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Problems of model uncertainty in the Modeling of Environ- 
mental Quality Control and Management have attracted recent 
interest within the Resources and Environment Area, Task 2. 
Besides Hydrophysical and Ecological Models for Water Quality 
(including models for the eutrophication process), Uncertainty, 
Forecasting and Management of Environmental Quality are ad- 
dressed as a major research topic and incorporated in the 
Research Plan for 1979-1983 as subtask 2b. Within this frame- 
work, this report presents a stochastic approach to the mathe- 
matical modelling of uncertain and badly-known systems, using 
a lake modelling example. The explicit inclusion of data un- 
certainty in the numerical approach is advocated as a rational 
means to estimate model output accuracy and credibility. The 
approach suggests the use of a somewhat fuzzy description of 
the systems studied in terms of a behaviour space region, taking 
into account data uncertainty and the stochastic variability of 
complex natural systems. A corresponding data space region is 
then established for a model instead of a deterministic data- 
input vector. Using random samples from this data-input space 
for simulations, the model output is described in terms of a 
probabilistic behaviour space. The approach, developed in the 
context of a simple lake eutrophication model, is suggested for 
a rather general applicability in the modelling of uncertain 
natural systems. 
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ABSTRACT 

A stochastic approach for modelling uncertain and incom- 
pletely known ecosystems, using a lake modelling example, is 
proposed. In order to estimate the reliability and precision 
of model predictions based on uncertain data from ecological 
systems, the explicit inclusion of the uncertainty in the 
numerical modelling approach is advocated. Starting with a 
fuzzy definition of systems behaviour in terms of a behaviour 
space region, the corresponding region in the data space of a 
given model is explored by Monte Carlo techniques. A set of 
data vectors--random samples from the data space region cor- 
responding to the empirical range of systems behaviour--is then 
used to generate independent estimates of states or outputs for 
selected deterministic inputs. These estimates have to be under- 
stood as random samples from a probabilistic behaviour space 
which reflects the initial uncertainty in data space delimita- 
tion. The estimates are used to establish probability distri- 
butions for systems states or outputs (cross-sections of the 
probabilistic behaviour space) for the given input conditions. 
These probability distributions replace the deterministic point- 
estimates of a traditional approach, and reflect the incomplete 
knowledge about the system as well as the stochastic variability 
of ecosystems. The approach is extended for long-term simula- 
tions of systems behaviour under changed input conditions, and 
estimates of prediction accuracy in time are obtained. 
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A STOCHASTIC APPROACH 
TO MODEL UNCERTAIlJTY 
A Lake I.lodelling Example 

K. - Fedra 

INTRODUCTION 

Uncertainty and Arbitrariness in Ecosystems Models 

Modelling of ecological systems is certainly an important 

tool of the "hard science" of systems ecology (Patten 1971). 

However, there are many elements of "soft science", namely, 

uncertainty, arbitrariness, and chance, which--although 

computerized--severely affect the credibility of predictions 

from mathematical models of ecological systems. 

Mathematical models of ecosystems are--more less neces- 

sarily as a consequence of the homomorphic modelling approach-- 

drastic simplifications. As a rule they do not allow for various 

typical features of ecological systems as well as of data des- 

cribing such systems. With regard to the systems themselves, 

these features would be richness and variety, spatial hetero- 

geneity, nonlinearity, functional dissimilarity within lumped com- 

ponents, and stochastic variability. With regard to the data a 

modeller has usually at hand for the analysis of a given ecosystem, 

these data are--at least in terms of a deterministic mathematical 

model--scarce, scattered and uncertain, and often enough inade- 

quate in light of the posed problems and the desired accuracy in 

their solution. However, having in mind as one ultimate goal the 



application of mathematical models as a rational tool for eco- 

systems management and control, the uncertainty of models and 

their relative precision must be evaluated under the above con- 

straints. Much of the uncertainty in ecosystem modelling seems 

to be an essential part of the objects studied, or it is simply 

a scale and effort problem as in environmental data collection. 

And much of the arbitrariness--just consider standard sampling 

strategies in the time and space domain, the criteria for 

selecting one specific model, or the choice of objective func- 

tions in calibration methods--seems unavoidable. Often there 

is simply not enough information available for more rational de- 

cisions. However, all these sources of uncertainty and arbi- 

trariness affect model predictions. It is therefore an impor- 

tant task to make explicit the effects of arbitrary assumptions 

and uncertainties in our knowledge. Being aware of the short- 

comings and insufficiencies of environmental data and modelling 

techniques, by explicitly including the uncertainty in our 

analysis of ecosystems, we should at least be able to estimate 

the level of accessible precision of predictions. 

Taking advantage of modern computer technology, a straight- 

forward trial-and-error approach has been chosen in favor of 

more sophiscated analytical methods. If arbitrary assumptions 

have to be made at all, why not make several of them equally 

good in terms of our incomplete knowledge, and investigate the 

whole range of this arbitrariness in its effect on the results. 

If we know that the data we have to use are uncertain, why not 

explore the whole range of uncertainty in its relation to the 

credibility of the output of our analyses. Having a particular 

environmental problem to solve and having in hand a mathematical 

model* which is supposed to be appropriate for that purpose--which 

*The author is well aware of the fact that already the selection 
of any one model includes a first element of arbitrariness; it 
seems most likely, that different models, although using the 
same set of data, will give somewhat different results. However, 
this source of uncertainty, which clearly introduces an addi- 
tional dimension of the problem, is not considered here. 



means a so-called validated model--we find ourselves confronted 

with the problem which numbers to put into the model to get the 

desired answers. The desired answers are usually of the kind: 

what will the systems' behaviour be under such and such input 

conditions (in the future, of course)? To answer such questions 

by means of a mathematical model, certain data are required. 

The data-input requirement of a dynamic, non-homogeneous model 

could conveniently be grouped in the model parameters sensu 

stricto, import and forcing describing data, and the initial 

conditions. To estimate these values, we have to use the ob- 

served (past) system behaviour as well as experimental evidence 

and information from the literature. However, all these data 

(as a field-ecologist maybe recognizes rather than a modeller) 

are only rough estimates of systems properties (which are des- 

cribed in the model on a high level of aggregation), connected 

with uncertainties resulting from the above listed peculiarities 

of ecological systems as well as the limited possibilities of 

ecological field studies. It is obvious that the use of any 

such uncertain data will cause consequent uncertainty in the 

model output, not to speak of other principle problems in mo- 

del predictions (see p. 4). For recent approaches to consider 

and include aspects of uncertainty, alternative to traditional 

deterministic modeling techniques, see Spear and Hornberger 

(19781, Di Toro and van Straten (1979) Beck et al., (in press). 

An important method to derive the model data requirement 

from the available information on the system studied is the 

calibration of model parameters. Traditional parameter cali- 

bration methods (e.g., Lewis E Nir 1978) refer to a short and 

well defined period of the systems' history. The inputs and 

forcings as well as the initial conditions for this period are 

assumed to be exactly known. According to the objective func- 

tion chosen (as a rule least square approximation of the avail- 

able data "points" from the time series), one "optimumw (by 

definition) solution is obtained. However, the "points" from 

the time series must be considered as ranges, and the para- 

meter vector obtained is just one out of a set of parameter 

vectors or a parameter space of generally unknown extension. 



