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Social dynamics within decomposer communities
lead to nitrogen retention and organic matter
build-up in soils
Christina Kaiser1,2, Oskar Franklin3,4, Andreas Richter2 & Ulf Dieckmann1

The chemical structure of organic matter has been shown to be only marginally important for

its decomposability by microorganisms. The question of why organic matter does accumulate

in the face of powerful microbial degraders is thus key for understanding terrestrial carbon

and nitrogen cycling. Here we demonstrate, based on an individual-based microbial com-

munity model, that social dynamics among microbes producing extracellular enzymes

(‘decomposers’) and microbes exploiting the catalytic activities of others (‘cheaters’) regulate

organic matter turnover. We show that the presence of cheaters increases nitrogen retention

and organic matter build-up by downregulating the ratio of extracellular enzymes to total

microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover,

increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on

enzyme producers, leading to less enzymes being produced at the community level. Our

results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a

future climate.
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I
n biogeochemistry, microbial decomposition of organic matter
has traditionally been modelled using first-order decay rates
based on the chemical quality of the litter. Over the last

decades, it has become increasingly evident that physiological
processes and microbial responses to environmental conditions
control decay rates, rather than litter chemistry1–3. Consequently,
during the last decade conceptual models with a more explicit
implementation of microbial controls, such as microbial biomass,
extracellular enzyme activities and microbial physiology
have been developed4–13 and the incorporation of microbial
physiology into ecosystem models has repeatedly been
suggested4,5,14.

First attempts to account for microbial physiology in large-
scale biogeochemical models have demonstrated a strong impact
on model predictions5,6,11,15. In particular, the scaling of
microbial physiological parameters (regulating, for example,
microbial growth efficiency or extracellular enzyme kinetics)
with expected environmental change has led to largely diverging
projections of future soil carbon (C) stocks11,14. The high
sensitivity of model predictions to small changes in microbial
physiological parameters highlights the need to better understand
microbial mechanisms of organic matter decay in order to be able
to make robust predictions of future soil C stocks.

The microbial physiology currently implemented in soil
models is generally based on mechanistic concepts for single
microbial cells3–5,15, which are scaled up to microbial
communities. This follows the inherent assumption that the
effects of physiological responses of microbes will be additive.
Soil, however, is a complex system characterized by nonlinear
interactions among functionally different microorganisms in a
spatially structured and chemically heterogeneous environment.
Albeit often neglected in microbial ecology, it is well known from
other scientific disciplines such as physics, mathematics and
theoretical biology that in complex systems nonlinear interactions
between components at the micro-scale can lead to emergent

system behaviour and new qualitative features at the macro-
scale16–18. One key question for adding mechanistic details to soil
models thus is: is it feasible simply to scale up physiological
responses expected from single microbes to microbial
communities? In a previous modelling study, we have shown
that adaptations at the community level regulate the relative rates
of C and nitrogen (N) recycling, which in turn improves
nutritional conditions for microbes. The possibility of such
self-regulating features of microbial communities is not yet
considered in earth system models.

A specific characteristic of microbes is that they produce
compounds that are released to their environment, for example,
extracellular enzymes for the deconstruction of polymeric
resources, polysaccharides for biofilm formation or quorum-
sensing molecules19. Once released by the producing
microorganism, these compounds become functionally available
to other microbes in their surroundings20–22. The inevitable
production of such ‘public goods’ fosters social (synergistic and
exploitive) interactions among microbes19. Experiments have
shown that subpopulations of microbial ‘cheaters’, which exploit
public goods in which they did not invest resources, arise quickly
whenever microbes producing these goods are present23–25.
Microbial ‘cheaters’, as a special form of opportunistic microbes,
are thus an inevitable part of any microbial decomposer
community. In a pioneering study, Allison demonstrated
through individual-based modelling that competition between
cheaters and microbes producing extracellular enzymes
constrains the decomposition of complex compounds13. Taking
this approach one step further, here we examine how social
interactions at the micro-scale can affect and control large-scale
fluxes and dynamics of C and N during organic matter turnover.

We use a recently developed individual based, spatial and
stoichiometrically explicit model, which simulates C and N
turnover during litter decomposition at the mm-scale in a spatially
structured environment. In our model, ‘decomposers’ produce
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Figure 1 | Social dynamics among microbial decomposers affect C and N turnover rates. Effect of microbial cheaters on (a) decay rates, (b) community

carbon use efficiency (both time-averaged over model runs until 60% C loss), (c) C in microbial products and (d) N in microbial products (both aggregated

over the grid at the point of 60% total C loss). Open circles: no cheaters, that is, all microbes have equal extracellular enzyme production rates of 0.12

