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Abstract 

Spatial distributions of biological species are an important source of information for 

understanding local interactions at the scale of individuals. Technological advances have 

made it easier to measure these distributions as spatial point patterns, specifying the 

locations of individuals. Extensive attention has been devoted to analyzing the second-

order structure of such point patterns by focusing on pairs of individuals, and it is well 

known that the local crowdedness of individuals can thus be quantified. Statistical 

measures such as a point pattern’s pair correlation function or Ripley's K function show 

whether a given point pattern is clumped (excess of short-distance pairs) or overdispersed 

(shortage of short-distance pairs). These notions are naturally defined in comparison with 

control patterns exhibiting complete spatial randomness, i.e., an absence of any spatial 

structure. However, there is no rational reason why the analysis of point patterns should 

stop at the second order. In this paper, we focus on triplets of individuals in an attempt to 

quantify and interpret the third-order structure of a point pattern. We demonstrate that 

point patterns with "bandedness", in which individuals are primarily distributed within 

bands, can be detected by an excess of thinner triplets at a characteristic spatial scale 

linked to the band’s width. In this context, we show how the generation of control patterns 

as a reference for gauging a test pattern’s triplet frequencies is critical for defining and 

interpreting the third-order structure of point patterns. Since perfect information on a 

point pattern’s second-order structure typically suffices for its unique reconstruction (up 

to translation, rotation, and reflection), we conjecture that it is essential to minimally 

coarse-grain such second-order information before using it to generate control patterns 

for identifying a point pattern’s third-order structure. We recommend the further 

exploration of this conjecture for future studies. 

 

Keywords: Mapped point data, pair correlations, spatial configuration, spatial ecology, 

triplets 
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1 Introduction 

Biological species exhibit a variety of distributions over space. In spatial ecology, critical 

roles of space have been highlighted and it has been widely recognized that observing the 

spatial distributions of a species gives us a rich array of information about local 

interactions within and between species (Tilman and Kareiva 1997, Dieckmann et al. 

2000). The spatial distribution, or spatial pattern, of a species can be measured using 

various census methods and it is often quantified as quadrant count data, transect data, or 

mapped point data, etc. Recently, mapped point data in which the locations of individuals 

of a species are explicitly specified is becoming more popular and easier to obtain as 

remote sensing and GIS/GPS technologies have been advanced and applied to spatial 

ecology (Roughgarden et al. 1991, Kerr and Ostrovsky 2003). Especially in plant and 

forest ecology, such mapped point data, or point patterns, have been accumulating. 

Extensive attention has been devoted to extract the biologically significant information 

hidden in a given point pattern, in order to understand the processes determining how 

individual plants are distributed over space through seed dispersal and local interactions 

(Watt 1947, Pielou 1969, Grieg-Smith 1983, Shimatani and Kubota 2004, Wiegand et al. 

2007a, b, Law et al. 2009). 

 

Any point pattern with N points in two-dimensional space is uniquely represented as a 

"point" in 2N dimensional space. Dealing directly with such a high dimensional space, 

however, becomes intractable as the number of points N increases. Alternatively, 

approaches approximating the dynamics of spatial configuration densities represent a new 

departure in spatial ecology (Bolker and Pacala 1997, 1999, Dieckmann et al. 2000, Law 

et al. 2003): any point pattern can be characterized using spatial configuration densities 

that describe the densities of points, pairs, triplets, etc. As the number of points defining 

such configurations increases (points: 1; pairs: 2; triplets: 3; etc.), successive orders of 

information about a spatial point pattern are revealed (Dieckmann et al. 2000). 
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The singlet density captures the most parsimonious information about a point pattern, 

describing its first-order structure by the density of points, i.e., by the number of points 

divided by the area over which they are distributed. A point pattern that only possesses 

first-order structure is generated by the homogeneous Poisson process with an intensity 

parameter given by the singlet density. In such a pattern, points occur completely 

randomly and independently from each other, realizing complete spatial randomness, or 

CSR (Cressie 1993). While the singlet density accounts for the abundance of points in a 

pattern, it obviously cannot capture any information about how these points are 

distributed in space. For capturing such information, a pattern’s higher-order spatial 

structure has to be considered. 

 

In particular, in order to capture information about the local crowdedness (clustering, 

aggregation) of points in a pattern, we need to focus on the pattern’s second-order 

structure, defined by the densities of pair configurations. Specifically, a point pattern’s 

pair density is defined as the spatial density of pairs of points in dependence on the vector 

describing their displacement (Dieckmann et al. 2000). In an sufficiently large isotropic 

point pattern, which exhibits no bias for any particular direction, the density of pairs is 

uniquely determined by the distance between them. For such patterns, measuring 

distances among pairs and establishing the distribution of those inter-point distances 

across all pairs therefore suffices to characterize a pattern’s second-order structure. The 

pair density carries essentially the same information on a pattern’s second-order structure 

as other basic summary statistics often used in point-pattern analyses, such as the pair 

correlation function, Ripley's K function, and O-ring statistics; all of these focus on the 

distribution of distances in pairs (Ripley 1988, Diggle 2003, Wiegand and Moloney 2004). 

By comparing the distribution of pair distances in a given point pattern to those expected 

under CSR with the same first-order structure (the same singlet density), we can 

discriminate whether or not the point pattern in focus significantly differs from CSR. 

More specifically, we can estimate the degree of clustering of points: a pattern is called 
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clustered if it possesses an excess of pairs at short distances, whereas it is called regular, 

or overdispersed, when it exhibits a shortage of short-distance pairs (Turner 1989, Levin 

1992, Dale 1999, Liebhold and Gurevitch 2002). By focusing on intraspecific 

(interspecific) pairs, in which the two individuals forming a pair belong to the same 

(different) species, salient features of intraspecific (interspecific) interactions at local 

spatial scale can be inferred (Dieckmann et al. 2000, Law and Dieckmann 2000). 

 

In spatial ecology, measuring the first- and second-order structure (i.e., the singlet and 

pair densities) of point patterns has been a major interest. Approaches focusing on pairs 

have been established as powerful tools for quantifying key characteristics of observed 

point patterns and for unveiling local biological processes underlying such patterns 

(Diggle 2003, Law et al. 2009). In tropical forest studies, in particular, these approaches 

have been successfully applied, providing novel insights about local ecological 

interactions such as neighborhood competition between trees (Condit 1998). In response 

to the resultant increased needs for spatial point-pattern analyses, convenient statistical 

libraries such as "spatstat" (http://www.spatstat.org/spatstat/) are available in R 

(http://www.R-project.org/) to analyze the second-order structure of point patterns. 

