

estimation.

3.1 Combined State and Parameter Estimation

A conceptual picture of the extended Kalman filter is
given in Figure 7. As stated in section 2.2, calibration is
a procedure whereby measured informetion (u,y) about the
external description of the system is restructured to provide
information (£,4) about the internal nature of the system's
behavior. Figure 7 bears out this statement. In this rather
simplified picture of the filter the block labeled "estimation

algorithms"” carries out two functions. In part it compares

the predicted model résponse with the observations y and
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uses this error for revising the state and parameter estimates,
which in turn are to be used for prediction at the next time
step. It also weichts the errors in this feedback correction
mechanism according to a suitably defined balance between the

respective levels of uncertainty in the model (i.e., the

parameter estimates), in the input disturbances, and in the
input measurements.
We shall not deal with the derivation of the linear or

the extended Kalman filter. The reader previously unacguainted

with these techniques will find suitable derivations in Gelb
{1974), Young (1974), and Beck (1979b). Briefly, the problem

of combined state and parameter estimation, in the context

of calibration, can be set up by reformulating the dynamic
system description of equations (1) and (2) as follows. Suppose

we begin by defining the vector x*,

x* A x ’
o

in which the state vector has been augmented with the parameter
vector; and then let us assume that the parameters either do

not vary with time, i.e.,
alt) =0 (9)
or else they vary in an unknown "random walk" fashion, i.e.,

a(t) = T(t) (10)

where E(t) is a vector of white noise disturbances (we shall
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define a white noise sequence below). The basic system descrip-

tion of equations (1) and (2) may now be rewritten as,

() = xe) | = [ £lx* ), u)}]| + [E(¢) (11a)
&) 0 T(t)
gt ) = h*{x* (g )} + nle) . (11b)

Or, more concisely,.

X*(t) = £*{x*(t),ult)} + £*(t) (12a)

y(r) = h*¥{x* (£ )} + n(ty) (12b)

k

in which f* and £ *(t) have the obvious definitions.
For this system, equations (12), the extended Kalman
filter for combined state and parameter estimation is given

by the following set of algorithms,

Prediction: between the sampling instants t, and t

k k+1’
R¥(t 1t ) = 2% (g [) + ftk+l £*{2*(t }a 13
Bhenih) = 2 &IG) + EF{R*(t]t) ult) Jat (13a)
T,
PX(t 1) = ol /5 P* (e (6 )07 g e b+ O (13b)

Correction: at time t when the most recent obser-

k+1

) become available,

vations X(tk+l

R 1) = R, 18) + By [Eig,)
- h*{R*(t, |80 1] (13c)

P*(tk+l'tk+l),= [I-K(tk+l)H(tk+l)] P*(tk+l'tk)

[ 1kt O )]T + Kb IRR (L, ) (13d)
AL 5] Gl B ey
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where K(tk+l), the Kalman gain matrix, is given by,

T
Kityy)) = PHit, [50H (Gy)

[H(t-k+l)p*(t-k+l|tk)HT(tk+l) P (13e)

In equations (13) I denotes the unit identity matrix. After
our summary statement of the EKF it is necessary to make some

additional definitions:

(i) The matrix ¢®f{t, ,,t,} is the state transition matrix

(see, for example, Dorf, 1965) and is defined thus,
ot o5} & P[RR (G |8) alg) g ,-t)) (14)
where the matrix F{g*(tk|tk)'3(tk)} has elements fij’

£, 8 |3 ) u®)

x*(t) = ®*(t, |t) (15)
ax* _
J u(t) = u(t)

and is derived in the procedure of linearizing the state vector
dynanics of ecuation (1l2a).

(11i) The matrix H(tk+l) derives from the linearization of

the observations, equations (12b), and has elements hij'

h A a'n*{v*( )}
i3 &y ‘—-*"1<+1 (i6)
3, 125 y) = &y 1)

(iii) The matrices Q* and R are defined under the assumptions
that &* and n are zero-mean, Gaussian, white-noise sequences,

i.e.,.

E{g*(t )} = Eln(g )i =0 ‘ (17)
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N T _
E{E* () E% (£4)) = 0%¢, (18)

T
E{n(t,)n (tj)} = Rékj (19)

with ij, the Kronecker delta function defined as,

§. . = \0 for

K # 3 (20)
k3 1 for k = j

and with E{-} being the expectation operator.
(iv) The matrix P* is the variance-covariance matrix of

state and parameter estimation errors, i.e.,

PH (k1) = E{(x* (£)-R*(t[ 1)) (¥ ()& (£|g, D),
(el

=|- P%(t] ) P
PP(t]t,)

h?cﬂﬂtkﬂT

(21)

PRSI S

in which P® is the state estimation error covariance matrix,
PP is the parameter estimation error covariance matrix, and
P€ is a matrix representing error covariances between states
and parameters (compare with equations (4b) and (7)).

