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History-dependent processes are ubiquitous in natural and social
systems. Many such stochastic processes, especially those that are
associated with complex systems, become more constrained as
they unfold, meaning that their sample space, or their set of possible
outcomes, reduces as they age. We demonstrate that these sample-
space-reducing (SSR) processes necessarily lead to Zipf's law in the
rank distributions of their outcomes. We show that by adding noise
to SSR processes the corresponding rank distributions remain exact
power laws, p(x) ~ x~*, where the exponent directly corresponds to
the mixing ratio of the SSR process and noise. This allows us to give a
precise meaning to the scaling exponent in terms of the degree to
which a given process reduces its sample space as it unfolds. Noisy
SSR processes further allow us to explain a wide range of scaling
exponents in frequency distributions ranging from a=2 to . We
discuss several applications showing how SSR processes can be used
to understand Zipf's law in word frequencies, and how they are re-
lated to diffusion processes in directed networks, or aging processes
such as in fragmentation processes. SSR processes provide a new
alternative to understand the origin of scaling in complex systems
without the recourse to multiplicative, preferential, or self-organized
critical processes.

scaling laws | Zipf's law | random walks | path dependence |
network diffusion

typical feature of aging is that the number of possible states

in a system reduces as it ages. Whereas a newborn can be-
come a composer, politician, physicist, actor, or anything else,
the chances for a 65-y-old physics professor to become a concert
pianist are practically zero. A characteristic feature of history-
dependent systems is that their sample space, defined as the set
of all possible outcomes, changes over time. Many aging sto-
chastic systems (such as career paths) become more constrained
in their dynamics as they unfold (i.e., their sample space becomes
smaller over time). An example for a sample-space-reducing
(SSR) process is the formation of sentences. The first word in a
sentence can be sampled from the sample space of all existing
words. The choice of subsequent words is constrained by grammar
and context, so that the second word can only be sampled from a
smaller sample space. As the length of a sentence increases, the size
of the sample space of word use typically reduces.

Many history-dependent processes are characterized by power-
law distribution functions in their frequency and rank distribu-
tions of their outcomes. The most famous example is the rank
distribution of word frequencies in texts, which follows a power
law with an approximate exponent of —1, the so-called Zipf’s law
(1). Zipf’s law has been found in countless natural and social
phenomena, including gene expression patterns (2), human be-
havioral sequences (3), fluctuations in financial markets (4),
scientific citations (5, 6), distributions of city (7) and firm sizes
(8, 9), and many more (see, e.g., ref. 10). (Some of these ex-
amples are, of course, not associated with SSR processes.) Over
the past decades there has been a tremendous effort to un-
derstand the origin of power laws in distribution functions
obtained from complex systems. Most of the existing explana-
tions are based on multiplicative processes (11-14), preferential
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mechanisms (15-17), or self-organized criticality (18-20). Here
we offer an alternative route to understand scaling based on
processes that reduce their sample space over time. We show
that the emergence of power laws in this way is related to the
breaking of a symmetry in random sampling processes, a mech-
anism that was explored in ref. 21. History-dependent random
processes have been studied generically (22, 23), however not
with the rationale to understand the emergence of scaling in
complex systems.