And the relationship of parameter space extension (intro- 

ducing a more general concept of model data-input space exten- 

sion) and model prediction accuracy (the behaviour space ex- 

tension for a given "input" situation of some uncertainty) will 

be the specific topic of this investigation. The final goal 

will be to show that the prediction of systems states and out- 

puts, using uncertain data-input by necessity, has to be re- 

formulated in terms of probability distributions. These pro- 

bability distributions represent the extent of uncertainty re- 

sulting from our incomplete knowledge of the systems previous 

states (which we use to estimate model parameters and initial 

conditions) as well as the natural stochastic variability in 

the future imports and forcings. But even this fairly advanced 

concept is based on several simplifying assumptions, which fur- 

ther add to the prediction uncertainty. The approach does not 

consider uncertainty in the model structure: it assumes (as a 

technically necessary simplification) that the model chosen is 

appropriately representing the system studied over the whole 

range of input conditions. Another of these assumptions is 

that parameters, estimated from a certain range of input con- 

ditions (or a certain region in state space) will also be valid 

outside this range, that they are state- and input-independent. 

This would imply that systems do not adapt to changes in their 

environment, that they do not change their structure as well as 

the rates of their processes under different conditions--which 

is most obviously not true (Straskraba 1976, Fedra 1979) . 
In order to achieve probability distributions for system 

states under uncertain input conditions, some straightforward 

methods of simulation and analysis are proposed. To summarize 

the approach (see also Figs. 1 and 3), it first describes the 

behaviour of a system for a sufficiently long period (several 

years, if possible), for which, however, the system must be 

assumed to be in some kind of dynamic "steady state" or oscil- 

lating within certain limits. The description of behaviour 

includes the stochastic variability of ecological systems in 

time as well as the uncertainty in the underlying observations. 

Therefore, ranges are specified for a set BR of m behaviour 



Figure 1. Data input vector set D and Behaviour set B, 
showing the relations of their respective sub- 
sets. For further explanation see text. 



describing measures BRi (by defining BRMINi and BRMAX~), which 

are formulated in terms of the simulation model used: 

where 

The set of ranges of the behaviour measures BRi now defines a 

set BD of allowable behaviours as a proper subset from the set 

of all possible behaviours B or a region BD in the m-dimensional 

behaviour space B : 

Second, a data space D is defined for the simulation model to be 

used. Its n dimensions are the data required for the model, 

namely, the model parameters sensu stricto, import and forcing 

describing data and the initial conditions. Ample ranges DRi 

are established (specifying DRMIN. and DRMAX.) for each of 
1 1 

these data. The ranges DRi are based on our knowledge about the 

system, experimental evidence, or the literature, and define a 

region DD (the set of allowable data vectors) as a proper sub- 

set of all possible data vectors D : 

DR = {DR~ ,DR2,. . . , DRn? , 
DRi = Idi I (DRMINi - < di - < DRMAX,)} , 
DD = {DD. I (DD = {di(i=l,. . . ,n) I (di E DRi) 1) 1 , 

I j 
D D C D  . 

Third, this data space region DD is now randomly sampled N times 

by Monte Carlo methods. Each sample data vector DSi (i=1, ..., N) 
is then used for a simulation run, and the resulting set BS of 



of model behaviours ,BSi(i=l,...,N) is classified according to 

the system's behaviour definition BD: 

The set DS of sample data vectors DSi is accordingly separated 

into two complementary subsets DS' and DS", using the relation- 

ship given by the model 

such that 

~ s '  = {DS~ I ( D S ~  E DS) V DSi (BSi = f (DSi) ) A (BSi E BD) ) , 

With M and N-M elements, respectively, The set DS' of data vec- 

tors DSti giving rise to a behaviour BSmi completely within the 

definition boundaries are considered as random samples from the 

data space region DM corresponding to the behaviour definition 

space region BD of the model: 

DM = { D ~  / (Di E D) V D (Bi = f (Di)) i A (B. EBD)) . 
1 

The total sample of M behaviour generating data vectors is then 

analysed to give some insight into data interdependencies and 

the data space configuration. 



Fourth, the set DS' of M sample data vectors D S ' ~  

is then used for further simulations. Any of the elements or 

DS' = 

combination of L elements (corresponding to the rows in the 

- dll,***,dlM - 
d21,.. fdZM 

dil,dij,diM 

e.. f...,... 

dnl,".,drn - - 

matrix notation) d (i = l,...,n) can now be varied systemati- i 
cally by substituting 

to study the model behaviour reactions. For each value Xk 

(k = 1,...,K) of the systemically varied data vector element di 

a sample of M estimates of behaviour describing measures bsri 

(i = l,...,m) is obtained using the M x K data input vector 

matrix DS*: 

These samples from the behaviour space are used to establish a 

DS* 

m x K matrix of probability distributions PDF i j (i = l,.*.,m ; 

j = 1 ,  ..., K) or a set PDF for the subsets BS* of the behaviour 
j 

DS*il ,DS*ij ,DS*iM 

space region BS* of the model: 



PDFij 
E PDF (i = l,...,m ; J = 1 )  , 

BS* C BS* (j = l,...,K) . 
j 

The set PDF of probability distributions now describes in terms 

of the model behaviour the effects of the initial uncertainty 

in the model data input, represented in the variability of the 

(n-L) data values through the M sets DS* from the data input 
j 

matrix DS*. 

As a concrete example, subjected to such an approach, an 

analysis of the eutrophication process of an Austrian lake was 

performed. However, it is intended to show that the principal 

conclusions of this study also hold true for any complex and un- 

certain system, subjected to deterministic mathematical modelling, 

THE LAKE SYSTEM AND THE ENVIRONMENTAL PROBLEM 

In close cooperation with the Austrian Lake ~utrophication 

Program, Project Salzkammergutseen, the Attersee, a deep, strati- 

fied, oligotrophic lake of almost 4000 million cubic metres and 

a theoretical fill-in time of seven to eight years, was subjected 

to our approach, Basic lake data are compiled in Table 1. The 

investigations on the lake, carried out since 1974 within the 

frame of the OECD Lake Eutrophication programme, indicated a 

slow but steady eutrophication trend for the lake. As a main 

source of phosphorus loading, the discharge of the upstream 
3 Mondsee, a smaller (510 Mi1l.m ) but more eutrophic lake, was 

identified as the major source for eutrophication. 

However, the problem setting is somewhat diffuse. The major 

items in terms of a possible management application are missing: 

there are no well defined objectives (maintaining "sufficiently 

good" water quality?), nor constraints, nor alternatives, which 

could be stated in quantitative terms. This is partly due to 

the multiparametric nature of the "eutrophication problem", 

which should rather be called a "diffuse concern". It was there- 

fore necessary to operationally define one (of course debatable) 

measure for eutrophication or water quality, and select one or a 



Table 1. Attersee basic lake data. 

- -.-- 

Surface area: 4 5 . 9  km 
2  

Catchment area : 4 6 3 . 5  km2 

Maximum depth: 171 m 

Mean depth: 

Volume : 

Length: 2 0  km 

Average width: 2  km 

Theoretical fill-in time: 7 - 8  years 

Average hydraulic loading: 
3  17.5 m *secml 

After Floegl 1974 

few key issues for further study. In light of the above limita- 

tions, it is obvious that the goals of the study in environmental 

terms are not so much management advice but rather insight in 

selected key processes and the relationship of accessible pre- 

diction accuracy to various sources of uncertainty in modelling 

the Attersee. 