(v) The initial conditions of the filter at time t = 0

-- the beginning of the experiment -- are specified as,
|
¢ (0]0) =[2(0]0)] ana *(0]0) =[2519191L___9___] (22)
““““ P
8(010) 0 1P¥(0]0)

assuming that there are no a priori correlations between the
state and parameter estimation errors. Finally, note that for
the use of algorithms (13) in a calibration procedure, time t
varies between the bounds 0 < t < tO’ i.e., the period of the

experiment.
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A detailed block diagram of the EKF algorithms, equations
(13), is shown in Figure 8. We may note first the parallel
functions of the estimate and error covariance computations.
Notice also how the.matrix H is dependent upon the one-step
ahead state-parameterpredictions,g*(tk+l|tk), and how ¢ depends
upon the corrected estimates g*(tk+l|tk+l). Figure 8 and equa-
tion (13) demonstrate the recurgizg nature of the EKF: for
each increment of time tk - tk+l one pass is made through the
two main feedback loops of the block diagrém. Not only does
this recursive nature of the algori;hm permit the estimation
of time-varying parameters, but it also implies that it would
in fact be possible to compute the changes in Pp(tkltk) over
the calibration period, as indicated earlier in Figure 2.
However, in view of the linearization approximation of the
EKF one should be cautious in interpreting Pp(tk|tk) from
equation (21) as the true parameter estimation error covariance

matrix.

3.2 The Uncertain Prediction Algorithm.

Had we thus calibrated the model we should ideally be at
the start, tyr of the current forecasting period. Since from
this time onwards no measurements are available, it is not pos-
sible to suppose that the filtering algorithms can be used in
exactly the same fashion as they have been used in the calibra-
tion procedure. Inspection of equation (13) shows that the
uncertain prediction of equation (4) might be obtained by
extrapolation of eguations (13a) and (13b) to some future time

i i Q% | *
say, i.e., by computing &*(t ty) and P (tj+l|t0)'

Ey41 J41

And since no future measurements are available, it is evident
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that the "correcting" part of the EKF algorithms, i.e.,
equations (13c), (13d), and (13e), becomes redundant. In
other words, the feedback loop of the filter (in Figure 7) is
"opened," and the filter is being used as if it were anticipat-
ing measurements to be available at some time in the future.
This is almost as though the act of prediction is an extension
of the act of calibration; we have deliberately used a form of
notation in the paper that emphasizes this point.

There are two very important features about such a use of
the filter. First, because the model parameters are included
in the augmented state-parameter vector, this enables us to
account for the effects of (a posteriori) parameter uncertainty
on the state variable predictions. Second, in view of the
likelihood of nonlinearities in the original state~vector
dynanics, equation (1), the inevitable nonlinearities of
combined state-parameter prediction appear as only a marginal
increase in the difficulties of solving the general nonlinear
filter/prediction problem. Indeed, if we were to suggest that
there is no conceptual distinction between "states" and
"parameters” -- that parameters are merely variables that behave
as if they were at steady state -- this may provide insight

into the reasons why the EKF is being used in the present context.

From Appendix 1 the uncertain predictor can now be stated

as follows (see also Figure 9):

~n

* (1 = {*
X \Lj+1|to) X (tj\to)

i+l *{$ i . < < 3
+ t.jft B {gx (tr,) ,A(0) }dt ; ty < t < tj+l (23a)
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* I = T
P (tj+l|to) ¢{tj+l,tj}P*(tj|to)¢ {tj t.}

+1' 75’
. )
. . }1S{t. (
+ F{tJ+l,tJ}S‘tJ)F {tj+l,tj} + Q* {23b)
The matrix S(tj) is defined as the covariance of errors in the

estinated future variations of the input (forcing) disturbances

(d), i.e.,
S(ty) 4 E{Q(t)a (£} (24)

with

=14
t

>

e
o+

\

[
o+

3 LARS ' (25)

Hence, g 1s the vector of errors between actual and estirated
input disturbances. The matrix I' in equation (23Db) is defined
in Appendix 1l; it derives from the linearized relationship
between states §*(tj+l) and inputs E(tj)°

Given the particular form of the state-parameter dynamics
of equation (lla), the predictor of equation (23) can be simpli-
fied by matrix partitioning to the following (see Appendix 2),
in which some of the functional arguments have been.omitted

for clarity,

E{&(t]t) A(0), At ;

(26a)
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PS

_ [ T
(ti41lte) = 0 P eyl 00,
c T
t o P (tylEg) 0,
c T.T
+ o, .[p (t5lt5)] 7074

P T
t o P (tyltg) 0,

+ 198 (e) [15] T + o° (26b)

where in equation (26b),

PC

(tyy 0t ¢11Pc(tjito) + ¢12Pp(tj|to) (26¢)

P
P¥(ty,, I tg)

