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Foreword from Elena Rovenskaya 

This report resulted from the vast experience of its author, Academician of the Russian 
Academy of Sciences, Arkady Kryazhimskiy, in the field of the methodology of systems 
analysis.  

Academician Kryazhimskiy started working at IIASA in 1993 as the principal 
investigator in the Dynamic Systems Program and went on to coordinate and lead this 
program until 2009. In this role Academician Kryazhimskiy used his mathematical 
expertise in areas ranging from optimization methods to dynamic games in order to 
advance IIASA’s methodological approach. Before retiring from his senior management 
position at IIASA, Academician Kryazhimskiy oversaw the transition of the Dynamic 
Systems Program into the Advanced Systems Analysis Program in 2011. Since then 
and until his unexpected passing away in 2014, Academician Kryazhimskiy was able to 
devote all his energy at IIASA to his passion of mathematical research.  

IIASA’s interdisciplinary environment also encouraged Academician Kryazhimskiy to go 
beyond the traditional boundaries of mathematics aiming to bridging gaps between 
methodology and applications. This report is his last written piece. It presents 
Academician Kryazhimskiy’s vision of the definition and practice of systems analysis, 
which, I am sure, will be educational for any systems analyst, and especially for early-
career scientists joining IIASA.  
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Preamble 

IIASA’s 40th Anniversary Conference (October 2012) triggered numerous scientific 
discussions in the IIASA community, both before the Conference and after it. Many 
interesting ideas emerged. One of the ideas was that a group of IIASA’s systems 
analysts would summarize IIASA’s understanding of systems analysis in a collective 
paper. The author of this discussion paper was invited to join the project, which is still 
in progress. This discussion paper can be a basis for the author’s contribution to the 
project. 

There is a strong diversification in ‘definitions’ of systems analysis. We sharpen our 
view if we agree, at least temporarily, that systems analysis lies, by definition, in the 
field of methodology. We sharpen our view even stronger if we say that systems 
analysis develops and applies methods for exploration of complex social-environmental 
systems. This is the viewpoint held in this discussion paper. 

The paper makes an attempt to position systems analysis as a ‘methodological 
discipline’ (somewhat similar to mathematics) by describing a set of ‘standard rules’ 
characteristic for that ‘discipline’. All those rules have certainly been repeatedly used in 
research; the paper summarizes them in a 'table form' that may hopefully serve as a 
zero approximation to a future ‘road map for a systems analyst'.  

 

Arkady Kryazhimskiy 

Laxenburg, 27 November 2013 
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Systems Analysis as a System of Methods. 
How to Study Complex Social-environmental Systems?   

 
Arkady Kryazhimskiy 

 
 

1  At the end of a big cycle 
 
In Ancient Greece science was integrative1. Philosophers desired to understand the 
universe as a whole. Philosophical speculations led, quite naturally, to specific 
questions focused on parts of the universe. The desire to answer ‘partial’ questions 
triggered the formation of scientific disciplines.  

Within each discipline, the number of ‘disciplinary’ questions and their complexities 
grew rapidly. The disciplines were losing connections. Knowledge was becoming 
sharper, deeper and less integrative.  

In parallel, generation of truly new disciplinary knowledge was becoming extremely 
expensive in terms of both money and effort. At the edge of tremendous findings – a 
controllable nuclear reaction, cheap renewable energy, control on aging, and remedies 
against fatal diseases – the movement towards these findings has rapidly slowed 
down. Extreme research efforts have atomized into thousands of paths ‘orthogonal’ to 
the main directions. 

Disciplinary questions become finer, sharper... Andrew Wiles’s proof, in 1995, of the 
famous Fermat theorem – an exciting avenue, which opened up in 1637 and was 
gradually becoming thinner – was a full stop in a long and dramatic story of research. 

Isn’t this example a warning signal? Doesn’t it tell us that further refining disciplinary 
research may lead to similar dramatic endings instead of showing us how to resolve 
critical problems? 

If we take this viewpoint, we easily come to a claim that in parallel to developing well-
established disciplinary research, a new, alternative way of progressing in science 
needs to be tried.   

What will be a new way of progressing in science?  

We get a simple logical key to answering this question if we state, once again, that the 
warning signals appeared in a recent phase of the long process of moving away from 
integrative knowledge towards specialized knowledge. Reversing this statement, we 
can conjecture that a new way of progressing in science will be reversing the trend – 
initiating a motion from specialized findings towards integrative knowledge.  

1 Today’s name of the scientific degree, ‘Doctor of Philosophy’, common for all scientific disciplines, is a 
trace of the integrative character of ancient science.  
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2  Starting a new cycle  
 
Global challenges – a critical state of the environment, limits in natural resources, a 
growing social inequality, world economic crises – create acute demand for systems 
analysis – a new integrated scientific discipline that would focus on characterizing 
possible futures of complex large-scale social-environmental systems and actions that 
may lead to these futures.  