The question selected for our modelling approach was the 

relation of the trophic state of the Attersee (measured as 

yearly primary production per unit lake area) to the import of 

particulate as well as dissolved phosphorus. The proportion of 

the Mondsee discharge in the total phosphorus loading of the 

Attersee was estimated with about 5 0  to 6 0 % .  However, absolute 

as well as relative estimates for the loadings have "confidence 

limits" of approximately +/- 5 0 % .  Similar uncertainties are 

found in the estimates of lake phosphorus concentrations. There- 

fore, the available time series of the phosphorus data could not 

be used for a traditional parameter calibration method. This is 

partly also due to the fact that the orthophosphate level in 
-3  Attersee is usually around 1 mg*m , which corresponds to the 

level of detectability. These problems were aggravated by the 

spatial, vertical as well as horizontal heterogeneities in the 

lake: due to the shape and the inflow in the southernmost part 

of the channel-like lake, a south-north gradient in the nutrient 

levels was assumed. However, measurements from two stations, 



one situated in the south, close to the inflow, and the other 

one in the northern part of the lake, showed no significantly 

different phosphorus level. For simplicity (and with regard to 

the lack of data supporting a more sophisticated physical frame- 

work), the lake was therefore considered as a horizontally com- 

pletely mixed water body. 

METHODS 

The definition of a "typical system behaviour" is a crucial 

concept in this approach and warrants some considerations: 

traditional parameter calibration methods search for one single 

point in parameter space, usually through the optimization of 

some objective function, referring to observed "system behaviour". 

Systems behaviour in this context means a deterministic trajec- 

tory in one or more state dimensions. Even if these trajectories 

are referred to as ranges (allowing for measurement uncertainty, 

see Di Toro and van Straten 1979), it is the dynamic 

behaviour (a set of tuplets: time-value, as a rule of one 

single year) of the system which is referred to. However, much 

of the information we have about ecological systems is non- 

dynamic in nature; and much of this non-dynamic information may 

be comparatively certain, due to long term integration or the 

pooling of measurements in aggregated values. The selection of 

one specific year of system behaviour or one specific day chosen 

for a measurement of course contains some arbitrariness, which 

is at least less when we use long term averages, cumulative or 

integrated properties instead (provided such data are available!). 

Pooling of data for such measures does not mean a loss of re- 

liable information at all: whereas single measurements contain 

much (generally unknown) uncertainty, the pooling of measure- 

ments allows us to estimate the reliability of a derived estimate 

in terms of confidence limits. As the proposed approach uses 

parameter space delimitation instead of parameter calibration, 

and therefore a simple "objective function", non-dynamic in- 

formation can easily be used. Each of the available measures 

to describe the typical (long term) system behaviour defines 

one dimension in state or output space, and the ranges for each 



of these measures define a multidimensional box in what I would 

like to call behaviour space. The only thing the "unintelligent 

calibration routine" then does is to check whether a randomly 

chosen point in data space gives rise to a model behaviour which 

completely lies within the behaviour space box or not. 

The behaviour definition used has to include enough of the 

available information to allow for a typical and realistic pic- 

ture of the Attersee behaviour in terms of the simulation model 

output. Seven measures were selected, based on the available 

data and in discussion with the involved biologists. Ranges 

were then specified for each measure. This takes into account 

the incomplete knowledge about the system (measurement uncer- 

tainty) as well as the natural stochastic variability of the 

ecosystem, most obvious in the year-to-year differences in 

certain system states. The measures applied and their allowable 

ranges are: 

1. Total primary production has to be between 50 and 150 

g~*m-2 and year. 

2. Total phosphorus export per year has to be between 2 

and 8 tons. 

3. The peak value of particulate phosphorus in the epi- 

limnion has to occur between day 60 and day 210 

(relative to January 1, start time of the simulations!. 

4. The peak value of particulate phosphorus in the epi- 

limnion must not exceed 15 mg ~ * m - ~ .  

5. The concentration of phosphate during the mixed 
-3 period must not exceed 2.5 mg P*m . 

6. The peak value of parti-culate phosphorus must at least 

be two times the minimum value. 

7. The maximum total phosphorus content of the lake during 

the year must not exceed two times the minimum value. 

These definitions of the Attersee behaviour in terms of 

model output data can now be understood as a seven-dimensional 

box in behaviour space, within which the model behaviour for a 

correspondingly defined empirical range of "input" and initial 

conditions (see Table 2, data 11-13, 17-22) has to be. 



DATA SPACE DELIMITATION: A CALIBRATION ALTERNATIVE 

The term data vector as it is used throughout this paper, 

subsums the total data requirement of a mathematical simulation 

model. This includes, besides the model parameters sensu 

stricto, the initial conditions, and forcing- and import- 

describing data, For an explanation of the description of 

time-varying parameters and forcinqs by means of these data 

(dll-d20) see p. 16 , Figure 2. 

DAYS 

Figure 2. ~escription of time-varying forcings by constant 
parameters: (a) particulate phosphorus production 
rate: dl4 = minimum production rate; dl5 = maximum 
production rate; dl6 = time lag of maximum relative 
to start (January 1 ) . (b) depth of thermocline: 
dl7 = initial thermocline depth; dl8 = final thermo- 
cline depth; dl9 = begin of stratified period; d20 = 
end of stratified period. 



Table 2. Initial data-input space definition 

DATA TYPE UNIT MINIMUM MAXIMUM 

Parameters sensu stricto: 

1 Michaelis constant (phosphorus) 

2 resp./mineralization epilimnion 

3 resp./mineralization hypolimnion 

4 net sedimentation velocity epilimnion 

5 net sedimentation velocity hypolimnion 

6 diffusion coefficient hypolimnion 

7 diffusion coefficient thermocline 

8 extinction coefficient 

9 self shading coefficient 

10 thickness of thermocline 

Import- and forcing describing data: 

1 1  orthophosphate import mg*m-**day-' 
-2 12 particulate phosphorus import mg*m *day-' 

13 hydraulic loading m*day-' 

14 minimum production rate daym1 

15 maximum production rate day-' 

16 time lag of production maximum day 

17 initial thermocline depth m 

18 final thermocline depth m 

19 begin of stratified period day 

20 end of stratified period day 

Initial conditions: 

21 initial orthophosphate mixed period mg*m 0.20 2.00 -3 

22 initial particulate P mixed period mg*mW3 2.50 7.50 



Only a few values, assumed to be certain such as lake 

volume, surface area or depth--which one could call site vari- 

ables--are excluded. Altogether, the model used in this study 

(see p. 16) required 22 data values. Based on the available 

field data (ATTERSEE: Vorlaeufige ~rgebnisse des OECD 

Seeneutrophierungsund des MaB-Prograrnrns 1976, 1978) as well as 

on the literature, ranges were established for each of these 

data. Thus a region in the 22-dimensional data space was defined. 

The ranges were chosen such that for measures, which are 

directly physically interpretable--e.g., the input describing 

coefficients for ortho- and particulate phosphorus loading and 

the hydraulic loading--the available estimates were used as the 

mean. The ranges were then extended symmetrically according to 

the observed variability of the respective measures. More com- 

plex and not directly interpretable parameters (e.g., the algae 

growth rate or the respiration/mineralization rate) were given 

ample ranges with means approximated to values from the 

literature. 

Although there is some ambiguity in the classification of 

the data types, a separation in traditional groups is attempted 

in the table above. 