Pp(tjlt ) (26d)

0

Equations (26) are equivalent to those of equations (23) by

virtue of the matrix indentities,

— I
TS R Rl e PR S RS LT A TS RAS L I
0 : I
I
IS TS ES L e TS TAC L B
0
ox = |2t o]
0 1 0
= s I 5C
Pl lte) = [PTltltg) 1 Pttt |
c i T P
(e (tj+l't0)] i P (tj+l|to)

. . ]
The dimensions of & (0] and '™ are n_ x n n_ x
117 “127 ] s’ s Ny

o

n, xm resnmectively, where Ng., np, and m are respectively the

and

dimensions of the state, parameter, and input vectors. Precise
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definitions of the matrices are given in Appendix 2. Further,
in equations (26) it is assumed that the parameters a are in-

variant with time so that f(t) = 0 for all t > t Hence, in

0"
the above identity for Q%*,

©O
e

T
E(£(t))E (£ (27)

In both equations (23) and (26) the matrices ¢ and T are

evaluated on the basis of the estimated trajectories %, 4, and

|

3.3 comments on the Algorithn

Let us examine the computational asmects of the algorithr,
ecuation (26); this will reveal a number of kev‘features about
the method. In order to run the algorithm the user must
specify:

{i}) the estimate of the current state of water cuality
in the lake or river, g(tolto), i.e., the initial conditions
of equation (26a);

(ii) the a posteriori parameter estimates derived from
the preceding calibration exercise, i.e., & = @(tolto)-in
equation (26a);

(iii) the estimated future trajectories of the input (forcing)
disturbances, (t), for t > to; |

(iv) the error variance-covariance matrix Ps(tolto) asso-
ciated with the estimates of the current state of water cuality,
i.e., the initial conditions of equation (26b);

(v) the error covariance matrix (Pc(tolto) of correlated

errors between the current state and parameter estimates; i.e.,
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the initial conditions of equation (26c);

(vi) the a posteriori parameter estimation error variance-
covariance matrix Pp(toito), which according to eauation (264)
does not change over future time (this depends on the assump-
tion of time-invariant parameters) ;

(vii) the covariance matrices S(tj) and Q° for both the
measured and unmeasured input disturbances respectively.

The component computational steps of the uncertain pre-
dictor are given in Appendix 3. A primary reason for parti-
tioning the matrix manipulations of equation (23b) which
leads to equations (26b), (26¢c), and (26d4), is the considerable
economy it affords in computational effort. For example,

when there are two state variables, two parameters, and two

inputs, equation (23b) requires 160 multiplication operations,
where as equations (26b) and (26c) require only 926 such operations.

In addition, the particularly burdensome operation of matrix

exponentiation can be much reduced by partitioning the transi-
tion matrix ¢ of ecquation (23b) -- seevAppendix 3. It is

also worth noting that the solution of equation (26a) can be
carried out independently of the remainder of the algorithm.

An especially useful advantage of the uncertain predictor
of equation (26) is its flexibility and the insight it pro-
vides in appreciating the notion of "uncertainty transactions."”
Flexibility is demonstrated by the ease with which different
prediction trajectories can be obtained for different nominal

estimates Q(t), Q(t0|to), and g(tolt ). In effect, these

0]
nominal estimates allow us to make different scenario fore-
casts, for instance, "dry" or "wet" years, "sunny" or "dull"

years, for each of which different assumptions about the co-
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. . ] P c
variance vroperties (P (tolto), P (tolto), P

(tO!tO)) can be
rapidly evaluated. Recall that with Monte Carlo simulation
any change in the means and variances of the assumed pro-
bability distributions entails, in principle, a complete re-
generation of the distributions for the state predictions.

Insight is provided by separating equation (26b) into additive

component parts, i.e.,

s _ s T
PPty ltg) = 9917 (eylEg) 0,y
{Uncertainty in {Uncertainty propagated from the
the state vari- current state of water quality}

able predictions} c T c T, T
e Pty ltg) ey, + 0 [Pty [Eg)] Tey)

{Uncertainty deriving from correlated
state-parameter errors}?

T

+ 12

P
1F (tj\to)é

{Uncertainty propagated from the a
posteriori parameter estimation errors}

S s, T

+ T 8(t)|T
]

{Uncertainty contributed by future
input disturbance estimation errors}
+ oS
{Uncertainty arising from other factors
e.g., residual errors of model calibra-

tion}

(28)

Since, by equation (28) it is possible to trace the source of
the uncertainty, it appears that an "envelope" of uncertainty
could be constructed within the total error (uncertainty) associ-

ated with the prediction. Figure 10 illustrates such a predic-
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tion. 'The interesting point here is the information that can
be inferred from the prediction when it is placed in the con-
text of a management problem. Useful questions to ask wight
then be: 1f the objective is to regulate the occurrence of a
peak event at a certain time, how sensitive is the prediction
of the peak event to uncertainty in the parameter estimates,
uncertainty in the current water guality state, and uncertainty
in the estimated future input disturbances. Problems such as

that, however, have yet to be explored.