 

Approaches based on first- and second-order structure, however, may not characterize a 

point pattern completely. To describe higher-order structures that pair-based approaches 

may fail to capture, it is necessary to consider spatial configurations beyond pairs. As a 

first step in this direction, it is natural to focus on triplets, describing triangular spatial 

configurations comprising three points. We expect that the triplet density, defined as the 

density of triplets with a given triangular configuration, provides a useful measure to 

account for the next level of complexity in spatial structure. This will allow identifying 

and quantifying interesting features in the third-order structure of point patterns beyond 

what can be assessed based on pairs. 
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Earlier studies have already explicitly called for extending the analysis of point pattern to 

triplet densities. Law et al. (2009) commented that "There is no intrinsic reason why the 

spatial analysis should not continue beyond second order to the density of triplets, 

quadruplets, etc. (Schladitz and Baddeley 2000). However, as yet there has been little 

exploration of higher-order spatial moments and the interpretation of these is not 

straightforward." 

 

So far indeed, only a very few attempts have been made to utilize the triplet density for 

point-pattern analyses (Schladitz and Baddeley 2000, Bhanu and Tan 2001, Orlov et al. 

2001). Dale and Powell (2001) describe new methods for the detection of patches and 

gaps in spatial point patterns based on counting points in the circumcircles of triangles 

defined by triplets. Although the triplet densities have been defined (Bolker and Pacala 

1997, Law and Dieckmann 2000, Illian et al. 2008), no study yet has explicitly explored 

the significance of information captured by triplet configurations. Thus, how to analyze 

and interpret spatial configurations of triplets remain widely open questions. 

 

The scarcity of published analyses focusing on triplets can perhaps be attributed to the 

greater complexity in quantifying the configurational characteristics of a triplet. While a 

pair is uniquely characterized by a single vector, characterizing a triplet requires two 

vectors. In two-dimensional space, this implies the need to specify two numbers (pairs) 

or four numbers (triplets). When a pattern is isotropic, these counts reduce to one (pairs) 

and three (triplets), as the one degree of freedom describing the pattern’s absolute 

rotational position is stripped away. 

 

In this paper, we respond to the challenge to quantify the third-order structure of point 

patterns and explore the significance of the extra information such structure conveys. In 

this way, we aim to introduce triplet densities as a novel target of study in spatial ecology. 

For this purpose, we explore the triplets densities of a variety of point patterns that possess 
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clearly distinguishable higher-order structure in the form of "bandedness", in which 

points are distributed primarily within bands. In the Methods, we describe our main idea 

and introduce a way to define and interpret triplet densities. In the Results, we then apply 

our idea to several classes of point patterns and examine the resultant characteristics of 

triplet configurations. In the Discussion, we examine the prospects of using triplet 

densities as a new tool for capturing the next level of complexity in point patterns. 

 

 

2 Methods 

2.1 Overview 

Suppose that, after the singlet density and pair density of a point pattern have been 

analyzed, triplet densities are assessed from the point pattern to reveal the extra 

information contained in the pattern’s third-order structure. What additional insights can 

this yield? 

 

Our main idea for interpreting triplet densities is straightforward. To explain it, we 

consider a point pattern that has points clustered in bands of a characteristic width. When 

assessing the densities of the triangles formed by all possible triplets of a particular range 

of spatial scales, comparable to the width of these bands, there will be disproportionally 

more thin triangles and less near-equilateral ones than expected in point patterns without 

such bandedness. An illustration is shown in Figure 1: 

 In this point pattern, triplets of any shape are found at large scale (Figure 1a). 

 Thinner triplets predominate at the intermediate scale that is comparable to the 

width of the shown band (Figure 1b). 

 At smaller scale yet, triplets of any shape are again found (Figure 1c). 

An excess of thinner triplets at a certain spatial scale will thus indicate the presence of 

bandedness in a point pattern, and the scale at which thinner triplets start to predominate 

will carry information about the width of the band in the point pattern. 
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To make this idea applicable, the following three open questions have to be addressed: 

 First, we need to specify how to measure a triplet's scale and shape. 

 Second, using the chosen measures of scale and shape in determining a given test 

pattern’s triplet density, we need to establish a criterion for assessing the excess 

of thinner triplets, i.e., we need to define control patterns to be used as a reference 

against which to gauge an excess of thinner triplets in the test pattern. 

 Third, we need to specify how to quantify the excess of thinner triplets and how 

to infer from that the characteristic triplet scale at which this excess occurs. 

In the next sections, we describe our approach to each of these questions step by step. 

Figure 1. 

 

2.2 Measures of triplet scale and shape 

Let us consider a triplet of three distinct points i, j, k. As shown in Figure 2, these points 

define three edges Li, Lj, Lk and three angles i, j, k. On this basis, we now introduce 

measures that quantify the triplet’s scale and shape: 

 As a scale measure S that describes how large the triplet is, we use the arithmetic 

mean of two edges (Lj + Lk)/2. When magnifying any triangle by a given factor, 

this scale measure is increased by the same factor. 

 As a shape measure I that describes how thin a triplet is: for this purpose, we use 

the angle i surrounded by the two edges Lj and Lk. When magnifying any triangle 

by a given factor, this shape measure is left invariant. 
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Any triplet thus has three matched measures of scale and shape: ((Lj + Lk)/2, i), ((Lk + 

Li)/2,j), and ((Li + Lj)/2, k). In all of these, the two edges used in the scale measure 

surround the angle used as the shape measure. The shape measure I can take values within 

the range 0 ≤ I ≤  Equality holds when the triangle is degenerate (i.e., when the three 

points lie on a straight line). The thinner a triangle becomes, the more closely its three 

shape measures I approach 0 (for two of them) or  (for one of them). 

 

For the sake of tractability, it is often advisable to discretize the aforementioned measures 

of scale and shape. Thus, a given value of the scale measure S falls into the sth bin of the 

scale measure, and a given value of the shape measure I falls into the ith bin of the shape 

measure. 

 

Figure 2. 

 

To start determining a given test pattern’s third-order structure, we sample a large number 

of its triplets. For each triplet, we translate the matched measures ((Lj + Lk)/2, i), ((Lk + 

Li)/2,j), and ((Li + Lj)/2, k) into the corresponding bins (s1, i1), (s2, i2), and (s3, i3). In 

this way, we obtain the triplet-density matrix T  (Tsi ), where Tsi is the number of triplets 

that have a scale and a shape lying within the sth and ith bin of the scale and the shape 
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measure, respectively, where both s and i run from 1 to the respective numbers of bins. 