Results

The Pure SSR Process and Zipf's Law. The essence of SSR processes
can be illustrated by a set of N fair dice with different numbers of
faces. The first dice has one face, the second has two faces (coin),
the third one three, and so on, up to dice number N, which has N
faces. The faces of a dice are numbered and have respective face
values. To start the SSR process, take the dice with the largest
number of faces (N) and throw it. The result is a face value
between 1 and N; say it is K. We now take dice number K — 1
(with K — 1 faces) and throw it, to get a number i between 1 and
K —1; say we throw L. We now take dice number L — 1, throw it,
and so forth. We repeat the process until we reach dice number
1, and the process stops. We denote this directed and acyclic
process by ¢. As the process unfolds, ¢ generates a single se-
quence of strictly decreasing numbers i. An intuitive realization
of this process is depicted in Fig. 1. The probability that the
process ¢ visits the particular site i in a sequence is the visiting
probability Py (i), which can easily be shown to follow an exact
Zipf’s law, Py (i) =1/i. This is done, for example, with a proof by
induction on N. Take the process ¢ and let N = 2. There exist two
possible sequences: Either ¢ directly generates a 1 with proba-
bility 1/2, or ¢ first generates 2 with probability 1/2, and then a 1
with certainty. Both sequences visit 1 but only one visits 2. As a
consequence, P>(2) =1/2and P,(1) = 1. Let us now suppose that
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Fig. 1. SSR process. Imagine a set of N=20 dice with different numbers of
faces. We start by throwing the 20-faced dice (icosahedron). Suppose we get
a face value of 13. We now have to take the 12-faced dice (dodecahedron),
throw it, and get a face value of, say, 9, so that we must continue with the
8-faced dice. Say we throw a 7, forcing us to take the (ordinary) dice, with
which we throw, say, a 5. With the 4-faced dice we get a 2, which forces us to
take the 2-faced dice (coin). The process ends when we throw a 1 for the first
time. The set of possible outcomes (sample space) reduces as the process
unfolds. The sequence above was chosen to make use of the platonic dice for
pictorial reasons only. If the process is repeated many times, the distribution
of face values (rank-ordered) gives Zipf's law.

Py:(i)=1/i has been shown up to level N'=N —1. Now, if the
process starts with dice N, the probability to hit i in the first
step is 1/N. Also, any other j, N > j>i, is reached with proba-
bility 1/N. If we get j>i, we will obtain i in the next step
with probability Pj_; (i), which leads us to the recursive scheme
for all i <N, Py (i) =g (1+ X, ;yPj-1(i)). Because by assump-
tion Pj_(i)=1/i, with i<j<N holds, simple algebra yields
Py (i)=1/i. Finally, as pointed out above, for i=N, we have
Pyn(N)=1/N, which completes the proof that indeed the visiting
probability is

Py(i)=- 1]

If the process ¢ is repeated many times, meaning that once
it reaches dice number 1 we start by throwing dice number N
again, we are interested in how often a given site i is occupied
on average. The occupation probability for site i, given that
there are N possible sites, is denoted by py(i). Note an im-
portant property of the process ¢. Although in general the
visiting probability Py and the occupation probability py of a
process quantify different aspects, for the particular process ¢
both probabilities only differ by a normalization factor. This is
so because any sequence generated by ¢ is strictly decreasing
and contains any particular site i at most once. Further, any
sequence ends on site 1, meaning Py(1)=1. Therefore, it is
clear that Py (i) =pn(i)/pn(1), where py(1) is a normalization
factor. This shows that this prototype of an SSR processes
exhibits an exact Zipf’s law in the (rank-ordered) occupation
probabilities.

An alternative picture that illustrates the history-dependence
aspect of the same SSR processes is shown in Fig. 2. In Fig. 2,
Left we show an independent and identically distributed (iid)
stochastic process, where the space of potential outcomes is
Q={1,...,N}. At each time step a ball can jump from one of
N sites of Q to any other with equal probability. Because the
process is independent, the conditional probability of jumping
from site i to site j is P(j|li) = 1/N. There is no path dependence.

Corominas-Murtra et al.

If we define Q; as the subset of those sites that can be reached
from site i, we obviously find that this is constant over time,

Q=Q=...=Qy=Q.

We refer to this process as an unconstrained random walk and
denote it by ¢5. The occupation distribution is p(i) = 1/N (Fig. 2).
To introduce path or history dependence, assume that sites are
arranged in levels like a staircase. Now imagine a ball that can
bounce downstairs to lower levels randomly but never can climb
to higher levels (Fig. 2, Right). If at time ¢ the ball is at level (site) i,
at t+1 all lower levels j <i can be reached with the same proba-
bility, P(jli)=1/(i—1). Jumps to higher levels are forbidden,
P(jli) =0, for j >i. The process ends at the lowest stair level 1. In
this process, sample space displays a nested structure,

QCcQ)C...cQOyCQ.