The key questions are: WHAT and HOW. 

What are the major phenomena the systems analysts should focus on in their studies 
of the futures of complex social-environmental systems? 

How to study the futures of complex social-environmental systems?   

In numerous studies of complex social-environmental systems, general features of 
such systems have been revealed and understood – nonlinearity, multiplicity in scales, 
heterogeneity, risk and uncertainty among others (Levin et al, 2012). These are the key 
phenomena to be researched, both in general settings and in particular case studies.  

Experience shows us that in systems analysis prognostic research and diagnostic 
research go hand by hand; understanding the future (forecasting) is not separable from 
understanding the past. Powerful analytic tools – theory of adaptive systems, control 
theory, optimization theory, game theory, numerous modeling techniques (see Levin et 
al, 2012 for an overview) – have been used to study complex social-environmental 
systems in both theoretical and applied contexts. This provides us a basis in our 
thinking of how to answer question HOW. 

In this discussion paper we address question HOW. In various combinations, the 
techniques we discuss here have been used in numerous studies of particular research 
questions. However, to our knowledge, there has so far not been made an attempt to 
look at these techniques systematically, put them together, classify them and suggest a 
prototype ‘toolbox’ for systems analysts. In this paper we make a step in this direction. 
We hope that further collective efforts in collecting, developing and testing techniques 
for exploring complex social-environmental systems will gradually lead us to formation 
of a clearly defined instrumental spectrum of systems analysis. 

3  Historical data, imitation methods and models 
 
A historical data set tells us about the real changes, which the complex social-
environmental system under investigation survived in the past. The historical data set is 
highly important from a systems analysis perspective; it reflects all the phenomena 
(nonlinearities, cross-scale interactions, heterogeneities, etc.) that drive the system.  

Theoretically speaking, all sorts of data possess that property. However, in the 
spectrum of all data that are principally available, some types of data are more 
informative than the others if we take into account the goal of research. Selection and 
collection of most informative data is a special important (sometimes very expensive 
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and time consuming2) task in systems analysis3. Here, for the sake of brevity, we do 
not discuss this task in any detail (leaving it for further discussions), and focus on 
techniques for utilizing the data.  

Suppose we are given a historical data set (say, a time series) and want to convert it 
into a meaningful statement about the system’s future. To do so, we are bound to use 
some method for imitation of the system’s dynamics; here, we call such methods 
imitation methods. 

Choosing an adequate imitation method is the key technical challenge. The complexity 
of a large-scale social-environmental system is usually so high and our knowledge 
about it is (despite the data at hand) so poor that we are principally unable to construct 
a method that would capture the system’s dynamics precisely4. 

In other words, in systems analysis we are forced to deal with methods that fail to 
mimic the systems dynamics to a degree, at which we can (like in the case of 
mechanical systems) claim, in advance, that our method-based forecasts are accurate, 
or at least not misleading. In this situation, prior to the use of the chosen imitation 
method one needs to assess the method in order to understand its forecasting ability. 

In a traditional view, an imitation method is a model – a set of mathematical formulas 
representing (to a certain degree of accuracy) the system design. In our discussion, we 
follow that tradition to a considerable extent; we associate basic types of imitation 
methods with models. In the end we go further and consider multi-model imitation 
methods involving several (many) models (section 9).    

4  Stages in model-based research  
 
Models representing the systems through mathematical relations are test beds for 
various analytic tools – from rigorous mathematical analyses to brute force simulations, 
which help us, indirectly, understand the operation of the systems. 

In this section we briefly announce typical stages in model-based research (see Table 
1). In sections 5 – 8 we comment on these stages in some detail. 

A model-based research starts with choosing a modeling paradigm and a model’s state 
space – two basic ‘coordinates’ of a model as a research instrument. Next two stages 
are construction of a model with the chosen basic ‘coordinates’, and assessment of the 
model, including a diagnostic analysis. Generation of a model-based forecast finalizes 
the research effort.  

Typically, the first three research stages are not separated in time. Quite often, one 
updates the model, based on results of model assessment, and one changes the 
initially chosen modeling paradigm or the initially chosen state space, based on 

2 For example, Wittemyer (2011) assessed the relations between African elephant mortality and various 
economic data (livestock and maize prices, change in national and regional GDP, the normalized 
difference vegetation index, and others) in Kenya to find economic metrics serving as indicators of 
changes in human use of and resulting effects on natural resources. 

 
3 Here, for brevity, we do not discuss how to cope with data errors, which can be significant and even 
misleading (we slightly touch upon this issue in section 9; see footnote 12). 
 
4 In this context, the complexity of social-environmental systems is of a different type than that of 
mechanical systems; a mechanical system, no matter how complicated it is, is fully described by the 
mathematical model coupling the system's design with mechanical laws. 
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experience in constructing and assessing the model. The updating process may go 
through several iterations. 