(given as fraction of C uptake after deduction of maintenance respiration invested into extracellular enzyme production). Light-red symbols: mixed

communities of enzyme producers with production rates of 0.12 and cheaters with enzyme production rates of 0.04 (‘mild’, circles), 0.02 (‘strong’,

squares) or 0 (‘full’, triangles), which otherwise have the same traits as enzyme producers. Dark-red triangles: mixed communities of enzyme producers

and cheaters with enzyme production rates of 0 with a higher maximum growth rate compared with enzyme producers (Table 1). Error bars indicate model

stochasticity by displaying s.d.’s among five independent model runs (error bars smaller than symbol size are not displayed).
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extracellular enzymes to break down complex organic com-
pounds, which are either of plant origin (primary substrate) or
dead microbial cells (microbial remains, secondary substrate).
The products of this enzymatic activity become available
to nearby microbes via diffusion, allowing competitive and
synergistic interactions at the micro-scale, which lead to emergent
system dynamics at the macro-scale. We define ‘cheaters’ as
microbes investing less into extracellular enzyme production than
decomposers, which means that they benefit from the invest-
ments of their competitors26. Our results demonstrate that the
presence of microbial cheaters not only slows down decay rates,
but also significantly increases the accumulation of N-rich
microbial products during litter decay. Moreover, the presence
of microbial cheaters made the decomposer system behave like a
buffer: any increase in extracellular enzyme efficiency is
outbalanced by increased abundances of cheating microbes,
which lowers the amount of enzymes produced at the community
level. Our results suggest that microbial cheaters may play an
essential, but so far overlooked, role for C and N cycling in
terrestrial ecosystems.

Results
Social interactions slow down decay rates. The presence of
cheating microbes in our model has a strong negative effect on
overall litter decay rates across all initial litter C:N ratios (Fig. 1a).
If cheaters possess the same functional traits as the main enzyme
producers (except for enzyme production), the model predicts
that decay rates are reduced by around 50%, no matter if the
former are only partly or fully cheating (Fig. 1). If cheating
microbes have a higher maximum growth rate than the
main enzyme producers, as often observed for opportunistic
microbes27, the slowing-down effect is magnified due to cheaters
being more competitive, with decay rates being reduced by up to
90%. Initial litter N content also influences decay rates in the
model: decay rates decrease with increasing initial litter C:N
ratios, particularly in the absence of cheaters, due to increasing
N limitation (Fig. 1a). The presence or absence of microbial
cheaters, however, has a far stronger influence on decay rates than
initial litter N content (Fig. 1a). Decay rates slow down
specifically at low initial litter C:N ratios when fast-growing
cheaters are present, as fast-growing microbes are especially
competitive at high N availability28 (Fig. 1a, dark-red triangles).
When initial C:N ratios are high, however, fast-growing cheaters
are less competitive compared with cheaters that grow at the same
(slow) rate as enzyme producers, because slow-growing microbes
cope better with N limitation in our model28. The negative
influence of fast-growing cheaters on decay rates is thus
diminished when C:N ratios are high, which is visible from
decreasing microbial products and carbon use efficiency (CUE),
both coming closer to the levels seen in the absence of cheaters
(Fig. 1c,d).

Cheaters alter spatial dynamics. Cheaters in our model pre-
ferentially occur along the edges of growing patches of main
enzyme producers (Fig. 2, Supplementary Movie 1). This pattern
occurs because edges of enzyme-producer patches represent
zones of high availability of diffusive compounds, making them
highly competitive areas for enzyme producers and cheaters alike.
Competition for space along the edges, however, constrains the
expansion of enzyme-producer patches (Fig. 2). This hindered
growth of decomposer patches exacerbates the negative effect of
cheaters on decomposition rates in our model (beyond pure
resource competition), in particular when cheaters have higher
maximum growth rates than decomposers (Figs 1a and 2).
Over time, the presence of cheaters generally leads to a higher

heterogeneity of both the remaining primary substrate and the
accumulating microbial products (Fig. 2).

Social interactions increase N and C accumulation. The
presence of microbial cheaters considerably improves C and N
use efficiency of the microbial community, especially at low N
availability. Without cheaters, community carbon use efficiency
(CCUE) tends to decrease with increasing N limitation, that is,
with increasing litter C:N ratio (Fig. 1b). This is due to the
overflow mechanism implemented in our stoichiometric model at
the microbial physiology level: N limitation leads to a greater
proportion of C being respired, as it cannot be used for biomass
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Figure 2 | Spatial distributions of microbes and substrate in litter

decomposition. Distributions with and without microbial cheaters.

‘Community distribution’: each blue or green pixel depicts a model

microsite occupied by microbes of a certain functional group, while black

pixels depict empty microsites. ‘Substrate distribution’: spatial distributions

of the two complex substrates considered in the model (remaining plant

material and microbial necromass); the colours of pixels indicate relative

substrate concentrations according to the colour bar on the right.