In practice, T  (Tsi ) is computed by starting with a matrix of 0s and incrementing 
1 1s iT , 

2 2s iT , and 
3 3s iT  by 1 for each sampled triplet. 

 

As the number of triplets systematically increases with their scale, we normalize the 

triplet-density matrix T to obtain the matrix T*  (Tsi
* )  that in each row s contains the 

frequency distribution of shape measures at that scale (consequently, for each scale s the 

row elements Tsi
*  sum to 1 over all is). The triplet-frequency matrix T*  thus captures 

the spatial configuration of triplets in the test pattern. 

 

2.3 Control patterns for defining third-order structure 

We next need to specify how to gauge an excess of thinner triplets in the test pattern. In 

pair-based approaches, the predominance of short-distance pairs in a test pattern is gauged 

against a CSR point pattern that has the same first-order structure (i.e., the same singlet 

density) as the test pattern. In our triplet-based approach, therefore, a control pattern 

against which the excess of thinner triplets is gauged should have the same first- and 

second-order structure as the test pattern. 

 

In order to generate such a control pattern, we adopt the Metropolis-Hasting algorithm 

(Hastings 1970), hereafter MH, a Markov Chain Monte Carlo method. Starting from a 

CSR point pattern with the same singlet density as the test pattern, points are randomly 

shifted in space so that the distribution of inter-point distances converges to that of the 

test pattern within a given accuracy (which trades off with the required computational 

time; see Appendix A for details). 

 

Once a control pattern is generated for a test pattern, the triplet-density matrix Tc = (Tc
si) 

and the triplet-frequency matrix Tc* = (Tc*
si) of the control pattern are obtained just as for 

the test pattern. 
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On this basis, we define the test pattern’s third-order structure by the difference in the 

triplet-frequency matrices of the test pattern and the control pattern, T* and Tc*. This 

yields the excess triplet-frequency matrix Te = T* – Tc*. If a test pattern has more triplets 

at scale s and shape i than expected based on its first- and second-order structure, Te
si is 

positive, whereas if it has less triplets at that scale and shape, Te
si is negative. A test 

pattern’s third-order structure can thus conveniently be visualized by showing its excess 

triplet-frequency matrix in the two dimensional space spanned by scale and shape. 

 

2.4 Quantification of the excess of thin triplets and definition of the characteristic 

triplet scale 

For a banded point pattern as shown in Figure 1, no third-order structure exists at scales 

much below the width of the considered band. Hence, the rows of the excess triplet-

frequency matrix at those scales must contain values close to 0. At scales comparable to 

the band’s width, thinner triplets start to predominate in the test pattern when compared 

with the control pattern, so the corresponding rows of the excess triplet-frequency matrix 

must show positive values around 0 and , and negative values in between. In order to 

define the characteristic triplet scale above which this systematic departure starts to 

emerge, we need to define a measure of the deviation of the test pattern from the control 

pattern in terms of the frequency distributions of shapes as a function of scale. 

 

We use the Jensen-Shannon divergence to measure the divergence D(S) = DJS(T*
s || Tc*

s) 

between the two frequency distributions T*
s and Tc*

s of shapes as a function of scale S 

(see Appendix B for details). Plotting D(S) against S enables us to quantify the 

characteristic scale at which the third-order structure specific to the test pattern starts to 

emerge. 

 

To assess at which divergence threshold the characteristic triplet scale should be defined, 
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we consider a range of test patterns with bands of different widths, for each of them 

calculate the squared difference between the actual width of the band and the estimated 

characteristic triplet scale defined by an assumed divergence threshold, and then obtain 

the optimal divergence threshold that minimizes the sum of squared differences. 

 

In the following analysis, we explore a series of test patterns within the finite spatial range 

0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Specifically, we consider straight bands, arcs or curved bands, rings, 

spirals, and crosses of straight bands. The number of points (which here equals the singlet 

density, as the considered spatial range has an area of 1) is at least 1,000 in all of these 

test patterns. Sampling all triplets is computationally neither easy nor necessary, as the 

number of possible triplets increases in cubic order with the number of points. We always 

sample 10,000,000 triplets, which ensures that sampling variances in the triplet-frequency 

matrices T* and Tc* are sufficiently small (except at the smallest scales) when using 100 

bins for the scale measure S (0 ≤ S ≤ 1) and 50 bins for the shape measure I (0 ≤ I ≤ ). 

 

 

3 Results 

We first apply our approach to point patterns featuring straight bands of different widths, 

before comparing the results with those for qualitatively different classes of test patterns. 

 

3.1 Triplet frequencies of a rectangular band 

As a first example, we analyze a test pattern in which points form a rectangular band. 

Specifically, 3,000 points are distributed under CSR within a rectangular region of width 

0.15 (0.425 ≤ x ≤ 0.575 and 0 ≤ y ≤ 1) (Figure 3a). A control pattern generated using the 

MH algorithm is shown in Figure 3b: by construction, this has the same first- and second-

order structure as the test pattern, which is confirmed by the comparison of pair densities 

shown in Figure 3c. 
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The triplet frequencies of the test pattern and that of the control patterns averaged over 

10 control patterns are shown in Figures 3d and 3e, respectively. The excess triplet-

frequency matrix Te is shown in Figure 3f. At small scales, the triplet frequencies in the 

test pattern are similar to those in the control patterns. But they start to deviate as the scale 

is increased, and at an intermediate scale, the excess of thinner triplets (with angles close 

to either 0 or π) becomes evident as a clear bimodality in the frequency distribution of 

angles. As the scale is further increased, this bimodality disappears again, as triplet 

frequencies start to become dominated by the boundary effects that inevitably occur for 

any point patterns limited to a finite spatial range. Therefore, we hereafter focus on scales 

s smaller than about 0.5. 

 

The divergence D(S), measuring the difference in the frequency distributions of triplet 

angles shown in Figures 3d and 3e as a function of scale S (Figure 3g), continuously 

grows as the scale is increased. For very small scales, below about s = 0.02, this 

divergence also increases. This is an artifact caused by the finite number of points in the 

test pattern: because of the scarcity of very small-sized triplets, both in the test pattern 

and in the control patterns, the triplet frequencies at such small scales are noisy. This noise 

diminishes – and the resultant divergence eventually vanishes – with more points in the 

test pattern, a bigger spatial range of the test pattern, larger bins for the scale measure, 

and larger bins for the shape measure. 
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Figure 3. 