In this case, Q;={1,2,--,i — 1}, for all values of i € Q. Q; is the
empty set. This nested structure of sample space is the defining
property of SSR processes. This type of nesting breaks the left—
right symmetry of the iid stochastic process. The visiting proba-
bility to sites (levels) i during a downward sequence is again
Py (i)=1/i. Because this process is equivalent to ¢, the same
proof applies.

The Role of Noise in SSR Processes. It is conceivable that in many
real systems nestedness of SSR processes is not realized perfectly
and that from time to time the sample space can also expand
during a sequence. In the above example this would mean that
from time to time random upward moves are allowed, or
equivalently, that the nested process ¢ is perturbed by noise. In
the context of the scenario depicted in Fig. 2 we look at a su-
perposition of the SSR ¢ and the unconstrained random walk
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Fig. 2. [lllustration of path dependence, SSR, and nestedness of sample

space. (Left) Unconstrained (iid) random walk ¢ realized by a ball randomly
bouncing between all possible sites. The probability to observe the ball at a
given site i is uniform, p(i)=1/N. (Right) The ball can only bounce down-
ward; the left-right symmetry is broken. When level 1 is reached the process
stops and is repeated. Sample space reduces from step to step in a nested
way (main feature of SSR processes). After many iterations the occupation
distribution (visits to level i) follows Zipf's law, py1o(i)xi~'. Symmetry
breaking of the sampling changes the uniform probability distribution to a
power law.
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¢g- Using A to denote the mixing ratio, the nested SSR process
@ with noise is written as

=i + (1= 2A)dg,

More concretely, if the ball is at site i, with probability A it jumps
(downward) to any of site k € Q; (with uniform probability), and
with probability 1—4 it jumps to any of the N sites, (j€€). In
other words, each time before throwing the dice we decide with
probability A that the sample space for the next throw is Q; (SSR
process), or with (1—24) it is Q (iid noise ¢z). We repeat this
process until the face value 1 is obtained. With probability 4
the process is ¢ and stops, and with probability (1 —4) the pro-
cess is ¢ and continues until 1 occurs again. Obviously, 1=0
corresponds to the unconstrained random walk, and 1=1 re-
covers the results for the strictly SSR processes without noise.
Note that for 0<A<1, ®, may visit a given site i more than
once. This implies in general that the visiting probability P ( )
and the occupation probability p](\,)( i) no longer need to be pro-
portional to each other. For that reason we now explicitly
compute the occupatlon probability pj(v)( ) for SSR processes
with a given noise level. For simplicity in notation we now
suppress N and write p™ ().

Note that ¢ produces one realization of possible se-
quences of sitesi =1, ***, N, and then stops. The maximum length
of such a sequence is NV, the average sequence length is / ~log V.
In contrast, the unconstrained random walk ¢ has no stopping
criterion. To avoid problems with mixing processes with different
lengths we replace ¢ with a process ¢* that is identical to ¢,
except for the case when site i=1 is reached. In that case ¢*
does not stop but continues with tossing the N-faced dice and
thus restarts the process ¢ (in the numerical simulations we stop
the process after M restarts). For ¢ site i =1 becomes both the
starting point of a new single-sequence process ¢, and the end
point of the previous one (see also Fig. 54). Replacing ¢ by ¢>
in Eq. 2 ensures that we have an infinitely long, noisy sequence,
which is denoted by ®%) = 1¢*® + (1 — 1)¢. Successive restarting
gives us the possibility to treat SSR processes as stationary, for
which the consistency equation

1€[0,1]. [2]

2N—1

N
PP @) =">_P(lj) pV () [3]
j=1

holds. Here P(ilj) is the conditional probability that site i is
reached from site j in the next time step in an infinite and
noisy SSR process. It reads

L+ﬂ for i<j
j—-1 N
P(ilj)= % for i>j>1 [4]
1
N for i>j=1.