Snapshots of these distributions are shown for model runs in three different

scenarios. (a) In the first scenario, without cheaters, all microbes produce

extracellular enzymes at the same rate (here the microbes depicted in blue

and green have identical functional traits; the community distribution is

functionally homogeneous and the shown pattern just illustrates colony

growth of initially randomly distributed microbes depicted in blue and

green). (b) The second scenario considers a mixed community of enzyme

producers (blue, with an enzyme production rate of 0.12) and cheaters

(green, with an enzyme production rate of 0), only differing in their enzyme

production rates. (c) In the third scenario, cheaters additionally have a

faster maximum growth rate and a higher N demand compared with

enzyme producers. All model runs start with microbes being randomly

distributed across the grid. Each panel shows the model grid of 100� 100

microsites at the time when 60% of the initial C is decomposed, that is,

respired (a: 287 days, b: 556 days, c: 5,625 days). Consequently, the total

amount of C stored across the two shown compound substrate pools, ‘plant

carbon’ and ‘microbial necromass carbon’, is the same for all three

scenarios at the time these snapshots are taken; only spatial distributions

and relative allocations to these substrate pools differ. The presence of

cheaters generally leads to a higher heterogeneity of substrate and to a

higher relative allocation of C to the microbial necromass pool, which in

turn leads to a higher proportion of N kept in the system (see main text).

Fast-growing cheaters strongly constrain the dispersal of enzyme producer

patches, leading to a different spatiotemporal dynamics of microbes and

substrate.
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build-up4,29. However, in the presence of cheaters, the emerging
community dynamics increase the percentage of N-rich microbial
remains and products in the remaining litter (Fig. 1c,d). This
lowers the C:N ratio of dissolved matter, which is the result of
enzymatic decomposition of complex substrates, that is, plant
material with a relatively high C:N ratio and microbial remains
with a relatively low C:N ratio. This, in turn, enables microbes to
overcome N limitation, thereby allowing a more efficient use of C
for biomass growth, which makes overflow respiration obsolete
(Fig. 1b). As the accumulating microbial products and remains
have a relatively low C:N ratio, N is retained to a greater extent
than C, reflected in a higher C loss compared with N loss, when
cheaters are present (Supplementary Fig. 1). Not only relative, but
also absolute pool sizes of secondary substrates increase
dramatically when cheaters are present: about five times more
N accumulates in secondary microbial products when cheaters
are present, thereby almost doubling the N content of the
remaining litter compared with when cheaters are absent (Fig. 3).
For example, at 60% C loss, around 80% of the initial N is kept in
the system with social interactions (Fig. 3c), compared with only
45% without (Fig. 3a). With cheaters, it takes about twice as long
to reach that stage of 60% C loss, and once attained, not only N,
but also a greater part of the remaining C is stored in microbial
remains (around 18%, as compared with 7% without cheaters,
Fig. 1c,d).

Underlying mechanism. Closer investigation of C and N flows in
our model reveals that the accumulation of microbial remains is
closely linked to the ratio between microbial biomass and

extracellular enzymes responsible for degrading dead microbial
biomass. If that ratio is high, a small number of enzymes face a
large amount of dead biomass, resulting in a slow degradation of
the latter. Conversely, if that ratio is low, a high number of
enzymes more quickly degrade a smaller amount of microbial
remains (Fig. 4, Supplementary Fig. 2). In traditional decom-
position models, which represent microbial biomass as one pool,
as well as in our model without cheaters, the fraction of enzymes
produced per total microbial biomass can be controlled by a
parameter. Manipulating this parameter (Efr), that is, reducing
the amount of C that microbes allocate to enzyme production,
indeed increases the accumulation of microbial remains when
cheaters are absent (Fig. 3, EP 0.12 and EP 0.10 at ‘Regulation by
microbial physiology’). This shows the general sensitivity of the
accumulation of microbial remains to the amount of enzymes
produced per total microbial biomass, which inevitably affects the
ratio of active enzymes to dead microbial biomass. The key result
of our model analysis is, however, that in a mixed community of
enzyme producers and cheaters community-level adaptations
emerge: these alter the ratio between enzyme producers and
cheaters in a way that downregulates to a minimum the total
amount of enzymes produced per total microbial biomass (Fig. 3,
‘Regulation by community dynamics’), leading to the observed
increased accumulation of microbial remains.

Social dynamics buffer extracellular enzyme reaction rates.
Enzyme kinetics are sensitive to temperature, with higher
temperatures accelerating enzyme reaction rates3,11,15. However,
it is not well understood how the observed intrinsic temperature
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Figure 3 | Nitrogen dynamics in model communities with and without microbial cheaters. (a,c) Temporal dynamics of N pools during litter

decomposition. The two dashed lines indicate the times when 60% of C is decomposed. (b) Distributions of N in the remaining litter at 60% C loss in

different model scenarios. (d) Microbial community compositions establishing in different model scenarios (shown abundances are time-averaged over

model runs). The model is run either without cheaters, that is, with enzyme producers (EP) only (with enzyme production rates, given by the fraction of C

uptake after deduction of maintenance respiration, of 0.12 or 0.10), or for mixed communities of enzyme producers and cheaters (Ch) initially consisting of