 

3.2 Characteristic triplet scales of rectangular bands 

We next explore how the width of a rectangular band in a test pattern is reflected in the 

triplet-frequency matrix. For this purpose, we use five test patterns, each having a band 

of points distributed under CSR in rectangular regions of different width (0.05, 0.10, 0.15, 

0.20, and 0.25), with the singlet density kept constant within the band (Figures 4a-e). For 

each of these test patterns, we generate ten control patterns, one of which is shown in 

Figures 4f-j. The resultant excess triplet frequencies are shown in Figures 4k-o. 

 

If these bands of points had infinite vertical lengths (–∞ < y < ∞) and singlet densities, 

the triplet frequencies at any given scale would be invariant under multiplying the band 

width and the scale by the same factor. For example, the triplet frequencies of a test 

pattern with a band of width w' = 0.05 (0.475 < x < 0.525, –∞ < y < ∞) at the scale S' 

would exactly match those of a test pattern with a band of width w = 3 x 0.05 = 0.15 

(0.425 < x < 0.575, –∞ < y < ∞) at the scale S = 3S'. To see how this scaling applies despite 

the finite vertical lengths and singlet densities of the rectangular bands, we plot the 

divergence measure D(S') of the test pattern with band width w' as a function of S' = S 

w'/w, i.e., of the scale that has been rescaled relative to the band width of w = 0.15 as a 
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reference (Figure 4u). 

 

When rescaled in this manner, the divergence measures of the five test patterns with 

various band widths generally match each other well (Figure 4u). They all show an initial 

decline to zero as the scale is increased from zero, reflecting the noise caused by the 

scarcity of small-sized triplets. They then start to rise as the scale is increased and the 

triplet frequencies in the test pattern and the control pattern start to deviate at the scale of 

the considered band width. Indeed, the results in Figure 4u suggest that we can 

approximately read off the widths of the analyzed bands (vertical arrow in Figure 4u) by 

considering when the deviance between test pattern and control pattern exceeds a certain 

threshold (horizontal line in Figure 4u). For any test pattern, a characteristic triplet scale 

can thus be defined by the passing of such a divergence threshold. We now examine the 

optimal choice of this threshold for rectangular bands. 

 

For a continuous range of candidate divergence thresholds, Figure 4v shows the resultant 

sum of squared differences between the actual reference band widths (always 0.15 after 

rescaling) and the estimated band widths, obtained with the following algorithm. (1) For 

all five considered band widths w', plot the divergence D(S') against the scale S' = S w'/w 

(Figure 4u). (2) For all w' and all candidate values D* of the divergence threshold, 

calculate the scale S'* at which D(S'*) = D*. (3) For all w' and all D*, calculate the squared 

difference between S'* and the reference band width 0.15 and sum these squared 

differences for all five band widths as a function of D* (Figure 4v). We then estimate the 

optimal divergence threshold as the one that minimizes the sum of squares, which yields 

D* = 0.0043 (Figure 4v). 

 

Using this optimal divergence threshold (horizontal lines in Figures 4p-t), we consider 

the divergence D(S) in the original scale (curves in Figures 4p-t) to derive the estimated 

band widths (vertical lines in Figures 4p-t). The results are plotted against the actual band 
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widths in Figure 4w. We can thus see that all combinations of estimated and actual band 

widths nearly fall on the line with slope 1. This demonstrates that the width of the 

rectangular bands can be precisely captured by the scale beyond which the distributions 

of triplet frequencies starts to deviate between the test and control patterns. 
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Figure 4. 
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3.3 Robustness of our approach applied to other test patterns 

In order to examine the robustness of our approach, we apply it to various other classes 

of test patterns that have clear bandedness with various band widths and band shapes. For 

each class of test pattern, we derive the optimal divergence threshold and use it to 

determine each test pattern’s characteristic triplet scale. As a further robustness check, we 

also apply our approach to test patterns without bandedness. 

 

3.3.1 Arcs 

We next examine test patterns with arc-shaped bands of different widths (Figure 5). 

Figures 5a-e show five test patterns with widths of 0.05, 0.10, 0.15, 0.20, and 0.25 with 

the singlet density kept constant within each arc. Figures 5f-j show corresponding control 

patterns. Figures 5k-o show the resultant excess triplet-frequency matrices. Bimodality in 

the frequency distribution of triplet angles, with peaks at 0 and  occurs at intermediate 

scales. Figures 5p-t show the divergence measure D(S) and the optimal divergence 

threshold. Figure 5u shows the divergence measures D(S') for all five test patterns as 

functions of the relative scale S' that is standardized to the reference width of 0.15. Figure 

5v shows the resultant optimal divergence threshold of 0.0046 that minimizes the sum of 

squared differences. Figure 5w shows the comparison of estimated widths and the actual 

widths. As we see, our approach again successfully estimates the widths of the bands 

forming the arcs: the estimated widths are nearly linearly related to the actual widths as 

long as the arcs are not too wide. 
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Figure 5. 

 



   

 - 20 - 

3.3.2 Rings 

We next examine test patterns with ring-shaped bands of different widths (Figure 6). 

Figures 6a-e show five test patterns with widths of 0.05, 0.07, 0.09, 0.10, and 0.15. 

Control patterns, excess triplet-frequency matrices, and the divergence measure D(S) are 

shown in Figures 6f-j, 6k-o, and 6p-t, respectively. Figure 6u shows D(S') as functions of 

the relative scale S'. Bimodality in the frequency distribution of triplet angles, with peaks 

at 0 and  occurs at intermediate scales. The optimal divergence threshold is 0.0001645 

according to Figure 6v, and estimated and actual widths are compared in Figure 6w. As 

we see, our approach successfully again estimates the widths of the bands forming the 

rings: the estimated widths are nearly linearly related to the actual widths, except for the 

narrowest width 0.05. For the band width 0.05, D(S') is larger, across all short and 

intermediate scales S', than for the other band widths (Figure 6u), and we excluded this 

test pattern when deriving the optimal divergence threshold. This seemingly has been 

caused by the choice of the reference band width of 0.15 when deriving the optimal 

divergence threshold. Visual inspection suggests that a reference width of about 0.18, not 

0.15, may work better. The curvature of the ring-shaped bands in the test pattern may be 

related to this result (see Discussion). Note also that the generated control patterns exhibit 

a ring-shaped pattern similar to the original test pattern, so the triplet frequencies in the 

control patterns are therefore similar to those in the test patterns. This is a likely reason 

for the very low optimal divergence threshold, as compared with those for rectangular 

bands and arc-shaped bands analyzed above (see Discussion). 
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Figure 6. 
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3.3.3 Spirals 

We next examine test patterns with spiral-shaped bands of different widths (Figure 7). 

