Working Paper

Applications of System Identification
and Parameter Estimation in Water
Quality Modeling

M. B. Beck

September 1979
WP-79-99

International Institute for Applied Systems Analysis
A-2361 Laxenburg, Austria




Applications of System Identification
and Parameter Estimation in Water
Quality Modeling

M. B. Beck

Septerber 1979
WP-79-99



M.B. BECK 1s a research scientist at the International Institute
for Applied Systems Analysis, Schloss Laxenburg, 2361 Laxenburg,
Austria.

ii



PPEFACE

In recent years there has bheen a consicderable interest in
the develooment of models for river and lake ecological systems.
Much of this interest has been directed towards the development
of progressively larger and more complex simulation models.

In contrast, relatively little attention has been devoted to
the problems of uncertainty and errors in the field data, of
inadeguate numbers of field data, of uncertaintv in the
relationships bhetween the important system variables, and of
uncertainty in the model rarameter estimates. IIASA's Resources
and Environment Area's Task on "Models for Environmental
Quality Control and Management" addresses problems such as
these.,

A brief summary of the literature on apovlications of
system identification and parameter estimation in water cuality
modeling is provided in this paper. The paper is therefore
concerned with summarizing the status of current and recent
studies in water cuality model calibration.
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SUMMARY

Applications of techniques of system identification and
parameter estimation in water quality modeling are surveyed.
This survey of the literature covers three areas: river water
guality, lake water gquality, and wastewater treatment plant
modelinc. The applications cited are classified according
to the type of algorithm used for calibration, the type of
model, and the field data used. Two broad distinctions are
made between: (a) off-line and recursive methods of parameter
estimation; and (b) internally descriptive (state-space) and
black box (input/output) model types. In order to assist
the classification, a number of estimation algorithms are very
briefly introduced. Although there are clearly different
lines of development in each area of water guality modeling,
it is possible to identify problems common to all three areas.
The major problems discussed concern the availability of field
data, levels of noise in the data, and model structure identi-
fication.



1. INTRODUCTION

Calibration of models for water quality in rivers, lakes, and
wastewater treatment processes is, in several imvortant
respects, different from the problem of calibrating, for
example, rainfall-runoff and flood-routing models. Records
of water qualitv data are often restrictively short and inade-
quate for the purposes of time-series analysis; the data are
subject to particularly high levels of error; the system to
be described is rarely of the multiple-input/single output
form (a form which permits substantial simplification of the
anlysis); and significant input perturbation of the system
behaviour, such as the storm event, is often absent from the
recorded data. 1Indeed, relationships between "causes" and
"effects" are not always self-evident prior to the analysis
of the field data. One may argue, therefore, that applying
techniques of system identification and parameter estimation
to problems of water cuality modeling is not to be treated as
a straicht-forward extension of the approaches typically used
in the analysis of other forms of hydrological modeling.

This paper surveys the literature of water cuality model
calibration. Since the applications cited are classified
according to the type of parameter estimation algorithm used,
the following section introduces a'minimum of explanation for
a number of vpotentially apprlicable algorithms. Section 3 is the
principal corponent of the surveyv. It is not an exhaustive
review; space restrictions do not allow more than just a brief

survey of the literature. Section 4 deals with the salient
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problems of current applications of parameter estimation algo-

rithms in water guality modeling.

2. ESTIMATION ALGORITHMS

Many algorithms are available for varameter estimation, although

the majority of these algorithms are not

from the basic notion of a least squares

the fundamental role of least squares as

in developing more complex algorithms is

substantially different
estimator. Certainly,
the voint of departure

undisputed (Draper

and Smith, 1966; Eykhoff, 1974; Gelb, 1974; Young, 1974;

Kashyap and Rao, 1976; Graupe, 1976).

Let us define, therefore, the following criterion function

for model parameter estimation (or calibration) as,

a

327 h@we ()

(1)

in which & is a vector of model parameter estimates and € is a
~ . ~

vector of errors between model-based estimates of the system

responses and field observations of those resvonses. W is a

matrix of weichting coefficients, various choices for which

define different estimation algorithms.