Some numerical aspects of the proposed method should also
be considered. For example, when the original description of
the state vector dynamics, equation (7), is linear with con-
stant parameters, the matrix ¢ll of equation (26b) is time-
invariant. Hence, only a once-and-for-all computation of
this matrix exponential is required (see 2Appendix 3). 1In the
more general case, however, where Qll’ ®12’ and TS are all
time—varying, the accuracy of the matrix exponentiation routine
will be an important factor in determining the overall accuracy
of the algorithm (see also Halfon and Beck, 1979). To some
extent, since Qll is re-evaluated at each step in time, and
since it is assumed that Qll’ ®12, and T° can be aprproximated
as constant matrices over the interval tj > tj+l’ numerical

inaccuracies can be compensated by decreasing the maagnitude of

the time-step.

4. Concluding Remnarls

It must be admitted that the algorithm of ecuations
(26) has limitations of a technical and an analytical nature.

A key assumption of the extended Kalman filter is that the
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perturbations of the trﬁe state of the system about the
nominal reference trajectory used for linearization are small
(see Appendix 3 and Beck, 1979b). This implies for the uncer-
tain predictor that the errors of prediction should be small,
if the linearization procedure inherent in the covariance
eguations is to be a valid approximation. How then should one
interpret a large prediction error covariance? The answer

to that question is not very satisfactexrr: it seers that

one can only be reasonably assured that the prediction errors
are indeed large. A second key assumption of the algorithms
1s their use of Gaussian distributions for the system variables;
clearly, in many cases skewed distributions would be more
realistic.

Both of the above "proklems" will be apparent in the

examples chosen for illustration and discussion in Part II
of the paper. Nevertheless, we would assert that uncertain-
predictions derived using the extended Kalman filter are good,

first-order approximations. They can be obtained relatively

rapidly in computational terms; moreover, it is argued that
the algorithm can accomodate the analysis of relatively
large-scale models (Halfon and Beck, 1979); and thelpredic—
tions can easily account for cross-correlated parameter estima-

tion errors, a feature that is not always easy to treat with

other methods.



Appendix 1 - The Uncertain Prediction Algorithm

In this Appendix a brief derivation is provided for the
uncertain predictor, equation (23). This gerivation of the
predictor does not differ substantially from the derivation
of the EKF algorithms as used in the procedure of calibra-
tion. Further details of the derivation, therefore, are
available in Beck (1979b).

We start from the nonlinear representation of state-

parameter dynamics given in equation (12),
k*(t) = f£F{x*(t) ,ult)} + £*(t) . (Al.1)

Let us define a nominal reference trajectory for the future
input disturbances g(t), and hence define a nominal (determi-
nistic) reference trajectory, g*, for the augmented state-

parameter vector, i.e.,

X* (£)

>

£*{x*(t),u(t)} ;

with

I

x*¥(t) = x*(t,) for t = t5 . (Al.2)

o

The reference trajectory thereby defined does not necessarily
have to be identical with the deterministic prediction defined
by equation (3) in the text, although there are obvious simi-
larities between these two definitions. We thus have small
perturbations du and éx* about the reference trajectories g

and x* defined by,



su(t) & u(t) = u(t) (Al.3a)
§x* (t) A x*(t) - x*(t) (Al.3b)

If the nonlinear function £*{-} in equation (Al.l) is expanded
about the reference trajectories and approximated by a first-

order Taylor series, then
£x{x*(t),u(t)} = £x{x*(t),u(t)}
+ F{X*(t),u(t) }dx*(t)
+ G{x*(t),u(t)}su(t) , (Al.4)

where the matrix F has elements fij’ defined by (compare with

equation (15) in the text),

lie>

af¥{x* (t),u(t)}
Tt X* () = ®*(¢)
u(t) = u(t) , (A1.5)

f..
1]

and the matrix G has elements 95 defined by,

3

955 & |2f1ixre) u(e))

x*(t) = x*(t) (Al.6)
u(t) = u(t)

ou.