Given the definition of the range of typical systems be- 

haviour in terms of the model output (p. 12), the initial 

data space should separate in regions giving rise to that be- 

haviour and regions not giving rise to that behaviour. The 

data space for the model and thus (partly) corresponds to a 

parameter calibration method. As there was no a priori information 

about regions of special interest, where the search for appro- 

priate data vectors could be concentrated by assuming specific 

probability distributions within the ranges for the individual 

parameters and data, simple rectangular probability density 

functions were used. 



THE NUMERICAL APPROACH 

In order to study the loading/production relationships of 

Attersee, an appropriate available simulation model was selected: 

the model SEEMOD2 (see Imboden and Gaechter 1978), which predicts 

primary production per unit lake area as related to import of 

soluble reactive as well as particulate phosphorus and various 

forcings and model parameters, was chosen. The relationship be- 

tween phosphorus loading and primary production is described by 

means of a dynamic, one-dimensional, vertical diffusion model 

for soluble reactive phosphorus and particulate phosphorus. It 

takes into account Michaelis Menten kinetics and self shadowing 

of a1,gae. The model uses the lake morphometry, hydraulic loading, 

respiration, sedimentation, vertical eddy diffusion, and depth of 

thermocline. 

Some minor modifications of the model were made in order 

to allow the description of time-varying forcings (production 

rate and depth of thermocline) by means of constant coefficients 

(p. 14, Figure 2). The model originally uses time-varying 

parameters and forcings which are read from tables in the form 

of tuplets time-value. Actual values for each integration step 

are determined by linear interpolation. In order to reduce the 

number of data required, auxiliary coefficients were defined, 

and the time-varying values are described by means of these co- 

efficients as functions of time. 

For example, the time-varying production rate mu is described 
as follows: 

ZEIT = TIME - 81. - dl6 
MU = ~1N(3.1416/180.*ZEIT) 
MU = MU* (dl 5-d.l4)/2. + (dl 5-d14)/2. 

where TIME is the current simulation time (days), dl4 and dl5 

give the minimum and maximum for the production sate, and dl6 

is the time lag of the maximum relative to January 1, the 

starting day of the simulations (see Figure 2). Other poten- 

tially time-varying data were kept constant, as the available 

field data did not allow the specification of a meaningful pat- 

tern. 



With regard to the morphometric situation of Attersee, the 

optional backflux of phosphorus from the sediments was set to 

zero. Altogether, the data requirement of the model (excluding 

"known" parameters such as surface area, maximum depth, etc.) 

, included 22 "parameters" (see p. 13) . The simulation model 
SEEMOD is a comparatively simple model--in the array of avail- 

able lake models--especially in its biological aspects. The 
model does not describe zooplankton explicitly. The effects of 

zooplankton on the algae are included in the first-order loss 

term respiration/mineralization. The purpose of the model must 

consequently be seen in the prediction of loading/production 

relationships on a yearly time scale rather than in the pre- 

diction of short term algae/phosphorus dynamics. 

The simulation model SEEMOD was incorporated as a sub- 

routine in a control programme MONTEC, which randomly generated 

data-input vectors out of the initial data space, started the 

simulation model, and saved the relevant output (see Figure 3, 

cycle 1). Each run required approximately 10 CPU sec and 18 k 

bytes (PDP11/70 under UNIX). Output of each run consisted of 

52 floating point words, and included run number, random 

generator seeds, the 22 elements of the input vector, end time 

of the simulation run (as a check for aborted simulations) and 

26 model output data, 

Altogether, 1000 runs of the model, using the initial data- 

input space, were performed in cycle 1. The output of these runs 

was subjected to the analysation programme ANALYSEI, which sepa- 

rated the output in two groups, GOOD and BAD, according to the 

behaviour definitions listed in Table 2. The programme ANALYSEl 

determined the ranges, means, and standard deviations of the data 

and certain output values for the two groups of runs. To investi- 

gate the influence of the behaviour definition itself on the data- 

input space seggregation, the programme ANALYSEl was also run 

with the definition ranges and boundaries confined and extended 

for 10% of their initial values. Plots were then made of the 

frequency distributions of the parameters for the behaviour 

class. They were established using 10 classes of 1/10 of the 

originally estimated ranges for each of the data. 
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Figure 3. Flow chart of the numerical approach. Capital letters 
denote programmes, lower case for data files; thick 
lines indicate programme sequence and control flow; 
thin lines represent 1/0 procedures; numbers designate 
subsequent cycles. 



The two behavioural classes GOOD and BAD (including a few 

aborted runs) were then analysed using the programme ANALYSE2, 

which established in addition to the basic statistics a para- 

meter/output correlation matrix. Based on the results of this 

analysis, new confined ranges were established for 5 out of the 

22 data. With this new parameter space definition another 

10,000 runs were made, resulting in 293 behaviour generating 

vectors. The same analyzation programmes were used as for the 

first series of simulations in order to study the data-input 

space configuration. Since the 293 behaviour vectors are in- 

dependent random samples from the data space corresponding to 

the defined behaviour space, they were now used for the sub- 

sequent analysis of loading/production relations and for the 

study of long-term system reactions to different loadings. A 

summary of the numerical approach is presented as a flow chart 

in Figure 3. 

RESULTS 

Data Space Configuration 

Only 56 out of the 10,000 sample data vectors from the 

initial ranges were giving rise to a model output completely 

within the behaviour space region corresponding to the be- 

haviour definition (Figure 3, cycle 1). A comparison of data 

statistics for the two classes GOOD and BAD shows that the 

standard deviations from the behaviour class are always lower 

than the corresponding values from the non-behaviour class. 

Ranges and means, however, showed no obvious differences in 

most cases. This was partly to be expected--for the means at 

least--due to the specification of the initial data ranges. 

The ranges for five out of the 22 data could be confined on 

the basis of this first 10,000 runs. The resulting second set 

of data ranges was now again randomly sampled 10,000 times 

(Figure 3, cycle 2). Two hundred and ninety-three data vectors 

from this cycle (Table 3) were found to generate a model behav- 

iour according to the definition (p. 12). 



Table 3. Statistics of the 293 behaviour generating data sets. 

DATA mean S.D. minimum maximum 

1 Michaelis constant 1.00 0.51 0.20 1.99 

2 Respiration (epilimnion) 0.11 0.05 0.02 0.02 

3 Respiration (hypolimnion) 0.014 0.003 0.010 0.024 

4 Sedimentation (epil.) 0.26 0.16 0.01 0.74 

5 Sedimentation (hypol. ) 1.42 0.42 0.32 2.00 

6 Diffusion (hypolimnion) 0.28 0.14 0.02 0.50 

7 Diffusion (thermocline) 0.13 0.07 0.01 0.25 

8 Extinction coeff. 0.29 0.06 0.20 0.40 

9 Self shading coeff. 0.015 0.003 0.010 0.020 

10 Thickness of thermocline 7.54 1.47 5.01 9.98 

1 1 OP import 0.107 0.051 0.012 0.199 

12 PP import 0.929 0.334 0.260 1.500 

13 Hydraulic loading 0.042 0.005 0.030 0.050 

14 Production rate minimum 0.377 0.073 0.251 0.499 

15 Production rate maximum 6.343 2.230 1.180 10.000 

16 Time lag of dl 5 218.5 25.4 180.0 269.8 

17 Initial thermocline depth 4.47 0.85 3.01 5.99 

18 Final thermocline depth 17.64 1.41 15.03 19.97 

19 Begin of stratified period 155.4 16.8 120.9 179.9 

20 End of stratified period 302.6 14.9 280.0 329.8 

21 Initial OP 1.065 0.493 0.200 1.989 

22 Initial PP 3.445 0.713 2.516 6.107 



To investigate the effect of the behaviour definition 
itself on the data space separation, ANALYSE~ was also run with 

the behaviour definition boundaries confined and extended for 

10% of their initial ranges, using the first set of 10,000 data 

vectors from cycle 1. As expected, the number of behaviour 

runs was fewer with the narrow definition set (5 behaviour runs 

as compared to 56 with the original definitions) and larger 

with the wide definition set (203 behaviour runs). 