 
Table 1: Stages in model-based research 

Stage 1 Choosing a modeling paradigm and a state space 

Stage 2 Constructing a model 

Stage 3 Assessing the model 

Stage 4 Generating a model-based forecast 

 

5  Stage 1. Modeling paradigms and state spaces 
 
A modeling paradigm is a disciplinary niche for a model, understood in a mathematical 
sense. The modeling paradigm pre-defines the style of the model-based research. A 
model can follow approaches in modeling of dynamical systems (see, e.g., Ljung and 
Glad, 1994) and pretend to imitate the system’s dynamics by imitating relations 
between the system's components; it can follow theory of optimal central planner 
control (Pontryagin, 1962; see also Aseev and Kryazhimskiy, 2007, presenting a 
control-theoretic technique applicable to problems of economic growth) and represent 
global optimization principles; it can follow theory of differential games (Isaacs, 1965; 
Krasovskii and Subbotin, 1988; Basar and Olsder, 1982) and implement global 
equilibrium principles; it can following theory of evolutionary games (see, e.g., Weibull, 
1995) and demonstrate learning/adaptation schemes. The list can certainly be 
extended. Complex models can lie under several modeling paradigms (occupy several 
disciplinary niches) simultaneously. 

A model’s state space is a set, within which the model’s states are allowed to vary. The 
model’s state space characterizes the model’s ability to capture details, its resolution 
scale. The more complex is the model’s state space, the more details are captured by 
the model and the finer is the model’s resolution scale. 

Finite-dimensional vector spaces (whose points are finite-dimensional vectors of given 
dimensions) are the state spaces for widely used deterministic models described by 
finite-dimensional ordinary differential equations and their discrete-time analogues. 
Deterministic models described by partial differential equations and infinite-dimensional 
ordinary differential equations operate in infinite-dimensional functional spaces whose 
points are functions defined on solid sets5. By choosing a deterministic model, one 
‘declares’, implicitly, that one has a good understanding of the mechanism driving the 
system.  

Stochastic models deal with probability distributions of points. Their state spaces are 
structured as probability spaces, in which points act as elementary events. Usually, one 
chooses a stochastic model if the mechanism that drives the system is uncertain 
though one has an understanding of a statistics related to its operation. 

5 Here, by a solid set we mean a set whose cardinality (a mathematical generalization for the number of 
elements) is not less than that of the set of all real numbers (the cardinality of the continuum).  
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The points serving as states for the deterministic models (as elementary events for the 
stochastic models) are as usual regarded as direct prototypes of real, ‘physical’ values 
characterizing (not necessarily entirely) the real systems; the models and systems 
‘speak the same language’.  

In a less straightforward model design a model’s states are images of the ‘physical’ 
values; the transformation converting the ‘physical’ values into their images is not 
necessarily one-to-one. The transformation ‘compresses’ the ‘physical’ space by not 
distinguishing between the ‘physical’ points having the same image. The use of such 
image states can be efficient in forecasting radical structural changes (catastrophes)6. 
Indeed, on the one hand, the image variables representing clusters of ‘physical’ points 
are by construction less sensitive to weak perturbations in the dynamics than the 
‘physical’ points themselves. On the other hand, transitions between the clusters reveal 
remarkable irregularities in the model’s behavior and can signal on upcoming critical 
changes (catastrophes).  

Table 2 summarizes our preliminary classification of modeling paradigms and state 
spaces as ‘basic coordinates’ for models. 
 

Table 2: Modeling paradigms and state spaces 

 
Modeling paradigms 

 

 
Disciplinary 

niches 

 
Models’ functions 

 

 

Modeling  
of dynamical 
systems 

Imitation  
of the systems’ dynamics 

 

 

   

Optimal control Implementation  
of global optimization 
principles 

    

Differential games Implementation  
of global equilibrium 
principles 

    

Evolutionary 
games 

Implementation  
of learning/adaptation 
schemes 

    

 Vector 
spaces 

Probability 
spaces 

Image 
spaces 

State 
spaces 

 

6  Stage 2. Construction of models 
 
As mentioned in section 4, construction of a model is not separated from the choice of 

6 For example, Kryazhimskiy and Beck (2002) use binary, ‘minus’ and ‘plus’, images of short-term 
transitions to assess tendencies towards catastrophes; the transitions regarded as dangerous have ‘minus’ 
images and those regarded as safe have ‘plus’ images. Keilis-Borok et al (2003) use binary images 
(codes) for crime trends to forecast homicide surges. 
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a modeling paradigm and a state space, and from the choice of a model assessment 
method (see Table 1, stages 2 and 3). Accordingly, in this subsection we partially 
overlap with the previous one (discussing modeling paradigms and state spaces) and 
the next one (discussing model assessment methods).  

We dare to say here that choosing a modeling paradigm is, conceptually, not a too 
difficult task. Principally, one can have in mind the following simplified pattern. 