50% enzyme producers (with enzyme production rates of 0.12) and 50% cheaters (with enzyme production rates of 0.06, 0.04, 0.02 or 0). Filled circles:

days until 60% of initial C is decomposed. Filled triangles: ratio of extracellular enzymes to microbial biomass (averaged over time). The initial litter C:N

ratio equals 55. Error bars in b and d indicate model stochasticity by displaying s.d.’s among five independent model runs (error bars smaller than symbol

size are not displayed).
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sensitivity of enzyme kinetics translates into a measurably lower
‘apparent’ temperature sensitivity of microbial decomposition
of soil organic matter3,15. To evaluate the interaction of social
community dynamics with changing enzyme reaction rates, we
vary two model parameters that control the catalytic efficiency of
enzymes: the catalytic rate constant kcat of enzymes (the higher
this parameter, the more units of substrate can be decomposed
per enzyme and time, which is analogous to Vmax divided by the
amount of enzymes) and the mean lifetime 1/kenz of enzymes (the
higher this parameter, the more substrate can be decomposed per
unit of enzyme). Without cheaters, decay rates in our model
increase, as expected, with increasing enzyme reaction rates, until
saturation is reached (Fig. 5). At the same time, CCUE decreases
due to increased overflow respiration (Supplementary Fig. 3).
With cheaters, no increase in decay rates with increasing enzyme
reaction rates and no decrease in CCUE are observed in our
model. Our results thus show that the presence of microbial
cheaters effectively buffers even extreme increases in enzyme
reaction rates (Fig. 5). This response is caused by a positive
feedback of enzyme efficiency on cheaters abundance: the more
substrate each unit of extracellular enzyme degrades, the greater is
the proportion of cheaters that can be sustained in the microbial
community. This in turn reduces the absolute amount of
extracellular enzymes in the system. This community-inherent
mechanism leads to the surprising outcome that the overall
rate of enzyme activity at the community level is essentially
independent of the biochemical efficiency of individual
extracellular enzymes (Fig. 5).

Discussion
Our results demonstrate that the microbial decomposer system
has a high capacity for self-regulation. Social interactions between
enzyme producers and cheaters create a powerful community
feedback, which facilitates the build-up of C and N in N-rich
microbial residues and buffers decomposition rates against

variations in extracellular enzyme efficiencies. The interesting
conclusion from this is that the ubiquitous presence of
opportunistic, seemingly ‘useless’ soil microbes, which exploit
the decomposer system, may be key for some important
ecosystem services, such as soil C sequestration, N retention
and the acclimation of decomposition rates to changing
environmental conditions.

Previous model-based studies have already shown that the
presence of cheating microbes constrains enzyme-catalysed
decomposition13,28,30. Our results reinforce and extend this
finding by showing that social dynamics between enzyme-
producing and cheating microbes can firmly downregulate
the total amount of enzymes produced at the community
level, which, as a consequence, maximizes the accumulation of
microbial remains during the decomposition of plant litter. Our
model differs from other individual-based microbial enzyme
models that also addressed the question of social dynamics
between microbial producers of extracellular enzymes and
cheaters13,30 in two important ways.

First, our model includes complete recycling of C and N from
dead microbial biomass and microbial products such as
extracellular enzymes. In the first, seminal, modeling study
targeting social dynamics within microbial decomposer commu-
nities dead microbial biomass and extracellular enzymes were
removed from the community without being re-metabolized by
new microbes13. Microbial processes in this model were thus
mainly responding to external C and N input, which was
provided at a constant rate. In our model, by contrast, an initial
pool of dead plant material is degraded over time by microbial
activity. Part of the primary substrate is incorporated into
microbial biomass and transformed into microbial remains on
cell death, which in turn serve themselves as substrate for
microbes (Fig. 3, ref. 28). Consequently, microbial processes in
our model are strongly regulated by internal recycling of C and N.

The second important difference is that complex substrates
in our model contain both C and N (at a certain ratio),

Community regulation: 
the higher the enzymatic 
capacity per producer, 
the more cheaters will be
present

Relatively more N in DOM
because of larger contribution
of microbial necromass

Slow decay
Small DOM flow
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enzymes:microbial biomass ratio
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due to fewer enyzmes overall
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Figure 4 | Effects of social regulation on microbial organic matter decomposition. (a) Without social regulation (all microbes produce enzymes),

turnover rates are high due to a direct positive feedback of enzyme production on microbial growth. The accumulation of microbial remains is limited by a

relatively high ratio of enzymes to microbial biomass. The consequently large DOM pool features losses of labile C and N. (b) When cheaters are present,

only a (self-regulated) fraction of microbes produces enzymes, resulting not only in a lower total amount of enzymes, but also in a lower amount of

enzymes per microbial biomass, leading to a lower amount of enzymes per dead microbial biomass (microbial remains). While the lower total amount of