When ¥ = I, the identity

~

matrix, minimization of (1) with respect to &4 yields the least

squares estimates. In most cases of practical interest, the

least squares estimates will be biased because, in general,

the noise (or random error) sequences assumed to be present in

the observed field data do not conform to white noise sequences.

Thus, it cannot be assumed that the least squares estimates will

equal the supposedly "true" values of the system parameters,

One of the most widely used algorithms that avoids this problem

is the method of maximum likelihood (see, for example, Rstrém




and.Bohlin, 1966; Box and Jenkins, 1970). VMaximum likelihood
estimatioﬁ is equivalent to the substitutidﬁ E'= 5;1 in the
criterion function (15, where‘g’is éitherlthe covériahce
maxtrix.of the oﬁtput rééponse measuremént errors (Gelb, 1974)
or the éomputed ééva:iance matrix df the errofs Eﬁ(Kéllster
et ai;, 1976).. Assﬁmééions about the‘statistical propértiésk
of the noise seqﬁences (their méan and covafiance) are neces-
sary in ordef té‘make this.substitution. If, in addition, it
is assumed that each element of the noise sequence vector is
independent of all other elements, then a somewhat simpler esti-
mator results. Under this assumption, E,is a diagonal matrix

and the estimator is freguently referred to as weighted least

squares.

An instrumental variable estimator (Kendall and Stuart,

1961; Johnston, 1963; Young, 1976) also avoids the problem of
biased estimates. The method seeks to generate a sequence of
variables with specific statistical properties -- the instru-
mental variables -- that may be substituted into an essentially
least-squares-like algorithm. For certain forms of the instru-
mental variable estimator (e.g., Young, 1974), the instrumental
variables are virtually equivalent to state estimates. There
are, therefore, strong similarities between this estimator and

the extended Kalman filter (Jazwinski;.l970), an algorithm

that treats the problem of parameter estimation as a problem
of combined state-parameter estimation. In that sense the

method of quasilinearization is similar to the extended Kalman

filter since it too sets up the parameter estimation problem
by interpreting the model parameters as additional system state

variables (Bellman and Kalaba, 1965; Lee, 1968).



Many of the above and closely related algorithms can be
impiemented as either off-line or recursiye schemes of para-
meter estimation, The basic difference between the two schemes
is that an off-line scheme assumes that a single, fixed set
of estimates Q'may be substituted for computation of the re-
sponse errors QE) for all N field observations sampled from

time t, > t. With a recursive scheme it is possible to com-

1
pute estimates Q}tk) for each kth instant of time, and therefore

it is possible to estimate time-varying parameter values.

3. SURVEY OF APPLICATIONS
Table 1 gives a broad survey of the literature on applications
of parameter estimation to water quality modeling in streams,
lakes, and wastewater treatment plants, Classification accord-
ing to the type of model uvsed is chosen partly because it is
instructive to judge the size of the model being calibrated, and
partly because the choice of model (internally descriptive, or
black box) defines, to some extent, the nature of an appro-
priate estimation algorithm. Unless otherwise indicated, as
either a "recression" or "black bkox" model, all the rodels
referenced in Table 1 are internally descriptive models. By
"internally descriptive" it is meant that the model is derived
from existinc theory and that it attemnpts to describe those
internal chemical, biological, and physical mechanisms which
are thouaht to govern svstem behaviour.

A few remarks are necessary in order to qualify the con-
tents of Table 1. For example, the paper by Ivakhnenko et al.
(1977) is primarily concerned with the problems of model

discrimination and model structure identification (see below)




as opposed to the problem of parameter estimation (which the
GMDH algorithm treats by least squares estimation). Other
references, Shastry et al, (1973), Beck and Young (1976),
Beck (1976), Jolankai and Szollosi-Nagy (1978), and Halfon
et al. (1979) are similarly oriented towards the analysis of
identifying model structure,