The first line in the above equation accounts for the strictly SSR
process, the second line for the unconstrained random walk
component, and the third line takes care of the restarting once
site i =1 is reached. From Eqgs. 3 and 4 we get

IO SN SECECIO R
N 'N i1

Clearly, the recursive relation p@ (i +1) —p¥ (i) =—A1 p@ (i + 1)
holds, from which one obtains
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pW(1) is given by the normalization condition 3",p*) (i) =1, and
we arrive at the remarkable result

P (@) i [6]

Note that 4 is nothing but the mixing parameter for the noise
component. For A=1 one recovers lef’s law, p D (i) xi™'; for
2=0, the uniform distribution p*=0)(i)=1/N is obtained. "For
intermediate 0 <A <1 one observes an asymptotically exact power
law with exponent A. Note that Eq. 6 is a statement about the rank
distribution of the system. Often statistical features of systems are
presented as frequency distributions, that is, the probability that a
given site (state) is visited k times, p(k), and not as rank distribu-
tions. These are related, however. It is well known that if the rank
distribution p is a power law with exponent 4, p is also a power law
with the exponent a =144 (see, e.g., ref. 10). The result of Eq. 6
implies that we are able to understand a remarkable range of
exponents in frequency distributions, a €[2, ), by noisy SSR
processes. Many observed systems in nature display frequency
distributions with exponents between 2 and 3, which in our
framework relates to a mixing ratio of 1>0.5. We find perfect
agreement of the result of Eq. 6 and numerical simulations (Fig.
3A4). The slope of the measured rank distributions in log scale,
27 perfectly agree with the theoretical prediction A. Fitting was
carried out by using the method proposed in ref. 24.

Convergence Speed of SSR Distributions. From a practical side the
question arises of how fast SSR processes converge to the

10° 10°
+ A=1.0
1=0.0
« A=1.0
£ 10% .
UJ .
> o,
D 4
=107¢
2 0.5
— -0.
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Fig. 3. (A) Rank distributions of SSR processes with iid noise contributions
from simulations of CD@, for three values of A =1, 0.7, and 0.5 (black, red, and
blue, respectively). Fits to the distributions [obtained with a maximum-
likelihood estimator (24)] yield At = 0.999, Afit = 0.699, and At = 0.499, re-
spectively. Clearly, an almost exact match with the expected power-law ex-
ponents is realized. The inset shows the dependence of the measured
exponent 2¥™ from the simulations (slope), on various noise levels L. The
exponent A*™ is practically identical to A. N = 10,000, numerical simulations
were stopped after M = 10° restarts of the process. (B) Convergence rate.
The distance (2-norm) between the simulated occupation probability (nor-
malized histogram) after T jumps in the ®% process, and the predicted
power-law of Eq. 6, is shown for A = 1 (black), and the pure random case, A =
0 (red). Both distances show a power-law convergence ~T~*. MLE fits yield
B =0.512 and 0.463, for A = 0 and 1, respectively. This means that both cases
are compatible with B ~ 1/2, and that SSR processes converge equally fast
toward their limiting distributions as pure random walks do.

Number of jumps T
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limiting occupation distribution given by Eq. 6. In other words,
what is the distance between the sample distribution pYof the
process ®% and p®, after T individual jumps? In Fig. 3B we
show the Euclidean distance of the distribution after 7" jumps

Py, and p®, Hp(r”— p HZ = \/ S icalp? (i) = p)(i)]2. We find that
the distance decays as

=)

The result does not depend on the value of A. For the pure
random case A=0, our result for the convergence rate is well
known and is in full accordance with the Berry—Esseen theorem
(25), which accounts for the rate of convergence of the central
limit theorem for iid processes. The fact that for 1 =1 we see the
same convergence behavior means that SSR processes converge
equally fast to their underlying limiting power-law distribution.