enzymes slows down decay rates, resulting in a smaller DOM pool and less loss over time of C and N by leaching, the lower ratio of enzymes to microbial

remains increases the pool of N-rich microbial remains in relation to N-poor plant material, which in turn lowers DOM C:N ratio and alleviates microbial N

limitation.
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whereas complex substrates in previous individual-based
microbial enzyme models13,30 consisted of either C or N
(or phosphorus, P), which are degraded by C-, N- or P-specific
extracellular enzymes independently from the other elements, the
turnovers of C, N and P thus being decoupled. In our model, C
and N fluxes are linked to each other due to explicit substrate
stoichiometry: C and N are liberated by enzymatic activity in the
same ratio in which they are present in the complex substrate.
The overall C:N ratio of dissolved organic matter (DOM)—which
is what microbes face—is thus a result of the ratio at which the
different complex substrates (that is, plant material with a
relatively high C:N ratio and microbial remains with a relatively
low C:N ratio) are degraded. This ratio depends both on the
relative availability of the different complex substrates and on the
relative availability of the substrate-specific enzymes. While
the latter can be influenced by dynamics of different functional
groups producing specific extracellular enzymes28, the former is,
as we show in this study, strongly influenced by the presence of
cheaters, which increase the ratio of microbial remains to the
remaining plant material. Both aspects, recycling of microbial
remains and stoichiometric constraints imposed by linking C and
N in complex substrates, enable a strong community-level
feedback on microbial decomposition processes (and vice versa)
in our model.

Notably, the ratio of extracellular enzymes to microbial
biomass in our model settles at a similar minimum value across
all our scenarios that include cheaters—independent of the degree

of their cheating. As total microbial biomass stays about the same
with or without cheaters, collective enzyme production seems to
be downregulated to a point where the same total amount of
biomass could still be sustained, but waste is minimized. This
finding is consistent with the ‘black queen hypothesis’31, which
suggests that evolution favours losses of metabolic pathways for
producing public goods, until a community’s production of the
public good is just sufficient to support it at equilibrium.
Although the overall decomposition process takes considerably
longer with cheaters than without, resources are used more
efficiently, so that in total a greater number of microbes can thrive
on it.

At the cellular level, there is thought to be a metabolic trade-off
between the rate of resource acquisition and the net yield of
energy: higher rates are often coupled to lower yields and vice
versa32,33. High-rate/low-yield organisms are understood to
have an advantage over low-rate/high-yield organisms when
competing for external resources32, leading to communities with
overall inefficient resource use—an evolutionary dilemma well
known as the ‘tragedy of the commons’34. While the rate-yield
trade-off can be explained by thermodynamic principles at the
cellular level32, our model shows a similar trade-off at the
community level: high rates of enzyme production and microbial
turnover are coupled with low efficiency of resource use (that is,
low net yield of energy) in communities without cheaters,
whereas low rates of enzyme production and microbial turnover
are coupled with high efficiency of resource use in communities
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loss). Open symbols: without cheaters. Filled symbols: with cheaters. Open squares: population of enzyme producers with uniform growth rates. Open

circles: mixed community of slow- and fast-growing enzyme producers. Filled squares: mixed community of enzyme producers (with an enzyme production

rate of 0.12) and cheaters (with an enzyme production rate of 0). Filled circles: cheaters additionally have a faster maximum growth rate and a higher N

demand compared with enzyme producers. For details see Table 1. (b,d) Microbial community compositions establishing in the presence of cheaters (which

are functionally equivalent to enzyme producers except for their enzyme production rates), time-averaged over model runs. Error bars indicate model

stochasticity by displaying s.d.’s among five independent model runs.
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with cheaters. Lower rates are linked to higher efficiencies in our
model because the cycle of matter is less leaky at slower turnover
rates, with more C and N being stored in complex compounds,
rather than in labile compounds (where they are prone to losses),
at any one time (Supplementary Fig. 2). The interesting
additional insights our findings offer relative to earlier studies is
that cheaters pull the whole decomposer system to the efficient
side of the trade-off, such that, unlike in previous analyses, the
selfish interest of individuals (cheaters) in a public good does not
lead to a tragedy of the commons, but to its opposite—a more
efficient resource use for all.

Explicit space is known to facilitate the existence of cooperators
or producers in the face of cheaters13,26,35 and was also a
prerequisite for the stable coexistence of producers and cheaters
in our model: increasing diffusion rates, as well as a well-mixed
system, lead to a dominance of cheaters, which crash the
community (not shown) similar to previous results13,35. In our
model, cheaters predominately grow at the edge of decomposer
patches, which are hotspots of competition for resources and
space (Fig. 2, Supplementary Movie 1). Similar spatial dynamics
between cheaters and producers of public goods have been
observed not only in model-based studies, but also in empirical
studies13,30,36. In general, our model’s behaviour is consistent
with recent empirical work demonstrating that enzyme-
producing yeast cells not only exhibit stable coexistence with
invading cheaters, but also that a relatively small fraction of
enzyme producers (10%) supports a majority of cheaters at the
eco-evolutionary steady state37,38.