If the mechanism that drives the system does not include non-specified time-varying 
inputs or actions (the system is ‘closed’), or if we, for some reason, decide to ignore 
such actions, approaches in modeling dynamical systems will be an appropriate 
disciplinary niche and our model’s mission will be to imitate the system’s dynamics.  

On the contrary, if we view the system as an ‘open’ system driven by time-varying 
actions not given in advance, we construct an ‘open’ model and equip it with an action 
selection principle, based on which we study the model’s behavior by generating 
selected (extreme, most likely, etc.) paths within the infinite pool of the model’s 
potentially allowable action-driven trajectories.  

Action selection principles base on several methodological approaches. 

The scenario-based approach is widely used. Scenarios represent exceptional ‘typical’ 
actions (as given functions of time) and ‘encircle’, in some sense, the set of all the 
system’s allowable paths into the future. Usually, the design of a set of scenarios 
results from an informal analysis, and the number of scenarios, especially for complex 
models, is small. Each scenario generates a ‘closed’ model with ‘frozen’ actions. Each 
‘closed’ model represents a variant of the system’s behavior and fits with the modeling 
dynamical systems approach as a disciplinary niche.   

The agent-based modeling approach (see, e.g., Bonabeau, 2002) aims at exploring 
repeated interactions of multiple agents that from their actions based on ‘typical’ 
individual feedbacks. Combinations of the agents’ ‘typical’ feedbacks result in a global 
action selection principle and transform the original ‘open’ model representing the 
agents’ society with ‘free’ actions into a ‘closed’ one.  

A central planner action selection principle aimed at finding the globally optimal 
scenario for the system’s performance brings us to optimal control theory as a 
disciplinary niche. A well-known example of the use of the global optimization principle 
is Nordhaus’s Dynamic Integrated Climate Economy (DICE) model (Nordhaus, 1994), 
which optimizes the global social welfare utility index under a feedback from the global 
climate system. Of special interest are cases where the optimal scenario agrees with 
historical data (checking this is part of the model assessment task – see Table 1 and 
section 7 below). In such cases the optimal scenario turns into a business-as-usual 
one, which gives us a strong reason for conjecturing that optimization (with respect to 
the given long-term performance index) is an underlying law in the system’s 
performance (see Figure 2 in section 7 for an example). As usual, the process of 
construction of a model realizing the central planner’s optimal action scenario includes 
a serious control-theoretic analysis, through which the original ‘open’ model is 
converted into the final ‘closed’ one. 

If the system is driven by several agents pursuing individual interests, theory of 
differential games or theory of evolutionary games will be an appropriate disciplinary 
niche.  

Theory of differential games (as well as the related theory of multi-stage games) 
suggests methods for selecting the equilibrium (mutually acceptable and therefore 
most likely from a theoretical perspective) action strategies for ‘forward looking’ agents 
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that measure their benefits based on the system’s overall performance. A well-
developed branch of theory of differential games, the theory of zero-sum differential 
games, covers in particular a typical situation, in which the single agent steers the 
system affected by non-predictable and non-observable dynamical disturbances 
(treated as actions of the agent’s opponent whose interest is opposite to that of the 
agent). The theory suggests techniques for constructing the agent’s optimal feedback 
action strategy that maximizes the agent’s global benefit under the worst action 
strategy of the opponent.  

Theory of evolutionary games departs from an assumption that interacting and 
interdependent agents act ‘myopically’, ‘boundedly rational’, trying to adapt and, if 
possible, win in the changing environment. The theory is close in spirit to the agent-
based modeling paradigm and refers primarily to models of biological evolution and 
models of social behavior.  

Action selection principles help us explore futures of ‘open’ systems by modeling 
exceptional (‘boundary’, ‘most likely’, ‘most typical’) behaviors. A technical motivation 
for the use of this ‘selective’ approach is evident: it is hardly possible to model all 
possible futures. However, in some situations, advanced control-theoretic and 
computational techniques allow one to construct, for any given future ‘target’ point in 
time, the attainability domain of an ‘open’ model – the set of all the model’s states 
reachable at the ‘target’ point under all possible action scenarios (see Figure 1).  

 

 
 

 

 

 

 

As opposed to the choice of a modeling paradigm, the choice of a model’s state space 
and the model’s complexity is the most difficult and most sensitive task in the process 
of model construction. Traditionally, researchers aim to achieve the highest possible 
degree of precision in imitation of the systems’ dynamics. A common tendency is to 
use complex models operating in high-dimensional state spaces and incorporating 
numerous relations between their compartments7. Such models are usually 

7 This tendency is represented by, for example, complex agent-based models. 
 

Figure 1: The attainability domain for Nordhaus’s simplified DICE model (Nordhaus, 1994) for year 2100, 
with 1965 as the starting year, and the landscape of the values of the global social welfare utility index; the 
small black circle is Nordhaus’s optimal point (Smirnov, 2005). 
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mathematically intractable in the sense that they leave no room for rigorous 
mathematical analyses, appealing, primarily, for brute force simulations. Moreover, for 
such models (which are inevitably inaccurate), there is always a danger that small 
failures distributed across the models’ compartments and links will multiply and result in 
fatal modeling and forecasting failures. Model assessment exercises with the use of 
historical data (see section 7) can help estimate a probability of fatal failures; however, 
the cost of such assessment exercises – in terms of time, effort and reliability of the 
result – grows dramatically with the increase of the model’s complexity. Simplifying the 
situation, we can say that reliability of a model-based forecast is inverse proportional to 
the model’s complexity and to the dimension of the model’s state space. 