However, the data means for the three groups (narrow, 

original, wide) as well as the output values investigated did 

not differ significantly. This indicates, that the arbitrari- 

ness in the choice of the definition boundaries does not in- 

fluence the centre of gravity of the behaviour generating data 

space region. This assumption was substantiated by plots of 

the frequency distributions of the data values from the behav- 

iour group (10 classes over the whole initial range, see 

Figure 4). Most of them showed clearly centralised distribu- 

tions, where the kurtosis of the frequency distribution could 

be used as a measure of model sensitivity (under the behavioural 

constraints) for the respective data. Another ind'ication of 

increasing "density" towards the centre of gravity was found 

using a third 'narrow" data space definition. Data ranges 

were reduced to 60-80s of their initial extent, centred 

around the means of the first 17 behaviour cases obtained dur- 

ing the first series of runs. This narrow data space defini- 

tion gave a score of behaviour vectors of 15% as compared to 

0.6% for the initial range and 3% for the second data range 

definition. The distribution and largely overlapping ranges of 

data from the two behaviour classes make obvious that one and 

the same value for certain data could give rise to the behaviour 

or not, depending on the other elements of the data vector. It 

is therefore the data combinations that influence the model be- 

haviour rather than the absolute values of the single data--at 

least within a certain range of the values. The programme 

ANALYSEZ was therefore used to establish a data correlation 

matrix for the behaviour classes (Table 4). 

As expected with regard to the random data vector genera- 

tion, there was no significant interdata correlation in the BAD 

class. In comparison, the data of the behavioural class showed 

distinct interdependencies. Significant positive correlation 

was found, e.g., between sedimentation velocity in the 
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Figure 4. Input data frequency distributions for the behaviour 
class GOOD cycle 1. Class width is 1/10 of the 
initial data range; curves show probability distri- 
butions fitted for the frequency data. d4: net 
sedimentation velocity epilimnion; d5: net sedi- 
mentation velocity hypolimnion; d8: time lag of 
production maximum. 



Table 4. Data-input correlation matrix. 

Significant correlation (r > 0.15 ; n = 293) indicated by If+" 

or "-I1, respectively, highly significant correlation (r > 0.25) by 



epilimnion and begin of stratified period, diffusion coefficient 

in the thermocline and final thermocline depth, sedimentation 

velocity hypolimnion and initial particulate phosphorus concen- 

tration, sedimentation velocity epilimnion and particulate P 

import, etc. 

Significant negative correlations were found, e.g., between 

maximum production rate and sedimentation velocity hypolimnion, 

diffusion coefficient thermocline and sedimentation velocity 

epilimnion, mineralization hypolimnion and orthophosphate import, 

etc. However, only 13 out of 22 data showed significant inter- 

dependencies. d3 (respiration/mineralization hypol.), d4 and d5 

(sedimentation epi- and hypolimnion), dl2 (particulate P import), 

and dl3 (hydraulic loading) showed the most complex relations 

with four or five "dependencies". Also, production determining 

dl5 and dl6 as well as the initial conditions d21 and d22 show 

more than one and partly highly significant dependencies. 

The correlation structure can be explained with reference 

to the function of the individual data in relation to the behav- 

iour defining output values. Data influencing a specific out- 

put, used for the behaviour definition, in the same direction 

and amplifying their effects are found negatively correlated, 

whereas data with opposed effects are positively correlated. 

In addition, the correlation matrix can also be read as a table 

of data-combination sensitivities. These correlations, together 

with the extent of the data ranges and the distribution of data 

within these ranges, determine the "shape" of the 22-dimensional 

data space of the model. 

To gain some more insight in the obviously complex and 

bizarre shape of the data space, plots were made projecting on 

two-data planes. Using a 50 x 50 grid, plots were made for the 
231 combinations from the data matrix. A few examples of such 

plots are shown in Figure 5. The 56 (293 respectively) points, 

representing the behaviour vectors, were found to show signifi- 

cant departures from a random distribution pattern in most cases. 

Most plots show distinct aggregation in certain regions of the 

projection planes. The high dernensionality of the problem would 

require some more sophisticated methods for the analysis of the 

data space. Questions such as whether there exists a unique data 



Figure 5. Data space projections on two-data planes. 50 x 50 
grid, 293 data vectors from cycle 2. Single vectors 
indicated by It.", more than one per grid cell by "a". 



space region corresponding to a given region in state space, or 

whether such a region is closed or not, are of course of con- 

siderable theoretical interest. However, within the frame and 

under the limitations of the study presented here, such ques- 

tions have to be postponed. 

THE PRAGMATIC PREDICTION METHOD 

In order to study the relationship of phosphorus loading 

and primary production, the 293 behaviour generating data 

vectors, independently generated and thus random samples from 

the "true" but structurally only roughly known data space, were 

used for another series of simulations (Figure 3, cycle 3). In 

this series of simulations (each for a one-year's period only) 

the load-determining coefficients dl8 and dl9 were now system- 

atically varied from a total loading (d18+d19) of 0.0 to 

5.0 mg P m-2 and day. 21 loading classes, in steps of 0.25 mg-2 

and day were used for each of the 293 data vectors. Within 

these 21 loading classes, various ratios of particulate 

phosphorus to orthophosphorus, termed loading scenarios, were 

used. Scenarios of OX, 10% and 25% orthophosphate in the total 

phosphorus loading were studied. Each scenario consisted of 

21 * 293 = 6153 runs of the basic simulation model SEEMOD. For 

each loading class, 293 estimates of total primary production 

were thus obtained for each of the scenarios. The estimates 

have to be understood as the first year's reaction of the lake 

system to a certain loading, where the initial conditions at the 

beginning of that year reflect the empirical range of the lake's 

current state. 

Primary production estimates were then arranged as a func- 

tion of total phosphorus loading in a regression analysis. A 

linear and a power model were used, the linear model giving the 

larger correlation coefficient. An analysis of variance was 

performed to test the significance of the regressions 

(F>592.,d.f:20,N>6000;P<0.001). Regression curves for the three 

loading scenarios together with the 95% confidence limits for a 

new (single) estimate of primary production for a certain load- 

ing, are shown in Figure 6. Having the zero-loading class in 

common, the intercept does not differ significantly, whereas 

the slope of the regression curves increases with increasing 



orthophosphate percentage in the total loading. Pooling the 

three scenarios, which seems justified as the actual orthophos- 

phate ratio in the total phosphorus loading is uncertain, will 

therefore result in a progressively increasing uncertainty in 

the higher loading classes, as indicated in the divergent re- 

gression lines in Figure 6 .  For zero phosphorus loading, an 

average production of 45 gC m-2 and year is estimated, and the 
-2 

average production increase per mg P m and day loading is pre- 

dicted with 3 6  gC m-2 and year ( ~ 0 . 8 ,  N=6161) . 9 5 1  confidence 

intervals for the slope estimate b are fairly narrow (below +/- \ 

2.0%) and the differences between the scenarios are significant, 

indicating a significant correlation between orthophosphate per- 

centage in the loading and the production per loading slope. 