A central finding of our study is that the ratio of extracellular
enzymes to microbial biomass may be a key control of the
amount of microbial necromass accumulating during the
decomposition of plant litter. During the last decades, both
conceptual and empirical research has sought to identify possible
microbial mechanisms influencing C and N sequestration in soils.
Microbial substrate use efficiency or CUE, with the latter
measuring the fraction of C uptake invested into microbial
biomass build-up, has been recognized as a potential driver of the
capacity of soil to sequester C in the long run5,39–42. Recently,
microbial turnover rates have additionally been implicated in soil
C sequestration42. Here, we propose to extend these concepts by
the ratio of extracellular enzymes to microbial biomass. This
ratio, which appears to be dynamically regulated when microbial
cheaters are present, controls, as we have shown here, the
degradation rate, and thus the possible accumulation, of
microbial remains. The fate of microbial remains, in turn, is
key for C and N cycling in soil43–45, because microbial residues
are thought to be the main precursor of stable soil organic matter
formation2,39,43,44. Social microbial dynamics between enzyme
producers and cheaters may thus be important for the long-term
accumulation and storage of soil organic matter. In particular, the
trapping of N in complex microbial remains prevents its loss to
the environment—by leaching of N from DOM or dissolved
inorganic nitrogen (DIN)—thereby increasing N retention in the
system. Interestingly, in our model the downregulation of the
ratio of extracellular enzymes to microbial biomass by social
dynamics feeds back on CCUE and stabilizes it at a relatively
high level.

We evaluated the self-regulation capacity of the decomposer
system with cheaters by varying the catalytic efficiency (kcat) and
longevity (1/kenz) of extracellular enzymes. Previous individual-
based microbial enzyme models have revealed that higher enzyme
production rates of decomposers increase cheater abundance and
in turn lower decay rates10,13,30. This is because increased enzyme
production is associated with increased costs for producers, which
lower their competitive ability. Here we went one step further and
specifically tested the effect of increased degradation ‘power’

of individual enzymes, but at unchanged costs for enzyme
producers. This analysis is based on the rationale that enzyme
kinetics are sensitive to temperature change3,15 and that kinetic
changes are therefore sometimes incorporated into microbial
enzyme models (at the bulk level) to predict responses to climatic
changes5,14.

Our results show that increased enzyme efficiencies are
effectively outbalanced by a community response, leading to a
reduction of total enzyme production at the community level.
This feedback is not necessarily driven by lower competitive
capabilities of producers due to increased enzyme costs. Rather,
cheaters always benefit from increased enzyme activities, because
it makes more resources available to them. From an evolutionary
perspective, this raises the question whether the co-evolution with
cheating microbes could have prevented evolution towards more
efficient soil enzymes, as more efficient enzymes would not
increase the fitness of their producers.

The self-regulating social dynamics in our model cause overall
decay rates to become completely independent of catalytic
enzyme strengths (Fig. 5). This indicates that neither the catalytic
power of individual enzymes nor their mean lifetime may be as
important for decay rates as often thought. For instance, a
possible positive Arrhenius effect of temperature on enzymatic
reaction rates in soils under global warming (that is, increasing
catalytic efficiencies of enzymes with warming) could be
outweighed by social dynamics within decomposer communities,
and thus turn out to be less significant than previously thought3.
This finding is consistent with the well-known observation that
the apparent temperature sensitivity of decomposition is lower
than the intrinsic temperature sensitivity expected from enzyme
kinetics and substrate chemistry3,15. The measured thermal
adjustments of the microorganisms may thus not only reflect
shifts in community composition towards taxa adapted to
warmer temperatures, as has been proposed recently15, but may
also include the feedback of cheaters counteracting temperature-
induced increases in enzyme efficiencies.

We conclude that to understand and predict organic matter
decay it is necessary to go beyond microbial physiology and
to implement community-level regulation in biogeochemical
models5,11,14,46. Without accounting for such regulation, both
extracellular enzyme kinetics and microbial CUE exert a strong
control on decay rates in most biogeochemical models,
making model predictions highly sensitive to variations in
these parameters5,6,11,14. Our work shows, by contrast, that
extracellular enzyme kinetics and microbial CUE may both be
subject to regulation at the community level, which can overrule
physiological responses from individual microbes or changes in
biochemical efficiencies of individual enzymes. Not accounting
for community-level regulations may thus lead to a vast over- or
underestimation of future C stocks.

Individual-based micro-scale models, as the one we have used
in this study, enable valuable insights into possible interactions
between microbial community dynamics and processes. Novel
techniques facilitating single-cell analysis of microbes within
complex communities are now becoming available; these allow
quantifying microbial processes at the scales at which they
occur47–49. Applying these methods to well-designed experiments
targeting natural and manipulated decomposer communities will
allow to test the hypotheses generated by this study and to
advance our understanding of the controls of microbial
decomposition of organic matter.