In this context, aggregated, low-dimensional, mathematically tractable (and well 
assessed against data – see section 7 below) models produce the most reliable 
forecasts; a drawback of such forecasts is that they are highly aggregated and miss 
many important details. Models operating in simple image spaces (whose elements 
represent clusters of ‘physical’ points – see section 5) and having extremely rough 
resolution scales have also a potential for being highly reliable from a prognostic point 
of view; on the other hand, such models are targeted to forecasting strong events 
(catastrophes) only and unable to capture any smooth trends. 

Finding the optimal compromise in the tradeoff between a model’s complexity and its 
ability to produce reliable forecasts is the key challenge at the stage of model 
construction. 

7  Stage 3. Model assessment  
 
Three ‘universal’ model assessment techniques are calibration, retrospective 
forecasting and sensitivity analysis.  

Calibration is a procedure, through which one adjusts a model to data. Calibration is 
usually understood as identification of the model’s parameter values, which give the 
best fit with the historical data. For deterministic models the best-fit parameter values 
minimize the distances between the models’ trajectories and the historical ones. For 
stochastic models producing bundles of trajectories with different probabilities, the 
best-fit parameter values are usually defined to be the ones that provide the maximum 
likelihoods for the historical trajectories. 

Retrospective forecasting is a diagnostic stage of analysis. A goal is to qualify the 
model’s ability to mimic the system’s dynamics in the past. If we find that the model is 
satisfactory in this respect, we arrive at an important diagnostic conclusion that the 
system operated (in the past) in agreement with the chosen modeling paradigm and 
the chosen model design. This gives us a basis for stating that the model will most 
likely produce a satisfactory forecast (‘most likely’ implies here that we assume that the 
system’s dynamics will not survive a serious change in a subsequent period).  

Retrospective forecasting is organized as a test for checking the ability of the calibrated 
model to produce forecasts in retrospect. To perform the test we split the historical time 
series in two periods – a virtual past and a virtual future, the latter following the former. 
Then we ‘travel to the past’ – virtually, we bring ourselves to the end of the virtual past. 
We use our model to process the data in the virtual past and to produce a forecast for 
the virtual future. Finally, we ‘travel back to the present’ and compare our model-based 
forecast for the virtual future with the data series for the virtual future. Assessing the fit 
between the model-based forecast and data in the virtual future, we make our decision 
on the model’s ability to forecast. To get better knowledge on the model’s ability to 
forecast, one carries out retrospective forecasting tests several (many) times, each 
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time choosing new virtual past and virtual future periods. Based on the resulting set of 
forecast-data fits, one assesses the model’s ability to forecast statistically (see Figure 2 
for an illustration)8. 

 

 
 

 

 

 

 

 

 

 

 
Sensitivity analysis is an instrument for testing robustness of model- and data-based 
forecasts to errors in data and in the model’s design. The underlying phenomenon is 
bifurcation. Bifurcation occurs if a small change in a model’s parameter values makes 
the model switch to a radically different behavior. Such behavior switches happen if the 
changed parameter values cross the so-called bifurcation curve  

For a simple model, one can find the bifurcation curve analytically and see if the vector 
of the reference parameter values identified through calibration lies far enough from the 
bifurcation curve, or close to it. In the former case, the reference model configured by 
the reference parameter values is robust in the sense that if one assumes that the 
calibration result is (slightly) inaccurate, one can still believe that the model- and data-
based forecast given by the reference model is essentially correct; let us call this 
situation regular. If the reference parameter values lie close to the bifurcation curve 
(the irregular situation), the reference model is sensitive – the model configurations 
corresponding to different behaviors provide alternative forecasts. In both situations, 
the model-based forecasts (supported by a successful retrospective forecasting 

8 To make the statistics fitter to standard definitions of probability theory, one can carry out ‘statistically 
identical’ retrospective forecasting tests with fix lengths of the virtual past and virtual future periods.  