However, the differences are small in absolute terms. 

TOTAL PHOSPHORUS LOAD1 NG rng.6? day' 

Figure 6. Loading/Production regression analysis for loading 
scenarios of O X ,  l o % ,  and 2 5 3  solube reactive phos- 
phorus in the total loading. 2 9 3  estimates per 
loading class and scenario. Broken lines indicate 
9 5 %  confidence limits of production estimates for a 
given loading. 



BEHAVIOUR SPACE AND OUTPUT PROBABILITY DISTRIBUTIONS 

The estimates of states or outputs for a specific loading 

situation have to be regarded as random samples from a probabil- 

istic behaviour space (for a discussion of this concept see pp. 38.39). 

Any specific measure can therefore be represented by the cross 

section of the behaviour space along one dimension, interpret- 

able as a probability distribution. The programme ANALYSE3 was 

used to establish and analyse these distributions. 

The estimates of primary production for each loading class 

were arranged as frequency distributions for production classes 

of 10 g C/m2 and year. As the estimates could be regarded as 

independent random samples from the behaviour space correspond- 

ing to the data space represented by the 293 "sample behaviour 

vectors" (see above), theoretical probability distributions were 

fitted for the sample estimates' frequency distributions. For 

an example see Figure 7. The area under these curves for a 

given range of production on the x-axis now represents the corres- 

ponding probability of the production to be within this range for 

a given "known" loading situation and the (specified) uncertainty 

in the residual knowledge about the system. Questions such as: 

what are the chances for the production to be below or above a 

certain level (or within a certain range) for a specific loading 

can now be answered (under the above assumptions on the residual 

uncertainty, the appropriateness of the chosen model, and the 

validity of the behaviour generating data sets outside the em- 

pirical range of behaviour, of course). 

These probability distributions were now arranged in a three 

dimensional setup, where the production classes are shown on 

the x-axis, total phosphorus loading is represented in the 

z-axis, and the y-axis represents probability density. Figure 8 

shows such an arrangement for the 10.0% orthophosphate loading 

scenario, which corresponds closely to the nean of field esti- 

mates of the phosphorus fraction proportions in the import to 

the Attersee. 



YEARLY PRIMARY PRODUCTION g ~ . m 2 .  yeail 

Figure 7. Loading/Production relationships. Curves show proba- 
bility distributions fitted for the model ou$,.put £re- 
quency distributions (class width: 10 gC me' and year). 
90% and 952 confidence intervals for the mean 
estimates are indicated. 
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Figu re  8.  Loading/Production r e l a t i onsh i -p s  f o r  21  phosphorus 
l oad ing  c l a s s e s .  P roduc t ion  is e s t i m a t e d  f o r  t h e  
f i r s t  y e a r  of  t h e  i n d i c a t e d  l oad ing ,  s t a r t i n g  w i t h  
t h e  e m p i r i c a l  r ange  of i n i t i a l  c o n d i t i o n s ;  1 0 %  load-  
i n g  s cena r io .  

The perhaps  most obv ious  f e a t u r e  o f  t h i s  r e p r e s e n t a t i o n  i s  

t h e  i n c r e a s i n g  u n c e r t a i n t y  i n  t h e  h igh  l oad ing  c l a s s e s .  T h i s  

cou ld  a l s o  be  seen a s  an  i n c r e a s e  i n  p r e d i c t i o n  u n c e r t a i n t y  w i t h  

i n c r e a s i n g  d i s t a n c e  (from t h e  range  o f  e m p i r i c a l  i n p u t s .  To 

t e s t  t h i s  hypo thes i s ,  c o e f f i c i e n t s  o f  v a r i a t i o n  ( t h e  s t a n d a r d  

d e v i a t i o n  expressed  as a  pe r cen t age  o f  t h e  mean) w e r e  c a l c u l a t e d  



for the production estimates from the 21 loading classes. Plots 

of these coefficients vs. loading show a distinct minimum around 
-2 1 mg P m and day, which corresponds to the mean loading of the 

behaviour runs (Table 3) and is close to the field estimate for 

average P loading (Figure 9). Therefore, as one could intuitively 

preclude, the precision of a prediction decreases with increasing 

changes in the inputs, or with increasing deviation from the des- 

criptive case. In terms of the probabilistic behaviour space 

this would mean that the (normalized) volume is more and more 

distributed along its dimensions, showing no steep gradients 

along the axes. 

TOTAL PHOSPHORUS LOADING mg.nf2-day' 

Figure 9. Coefficient of variation of production estimates for 
different P-loading. 



LONG-TERM PREDICTION ACCURACY 

The above series of estimates of yearly primary production 

per unit lake area for different phosphorus loadings predicts 

the lake's state in the first year after the change in the load- 

ing conditions. The initial states in this analysis reflect 

the empirical current (uncertain) state of the lake. The pre- 

dicted production states can of course be of a transient nature, 

especially for larger changes in the loading conditions. The 

analysis was therefore extended for a ten years' period of 

changed loading conditions. Simulations were restricted to the 

10% loading scenario. Starting with the range of initial con- 

ditions under the current loading, 150 vectors were used with 

the 21 loading classes for runs of ten years each. The state 

of the model was recorded for each year, using 16 behaviour 

describing data. Means, standard deviations, minima and maxima 

were then determined for each of these measures for each year 

and for all loading classes. The analysis of the long-term 

simulations (ANALYSE4) showed more or less unchanged and stable 

conditions (mean estimate from 150 runs each) in time for a 

total loading of 1.5 mg P m-2 and day. Below and above this 

level, the system experienced changes in its trophic state, re- 

turning to a new "equilibrium" after five to six years 

(Figure 10). Such hyperbolic patterns can be found in almost 

all behaviour measures investigated (comprising, besides yearly 

primary production, the minimum/maximum and start/end values of 

the state variables OP and PP, the day of the OP maximum, as 

well as yearly values for total P output, sedimentation, and net 

loading. ) 
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Figure 10,  Mean e s t i m a t e s  and ranges o f  year ly  primary 
production from t h e  long-term s imulat ion  runs 
f o r  d i f f e r e n t  t o t a l  phosphorus loadings .  



In most cases, the precision of the mean estimates 

(measured as coefficient of variation), shows a similar pattern 

in time, namely, rapid increase in the uncertainty in the first 

four to six years which then asymptotically approaches a certain 

level (Figure Ila). Also, the ranges of the estimates are di- 

verging rapidly in the first few years and are then more or less 

constant. The relationship to the phosphorus loading classes or 

the distance from the empirical range - of inputs is the same as 

described above (p. 30, Figure 9). However, some of the behaviour 

variables show quite different patterns. The coefficients of 

variation as well as the ranges of the estimates are decreasing 

in time, e.g., in the case of the yearly phosphorus sedimenta- 

tion or the starting values of OP and PP, PP minimum, or the day 

of PP maximum (Figure Ilb). The coefficient of variation as 

well as the ranges for the OP minimum is almost constant in time 

and is also independent from the loading class, being more or 

less constantly slightly below 100%. The OP maxima, in com- 

parison, exhibit the "standard" behaviour with an asymptotic 

increase of the coefficient of variation and diverging ranges 

in time. 
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Figure 1 1 .  (a) Coefficient of variation in time for various 
behaviour variables and loading classes, showing 
the general pattern of asymptotic increase in 
time (left) , (b) and some non-standard patterns 
(right). 