Methods
Individual-based and spatially explicit model. We use a recently developed
individual-based, spatially and stoichiometrically explicit micro-scale model,
calibrated with experimental data from a litter decomposition experiment28. The
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model is implemented as a process-based and object-oriented computer program
in Java, which simulates C and N turnover during litter decomposition based on
micro-scale interactions among individual microbes. Macro-scale C and N
turnover rates and pool dynamics emerge from interactions among individual
microbes at the micro-scale, rather than being calculated by stock and flow rate
equations at the bulk soil level. A detailed description of model equations
and algorithms can be found in the Supplementary Material (Supplementary
Tables 1 and 2 and Supplementary Methods).

Briefly, the model simulates a 1 mm2 piece of decomposing organic matter as
a grid of 100� 100 ‘microsites’, each measuring 10 mm� 10 mm� 10mm and
containing different types of complex organic compounds, bioavailable labile
compounds, microbes and extracellular enzymes.

Complex compounds. Complex organic compounds are either original plant
material (primary substrate) or dead microbial cells and products (secondary
substrate). While the former becomes depleted over a model run (as there is
no new input of resources), the latter can accumulate over time. Two types of
secondary substrate are considered in the model: C-rich microbial remains
(containing cell walls, lipids, carbohydrates and others, with an overall C:N ratio of
150) and N-rich microbial remains and products (containing proteins, DNA, and
RNA from dead microbial biomass, as well as denatured extracellular enzymes,
with an overall C:N ratio of 5). The C:N ratio of the primary substrate (plant
material) depends on the considered model scenario (initial litter C:N ratio).

Extracellular enzyme activity. In each microsite, complex compounds
are degraded by extracellular enzymes residing in the microsite, following
Michaelis–Menten kinetics5,50,

dc ¼ kcatCenz
CS

km þCS
; ð1Þ

where dc is the amount in the microsite of C released by the enzyme-catalysed
breakdown of complex compounds per time step, kcat (catalytic constant) is the
number of enzymatic reactions catalysed per time step per enzyme (mol of
substrate-C decomposed per mol of enzyme-C), CS and Cenz are the amounts in the
microsite of complex substrate and extracellular enzymes, respectively, and km is
the half-saturation constant for the enzymes on the substrate. Amounts of C and N
liberated by extracellular enzyme activity are added to the bioavailable DOM pool
of the microsite. Extracellular enzymes are assumed to become inactive after some
time, which is controlled by a first-order rate constant (kenz), whose inverse (1/kenz)
therefore measures the mean lifetime of extracellular enzymes in the model.

C and N uptake and processing by microbes. Microbes take up labile products
of enzymatic breakdown (DOM), as well as DIN, subject to cell-size-specific
maximum uptake rates and local availability (Supplementary Methods). From the
resources taken up, maintenance respiration. calculated as a constant fraction of
biomass C, is met first. A functional-group-specific fraction (Efr) of the remaining
C and N uptake is invested into extracellular enzyme production, and any C and N
remainder after that is invested into growth. Consequently, the smaller Efr, the
more C and N resources can be used for growth.

Waste metabolism. Stoichiometric imbalance between C:N in microbial uptake
and microbial demand for respiration, enzyme production and growth results in
either local N mineralization (excess N is released into the DIN pool of the
microsite) or overflow respiration (excess C is respired)4.

Diffusion. In every time step, 8/9 of the DOM and DIN in every microsite diffuses
to its eight neighbouring microsites (each of which thus receives 1/9). The time
step’s length (3 h) was chosen so that the emerging diffusion coefficients match
empirical diffusion coefficients54. A fraction of all diffusing elements is lost by
leaching. For details on the diffusion algorithm, see Supplementary Methods of this
study and in ref. 54.

Microbial dispersal and turnover. Microbial cells that grow beyond a certain level
divide and colonize neighbouring microsites. Microbes die either by starving
(if their biomass falls below a minimum level) or by catastrophic death, regulated
by a stochastic mortality rate. On cell death, the biomass C and N of the microbe is
distributed among different substrate pools (C- and N-rich microbial remains,
respectively, and DOM) within the microsite according to their functional-group-
dependent biomass composition (Table 1).

Initial values and model inputs. Complex substrates are initially homogenously
distributed across the grid. Initial litter consists of 98.5% of plant material and 1.5%
of microbial remains (Supplementary Table 1). There is no new input of organic
material during a model run. The model stops when the amount of available
substrate has become too low or too fragmented to support microbial activity,
which usually occurs around 80% C loss (Supplementary Movie 1).

Table 1 | Microbial functional traits used in model analysis.