Figures 7a-e show five test patterns with widths of 0.02, 0.03, 0.04, 0.05, and 0.06. 

Control patterns, excess triplet-frequency matrices, and the divergence measure D(S) are 

shown in Figures 7f-j, 7k-o, and 7p-t, respectively. Figure 7u shows D(S') as functions of 

the relative scale S'. Bimodality in the frequency distribution of triplet angles, with peaks 

at 0 and  occurs at intermediate scales for narrow widths. The optimal divergence 

threshold is 0.0122 according to Figure 7v, and estimated and actual widths are compared 

in Figure 7w. As we see, our approach again successfully estimates the widths of the 

bands forming the spirals: the estimated widths are nearly linearly related to the actual 

widths. For the spiral with the broadest band, with a width of 0.06, D(S') is smaller, across 

all intermediate and large scales S', than for the other band widths (Figure 7u), and we 

excluded this test pattern when deriving the optimal divergence threshold. 
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Figure 7. 
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3.3.4 Crosses 

We next examine test patterns with combinations of three rectangular bands (Figure 8). 

Figures 8a-e show five test patterns with the widths of 0.05, 0.07, 0.09, 0.10, and 0.15. 

Control patterns, excess triplet-frequency matrices, and the divergence measure D(S) are 

shown in Figures 8f-j, 8k-o, and 8p-t, respectively. Figure 8u shows D(S') as functions of 

the relative scale S'. Bimodality in the frequency distribution of triplet angles, with peaks 

at 0 and  occurs at intermediate scales for narrow widths. The optimal divergence 

threshold is 0.00302 according to Figure 8v, and estimated and actual widths are 

compared in Figure 8w. As we see, our approach again successfully estimates the widths 

in the combinations of three rectangular bands: the estimated widths are nearly linearly 

related to the actual widths, except for the broadest width 0.15, which consequently was 

excluded when deriving the optimal divergence threshold. 
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Figure 8. 
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3.3.5 Point patterns without bandedness 

As a last robustness check, we apply our approach to test patterns that have no apparent 

bandedness (Figure 9). Figures 9a-c show test patterns with three disks of points, each of 

which is generated by distributing points under CSR within three disks of radius 0.05, 

0.75, and 0.1, respectively. Control patterns, excess triplet-frequency matrices, and the 

divergence measure D(S) are shown in Figures 9d-f, 9g-i, and 9j-l, respectively. The 

resultant control patterns, like in the case of ring-shaped bands, are very similar to the 

original test patterns. For these test patterns, the excess triplet frequencies do not show 

any tendency of bimodality (Figures 9g-i), and the divergence measure D (S) is nearly 

zero at scales comparable to the radii of the disks (Figures 9j-l). 

Figure 9. 

 
3.4 Control patterns 

We have stipulated that control patterns against which to compare the frequencies of 

triplets in a test pattern should have the same first- and second-order structure as the test 
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pattern. To generate such control patterns, we use the MH algorithm. A test pattern’s third-

order structure has then been defined by the difference in the triplet frequencies between 

the test pattern and the control pattern. 

 

It turns out, however, that control patterns, to a greater or a lesser extent, can become 

similar to the test patterns (Figures 4-9). For test patterns with rectangular bands, arc-

shaped bands, spiral-shaped bands, and combinations of rectangular bands, some 

bandedness emerges in the control patterns when the considered bands are narrow. 

Especially for test patterns with ring-shaped bands and those with three disks of points, 

both of which are highly symmetric, the generated control patterns are very similar to the 

test patterns (Figures 6 and 9). 

 

This raises a critical question: Can we reconstruct a point pattern when only using 

information on its first- and second-order structure? This question is equivalent to the 

following one: Can we uniquely reconstruct a point pattern, in terms the locations of all 

its points, from only knowing the number N of points and the N(N – 1)/2 inter-point 

distances between them? It is immediately clear that this can apply, if at all, only up to 

the rigid translation, rotation, and reflection of the entire point pattern, since inter-point 

distances are invariant under these transformations and thus contain no information on a 

pattern’s absolute position and orientation. With this proviso, the answer to the last 

question is trivially yes for a point pattern with N = 3 points, because the three inter-point 

distances uniquely determine the original point pattern up to translation, rotation and 

reflection. For a point pattern with N = 4 points, it can be shown that the answer is again 

yes, except for the special case in which one point out of the four is on a line that the other 

three points determine (see Appendix C for details). However, the probability of such a 

special case to be realized in an arbitrary point pattern with N = 4 points is negligible (it 

has a probability of "measure zero"). By excluding such a special case, it can thus again 

be concluded that the first- and second-order structure of a point pattern with N = 4 points 
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uniquely determine it up to rotations, translations, and reflections. Although we are not 

aware of a proof that extends this argument to point patterns with an arbitrary number of 

points, studies on multidimensional scaling (Zhang et al. 1994, Cox and Cox 2001) and 

our control patterns generated by MH (Figures 4-9) suggest that a point pattern’s first- 

and second-order structure may determine it uniquely. If this were true, any control 

pattern generated for a test pattern would become identical to the test pattern up to 

rotations, translations, and reflections. In turn, this would render useless our approach to 

define third-order structure by the difference in triplet frequencies between test and 

control patterns that agree in their first- and second-order structures. Instead, any higher-

order structures would simply be implied by these lower order structures. 

 

It seems clear that reconstructions of the discussed kind are only possible if the 

information available on a point pattern’s second-order structure is perfect, by being both 

complete and infinitely precise. Thus, the resolution and precision at which second-order 

information is provided and the accuracy with which control patterns are generated seem 

to be critical for the reconstruction’s feasibility. In practical terms, inter-point distances 

can never be recorded at infinite resolution or precision and the MH algorithm cannot be 

expected to yield perfectly accurate matches between a test pattern’s and a control 

pattern’s distributions of inter-point distances. 

 

Therefore, we have examined how the generated control patterns are affected by changing 

the bin width used to sample and fit a test pattern’s and a control pattern’s distributions 

of inter-point distances. In one extreme, this bin width is so large that the generated 

control pattern simply exhibits CSR with the same first-order structure as the test pattern. 

In the opposite extreme, with perfect accuracy enabled by an infinitesimal bin with, the 

control pattern may become identical to the test pattern, although for any larger number 

of points this is practically impossible to achieve by running the MH algorithm for a 

reasonable computation time. In between these two extremes, we generate a series of 
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control patterns using various bin widths for a given test pattern to see how the associated 

accuracy affects the triplet frequencies of control patterns. As accuracy is increased, the 

generated control patterns are expected to become more similar to the test pattern, so their 

triplet-frequency matrices are expected to become more and more similar to each other, 

T* ≈ Tc*. 