Examples

Sentence Formation and Zipf's Law. One example for a SSR process
of the presented type is the process by which sentences are
formed. During the creation of a sentence, grammatical and
contextual constraints have the effect of a reducing sample space
[ie., the space (vocabulary) from which a successive word in a
sentence can be sampled]. Clearly, the process of sentence for-
mation is not expected to be strictly SSR, and we expect de-
viations from an exact Zipf’s law in the rank distribution of words
in texts. In Fig. 4 we show the empirical distribution of word
frequencies of Darwin’s The Origin of Species, which shows an
approximate power law with a rank exponent of y ~0.9. In our
framework of the mixed process ®) this corresponds to a mixing
parameter 1=0.9, indicating that in the process of sentence
formation nesting is not perfect, and many instances occur where
sample space can expand from one word to another. Note that
here M corresponds to the number of sentences in a text. In the
simulation we use N = 5,000 words and M = 10,000 restarts. For a
more detailed model of sentence formation and SSR processes,
see ref. 26.

SSR Processes and Random Walks on Networks. SSR processes can
be related to random walks on directed networks, as depicted
in Fig. 54. There we start the process from a start node, from
which we can reach any of the N nodes with probability 1/N. At

10 T
LN » Model
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Rank

Fig. 4. Empirical rank distribution of word frequencies in The Origin of
Species (black), showing two power-law regimes. For the most frequent
words, the distribution is approximately power-law with an exponent
¥ ~0.9. The corresponding distribution for the ®* process with 1=0.9 (red),
suggests a slight deviation from perfect nesting. This means that in sen-
tence formation, about 90% of consecutive word pairs, sample space is
strictly reducing. Simulation: N=5,000 (words), and M= 10,000 restarts
(sentences).
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Fig. 5. (A) SSR processes seen as random walks on networks. A random
walker starts at the start node and diffuses through the directed network.
Depending on the value of peit, two possible types of walks are possible. For
Pexit = 1, the finite 2V-" =16 possible paths) and acyclic process ¢ is recovered
that stops after a single path; for peit =0, we have the infinite and cyclical
process, ¢*. For pe,t > 0 we have the mixed process, ®™* = peyith + (1 — Pexic) -
(B) The occupation probability for ®™* is unaffected by the value of pey. The
repeated ¢ (dashed black line) and the mixed process with peyit = 0.3 (solid red
line) have exactly the same occupation probability py (i), which corresponds to
the stationary visiting distribution of nodes in the ¢ network by random
walkers. (Inset) Rank distribution of path-visit frequencies. Clearly they depend
strongly on peit. Whereas the acyclic ¢ produces a finite distribution, the cyclic
one produces a power law, matching the theoretical prediction of ref. 27. For the
simulation we generated 5-10° sequence samples and found 32,523 distinct
sequences for peyt =0.3.

whatever node we end up, we can successively reach nodes with
lower node numbers until we reach node number 1. There, with
probability pesr we jump to a stop node that ends the process.
Note that if peit =1, the process runs through one single path
and then stops. The process is acyclic and finite; there are 2V-!
possible paths. This network diffusion process is equivalent to
the process ¢ above. However, if peit =0, the process becomes
cyclic and infinite and corresponds exactly to ¢®. For any peyi; > 0
we have a mixing of the two processes, MK = Pexit® + (1 — Pexit) 9=,
which is again cyclic, and the number of possible paths is infinite. In
Fig. 5B we show the result for the node occupation distribution for
the process @™ for pess=1 (dashed black line) and penq =0.3
(solid red line). The figure is produced from 5 - 10° independently
sampled sequences generated by ®™*, As expected the distribution
follows the exact Zipf law, irrespective of the value of pey. The
process @™ allows us to study also the rank distribution of paths
through the network. The path that is most often taken through the
network has rank 1, the second most popular path has rank 2, and
so on. Recent theoretical work (27) predicts a difference in the
corresponding distributions for different values of peyit. According
to ref. 27, acyclic processes are expected to show finite path rank
distributions of no particular shape. This is seen in Fig. 5B, Inset
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(black dashed line), which shows the observed path rank distribution
for the 2¥~! =16 paths. For cyclic processes where at least one
node participates in at least two distinct cycles ref. 27 predicts
power laws, which we clearly confirm for the cyclic ®™* process
with peyic =0.3 (red line). Note that in our example node 1 alone
is involved in five distinct cycles. The process ®™* demonstrates
the mechanism that produces these power laws in its simplest
form, where the probability of long sequences are products of the
probability of the finite number of possible sequences that
they concatenate.