Parameter Description Fast growers Slow growers Unit

Microbial cell composition and stoichiometry*
FDOM Fraction of cell biomass accounting for cell solubles (immediately available for uptake by

other microbes on cell death, C:N¼ 15)
0.06 0.06

FCC Fraction of cell biomass accounting for C-rich complex compounds, that is, cell wall
compounds, lipids, starch (C:N¼ 150)

0.52 0.37

FNC Fraction of cell biomass accounting for N-rich complex compounds, that is, proteins, DNA,
RNA (C:N¼ 5)

0.42 0.57

MCN Resulting biomass C:N 9.03 12.22

Microbial cell size and turnover ratesw

Smax Size at which a microbial cell divides and colonizes a neighbouring microsite 10 100 fmol
C

Smin Size at which a microbial cell dies from starving 1 10 fmol
C

c Maximum number of microbes in one microsite 3 1

Microbial enzyme production
Efr Fraction of C uptake (after deduction of maintenance respiration) that is invested into enzyme production

Enzyme producers 0.12 0.12
Cheaters 0, 0.02, 0.04

or 0.06
0, 0.02, 0.04

or 0.06
EfPS:EfCR:EfNR Ratio in which specific enzymes are produced for the degradation of plant material : C-rich microbial remains : N-rich microbial remains

Enzyme producers 0.7:0.15:0.15 0.7:0.15:0.15
Cheaters (when also producing enzymes) 0.7:0.15:0.15 0.7:0.15:0.15

*Chemical composition of prokaryotic and eukaryotic (for example, yeast) cells are based on ref. 27.
wMicrobial cell sizes are based on refs 51–53. Microbial turnover rates are indirectly linked to cell size, as maximum C and N uptake rates are linked to the cell surface-to-volume ratio (which is higher in
smaller cells). Maximum uptake rates are thus dynamic (depending on actual cell size). In addition, microbial mortality rates are inversely linked to maximum cell size, assuming that larger species invest
more into defensive structures. Resultant uptake rates depend on maximum uptake rates and local C and N availability. For more details and all other model parameters, see Supplementary Methods.
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Community carbon use efficiency. In every time step, CCUE is calculated from
bulk C fluxes aggregated across the grid29,

CCUE ¼ UDOC �R�Penzð Þ=UDOC; ð2Þ

where UDOC is the total amount of dissolved organic carbon taken up by all
microbes on the grid, R is the total amount of C respired, and Penz is the total
amount of C released as extracellular enzymes. CCUE thus aggregates the CUEs of
all individual microbes on the grid based on the sum of their C fluxes. In turn, the
CUE of individual microbes are the result of the various microbial processes
occurring in a model time step (Supplementary Methods), and therefore depends
on the microbe’s local situation and a few basic parameters. Specifically, the CUE of
an individual microbe is a function of maintenance respiration (Rmaint, as a fraction
of biomass), respiration-associated growth and enzyme production (Rge, as a
fraction of C used for growth and enzyme production), and most importantly,
local availability of C and N. In particular, a high C:N ratio of DOM (implying N
limitation) leads to C overflow respiration, as excess C needs to be taken up and
respired to gain N for growth, so CUE decreases. C limitation also decreases CUE:
if not enough C is available for maximum growth, a relatively greater fraction of C
is needed for maintenance respiration, which microbes need to secure before
investing into new biomass growth.

Model scenarios. We compare scenarios in which all microbes produce
extracellular enzymes at the same rate (without cheaters, so no social dynamics
are possible) with scenarios featuring mixed communities of initially 50%
enzyme-producing microbes and 50% cheaters (thus allowing social dynamics).
All communities are initially randomly distributed across the grid with a total of
16.7% of microsites being occupied. We define cheaters as microbes investing less
into extracellular enzyme production than their competitors. We consider different
levels of cheating, with cheaters producing enzymes at 1/2, 1/3 or 1/6 of the rate of
main enzyme producers, or not producing any enzymes at all (full cheaters). Model
outputs, such as decay rates and various pool sizes, are aggregated over the whole
grid, describing the macro-scale behaviour of the system28.

Besides differences in enzyme production rates, two functional types of
microbes are used in the model: fast growers and slow growers. Fast growers are
assumed to have smaller cell sizes (resulting in higher turnover rates) and a lower
C:N ratio (resulting in a higher N demand). Conversely, slow growers have larger
cell sizes and a higher C:N ratio (Table 1). Most of our model scenarios are run
with enzyme producers and cheaters being both slow growers, that is, they do not
differ from each other in any trait other than their rate of enzyme production
(Fig. 1 and Supplementary Fig. 1, except dark-red triangles, Figs 3 and 5, squares,
Supplementary Fig. 3). To account for the fact that cheaters are likely to have faster
growth rates than enzyme producers, we additionally include model scenarios with
slow-growing enzyme producers and fast-growing cheaters (dark-red triangles
in Fig.1 and Supplementary Fig. 1, filled circles in Fig. 5) or with slow- and
fast-growing enzyme producers (open circles in Fig. 5).
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