 

To measure the total divergence D(T*, Tc*) between the two triplet configuration matrices, 

we again adopt the Jensen-Shannon divergence, D(T*, Tc*) = DJS(T*/smax || Tc*/smax), 

where smax is the number of bins for the scale s (note that after division by smax the matrix 

elements of T*/smax and Tc*/smax both sum to 1, because each row of T* and Tc* is 

normalized so as to sum to 1 and there are smax rows). 

 

Figure 10 shows results for two test patterns, one with a rectangular band (first column 

of Figure 10a) and the other with a ring-shaped band (first column of Figure 10c). Control 

patterns generated using bin widths of 0.0015, 0.01, 0.1, and 1.5 are shown in the further 

columns of Figures 10a and 10c, respectively. The corresponding triplet-frequency 

matrices are shown in Figures 10b and 10d, respectively. The corresponding distributions 

of inter-point distances for the test pattern and the generated control patterns are shown 

in Figures 10e and 10f, respectively. Figure 10g shows the total divergence in the second-

order structure (defined as the JS divergence of the probability distributions of inter-point 

distances) as a function of bin width for both test patterns. Figure 10h shows the total 

divergence D(T*, Tc*) in the third-order structure as a function of bin width for both test 

patterns. 

 

Figure 10g indicates that when using bin widths smaller than 0.03 the second-order 

structures of the generated control patterns are virtually identical to that of the test pattern. 

For the test pattern with the rectangular band, a band-like pattern, although not as clear 

as in the test pattern, emerges as the bin width is narrowed, and for the test pattern with 
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the ring-shaped band, a clear ring emerges even for a bin width as large as 0.10. This 

again illustrates that a test pattern’s first- and the second-order structures can potentially 

suffice for reconstructing the test pattern. The accuracy required for this, in terms of the 

bin width used for the matching of second-order structures, may differ depending on the 

considered test pattern. 

 

Figure 10h indicates the existence of a plateau in the dependence on the bin width of the 

total divergence D(T*, Tc*) in the triplet-frequency matrices. This suggests that defining 

third-order structure as we have suggested is entirely feasible, provided it is done with an 

appropriate bin width, a decrease of which no further affects the generated control 

patterns. For the two test patterns in Figure 10, this holds for bin widths smaller than 

about 0.03. Below this threshold, control patterns have nearly identical second-order 

structure as the test pattern, but their triplet frequencies still stably differ from those of 

the test pattern. 

 

We can thus conclude that, even though it is theoretically possible that control patterns 

converge on test patterns (up to translation, rotation, and reflection) as the bin width is 

decreased (as schematically indicated by the dashed lines in Figure 10h), the extremely 

small bin widths and the extremely long computation times required for this are 

practically infeasible. In practice, the bin width can thus safely be set as small as is 

computationally feasible, without incurring a risk that this would affect the estimated 

third-order structure. Conversely, using a smaller bin width than that at the right-hand 

border of the plateau in third-order divergence (as illustrated in Figure 10h, where this 

border occurs at about 0.03) is computationally wasteful, as this bin width is already small 

enough to ensure the stable estimation of the triplet-frequency matrices, at reduced 

computational costs. To err on the side of caution, we have therefore opted to use 

throughout this study a bin width of 0.01 for generating control patterns. 
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Figure 10. 

 

4 Discussion 

In spatial ecology, increasing attention has been devoted to the characterization of point 

patterns, leading to the development and application of a variety of tools such as the pair 

correlation function, Ripley's K function, and O-ring statistics (Ripley 1988, Diggle 2003, 

Wiegand and Moloney 2004). Focusing only on the number of points, or the singlet 

density, in the point pattern corresponds to the mean-field approximation that has a long 
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history of modeling in the study of population dynamics. The singlet density alone, 

however, often fails to capture important spatial structures of point patterns we observe 

in nature, in which interactions between individuals are spatially localized (birth, death, 

dispersal, intra- and inter-specific competition, etc.) and hence spatial distribution of 

individuals rarely exhibit CSR even in homogeneous environment. We then need to step 

into the second order structure defined by pairs. The pair density that carries information 

of how closely two points are located describes the second order structure and it provides 

us with a rich array of information about local interactions between individuals as many 

of previous empirical/theoretical studies have demonstrated. 

 

Intuitively, we may expect that the second-order structure defined by pairs would not be 

sufficient to describe a point pattern completely. With this expectation, we have defined 

the third order structure by focusing on triplets as the difference in the triplet 

configuration when contrasted with that of a control pattern that has the same first and 

second order structure. Predominance of thinner triplets is expected to highlight 

bandedness as a typical third order structure in the point pattern (Figure 1). As expected, 

we have shown that the scale measure S and the shape measure I, the arithmetic mean of 

two edges and the angle surrounded by these, successfully highlight the triplet 

configurations of point patterns with bandedness and we have developed an approach to 

derive the characteristic triplet scale hidden in the patterns. Our analysis is heuristic 

without any probability distributions of the scale and the shape being explicitly derived. 

However, we stress that our approach to focus on triplets provides a new step for further 

studies on spatial pattern analyses beyond pairs. 

 

The MH algorithm we use to generate control patterns has no inherent bias in itself to 

produce any patterns with orders higher than two and hence we expected that such control 

patterns will serve as an appropriate reference to gauge the predominance of thinner 

triplets. It turns out, however, that control patterns become more similar to the test pattern 
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as we increase the accuracy to fit the pair density in MH at least in some highly symmetric 

cases (Figures 6, 9, and 10). This finding suggests that the first and second order structures 

may uniquely determine a point pattern and that higher order structures are completely 

dependent on these lower order structures. If this is true, our approach based on triplet is 

nullified. 

 

We have shown, however, that there exists a range of accuracy for which generated 

control patterns are insensitive for changing the accuracy (Figure 10) and that bandedness 

as a typical third order structure can be still highlighted using the difference in the triplet 

configuration; with this accuracy, the distribution of shapes starts to diverge above a 

characteristic triplet scale that is linearly related to the band width of point patterns 

(Figures 4-8). For some test pattern like a ring, control patterns become very similar to 

the test pattern (Figure 6). Similarity in the test and the control pattern consequently 

results in a very small optimal divergence threshold of 0.0001645 for patterns with a ring, 

compared with other patterns with a band, an arc, a spiral and crosses, threshold for each 

of which is 0.0043, 0.0046, 0.0122, and 0.00302, respectively. Nonetheless, our approach 

based on triplets successfully highlights banded structure by focusing on the 

predominance of thinner triplet at a certain scale. 