The literature quoted for stream and lake water quality
modeling shows a predominant bias towards the use of internally
descriptive models, whereas the papers addressing wastewater
treatment plant models tend to exhibit the opposite bias
towards the use of black box time-series models, This
reflects, in the latter case, a somewhat "retarcded" develop-
ment of model calibration exercises in wastewater treatment
rlant modeling. For stream water quality modeling Table 1
in fact reflects a rather selective survey of the literature.
There’ have been several applications of frequency response,
correlation analysis, and time-series analysis techniques
in stream quality modeling, for example, Thomann (1967, 1973),
Fuller and Tsokos (1971), Edwards and Thornes (1973), Schurr
and Ruchti (1975), and Mehta et al. (1975). Further applica-
tions of time-series analysis in wastewater treatment plant

modeling can be found in Berthouex et al. (1975, 1976),

4. SALTIENT PROBLEMS

It is apparent from the previous section (and Table 1) that
model calibration has developed differently in the three
chosen areas of water quality modeling. This is partly a
consequence of different objectives for the use of models,
However, similarities of the problems experienced in each

area are more pronounced than their differences. Thus three



general problems are discussed: (a) availability of field
data; (b) noise levels in the data; and (c¢) degree of a priori
knowledge.

Availability of field data. An essential difference

between, for example, the calikhration of rainfall-runoff and
flood—routingvmodels and the calikration of water quality
models is that data for the latter have usually been samnled
not only at inadequately low fregquencies but also for insuf-
ficient continuous periods of time. It is a characteristic
feature of lake and biological wastewater treatment svstems
that they exhibit relatively fast and relatively slow compo-
nents of dynamic Prehaviour, both of which are important for
obtaining a model of the system. 2 lake ecological model
calibrated against short-term records, under the inevitable
assumption that longer-term dynamic properties are essentially
at steady-state, would clearly be inappropriate for making
forecasts of long-term behaviour patterns. Two recent develop-
ments, one of an analytical nature and one related to instru-
mentation hardware, may significantly alter the situation
regarding availakility of data. First, Spear and Hornberger
(1978), in their analysis of a lake eutrophication problem,
propose that even patchy, inadecuate field data and qualitative ob-
servations permit a meaningful calibration exercise; logical
constraints on acceptable model rerformance, rather than a
squared error function such as ecuation (1), provide the criterion
for calibration. ~fecond, improvements in specific-ion elec-
trodes and the installation of telemetry networks for water
quality monitoring will radically alter the guantity and kind

of field data available for analysis.




Noise levels in the data. This problem is orobably most

emphasized in data collected from routine operations at waste-
water treatment plants. The lack of well identified "deter-
ministic" input disturbances, such as the storm event, leads

to field data with apparentlv low signal/noise ratios. Con-
secuentlv, it is difficult to estimate accurate input/output
relationshipns and thus time-series models will tend preferen-
tially to icentifv autorecressive proﬁerties of the outrut
observations sequence. There is, therefore, very little
natural experimental basis for system identification. Moreover,
extreme events in ecological systems, for instance, the sudden
phytoplankton bloom, occur because a specific but relatively
commonblace combination of environmental conditions force the
state of the system into a region in which a nonlinear mode

of behaviour is excited. Such significant variation of the re-
soonses is rarely related to extrere innut disturbances.

Degree of a priori knowledge. 2 typical feature of water

quality modeling is that the analyst is often uncertain of the
basic cause-effect relationships in the system under investi-
gation. And even when he knows these relationships it is

not always clear what form they should take. Model structure
identification is the problem of resolving such issues by
reference to experimental field data (Beck, 1978, 1979a). More
precisely, model structure identification may he defined as
the problem of identifying the way in which the inout dis-
turbances are related to the state variables, how the states
are related among themselves, and how in turn the measured
output resnonses are related to the state wvariables. Solution

of this problem naturally precedes accurate estimation of the



model parameter values, although the solution may itself de-
pend upon the application of an estimation elgorithm. If one
accepts that the issue of model structure identification is

of major importance -- and the literature does not suggest

a widespread recognition thereof -- then it is reasonable to
argue that calibration of water quality models should concen-
trate on establishing that which is essentially "deterministic"
about the okserved system behaviour. It is, in fact, premature
to focus attention on detailed assurmptions about the distribu-
tions and correlation properties of the random components of

the system's behaviour.