 

Figure 2: A retrospective forecasting test (Krasovskii and Tarasyev, 2010). The red curve is the capital-per-
worker time series for the UK (in ratios to the level of 1950) in period 1950-2006 (Groningen Total Economy Data 
Base, http://www.ggdc.net/). The four other curves are the simulated optimal capital-per-worker growth 
trajectories for the UK for the same period (each simulated trajectory is optimal in the sense that it maximizes the 
integrated consumption index – a standard growth criterion used in theory of endogenous economic growth). The 
optimal trajectories are simulated using an aggregated optimal economic growth model. The model was 
calibrated four times, with four virtual past data series – 1950-1974 (dark blue); 1950-1984 (pink); 1950-1994 
(lavender); and 1950-2004 (blue). In the three former cases, the retrospective forecasts for virtual futures cover, 
respectively, 1975-2006, 1984-2006 and 1995-2006, and show good fits with data, telling us that the model 
produces reliable forecasts. Based on success in retrospective forecasting, the researchers extended the 
simulated trajectories beyond 2006 to provide forecasts for the real (not virtual) future. These forecasts show a 
trend change in a not far-distant future – linear growth (seen in the time series) switches to saturation. 

 9 

                                                 

https://rhine.iiasa.ac.at/owa/redir.aspx?C=057d1ae5a38349008903711ece0d3772&URL=http%3a%2f%2fwww.ggdc.net%2f


exercise) can be considered as reliable (here we come back to our earlier statement on 
reliability of simplified models – see section 6). 

For a complex model, we have, typically, no way to find the bifurcation curve (manifold) 
analytically and, consequently, no way to understand in advance if the situation is 
regular or irregular. We approach some understanding if we carry out a numerical 
sensitivity analysis – run the model several (many) times, with different parameter 
values concentrated around the reference ones. In the regular situation the simulated 
trajectories lie close to each other, in the irregular one we see divergent trajectories. 
The cost for sensitivity analysis – in terms of time, effort and reliability of the result – 
grows with a model’s dimension and complexity. For super-complex models having 
thousands of parameters (including those that are not measurable in principle), various 
combinations of which can, potentially, configure bifurcation manifolds, it is hardly 
possible to carry out meaningful sensitivity analyses. As mentioned in section 6, 
forecasts based on very complex models cannot be regarded as reliable ones. 

8  Stage 4. Model-based forecasts 
 
A model-based forecast results from extension of the model’s trajectory into the future. 
If the model is satisfactorily assessed against historical data, we are quite confident 
that the forecast is reliable9. However (in contrast to the case of mechanical systems), 
we can never guarantee that our model-based forecast is correct. A model assessment 
exercise (see section 7), no matter how accurate and successful it is, is coupled with 
the system’s history (past data). The latter may not capture some ‘hidden’ phenomena 
in the system’s dynamics. A model agreeing with the system’s history may fail to 
adequately represent the system’s dynamics in a subsequent period if a ‘hidden’ 
phenomenon becomes active.  

If we do expect a new ‘hidden’ phenomenon to become active in the future and if we 
understand (to some extent) the way it acts, we can, accordingly, modify our model 
design prior to forecasting. Having no data on the operation of the new phenomenon, 
we are bound to modify the model based only on our theoretical understanding of the 
expected change. To compensate for the fact that the model’s parameters responsible 
for the new phenomenon are not calibrated against data, we can vary these 
parameters in some reasonable range and produce a corresponding set of the model’s 
future trajectories. The latter set serves then as a ‘fuzzy’ forecast showing us a range 
of the system’s possible paths into the future under the action of the new phenomenon 
that is not understood in all detail and has never operated in the past. 

The model assessment techniques discussed in section 7 – calibration, retrospective 
forecasting and sensitivity analysis – aim at raising reliability of model-based 
‘quantitative’ forecasts expressed in terms of values of ‘real’ variables characterizing 
behavior of particular real systems under investigation. There are forecasts of a 
different type – ‘qualitative’ ones. A qualitative forecast characterizes trends and 
relations expected to occur in the system’s future, without specifying these in terms of 
numbers10. A qualitative forecast results straightforwardly from a theoretical or 
numerical assessment of a model in no strong connection to real data.  

9 Based on the results of model assessment (see section 6), we can complement the forecast with 
estimates for the forecasting errors.   
10 The statement ‘species X will extinct’, with no indication of any time horizon, is an example of a 
qualitative forecast. See Figure 6 for an example of a qualitative forecast. 
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9  A multi-model approach 
 
Here we come back to the statement (see section 3) that the laws that drive a complex 
social-environmental system are never perfectly understood. A rephrased formulation 
is that any model captures the system’s operation only partially. Consequently, the use 
of a single model can be misleading11. This leads us to a conjecture that analysis of 
complex social-environmental systems should tend to employ a multi-model approach. 
Following the multi-model approach, we use a family of models showing the system 
from different angles and complementing each other (see Figure 3 for a metaphoric 
illustration).  

 

 

 

 

 

 

 

 

 

 

Once we decide to use a family of models, we abandon the area of (single-)model-
based research (discussed in sections 4 – 8) and enter a broader area of research 
based on multi-model imitation methods (we use the terminology introduced in section 
3).  