 

We here summarize our conjecture on the dependency of control patterns on the accuracy 

to fit the pair density and on the resultant extractions of the third order structure in Table 

1. There remain lots of things to be learned about the use of control patterns to gauge 

thinner triplets and to define the third order structure. 

Table 1. Accuracy in sampling and matching the second-order structures (pair densities) 

of a test pattern and a control pattern and its consequence for identifying the test pattern’s 

third-order structure (triplet density). 

Perfect accuracy The control pattern has exactly the same first- and second-

order structure as the test pattern, and is thus identical to it (up 
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to translations, rotations, and reflections). Accordingly, there 

is no difference in the triplet densities of the test pattern and 

the control pattern. If a test pattern’s third-order structure were 

defined based on such control patterns, it would be completely 

determined by its first- and second-order structures, and could 

thus contain no independent extra information. 

Intermediate accuracy The control pattern has exactly the same first-order structure 

and very nearly the same second-order structure as the test 

pattern. The control pattern is safely prevented from becoming 

identical to the test pattern (up to translations, rotations, and 

reflections) by using bins of finite width in sampling and 

matching the control pattern’s pair density to that of the test 

pattern. (Alternatively, the control pattern’s pair density may 

be sampled without including all pairs, or the matching 

process may be stopped shortly before perfect convergence is 

reached.) The test pattern’s third-order structure, defined by 

the difference in the triplet densities of a test pattern and such 

control patterns, thus contains independent extra information, 

which can be used, e.g., for detecting bandedness in the test 

pattern. 

No accuracy The control pattern has exactly the same first-order structure 

as the test pattern, but no second-order structure, as its points 

are distributed according to CSR. If a test pattern’s third-order 

structure were defined based on such control patterns, it would 

contain a contribution from the difference in the test pattern’s 

and control pattern’s pair densities. This would mean that the 

test pattern’s third-order structure could not be defined 

independently from its second-order structure. 



   

 - 35 - 

 

When we derived optimal divergence thresholds, we rescaled the divergence in the shape 

distribution D(S') (Figures 4u-8u) and calculated the sum of squared deviations from a 

reference band width of 0.15, an arbitral value. But this rescaling should work perfectly 

only for a vertically infinitely long straight band. Furthermore, for a test pattern with a 

curved band, curvature of the band relative to the band width would critically affect the 

optimal divergence threshold because triangles that have the same shape measure but are 

larger in scale are possible for such a curved band (cf. optimal divergence threshold for 

an arc 0.0046 is larger than that for the straight band 0.0043). For this reason, our 

derivation of optimal divergence thresholds based on a fixed reference width of 0.15 

should be considered as a crude method that has much room to be improved. 

Inconsistency in the magnitude of the optimal divergence thresholds for the five test 

patterns we tested is likely related to this issue and also to how generated control patterns 

become similar to the original test pattern, which will be linked with the degree of 

symmetry of the test pattern and the algorithm we use to fit the second order structure. 

Further study is needed to explain the large variation in the optimal divergence thresholds. 

 

Schladitz and Baddeley (2000) examined a third order structure by focusing on the r-

close triplets and derived the expected number of r-close triplets for the homogeneous 

Poisson process and the Gauss-Poisson process. But their motivation was not to detect 

bandedness in point pattern. They also did not explicitly considered the triplet 

configurations to explore triplet "shape". Dale and Powell (2001) developed a method 

that focuses on the points within the circumcircle made by a triplet. Their focus was to 

detect gaps in a point pattern and they also did not explore "shape" of a triplet, though the 

radius of the circumscribed circle in which there are fewer points corresponds to gap size. 

Our approach is similar to Dale and Powell (2001) but differs essentially in that we 

explicitly consider the spatial configuration of a triplet by its scale and shape and reduces 

the dimensionality of triplet configuration. 
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Dimensionality, or degree of freedom, of a triplet is three in isotropic pattern. Therefore, 

a triplet cannot be uniquely determined by a scale and a shape measure. In order to 

simplify the analysis, however, reduction of the dimensionality is necessary. Furthermore, 

any attempt to simplify spatial complexity is worth to carry out and should be pursued 

(Dieckmann et al. 2000). In this paper we focus on triplets and measure a triplet in terms 

of the scale and shape as a two dimensional measure. 

 

The scale and shape of a triplet can be defined in various ways. For examples, the 

maximum of two edges, the radius of the inscribed circle of the triplet, the radius of the 

circumscribed circle, the arithmetic mean of the three edges, the maximum of the three 

edges, can be a measure of scale. In the same way, other measures of shape are possible; 

the ratio of the inscribed circle radius to the sum of three edges and the ratio of the 

minimum of triangle height to the maximum edge can be a measure of shape. Further 

study is needed to explore which combination of scale and shape measures can be useful 

to better highlight bandedness as a typical third order structure. 

 

Our approach based on triplets focuses on the predominance of thinner triplets in a point 

pattern. As we have shown for the five types of test patterns, our approach should be able 

to highlight bandedness with some directionality as long as the band width is constant 

and narrow enough. If the band width is large relative to the distance with another band, 

or if the band width varies along a band, there are less thinner triangles in the point pattern 

and our approach will fail as well as for point patterns that have no directionality like 

disks. Further study is needed to simplify the complexity of point pattern in terms of 

triplets. 

 

We have a priori assumed that the next structure beyond pairs is represented by triplets. 

Triplets, however, might not necessarily be the next level structural component. A 
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possible way is to consider a conditional probability that a point in a pair makes another 

pair with another point to form an open triangle. This extended pair-based approach may 

work to highlight banded patterns. It, however, remains an open question how to quantity 

such an open triangle and to deal with the conditionality. If our conjecture that the second 

order structure uniquely determines the point pattern holds true, this extended pair-based 

approach may successfully capture the spatial configuration of point patterns. Further 

study is needed to quantify and simplify triplet configurations in terms of the lower order 

structure. 