Hence, noting that

G(Sx* (£)) = X*(£) = X(£) = £*{x*(t),u(t)}
T dt

- E*{X*(t),u(t)} +E* (L) (A1.7)

we obtain a set of linear equations for the small perturbations

by substituting from equation (Al.4), i.e.,



Sk* (£) = F{x*(t),u(t)}ex*(t)
+ G{x*(t),u(t)}su(t) + g*(t) . (Al1.8)

Integration of the differential equation (Al.8) over the inter-

val tj - tj+l gives (see, for example, Dorf, 1965),

Sx*(ty,q) = ®{tj+l,tj}6§*(tj) .
*Tley g tgbouley) + EX(ty) (AL.9)
in which,
olty, k) A em_o[F{g:(tj) ) sy - tj)] (A1.10)
3 t. - -
Flty,y.t5t 8 t.f +1[efey,, stialxH (tj)g(tj)}]dt (Al.11)
3
- t.
3 CI t.f 3+l [@{tj+l,t}§* (t)]at (Al.12)
3

Equations (Al.1l) and (Al.9) are the important equations of
the development (Al.l) - (Al.12). Eqguation (Al.9) will subse-
quently be used to derive the error covariance eduation of the
uncertain predictor, while equation (Al.l)/detcrmines the
structure of the equations for the state-parameter prediction
trajectory. In order to obtain equation (l3a) of the original
EKF algorithm (as used for calibration), the expected value of
the stochastic disturbances £*(t), i.e., E{E*(t)} = 0, was
substituted in equation (l2a). We may likewise make the same
substitution in (Al.l). 1In addition, However, since the future
it

variations in u(t) are not known beyond the present time tO'

is necessary to substitute the estimated input trajectory




G(t) for u(t) in (Al.l). Hence,

R¥(t, .|t

j+1 ) = R*(t. |t

0 ~ J O)

t.
+ f3+l£*{g*(tlto),ﬁ(t)}dt ;
t -
j

tg Sttt T (Al.13)

Given g*(to|t and Q(t) equation (Al.13) can be repeatedly

O)
solved over consecutive intervals tj > tj+l until the predicted
mean value of the state and parameter estimates, g*(tG + Tlto),
is obtained. Equation (Al.13) is the first half of the re-
guired uncertain predictor, i.e., eguation (23a) in the main
pbody of the text.

In order to derive the second half of the predictor, that
is the prediction error covariance matrix equation (23b), let
us first define U(t) as the error (difference) between the

estimated future input variations, g(t), and the actual future

inputs, u(t),

G(t) 4 u(t) - a(t) . | (Al.14)
A corresponding estimation error x*(t) may also be defined by,

¥ (ttg) A x*(t) - R*(t|ty) . (A1.15)

Now observe that the state estimate equation (Al.13) is iden-
tical with the nominal reference trajectory of equation (Al.2)
if g(t) is substituted for u(t) and if g*(toito) is substituted
for g*(to). In fact, by this particular substitution the
Taylor series expansion, which is used for the linearization

procedure, is always taken about the most recent state estimates



-- a key feature of the EKF algorithms when used for combined
(on-line) state and parameter estimation (Reck, 1°79b). OCn
the basis of such a substitution, i.e., g*(to) = g*(to|to)

and u(t) = @(t), then (compare equations (Al.1l4), (Al.15) with

equations (Al.3)),

R*(t]tg) = &x*(t) and q(t) = su(t) .

Eence, from equation (Al.9), by substitution of the above,
it is found that the state-parameter prediction errors

g(t\to) propagate (approximately) according to,

Ik = % *
X (tj+l|to) ¢{tj+l,tj}§ (tj|to)

*Tle ety ElEy) + EX(E)) (Al.16)

This in turn gives the desired state-parameter prediction

error covariance,
~ ~aT
* * *
P (tj+l|to) A E{X (tj+l|to)x (tj+l|to)}

which, when expanded using equation (Al.1l6), yields,

* = X * f kT T
P (tj+l|to) E{0x* (it X (tj|t )

0] o)

+ Fg(tj)g?

(£.)T7T

- *T
T+ EHEDER (£))

+

o
w2

*
t

o+

(@]

[(ha]

*
o+
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+ Fg(tj)g (tj)

+ g*(tj)g?(tj)rT} . (B1.17)

Under the assumptions that there are no cross-correlations

among i*(tjlto), g(tj), and g*(tj), which assumptions are not

too restrictive since they merely state that there is no
instantaneous transmission of input disturbances to the state
variables and that the measured and unmeasured input distur-

bances are independent, equation (Al.l17) simplifies to,

t.}

. T
* = *
P ¢{tj+l,tj}P (tj|t0)¢ {tj+l, 3

(typqlte)

L T
F{tj+l,tj}s(tj)F {tj+l,tj} + Q¥ (AL,

In equation (Al.18) S(tj) is defined as the variance-covariance
matrix of errors in the estimated future variations of measur-

able input disturbances, i.e.,

~T

S(ty) & E{G(t)a ()} . (Al.

J J

The matrices ¢ and I' are evaluated by substituting g(tj|t ) for

0
x*(t) and (ty) for u(t) in the matrices F and G defined by
eguations (Al.S5) and (Al.6).

Since equation (A1.18) is the desired covariance equation

for the uncertain predictor, i.e., eguation (23b), our deriva-

tion is thus completed.