DISCUSSION 

The approach outlined above suggests the explicit inclus- 

ion of uncertainty in the data describing a system in the 

numerical modelling methods. To "preserve" some of the initial 

uncertainty throughout the numerical methods should allow to 

judge the accuracy and credibility of the final results of the 

modelling exercise. This does of course not reduce or at least 

make obvious the arbitrarinesss and uncertainty arising from 

other sources than the data required for the modelling--neverthe- 

less, it is suggested as one step towards more rational modelling. 

However, the methods proposed are rather brutal and straight- 

forward. There are obvious technical limitations for this ap- 

proach, especially when data spaces of high dimensionality are 

to be established. The only excuse for such an inelegant 

method is that the usefulness of complicated models of high 

state- and consequently data space dimensionality has to be 

questioned in principle, at least if predictions for highly 

complex and variable (and as a rule only badly known) systems 

are attempted. Not only the data have to be appropriate for a 

certain model, but also the model has to be appropriate for a 

certain problem with a certain system: that means rational in 

the sense of an earlier discussion (Fedra 1979). Only state 

variables and processes measurable in the field and relevant in 

terms of the problem addressed, and only model parameters which 

are directly physically interpretable should be used in such 

models, which consequently will be rather sparse. 

The basic idea of the approach is the use of sets of 

"allowable" data and behaviour vectors or regions in data and 

behaviour space, respectively, instead of single, "optimum" 

(by arbitrary definition) vectors. The explicit variability of 

these sets represents the uncertainty in the information we 

have about the system, including statistical as well as sto- 

chastic variability. 

In the language of set theory, which I used in the intro- 

duction for a compact notation, we can say, using the axiom of 

replacement (Fraenkel et al. 1973): if F is a function (the 

model) and D is a set, then there exists a set B which contains 

exactly the values F(d) for all members d of D which are in D1(F). 



D'(F), the domain of F, is the class of all elements d for which 

there is a b such that <d,b> E F, and R(F), the range of F, is 

the class of all elements b for which there is a d such that 

<d,b> E F. Domain and Range of the model are here equivalent 

to corresponding regions in data- and behaviour-space respec- 

tively. 

However, in the numerical approach we are dealing with ran- 

dom samples from the corresponding sets (domain and range) from 

the data and behaviour space respectively. Referring to 

Figure 1, the set BD, the population of all "realistic" be- 

haviours (however unsatisfactorily defined from the ecological 

point of view) is well defined. But for the corresponding set 

DM in data space there is no operational definition at all. 

It is only (operationally) described by the sample DS'. Now, as 

DS' C DD 

and also 

DS' C DM 

it is obvious that the samples DSi can only be drawn from the 

intersection of DM and DD: 

Consequently, there exists the complementary subset DPI" 

DM" = IDi I (Di E DM) (Di 9 DD) ] . 
As the set DS* (which is used for the predictions) is basically 

derived from DS', we have to make the assumption 

DM' >> DM" I 

which means that DS' can be taken as a representative sample 

from DM. DD represents our a priori knowledge about the para- 

meters, forcings, imports, and initial states. If we specify 



ample ranges on the basis of this knowledge for the DRis 

(see pp. 6,15), we should expect that DM is included in DD 

and therefore 

DM" = . 
If, however, DM" is of considerable size (which we can only 

estimate from the distributions of the di within the specified 

ranges DRi, see p. 21 and Figure 4), we might take that as an 

indication that the model is structurally inadequate, .or that 

the single data do not affect the model behaviour in corres- 

pondence to our conception of their physical and ecological 

(measured and estimated) counterparts. Consequently, the model 

could not be used for predictions: if "unrealistic" data 

vectors (DM") give a reasonable behaviour within BD (represent- 

ing our best knowledge of the empirical systems behaviours), 

the model as our theory on the processes and relations of the 

natural ecosystem is unable to reliably predict the systems 

reactions to changed "input" (in a broad meaning) conditions. 

Only if there is a consistent correspondence between data and 

behaviour space regions in terms of physical and biological 

plausibility and our empirical knowledge, the model could 

reasonably be used for predictions. The condition on DM" is 

of course not independent from the definition of BD. The more 

rigid this behaviour definition can be made (without arbitrary 

and unjustified assumptions on field data accuracy, of course), 

the "sharper" the separation of DS into the two complementary 

subsets DS1 and DSV1 will be. Consequently, our knowledge about 

Dl4 will increase. 

A central issue of the proposed approach is the concept of 

a probabilistic behaviour space of systems and models. The 

concept of the behaviour space is somewhat different from the 

state space concept in the time domain. The state space can 

be defined as the set of all possible values which the state 

vector can assume at time t (Timothy and Bona 1968). In con- 

trast, each of the behaviour space dimensions is defined for a 



certain region (or discrete point) in time, which may be quite 

different for different dimensions. Pleasures with different 

time relations, such as daily means or yearly totals can be in- 

cluded, and the largest time interval over which a measure is 

determined, gives the order of the behaviour space. In practice 

and for models of ecosystems, this will generally be one year. 

In addition, these measures comprise properties of state var- 

iables and their relations as well as flows connecting them or 

outputs. The measures are primarily defined in accordance with 

the available data or measurable properties of a system (which 

of course are not restricted to the state variables of our 

models). Formally, we can write 

where x is the state vector, to and te denote start and end- 

time of the observation or simulation cycle, and F is the set 

of algorithms used to derive the behaviour measures from the 

dynamic model. 

However, for the description of a system, the meaning of 

this concept is quite obvious: for any interval in time there 

exists one point in a behaviour space (the maximum possible 

dimensionality of which corresponds to the time interval re- 

ferred to) of a system, which describes its "state" in a general 

sense. And for any period in time containing several such in- 

tervals, there exists a set of behavioural events characterized 

by a mean behavioural vector and some variability around it or 

by the relative frequency (or probability) of behavioural 

events. However, our empirical knowledge is certainly incom- 

plete and consists only of a few samples (including some measure- 

ment error). These samples are used to estimate the "true" be- 

haviour means and variabilities. The description of a system 

in terms of an estimate of a mean behaviour vector only (if not 

in terms of a single (year's) data set, arbitrarily determined 

by availability), neglects part (and I believe a most important 

part) of the available information. For many ecological sys- 

tems a mean behaviour (or "inputw) vector is of much less impor- 

tance than the extreme values of some of its elements and the 



probability of their coincidence. The description of such sys- 

tems in terms of a probabilistic behaviour space seems therefore 

to be a useful concept, especially from the ecological point of 

view. 

Considering now predictions from models, which are calibrated . 

in a wide sense in reference to such a probabilistic behaviour 

description, it seems obvious that the probabilistic element has 

to be conserved. Its relative importance of course increases if 

we predict future behaviour, because to the uncertainty in the 

parameters and initial states there adds the uncertainty of fu- 

ture imports and forcings. The above example of course uses the 

simplest possible behaviour and also initial data space region 

structure by assuming rectangular probability density functions, 

and using the ranges only of the behaviour describing measures. 

However, with increasing knowledge about the system some of these 

data and measures could be described using centralized PDFs. The 

area of search for appropriate data vectors would consequently be 

restricted, and additional information on the expected distribu- 

tion of the behaviour estimates, generated from random samples 

from the "appropriate" data space region, were available. 

