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1. Introduction

The concept of the value of information is one of the

cornerstones of Decision Analysis [H, R]. It is ordinarily

presented as a consequence of Bayes' theorem. Now, experiments

may indeed be presented in terms of conditional probabilities,

thus the use of Bayes' theorem, or directly as a random variable

which may take some posterior probability distributions according

to a marginal probability. Equivalence between the two approaches

has long been recognized in the statistics literature (see [B-a])

however the second approach does not seem to have attracted much

theoretical attention from decision analysts in spitl! of some

practical advantages (see example 1.4.3 in [R-S]).

The objective of the paper is to investigate some elementary

properties of this second definition of experiments with respect

to information value theory. The practical significance of these

properties is also studied.
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2. The Value of Information Revisited

2.1 Definitions

Let us first define what shall be referred to as the

classical decision problem.

Definition 2.1.1 The classical decision problem consists

of the selection of an action among a set of feasible actions

A = {a} given a set of possible states of nature 3 = {s}, a

prior probability distribution on S,

P - ips} (ps > 0 L pS = 1)o - 0 SES 0 ' SES 0

and a utility function u (0,.) defined on AXS, with values Ofl

the real line. (A and S are assumed finite).

Experiments with respect to this classical problem may now

be defined in two alternative ways.

Definition 2.1.2 An experiment E, defined in normal forln,

consists of a finite set of possible events E = {e} and a matrix

of conuitional probabilities Q = {qes = Prob {els}}eEE,

~efinition 2.1.3 An experiment E, defined in extensive form,

consists cf a finite set of possible events E = {c}, a set of

posterior probability distributions' on S,{Pe = {P:}sss}eEE, and

a marg~naJ probability distribution on E,

* * * *A = {Ae}eEE A > 0, L A = 1)e eEE e

wr.ich satisfy fur all SES,

~ S s
L AePe = Po

eEE
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Both definitions are equivalent in the sense that one may ~o

from one to the other by means of Bayes' theorem.

A classical decision problem and an experiment for this

problem generate what might 'be called a "derived proble'rn" .

(see Chupter 6 in [~), in which one is interested in selecting

thE. bes t s tratc~gy, namely an action for each poss ib 1 e event .

....:ol!:paring l'l2rtCtinty equivalents in both prCJblelfi~:; and tr'!e (;tj8;~

of the experiment "one then decides whether or not tu carr'y uU 'c.
. • f •

theexperlIllen t . These practical' cons i<?-erat ions It'ad to the

concept of the val~e of information.

Let E
s E;3

sp ='lJ

P represents the set of all probabili ty distriLJuti ,jrJe', I.i[l

For all PEP, let u* (0) be the maximal expected utility

associated with the classical decision problem, that is:

..

for' all pe: 1-' , u* (p) = Max E
aEA SES

sp u(a,s)

~ssoci2ted with an experiment E defined in extensive form may

be expressed as:

EVI'(Pr) -,J E "A.*u*(p)e eeEE

?roof: This is a standard result in Decision Analysis. I I

.,
I

J I
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Assuming a linear utility for money, the EVI may be

interpreted as the maximal price at which one should be

willing to buy the experiment.

2.2 Comparing Experiments Defined in Extensive Form

Denote by PE the smallest convex subset of P which
-

contains the vectors {Pe}eEE and for any real valued continuous

function f (0) on P, let Cav f (0) be the minimal concave
PE

function· greater or equal to f (0) on PE' Let EVI (polE)

be the expected value of information associated with the

classical decision problem and an experiment E defined in

extensi ve form.

Proposition 2.2.1

EVI (polE) ~ Cav u* (p ) - u* (p )
P a a

E
Proof: Denote by (K-l) the dimension of the simplex P. Then

the concavification of the function u*(o) on PE, Cav u* (0),
PE

may be obtained by considering all convex combinations of at

most K points in PE which generate PO' Formally we have:

sUbject to:

k=l, ••. ,K

and

, , ,

,
K
E

k=l
A =1

k

* g(o) is a concave function on P if and only if for all

Pl and P2 in-P and all AE(O,l):

g,\P1 + (~ - A)P2) ~ Ag(Pl) + (1 - A)g(P2)
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Note that u*(e) is a convex function on P as being the point

wise maximum of a set of linear functions on P. But~ since

PE is the convex hull of the points (Pe)eEE~ any PkEPE may be

expressed as a convex combination~ say (ake)eEE~ of the points

(Pe)eEE~ and so for all PkEPE

It follows that

Cav u*(PO) = Max ~
PE AEA eEE

in which

A u*(p )e e

A =. {A = (Ae)eEEIAe > 0 E A = l~ ~ AeP e = PO}- ~ eeEE eEE

(clearly the maximum is obtained for some AO in A) .