18)

19)



Appendix 2 - Matrix Partitioning in the Uncertain Prediction

Algorithm

The computational requirements of the uncertain predictor
given by equation (23) in the text can.be reduced by exploit-
ing the specific form of the augmented state-parameter vector
dynamics. Our primary concern is that of reducing the amount
of matrix manipulation in the covariance propagation eguation
(23b). We shall proceed in the same fashion as previously
with Appendix 1, although in places somewhat more briefly.

The augmented state-parameter dynamics, equation {(lla)

in the text, has the form,

x*¥(t) =| x(£) | _ [£{x*(t),u(e)} | + | E(%) (A2.1)

Thus, for the nominal reference trajectory defined by g and

g* we have the linearized small perturbation equations,
§x(t) = Fyq{x*(t),u(t)}sx(t)
+ Fpo{x* (£) ,u(t) }sa(t)

+ GS{x*(t)u(t)}sult) + E(t) (A2.2a)

Sa(t) = O + z(t) , . (A2.2b)

in which small perturbations S§o in the parameters are defined

by reference to a set of nominal parameter values o as
Sa(t) A a(t) - alt) . (A2.3)

The matrices Fll’ F12, and G° are defined as,



Fo. A [a€, {x*(t),u(t)}] _
11 = 1= = xX*(t) = X*(t) (A2.4)
I OX Juw) = 3w
Fo, A [9F, (x*(t) ,u(t)}] _ )
= i= x* (t) = X*(t) (A2.5)
L% Juatt) = aw
G® 4o |3£,{x*(t),u(t)} _
X*(t) = x*(t) : (A2.6)
945 ult) = ace) .

In line with the development of Appendix 1 we obtain the

discrete-time difference equations for the interval tj - tj+l’
8x(ty ) = ¢ll{tj+l,tj}6§(tj)
R [ b}
+ ¢12‘tj+l’tj159(tj)
+ TS (¢, ;t.}éu(t.) + E(t.) (A2.
b S R =73
Salty,y) = Salty) + Tlty) (AZ.
where
Dpqleyyrtyd 4 exp [Fll(tj+l - tj)] (A2.
t. ‘
°, 4 t.f 3+1[¢ll{tj+l,t}rlzth (A2.
J
s t. S
r= a t‘f 3+l[¢ll{tj+l,t}G Jat (A2.
J
. t.
£(ey) A . fivi[eg ley,, tle(0)]at (A2.

J

7a)

7b)

8)

10)

11)



J[ *L e (32.12)

In equations (A2.8) - (A2.12) some of the arguments have been

omitted for convenience. We may also note that the dimensions

S
of ¢ ¢ and " aren_ X n_, n. x np, and ng X m respec-

11’ "12° S S S
tively, where ng, N, and m are respectively the number of
state variables, parameters, and inputs.

Hence, substituting the estimates {i(t), g(to|t0), and
&ty
meter estimates obtained during calibration -- for the corre-

|ty) -- where &(t |t,) is the vector of a posteriori para-

sponding variables defining the nominal reference trajectory,
g(t), the equations for the state-parameter prediction errors

g(t|to) and @(tlto) propagate (approximately) according to,

gctj+lyto) = ¢li{tj+l,tj}g(tj|t0)

+ ¢12{tj+l,tj}§(tj|to)

+ T {tj+l, J}g(tj)

+ E(tj) (A2.
@(tj+l|to) = g(tjﬂto) * ooty (A2,

If the state and parameter prediction error variance-covariance

matrices are now defined respectively by,

s

PPty Ity & BIE(ty,, ]t %' (i leg)?

and

13a)

13b)



p 3 T
P (tj+l|to) A E{d(t,

se1lt0)E (kg e

and if the cross-covariances between state and parameter pre-

diction errors are defined by

c < T
P (tj+l|to) A E{§(tj+llto)g (tj+l|to)}

and
C T : F o~ | . ~T
[P (tj+l|to)] A Etg(tj+l|to)§ (tj+l|to)}

it would be possible to formuiate the desired partitioned
covariance evolution equations by generating Ps, Pp, and p°
from equations (22.13). However, let us instead combine the

two equations (A2.13a) and (A2.13b) to give,

ey leo) = [y | o] [xee150)]
0 i T jlaceyley)

+|rs Bty + g(t.)_ . (A2.14)
; e

Comparison of equation (A2.14) with equation (Ai.l6) from

Appendix 1 shows that the following identities hold,

|
- !
PE %t (A2.15a)
o1 I
|
_| s
R (A2.15b)
0 .