SSR Processes and Fragmentation Processes. One important class of
aging systems are fragmentation processes, such as objects that
repeatedly break at random sites into ever smaller pieces (see, e.g.,
refs. 28 and 29). A simple example demonstrates how fragmen-
tation processes are related to SSR processes. Consider a stick of a
certain initial length L, such as a spaghetto, and mark some point
on the stick. Now take the stick and break it at a random position.
Select the fragment that contains the mark and record its length.
Then break this fragment again at a random position, take the
fragment containing the mark, and again record its length. One
repeats the process until the fragment holding the mark reaches a
minimal length, say the diameter of an atom, and the fragmenta-
tion process stops. The process is clearly of the SSR type because
fragments are always shorter than the fragment they come from. In
particular, if the mark has been chosen on one of the endpoints
of the initial strand of spaghetti, then the consecutive frag-
mentation of the marked fragment is obviously a continuous
version of the SSR process ¢ discussed above. Note that even
though the length sequence of a single marked fragment is an
SSR process, the size evolution of all fragments is more
complicated, because fragment lengths are not independent
from each other: Every spaghetti fragment of length x splits
into two fragments of respective lengths, y <x and x—y. The
evolution of the distribution of all fragment sizes was analyzed
in ref. 29. Note that in the one-dimensional SSR processes in-
troduced here we see no signs of multiscaling. However, this
possibility might exist for continuous or higher-dimensional
versions of SSR processes.

Discussion

The main result of Eq. 6 is remarkable insofar as it explains the
emergence of scaling in an extremely simple and hitherto un-
noticed way. In SSR processes, Zipf’s law emerges as a simple
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consequence of breaking a directional symmetry in stochastic
processes, or, equivalently, by a nestedness property of the
sample space. More general power exponents are simply obtained
by the addition of iid random fluctuations to the process. The
relation of exponents and the noise level is strikingly simple and
gives the exponent a clear interpretation in terms of the extent
of violation of the nestedness property in strictly SSR pro-
cesses. We demonstrate that SSR processes converge equally
fast toward their limiting distributions, as uncorrelated iid
processes do.

We presented several examples for SSR processes. The
emergence of scaling through SSR processes can be used
straightforwardly to understand Zipf’s law in word frequencies.
An empirical quantification of the degree of nestedness in sen-
tence formation in a number of books allows us to understand
the variations of the scaling exponents between the individual
books (26). SSR processes can be related to diffusion processes
on directed networks. For a specific example we demonstrated
that the visiting times of nodes follow a Zipf’s law, and could
further reproduce very general recent findings of path-visit dis-
tributions in random walks on networks (27). Here we presented
results for a complete directed graph; however, we conjecture
that SSR processes on networks and the associated Zipf’s law of
node-visiting distributions are tightly related and are valid for
much more general directed networks. We demonstrated how
SSR processes can be related to fragmentation processes, which
are examples of aging processes. We note that SSR processes
and nesting are deeply connected to phase-space collapse in
statistical physics (21, 30-32), where the number of configura-
tions does not grow exponentially with system size (as in Markovian
and ergodic systems), but grows subexponentially. Subexponential
growth can be shown to hold for the phase-space growth of the
SSR sequences introduced here. In conclusion, we believe that
SSR processes provide a new alternative view on the emergence
of scaling in many natural, social, and man-made systems. It is a
self-contained, independent alternative to multiplicative, pref-
erential, self-organized criticality and other mechanisms that
have been proposed to understand the origin of power laws in
nature (33).
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