One of the merits of the above study may be that it includes 

all the data required by a model. On the other hand, this leads 

into some problems in the method for predictions, where some ele- 

ments of the behaviour generating data vectors are varied system- 

atically. The behaviour generating data space region of the model, 

explored under the constraints of the behaviour definition, is 

only roughly known by the points given by the behaviour vectors. 

Each of these vectors is of course a behaviour vector only for 

one value of all its elements, and when any of these elements is 

now varied systematically disregarding the correlation structure 

of the data space, additional uncertainty is introduced. In the 

above example, a significant correlation between particulate P 

loading dl2 and the sedimentation- and diffusion-describing data 

d4, d5 and d7 was found in the data set GOOD2 (pp. 21,29)0 There- 

fore, as dl2 was varied systematically, combinations of these 

data disregarding the correlation structure are likely to result 

in biased estimates. A selective use of the available data vec- 

tors according to the correlation matrix (Table 4) was considered. 



Nevertheless, the results of the (technically much easier) un- 

selective use of the vectors showed only a very small number of 

"outlayers" due to extreme data pairing, so that with regard to 

the high number of estimates no filtering procedure was applied 

to the results. However, this simplification will of course re- 

sult in some overestimation of the scattering of the behaviour 

estimates. The increasing uncertainty of the estimates with in- 

creasing distance from the "empirical" range of the data-input 

(p. 30, Figure 9) can partly be attributed to this simplifica- 

tion in the numerical methods. 

Another simplification in the model used, namely, setting to 

zero the optional backflux of phosphorus from the sediment, will 

also bias the results, especially in the very low and zero load- 

ing classes. Without doubt, the backflux of phosphorus from the 

sediments, although reasonably neglected in the empirical or 

higher ranges of phosphorus loading, will be of considerable 

relative importance in the case of very low phosphorus import. 

This is especially true for the long-term estimates of produc- 

tivity, where a somewhat higher level of primary production 

could be expected. Generally, this leads back to the principle 

problem of a constant model structure and constant parameters, 

not related to inputs and states (p. 4 ) .  With regard to the 

above study, one might, for example, argue that the production 

estimates for the high phosphorus loading are unrealistic, be- 

cause another nutrient such as nitrogen or silicon will become 

"limiting" when phosphorus levels are continuously increased. 

Again, uncertainty due to "structural uncertainty" also in- 

creases with increasing distance from the range of empirical 

conditions and behaviour. 

If one is willing to accept all the partly rather arbitrary 

assumptions and simplifications on which this analysis is based, 

several conclusions for the lake system could be drawn. The 

first and perhaps most important one might be that the current 

knowledge about the lake system allows only very rough and 

rather trivial predictions of its future trophic state under 

changed loading conditions. The only way to improve the pre- 

cision of such predictions will be to improve the data basis 



for the analysis--and not to refine t5e models used. It is im- 

portant to point out that improvement of the data basis requires 

model- or analysis-specific data. Only with a more confined 

initial data space and behaviour definition, the uncertainty of 

the predictions can be reduced. Consequently, only parameters 

which are directly physically interpretable should be used in 

ecosystem models designed for predictions, because only for 

such parameters the ranges can reasonably be confined on the 

basis of appropriate field data and experimental results. An- 

other important requirement is that the level of aggregation in 

the model and in the measurernents/experiments has to be at 

least balanced: monoculture laboratory experiments can hardly 

be used to estimate, e.g., a Michaelis aonstant for a model, 

which uses only one state variable for all primary producers. 

In situ experiments or appropriately designed laboratory experi- 

mentation have to account for high diversity and stochastic 

variability in ecological processes. Consequently, the number 

of measurements and experiments has to be increased and the 

spatial and timely scale has to chosen according to the respec- 

tive scale of the models used. Physiological precision on the 

microscale simply is lost effort if the final analysis then 

represents the algae of several million cubic metres in a 

single number. 

For the current example of the Attersee and the model 

SEEMOD2 this would mean that a specific sampling and experi- 

mental strategy had to be adopted in order to improve the data 

basis without increasing available manpower. Sampling could be 

restricted to two layers (above and below the thermocline) and 

one station only. At the same time, an increase in sampling 

units per sample (replicate sampling) should allow an estimate 

of the precision of sample means. Reducing the number of 

sampling d-ates during the mixed period would allow to increase 

sample density in spring, when rapid changes in phytoplankton 

and phosphorus concentrations are to be expected. Also, as the 

net sedimentation velocity of particulate phosphorus turned out 

to be of considerable importance for the model used, some addi- 

tional experimental effort could help to improve the data basis 

required. Another example might be phosphorus import, where a 

restriction to total phosphorus only seems to be possible; on 



the other hand, replicate sampling again would allow an estimate 

of the sampling error, which would help to define the data ranges 

for the model. 

However, such suggestions are closely related to the model 

used and consequently to the specific purpose of the analysis. 

Different models with different underlying purpose might require 

different sampling and experimental strategies. Nevertheless, it 

seems important to point out the relationship between data col- 

lection strategies and the accessible precision of a problem 

specific analysis. Simple monitoring of a few standard vari- 

ables, with unselective timing and spacing of samples, may well 

be insufficient for a specific analysis. Therefore, data col- 

lection and mathematical ecosystems analysis should be designed 

together in light of the environmental problems addressed. 

SUMMARY 

1. A stochastic approach to the quantification of model uncer- 

tainty is proposed, using a simple model of lake phosphorus 

dynamics. The approach suggests the explicit inclusion of 

data uncertainty in the numerical methods, and some straight- 

forward methods of simulation and analysis are presented, 

which allow to describe a probabilistic model behaviour. 

2. To define the behaviour of the lake system studied using un- 

certain data, ranges are specified for seven selected be- 

haviour describing measures. Measures chosen are yearly 

primary production, yearly phosphorus export, allowable 

maxima for the state variables OP and PP, a time range for 

the algae spring biomass peak, and relational measures such 

as minimum relative increase of algae biomass during the 

year, or the maximum ratio of maximum to minimum total phos- 

phorus in the lake during one year. The ranges for these 

behaviour variables can be understood as forming a box in a 

seven-dimensional behaviour space, representing in its ex- 

tent the uncertainty in the environmental data as well as 

the stochastic variability of the ecosystem. 

3. Twenty-two data-input values (comprising parameters, import/ 

forcings, and initial conditions) are required for the simu- 

lation model used. Ranges are again specified for each of 

the data, and the resulting region in data space is randomly. 

sampled using Monte Carlo techniques. More than 26,000 

sample data vectors (from three slightly different data space 



regions) are used for one-year simulations of the lake each, 

and the model behaviours obtained are classified according 

to the above behaviour definition. 

4. Behaviour generating sample data vectors are now used for 

another series of almost 50,000 simulation runs, where the 

P-loading determining data are systematically varied in 

21 classes from 0.0 to 5.0 mg/m2 and day. Several ratios 

of 0P:PP in the import are studied, and simulations are ex- 

tended for up to ten years. 
\ 

5. The estimates of behaviour variables obtained in these simu- 

lations are analysed, and probability distributions are 

fitted for the relative frequencies of the behaviour vari- 

ables for different P-loading situations. 

6. The analysis of the propobabilistic model behaviour indicates 

clearly that prediction uncertainty increases with increasing 

distance from the empirical range of inputs. Prediction un- 

certainty also increases with simulation time, asymtotically 

approaching a certain level, which depends on the initial 

data uncertainty (reflected in the variability of the sample 

data vectors used) as well as on the distance from the empiri- 

cal range of input conditions/behaviour. 
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