After substituting for ¢ and I from equations (A2.15) in
equation (Al.18) from Appendix 1 we have (under the same assump-

tions as those made previously),



I

P*(t. . [t.) ¢, 10 s e FT !
j+1l+o 11 i 12 [ P (tj|t0) L p (tj|tn) o1, |
i c T, T

ST | 7

[r] step (1"} 0]+ [_Qi'__g_

[ o 0 1P

in which

0
>
=
—
Y
as
Y
(-'-
—

and
0P A E{g(t)e

Finally, from equation (A2.16) we obtain,

S _ S T
Pty 1t0) = @11 P (g feg) 07,

c T
+ @, ,P (tj|t0)¢>12

c 7.7
RSP AU NN R

T

12

D
+ ¢12F (tj|t0)®

+ FSS(tj)[Fs]T + oS

c, _ c p

P \tj+l|t0) ®1,P (tj\to) + &, ,P (tjlto)
c T _ c T T

P (t. 4|t = [P“(t,

(% e, 160] [P (ty1e0] %07,

P T
+ .
2 (t]|to)¢12

p

(A2,

16)

(A2.17)

(A2.18)

(A2,

(A2,

(A2,

(A2,

19a)

19b)

19¢c)

124)
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If one further assumption is made, that the parameters are

truly constant and not sukject to the random disturbances

¢, i.e., assuming g(t) = 0 for all t and therefore Qp = 0

in equation (A2.194), we have the desired partitioned covariance

algorithms of equations (26) in the text.
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Appendix 3 - Computational Steps in the Uncertain Predictor

This appendix outlines the sequence of computations in

the uncertain predictor of equation (26).

(1) At time t = tj substitute x*(t) = g*(tjlto) and
u(t) = g(tj) for evaluation of the matrices,
= *
dX.

) |

= *
F12 3fi{§ () ,u(t)} ,
Ja .
]
6% = | 3£, {x*(t),u(t)}
au.
J
(2) Compute the matrix exponential, or state transition
matrix Qll’ i.e.,
Qll = exp (FllAt) , (A3.1)
where At = tj+l - tj. There are numerous ways of calculating
Qll’ see for example, Moler and Van Loan (1977). The particular

method used here, proposed by Shah (1971) is to exploit the
identity,

A
exp (F;,0t) = [exp(Fll[At/2>‘])]2 . (A3.2)

and then to approximate exp(Fll[At/ZA]), denoted @ll(ét) for

convenience, by the series expansion,

(6t) = I + F..5t + F2

.2 0,
11 ll(6t /2%)

211

(5e3/31) + ... (A3.3)
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in which 8t = At/ZA. The evaluation of @ll(ét) from equation
(A3.3), as opposed to similarly evaluating Qll(At), gives a
more rapidly convergent series, which thus saves computational
effort. Equally so, the partitioning of matrices (see Appendix
2) means that operations such as equation (A3.3) need only be
carried out on an n_ X ng matrix (Fll) instead of an

S

(nS + np) X (ns + np) matrix (F).
(3) Compute the integral Qil of the matrix exponential,

i.e.,

. t.
. = j+l _ 2
11 tff o ,dt = Tat + F o (st?/21)
+ P2 (at3/31)+ (A3.4)
‘ ST .

Again, matrix partitioning provides a significant computational
economy at this step.
(4) Using Qil derive the matrices QlZ and I® as,

rs =91 g%

—_ K ! -
®10 T P11F10 i 11 .

(A3.5)

Implicit in the computations of equations (A3.4) and (A3.5),
when compared with the definitions of ®12 and I'® in equations

(A2.9) and (A2.10) of Appendix 2, is the assumption that F12

and G° are constant over the interval tj - tj+l"

. S C p :
(5) Now obtain P (tj+l|to), P (tj+l|to), and P (tj+l|to)
according to equations (26b), (26c), and (26d) in the main
body of the text.

(6) Solve for g(tj+l|to) from equation (26a) and return

to step (1).



REFERENCES

Beck M.P. (1979a) Model structure identification from experimental
data. Pages 259-289, Theoretical Systems Ecoloay, edited
by E. Ealfon. New York: Academic.

Beck M.B. (1979b) System Identification, Estimation and Fore-
casting of Water Quality - Part l: Theorv. WP-72-31.
Laxenburg, Austria. International Institute for Applied
Systems Analysis.,

Beck M.E. and Young P.C. (1976) Systeratic Identification of
DO-BCD Model Structure. Proc. Am. Soc. Civ. Fnars., J. Env.
Eng. Div., 102, EE5, pp. 909-427.

Chiu C-L., ed. (1978) 2pplications of Kalman Filter to Hydrology,
Hydraulics, and ¥ater Resources. Stochastic Hvdraulics
Program. University of Pittsburgh, Pittsburgh.

Di Toro D.M. and van Straten G. (1979) Uncertainty in the Para-
meters and Predictions of Phytoplankton ™odels. %Wr-=79-27,
Laxenburg, Austria. International Institute for Apnlied
Systems Analysis.

Dorf R.C. (19265) Time-Domain 2nalysis and Design of Control
Systems. Reading, Massachusetts: Addison-Wesley.

Gelb, A., ed. (1974) Applied Optirmal Estimation. M.I.T, Press,
Cambridge, Massachusetts.