A multi-model imitation method employs alternative models that may differ structurally. 
The core of multi-model imitation is integration of models – methods for generation of 
integrated knowledge about the systems, based on pieces of knowledge provided by 
the ‘partial’ models employed (see Figure 4 for an illustration). 

 

 

 

 

 

 

 

 

 

 
11 For example, any model from a given family of models can fail to be satisfactory in retrospective 
forecasting (see section 7). 

 
Figure 3: Earth maps as a metaphor for the multi-model approach. A detailed map is an image of a part of the 
Earth surface. Due to the curvature of the Earth surface, the image, which is quite precise at the center, loses its 
precision at the periphery. If we want to get a better precision in some small area in the periphery, we look at 
another map centered in that area. Thus, two, or more maps serve as complementary models of a part of the 
Earth surface. (This approach is used in differential geometry in studies of complex manifolds using families of 
local Euclidean maps.) 
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Model integration has already been used in studies of complex social-environmental 
systems (see Figure 5 and Figure 6 for examples); in particular, the idea of model 
integration lies behind participatory methods (see, e.g., Pahl-Wostl, 2002), which 
synthesize knowledge from experts’ opinions serving as individual models.  
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Figure 4: An illustration to integration of models. A plane is observed from two observation stations. Each station 
provides limited information on the location of the plane – the straight line connecting the station and the plane. 
The two lines are two alternative models for the plane's location. The plane is located at the point, at which the 
lines intersect. Intersecting the lines is a method to integrate the models.  

 

Figure 5: Simulated time series of the food-secure (PS) and food-insecure (PI) rural populations (left) and the 
resource stock (right) for the detailed (EM) and simplified (RM) PEDA (population, environment, development, 
agriculture) models for Mali in 1995-2027 (Lutz et al, 2002). The simplified model disregards the urban population, 
aggregates over education, age and sex, and reduces the number of population states from 1600 to two (food-
secure and food-insecure rural population). A good fit in the simulation results (which is also seen in other 
simulations corresponding to different parameter values) shows that the composition of the population states and 
the resource degradation process are insensitive to the education, age and sex structures. The latter observation is 
an integrated knowledge obtained from the use of two alternative models. 
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Although model integration does not seem to be commonly recognized as a promising 
research avenue today, it may have a strong potential to develop into a powerful 
instrumental framework for systems analysis. One can think of a ‘model calculus’ – a 
structured family of partially formalized model integration techniques. Below we 
suggest a sketch on possible model integration methods.  

 

In the model integration toolbox, cross-verification of models will be an important 
instrument. Models viewing a complex uncertain system from different perspectives 
cross-verify each other by registering identical phenomena in the system’s behavior; in 
this situation we get a strong evidence for regarding the registered phenomenon to be 
a true feature of the system12.  

 

Quite often, due to modeling and observation errors, the outcomes from different 
models disagree with each other (even observation data resulting from different 

12 A good fit in the simulation results for the full and simplified PEDA models in the Mali case study (see 
Figure 5), and the   common features of the simulated alternative trajectories of the global energy system 
(see a comment to Figure 6) are illustrations for the model cross-verification phenomenon.  
 

 
Figure 6: A snapshot from a typical model run of a model conceptualizing the emergence of new 
technologies and their combinations as a random process (reflecting the unpredictability of technological 
innovation) subject to resource constraints and economic incentives (Ma et al, 2008). Ellipses represent 
primary energy technologies, which combine into alternative technology chains. The technology color codes 
indicate the level of development of various technologies ranging from large (red), very small (either 
emerging embryonic technologies or technologies being phased out, yellow) to technologies not used at all 
(white). Arrows indicate the directions of linkages, whereas the extent of linkages is given as numerical 
values of the corresponding energy flows. The individual trajectories obtained in 200 runs can be viewed as 
alternative models for historical development of the global energy system. The researchers analyzed the 
alternative histories and revealed their common features. For example, they found that the simulated 
evolution of the global energy system is characterized by increase in complexity (in terms of the number of 
energy chains), a ‘complexity peak’, and decline in complexity; another finding is that in all simulations there 
is a powerful tendency towards “decarbonization” – decrease in the carbon intensity of energy systems. 
These and other general conclusions (qualitative forecasts – see section 8) resulting from analysis of multiple 
simulations integrate pieces of knowledge provided by the individual; models. 
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observation methods can differ essentially13); the models seem to be inconsistent. 
Situations of a similar type are addressed by theory of ill-posed problems (Tikhonov 
and Arsenin, 1974), which deals with solutions in poorly defined cases including those 
where the constraints for the sought solution are incompatible. The theory suggests 
regularization techniques allowing one to ‘reconcile’ the constraints and find 
appropriate ‘surrogate’ solutions. We expect that this theoretical background can be 
used in the context of systems analysis. 