5. CONCLUSIONS

The calibration of water quality models is still at a primitive
stage of development. These conclusions surmarize the status
of annlying parameter estimation techniques to the three areas
of lake water quality, wastewater treatment plant, and river
guality modeling.

(a) A desire to characterize all the detailed features of
a lake ecolocical svstem has led to the development of parti-
cularly complex internally descriotive models of such systems.
These models have little likelihood of being ricorously calibrated
against field data; indeed, their level of theoretical complex-
ity seems disproportionately high when compared with the
severely restricted range of availahle field data.

(b) In contrast, the objectives of quantifving and con-
trollincg the variability of wastewater treatment volant behaviour
have led tyvically to the calibration of low-order black hox
models for these systems. Such models, however, vield little

insight into the dominant (microbiological) mechanisms that




govern the dynamics of waste removal processes.

(c) For stream quality modelina there has been a more
balanced progress in both black box and internally descriptive
approaches to model construction and its associated calibration
prcblems. With present techniques and data it would be pos-
sible to calibrate a dynamic lumped-parameter model that
accounts for the basic oroperties of day-to-day variations in
DO-BOD interaction, phytoplankton growth, and nitrification

in rivers.
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TABLE 1. Summaryv of Recent Applications of Parameter Estimation
Algorithms in Water Quality Modeling
Author (s) Field Data Algorithm Type of Model

STRFAM WATER NUALITY MODELING

Koivo & Phillips
(1971)

Koivo & Phillips
(1972)

Koivo & Phillips
(1976)

Koivo & Koivo
(1978)

Lee & Hwang (1971)

Shastry et al.
(1973)

Huck & Farquhar

(1974)

Beck (1975)

Beck & Young
(1976)

Whitehead & Young
(1975)

Young & Whitehead
(1977)

Lettenmaier and
Burges (1976)

Erni & Ruchti

(1977)

Ivakhnenko et al.
(1977)

Sacramento River
(1962)

Clair River
(1971)

St.

River Cam (1972)

River Cam (1972)

Bedford—Quse
River (1973)

River Cam (1972)
Bedford-Ouse
River (1973)

Aare River

River Cam (1972)

Stochastic Approximation
(Least Squares); R*

4
Least Squares; 0

Linear Kalman filter; R
Least Squares (state
estimation only); R

Quasilineralization
(Least Squares); O

Weighted Least Squares;
Maxirum Likelihood; O

Maximum Likelihood; ©
Maximum Likelihood; O

Exrended Kalman Filter;
R

Multivariable Instrumen-—
tal Variable-Approxi-
mate Maximum Likelihood
(MIVAML); R

MIVAML; R

Extended Xalman Filter;
R

Differential Approxi-
mation Method; 0

Group Method of Data
Handling (GMDH); O

Time & space; BOD, DO; analytical
solution to lst=-order partial dif-
ferential equationm.

Space; BCD, DO; steady-state ana-
lytical solution to lst=-order
partial differential equation.

Time & space; BOD, DO; difference
equations .

Time & space; BOD, DO; lst-order
partial differential equation.

Space; BOD, DO; ordinary differen-
tial equation.

Space; BOD, DO; ordinary differen-
tial equation.

Single point spatial location, time-
variations; DO, chloride; black
box, time-series model.

Time; BOD, DO; ordinary differen—
tial equation; also black box
time-series model

Time; BOD, DO; ordinary differen-
tial equation.

Time; BOD, DO; difference egquations

Tine: BOD, DO; difference equations

Space; BOD, DO; ordinary differen-
tial equations

Single point spatial location;
time-variations; DO; difference
equations.

Single point spatial location; time
variations; BOD, DO; difference
equations.
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Author(s)

Field Data

Blgorithm

Tyne of Model

Stehfest (1978)

Stehfest (1978)

Bowles & Grenney
(1978a)

Moore & Jones
(1978)

Rinaldi, et al.
(1979)

Tamura (1978)

Thé (1978)

Rhine River
(1971)

Rhine River
(1971)

Jordan River,
Utah

River Cam (19725

Bormida River

River Rhine

Quasilinearization
(Least Squares); O

Quasilinearization
(Least Squares); O

Extended Kalman Filter;
R

Coupled Bayesian-Kalman
Filter; R

Least Squares; O

Linear Kalman Filter
(and others); R

Linear Kalman Filter;
R

Space; BOD, DO; ordinary differen-—
tial equations

Space; easily degradable organic
matter, slowly degradable organic
matter, bacterial mass, protozoan
mass, DO; ordinary differential
equations.