For any experiment defined in extensive form (see definition

2.1.3)~ A* belongs to A. Thus~

substracting u*(PO) both sides~ ones gets the proposition. I I
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We shall now charact'erize the experiments for 1t>Jhich (2.2.1)
•

lS in general an equality. Define the P-class of classical

decision problems as all problems for which S and PO in P

remain fixed whereas A and u(O!o) are allowed to vary.

Definition 2.2.2 The experiment E is said to be efficient

if and only if (2.2.1) is an equality for all problems in the

P-class.

Note that the definition is meaningful since in order to

define an experiment associated with a classical decision problem

we need only know S and Po that is, the P-class.

Propositjon ~.2.3 An experiment E, defin8d in extcnslVC

form, is efficient if and only if th~ vectors {Pe}eEE are

linearly independent .

•
Proof: Assume that E is inefficient. Then there exists a

classical decision problem in the P-class such that (2.2.1)

is a strict inequality. For this problem there exists a

A
O

£ A such that (see proposition 2.2.1)

L A~ u*(Pe) = Cav u*(PO)
e£E PE

This AO is different from A* because of the strict inequality.

SUbstracting A*Pe e = Po we obtain a

meaningful linear dependence relation between the {p} E
e e£

vectorSl'{Pe} e£E i( using Caratheodory' s theorem), so

set {Pe}e£E is linearly dependent, A contains at

Reciprocally, since Po

{Pe}e£E it may be expressed

independent

that if the

belongs to the convex hull of

as a convex combination of linearly
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least two points. It is now a simple matter to construct a
'.

classical decision problem for which (2.2.1) is a strict

ineQuality. I I

Corollary 2.2.4 An experiment defined in extensive form,

is inefficient if and only if at least one of the following

conditions hold

(i) there exists some elEE such that Pe E PE - {e },
1 1

(ii) there are more points in E than in S.

Proof: This is an immediate equivalence of the linear dependency

of the vectors {p }e ee:E. II

A typical illustration of the first condition is the

is intuitiveThen itcase in which for some ele:E, p. e
l

that the experiment is inefficient since we may very well end

~p ~ith the same posterior probability distribution as our

prior distribution. If p is not too different from Po thene l
the experiment will remain inefficient. How close it has to

be for inefficiency is made precise by the corollary.

The second condition is more difficult to interpret,

(-~s(=ntjally it js 8. question of dimensionality brought in by

the finiteness of the set S.

EventuJ.lly, experiments should be compared in terms of

EVIls. Th1s comparison is easily facilitated for efficient

experiments since then they may be partially ordered indepen-

dently of the particular decision problem in the P-class.
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An experiment El is said to be more

informative than an experiment E2 if and only if for all

problems ln the P-class,

Proposition 2.2.6 For an efficient experiment El to

be more informative than an experiment E2 , a necessary and

sufficient condition is that PE C PE .
2 1

Proof: As a simple property of the Cav operator, PEe.. PE2 1

is equivalent to

for all convex functions f(-) on P.. Since (2.3.1) is an

equality for efficient experiments the proposition follows. I I

We shall conclude this section showing how the comparison

of experiments in extensive form is related to their comparison

in normal form. The parallel of this presentation with Blackwell

and Girshick' s study on the sUbj ect [B-G] will become apparent.

Proposition 2.2.7 For any experiment E, the vectors

{Pe}eEE are linearly independent if and only if the vectors

(q'e = (qes) eES) eEE are linearly independent.

Proo£': Denote by R the matrix {ps} and by T the matrixe eEE,sES
s ~

= pe. Ae for alI (e , s) in Ex S .
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According to Bayes theorem

q - Prob (s/e) Prob (e)/Prob (s)es -

Since for all (e,s) In ExS ,~ > 0 and s > 0 th t1\ p, e vec orse 0

{Pe}e£E are independent if and only if the vectors {te}e£E

are independent ana the vectors' {t} E are independent ife e£

and only if the vectors {q} E are independeht. I Ie e£

We may thus replace the set {Pe}e£E by the set {qe}e£E

in our development. In particular we obtain that an experiment,
El is more informative than an experiment E2 if the vectors

{q} E are linearly dependent on the vectors {qe} E
e e£ 2 e£ 1·

This result was derived directly by Blackwell and Girshick for

experiments in normal form, hence the equivalence of the two

approaches.

3. An Illustrative Example

The following simple examwle illustrates the concepts

developed in the paper. The data corresponds to example 1.4.3

in [R-S].