 

In analysis of complex social-environmental systems, in situations where models’ 
outcomes disagree with each other, one is usually inclined to look for the ‘most 
accurate’ model, implying that the models are ordered in accuracy (though the order is 
unknown). In this context, a challenging question would be if there is a test for 
identifying the ‘most accurate’ model.  

 

One can expect that, typically, the models whose outcomes disagree with each other 
are not ordered in accuracy (‘model A’ can in some aspects be more accurate and in 
some aspects less accurate than ‘model B’).  In this situation, the models can be 
assumed to be ‘equally inaccurate’. We come to a need to develop a methodology for 
synthesizing an ‘integrated outcome’ (an analogue of a ‘surrogate’ solution in theory of 
ill-posed problems) that would incorporate the features of the models’ alternative 
outcomes. A thorough analysis of extreme (possibly, very rare) cases where the 
models’ outcomes ‘come to agreement’ could be the key.  

 

Often, in analysis of a complex social-environmental system, one departs from 
‘disciplinary’ models representing different compartments of the system (for example, 
an economic model and an ecological one) and capturing the impacts of other 
compartments through exogenous parameters14. Traditionally, one follows the 
integrated assessment modeling approach (see, e.g., Argent, 2004) and establishes 
links between the ‘disciplinary’ models (by letting, for example, part of the output 
variables of the economic model enter the ecological model as exogenous inputs and 
vice versa).  

 

This approach has a very clear motivation. Its drawbacks are not so obvious but can be 
critical. The complexity of the resulting integrated model (in terms of the dimension of 
the state space and the number of links between the model’s compartments) is higher 
than the ‘sum’ of the complexities of the original ‘disciplinary’ models. Adding more 
‘disciplinary’ modules, we find that the complexity of the integrated model grows much 
faster than the number of the ‘disciplinary’ modules. A highly complex integrated model 
can turn out to be not reliable enough (in section 6 we argued that ‘reliability of a 
model-based forecast is inverse proportional to the model’s complexity and to the 
dimension of the model’s state space’). Moreover, due to nonlinear integration of the 
system’s parts in the entire complex system, simple mechanical interlinking the 
‘disciplinary’ models can result in an inadequate representation of the entire system 

13 See, e.g., Nilsson, et al (2007) for analysis of uncertainties in estimates for regional terrestrial biota full 
carbon accounts. 
 
14 In analyses of spatially distributed systems one can use ‘regional’ models instead of ‘disciplinary’ ones, 
or both types of models. 
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even if all ‘disciplinary’ models represent the corresponding parts of the system 
satisfactorily.    

 

To compensate for possible errors in the outcomes from the complex integrated model, 
one can apply the cross-verification instrument (see above) involving the original 
‘disciplinary’ models and/or partially integrated models.  

 

A promising line in model integration research will be developing ‘dialogues’ between 
complex agent-based models and conceptual aggregated models. The agent-based 
models operate at microscopic scales. They flexibly implement detailed assumptions 
about the agents’ behaviors but do not serve as instruments for generating general 
conclusions. Conceptual aggregated models operate at macroscopic scales. They 
capture general trends but are unable to interpret them at the micro-level. A 
challenging task will be to interlink agent-based and aggregated models so that the 
aggregated models will convert the microscopic trajectories generated by the agent-
based models into macroscopic trends, and, conversely, the agent-based models will 
interpret the macroscopic trends suggested by the aggregated models in terms of 
microscopic behaviors.  

We conclude with a presumption that research employing the multi-model approach will 
go, typically, through the same stages as research employing a single model (see 
Table 1 in section 4). One starts with choosing modeling paradigms and state space for 
the models to be employed. Next, one constructs and assesses models and model 
integration techniques. Generation of a forecast is the final stage in research.  

10  Monitoring and updating 
 
We expect systems analysis to be a process of constant generation of new knowledge 
about complex social-environmental systems. Generation of new knowledge includes 
refining knowledge through learning from experience. Forecasts produced earlier 
provide solid bases for learning. In the course of time, a forecast produced earlier 
overlaps with a recent history and turns into a retrospective one (see section 7); one 
can see if it fits with recent historical data15. As time moves on, a basis for retrospective 
model assessment (in both single- and multi-model settings – see section 9) is 
automatically extended, which appeals for carrying out retrospective model 
assessment repeatedly, on-line. Periodically, the changes in the current assessment 
results will make the researchers update their instrumental research components – the 
modeling paradigms, state spaces, models and estimates of the models’ forecasting 
abilities (as mentioned in section 4, the research stages are not separated from each 
other). On-line monitoring/updating will be a promising approach to constantly 
enhancing our knowledge about complex social-environmental systems and their 
futures. 

 

15 Simulated time series for 1995-2027 (Lutz et al, 2002), shown in Figure 5 were generated as forecasts. 
Now they appeal for comparison with data for the last decade.  
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