Space; BOD, DO, NH,-N, NO,-N,
: 3 .3

algal-N, organic-N3} ordinary

~differential equatious.

Time; BOD, DO; ordinary differen-
tial equations.

Space; BOD, DO; analytical solution
to lst-order ordinary differential
equations.

Time & space; BOD, DO; difference
equations.

Time and space; conductivity; 2nd-
order partial differential equation
(finite difference approximation
solution).

LAXE WATER QOUALITY MODELING

Di Cola et al.
(1976)

Gnauck et al.
(1976)

Jolankai and
Szollosi-Nagy
(1978)

Lewis and Nir
(1978)

Halfon, et al.
(1979)

Leopold's Park
Pond, Brussels
(1973-75)

Saidenbach Rese-
voir, GDR (1966-
70);

Klicava Reser-—
voir, CSSR
(1963-72)

Lake Balaton,
Hungary
(1971-77)

Greifensee,
Switzerland
(1973)

Small lake
ecosystem

Least Squares; O
(solved as an optimal
control problem)

Least Squares; R

Maximum Lakelihood; R

Yeighted Least Squares;
0

Least Squares (also
frequency domain analy-
sig): O

Time: autotropohs, herbivores,
carnivores; ordinary differential
equations.

Time; DO, chlorophyll—-a, particu-
late organic matter; regression
relationship.

Time; soluble reactive phos-
phorus, chlorophyll-a, exchange-
able ohosphorus in sediment;
ordinary differential equations.

Time; soluble reactive phsphorus,
particulate phosphorus; ordinary
differential equations.

Time; soluble phosphorus, parti-
culate phosphorus, a low molecular
weight form of phosphorus, col-
loidal phosphorus; ordinary dif-
ferential equations.
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o

Author(s) Field Data Algorithm Type of Model
Benson (1979) Lake Placid, Least Squares; O Time; phytoplankton biomass;
British Colum— ordinary differential equation.

bia, Canada

Di Toro and Lake Ontario Weighted Least Squares; Time; 16 state variables divided
van Straten (1972) 0 between epilimnion and hypo~
(1979) : limnion layers; ordinary dif-

ferential equations.

WASTEWZ2TER TFREATMENT_ PLANT MODELINCG

Svrcek, et al. - Extended Kalman Filter; | Time; cell and substrate concen-
(1974) R trations (gemneral continuous cul-
ture process); ordinary differen-
tial equations

Olssou and Kaeppala Works Maximum Likelihood; O Time; DO (activated sludge unit);

Hansson (1976) Stockholm black box, time-series model.

Crowther, et al. Philipshill ‘Maximum Likelihood; © Time; BOD, suspended solids

(1976) Vorks, (primary sedimentation tanks);
Scotland black box, time-series model.

Beck (1976) Norwich Works, Instrumental Variable; Time; gas production rate (anaerobic
England R digestion unit); black box, time-

series model.

Berthouex, et al. |Madison Works, Maximum Likelihood; O Time; BOD (activated sludge unit);

(1978) Wisconsin black box, time-series model.

Adayemi, et al. Jones Island Maximum Likelihood; © Time; total soluble phosphorus

(1979) Works, Milwaukee (phosphorus precipitation unit);
Wisconsin black box, time-series model.

Beck (1979b) Norwich Works, Fxtended Kalman Filter; Time: NH,-N, NO,-N, Nitrosomonas,
England R Nitrobacter (ac%ivated sludge

—_—— : :
unit); ordinary differential
equations.

Marsili-Libelli Pilot plant, Least Squares (with Time; BOD, bacterial concentra-
{1979) Florence, cubic splines smoothing);| tion (activated sludge unit);
Italy 0 ordinary differential equations.
-
FOQTNOTES:

* R denotes a recursive estimation algorithm

t 0 denotes an ofif-line estimation algorithm