3.1 The Classical Problem

I

, ,

u(sl' a2) = u(s2' a 2) = 0

Then the optimal action is a 2

,
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3.2 The Experiment .in Extensive Form (see definition 2.1.3)

E = {el , e 2 , e
3
}, p = ( .9, .1) , p = (.75, .25), Pe = (.3, .7)

e l e 2 3

* * .*
Al = .6 A2 = . 3 A3 = .1, ,

* .* *(Note that A Pe + A2 P + A3 Pe should equal PO· Indeed,1 1 e 2 3

.6 x .9 + .3 x .75 + .1 x . 3 = .795 ~ . 8

.6 x .1 + . 3 x .25 + .1 x . 7 = .205 ~ .2

and so the data corresponds only approximately to an experiment).

3.3 The Analysis (see the diagram)

There are more points in E than in S, thus by corollary

2.2.4 the experiment is inefficient. We can modify the

marginal distribution so that

A~ = 5/6 , A~ = 0 , A~ = 1/6

(AO is computed so that A~ Pel + A~ Pe
3

= PO)

The resulting experiment EO is clearly efficient and PE = P 0
E

Thus using proportion 2.3.1, both for the original and the

modified experiments, we obtain

(PO IE) ~
* *EVI Cav u (PO) -. u (PO)

PE
and

EVI (POIE
O

) * *= Cav u (Po) - u (Po)
PE

* * *= 5/6 u (Pe ) + 1/6 u (p ) u (Po)
1 e 3

= 5/6 x 0 + 1/6 C.3 X (-100) + .7x(350)] - 0

~ 36
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5= 52 5;: 5,

350 350

300 300

""",,/U.

200 200

I
I
I
I

100 I 100
I

Cav U·( po) - u·( Po) ~ 36I
I PEI

.3 I

Pe
Prob ( 5 =51 )'

I
Pe

Pe2 Po-100 3 ·100

DIAGRAM: AN ILLUSTRATIVE EXAMPLE
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and so EVI(poIE) < 36.

This upperbound may be compared with the upperbound assuming

perfect information which is found to be 70 (.2 x 350). An

exact computation yields an expected value of information of

approximately 25.

4. Prac:ti,;::al'Implications

Thu Blidy of experiments in extensive form leads us to the

may nov\}' be .used to somewhat simplify the decision ;J,n21,Y3ir~ at'

pra~tical :::;'1. tua tions in the follovJing. ways:

(i) If one has to select one and only une exp~riment

freHa 3 given set of equally costly t~jqJo_-:Cl;:,·..:n'(,;", then

]JI'cpos5 tion 2.2.6 may be used '13 a dominar:,.:;: c:c·ij t:!:'~on

to delete less informative experiments. (see

(ii)

section 6-4 in [S] for general comments on the sUbj ect) .

If '..'ne has to design an experiment then cffici·:::nt

expuriments have clearly some advantag8s (in

principle one may "redesign" an inefficient eXlJ<2rinent

so as to obtain an efficient one by ffioiifying ~he

the mar;ginal probabilities), and then corollary 2.2.4

offers guidelines. Moreover the marginal probability

distribution need not be specified for efficient

experiments since it is uniquely determined by the

requirement

"A* Pe e = Po
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(iii) If one has to evaluate an inefficient experiment

then proposition 2.2.1 gives an upperbound for the

EVI. (In this sense it is an improvement over the

well known inequality EVI < EVPI (perfect information)).

T~e~ the knowledge of an upperbound for the EVI may

enable the analyst to cut off some branch in a

decision tree.

A c k now 1 e d gem e n t s

The author wishes to express his thanks to

Ralph Keeney, Howard Raiffa and Robert Winkler

for many helpful discussions on a preliminary

version of the paper.



-14-

.~ _.__..__.._ .._~ •.__._-..- .-po_~ e,. • ...... _~ '.-:" " ~.•••._
,', .'

Ref ere nee s

[B-a] Blackwell, D. and Girshick, _M. A. "Theory of Games and

Statistical Decisions." Wiley, 1954.

[H] Howard, n. f\. "Information Value 'rheory." rEEE rI'r~ns.

on Systems Science and Cybernetics, Vol. SSC-4,

June 1967, pp. 54-60.

[R] Raiffa, H. "Decision Analysis, Introductory L~cture5."

Addison-Wesley, 1967.

[R-S] Raiffa, H. and Schlaifer, R. "Applied Statis_tical
.......... - .•••• ~ ~ _.,._.~ _- "'1 ~ ,._~ •• , .""." ~- -.-".'-" .

Decision Theory." The ~1.I.'I'. Press, April 1:"168.

[s] Savage, L.J. "Foundations of Statistics." vlile-v,1954.