Halfon E. and Beck M.B. (1279) Long-term Predictions of Water
Quality in Lake Ontario. (In preparation).

Harris, C.J. (1977) Modelling, simulation and control of sto-
chastic systems with applications in wastewater treatment.
Int. J. Systems Sci. 8, pp. 393-411.



Jazwinski A.H (1970), Stochastic Processes and Filtering Theory.
New York: Academic.

Kalman R.E. (1960) A New Approach to Linear Filtering and Predic-
tion Problems, Trans. Am. Soc. Mech. Engnrs., Series D:
J. Basic Engng., 82, pp. 35-45.

Kalman R.E. and Bucy R.S. (1961), New Results in Linear Filter-
ing and Prediction Theory, Trans. Am. Soc. Mech. Engrs.,
Series D: J. Basic Engng., 83, pp. 95-108.

Mankin J.B., Gardner R.H. and Shugart H.H. (1976), The COMEX
- Computer Code: Monte Carlo Analysis of Ecosystem Attributes,
in Proc. 1976 Summer Computer Simulation Conference,
pp. 433-436.

Mankin J.B., O'Neill R.V., Shugart H.H., and Rust B.W. (1977)
The Importance of Validation in Ecosystem Analysis, in
G.S. Innis (Ed.) New Directions in the Analysis of Eco-
logical Systems, Simulation Council Proceedings Series,
Vol.5, No.1, pp. 63-72.

Moler C.B.-and Van Loan C. (1978) Nineteen Dubious Ways to
Compute the Exponential of a Matrix, SIAM Review, 20,
pp.801-836.

O0'Neill R.V. (1978) Natural Variability as a Source of Error
in Model Predictions, Technical Report, Environmental
Sciences Division, Oak Ridge National Laboratory, Oak
Ridge, Tennessee.

O'Neill R.V. and Gardner R.H. (1979) Sources of uncertainty in
ecological models, in B.P. Zeigler, M.S. Elzas, G J. Klir
T.I. Oren (Eds.) Methodology in Systems Modelling and
Simulation, Amsterdam: North-Holland, pp.447-463.

Shah M.M. (1971) On the Evaluation of'eAt, Technical Report
CUED/B-Control/TRE, University Engineering Department,
Cambridge, England.

Tiwari J.L., Hobbie J.E., Reed J.P., Stanley D.W. and Miller M.C.
(1978) Some Stochastic Differential Equation Models of an
Aquatic Ecosystem, Ecol. Modelling, 4, pp.3-27.

Whitehead P.C. (1979) Water Quality in River Systems: Monte
Carlo Analysis, Wat. Res. Research, 15, pp.451-459.

Wood E.F. and Szd8l1&si-Nagy A.(1979) Real-time Forecasting/
Control of Water Resource Systems, IIASA Conference
Proceedings Series, Oxford: Pergamon (in press).

Young P.C. (1974) A Recursive Approach to Time-series
Analysis, Bulletin Institute of Mathematics and its
Applications, 10, pp.209-224,



Probability‘

density
Value of x
Rty ty)
i Rt +1|t,)
: 0 0]
o (ty | ty)
. -
i -
| Gltort|ty
| ! _/
o
tO to+r Time
Figure 1. Pictorial representation of an uncertain prediction.
pS = 02 is the variance of the probability density

function, i.e. the variance of the prediction error.
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Figure 2. Examples of changes in parameter estimation error
variances during calibration (calibration is assumed

to refer to the period of observations from time

t = 0 to time to).



Figure 3. Calibration: A represents the set of system
behaviour patterns observed in the past; M represents
the set of behaviour patterns simulated by the model;

the shaded area represents the overlap between A and
M.
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Figure 5.

Prediction with the calibrated model: A and M
are as defined for Figure 3 (see also text); F
represents the set of future system behaviour
patterns; B represents behaviour patterns
associated with a well-calibrated part of the
model; y represents behaviour patterns associated
with a poorly-calibrated part of the model.
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Figure 6. An example of the effects of uncertainty transactions

(within the model) on the forecasting error. ¢ is the
standard deviation of the forecasting error.
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The extended Kalman filter, an algorithm for
estimation and forecasting; % , ., and o are
respectively estimates of the Mmeasured state
variables, the unmeasured state variables, and
the model parameters. (Estimation of & will not
be of further concern in this discussion.)
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Block diagram of the extended Xalman filter showing

both the computation of the state-parameter estimates
and the computation of the covariance matrix.
block labelled "Delay"

The

indicates that the estimates

and covariances are provagated from one recursion
through the algorithm to the next recursion.
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Figure 10: Envelope of uncertainty associated with state

variable forecast: (a) represents the forecast;

(b) represents the uncertainty propagated from
current state of water quality; (c) represents
uncertainty propagated from a posteriori parameter
estimation errors; (d) represents uncertainty
contributed from future input disturbances.