 

So far, a very few attempts have been made that focus on triplets in point pattern analysis 

primarily because of the difficulty with which we measure the scale and the shape of a 

triplet and interpret the triplet configuration in terms of the predominance of thinner 

triplets. We have responded to this challenge and have shown that a simple scale and 

shape measure can highlight bandedness as a typical third order structure of a point 

pattern. Our approach could be applied to a variety of point patterns observed in the real 

world such as bandedness generated by wave-regeneration in forest ecology (Sprugel 

1976, Iwasa et al. 1991, Sato and Iwasa 1993, Shibuya et al. 2004). There seem to be few 

studies that focus on bandedness with some directionality in point pattern analysis. In 

order to better understand the characteristics of point patterns and to pursue further 

simplification of spatial complexity, we call for further study that focuses on triplets 

beyond pairs. 
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Appendix A: Generating control patterns using the Metropolis-Hastings algorithm 1 

We use the Metropolis-Hastings (MH) algorithm to generate a control pattern that has the 2 

same first- and second-order structure as a test pattern. 3 

 4 

We start by determining the pair density (distribution of inter-point distances) of the test 5 

pattern, using the specified bin width b. All pairs are sampled and the frequency pi of 6 

pairs falling within the ith bin is obtained, normalized so that 1ii
bp  . 7 

 8 

We then initialize the MH algorithm with a CSR point pattern that covers the same range 9 

(0 ≤ x ≤ 1, 0 ≤ y ≤ 1) as the test pattern and that has the same number of points as the test 10 

pattern. To refine this control pattern successively using the MH algorithm, we repeat the 11 

following steps until the pair densities of the control pattern has sufficiently converged to 12 

that of the test pattern: 13 

 14 

(1) Calculate the pair density of the current control pattern using the bin width b. All pairs 15 

are sampled and the frequency pci of pairs falling within the ith bin is obtained, normalized 16 

so that c 1ii
bp  . 17 

 18 

(2) Randomly choose a point of the control pattern and randomly shift its location (x, y) 19 

to (x', y') to create a trial control pattern, where x' and y' are independent random numbers 20 

uniformly distributed between 0 and 1, . Calculate the pair density of the 21 

trial control pattern using the bin width b. All pairs are sampled and the frequency cip  22 

of pairs falling within the ith bin is obtained, normalized so that c 1ii
bp  . 23 

 24 

(3) Calculate the sums D and D' of squared differences between the pair density of the 25 

test pattern and the pair densities of the current control pattern and trial control pattern, 26 
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respectively, 27 

  2

ci ii
D b p p   and  2

ci ii
D b p p   . 28 

Calculate the probability of accepting the trial control pattern as 29 

 ( )/ 1[1 ]s D D DP e    , 30 

where the parameter s > 0 controls the convergence speed (we use s = 1.0 x 104). With 31 

probability P, accept the trial control pattern as the new current control pattern. Otherwise, 32 

reject the trial and leave the current control pattern unchanged. 33 

 34 

(4) Repeat (1) through (3) until p converges to pc to a specified degree, so that the sum D 35 

of squared differences becomes smaller than a threshold Dmin (we use Dmin = 1.0 x 36 

10–4). 37 

 38 

Control patterns generated in this way have exactly the same first-order structure and very 39 

nearly the same second-order structure as the test pattern, with the bin width b and the 40 

convergence threshold Dmin controlling the accuracy of the latter match. When Dmin is 41 

chosen sufficiently small, the match’s accuracy is thus controlled by b. 42 

 43 

For finite bin width b, control patterns independently generated in this way differ from 44 

each other (as well as from the test pattern). When the bin width b is chosen sufficiently 45 

small, the triplet-frequency matrix Tc* becomes essentially independent of b. To improve 46 

accuracy, we generate 10 control patterns for each test pattern; the triplet-frequency 47 

matrix Tc* is then calculated as an average over these 10 control patterns. 48 

 49 

Appendix B: Determining Jensen-Shannon divergence 50 

The Jensen-Shannon divergence DJS(P || Q) measures the divergence between two 51 

probability distributions P = (Pi) and Q = (Qi) and is defined as 52 

 53 
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 JS KL KL
1 1

( || ) ( || ) ( || )
2 2

D P Q D P M D Q M  , 54 

 55 

where M = (P + Q)/2 and DKL (P || Q) is the Kullback-Leibler (KL) divergence defined 56 

as 57 

 58 

 KL( || ) ln( / )i i ii
D P Q P P Q . 59 

 60 

To measure the divergence D(S) in the frequency distributions of triplet shapes I as a 61 

function of triplet scale S, we set Pi = T*
si and Qi = Tc*

si (where s and i are the bins 62 

corresponding to S and I). We use the JS divergence because (in contrast to the KL) 63 

divergence) it is symmetric, so it can be considered as a metric distance between two 64 

distributions. 65 

 66 

Appendix C: Reconstructing patterns of four points using perfect second-order 67 

information 68 

We consider a triangle OAB in two-dimensional space. Without loss of generality, we set 69 

O = (0, 0), A = (a1, a2), and B = (b1, b2). We can add a new point C = (c1, c2) that creates 70 

a parallelogram ACA'B with another point A' that satisfies OA = OA', i.e., A' is located 71 

on the circle centered on O with radius OA. Then the point pattern OABC and OA'BC, 72 

although differing from each other, have the same inter-point distances. For this to occur, 73 

however, the point C has to satisfy (b1 + c1)2 + (b2 + c2)2 = 2a1(b1 + c1) + 2a2(b2 + c2), i.e., 74 

on a circle whose measure is zero in two dimensional space. Therefore, the probability 75 

that a point pattern comprising four arbitrary points has another point pattern with 76 

identical inter-point distances can be considered zero, i.e., a point pattern with N = 4 can 77 

be uniquely constructed using only inter-point distances. 78 

79 
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Figure legends 165 

 166 

Figure 1. Illustration of how triplet densities help identify bandedness in point patterns. 167 

If a point pattern contains bands of points, thinner triplets predominate at a characteristic 168 

scale determined by the width of the band. The example shows a spatial pattern given by 169 

a spiral-shaped band of points. Triplets are formed by any three points randomly chosen 170 

from the point pattern. (a) Triplets of all shapes occur at large scales. (b) Thinner triplets 171 

predominate at intermediate scales comparable to the width of the band. (c) Triplets of all 172 

shapes again occur at smaller scales. This shows how the analysis of third-order structure, 173 

by considering triplet shapes across scales, reveals extra information about a point pattern 174 

(and in particular, its bandedness) that cannot be inferred from the pattern’s second-order 175 

structure (which essentially can only reveal aggregation or segregation). 176 

 177 

Figure 2. Spatial configuration of a triplet comprising three distinct points i, j, k of a point 178 

pattern, with its three edges Li , Lj , Lk  and three angles , , . 179 

 180 

Figure 3. Deriving third-order structure by comparing the triplet frequencies of a test 181 

pattern with those of a control pattern. (a) A test pattern with a rectangular band of points: 182 

3,000 points are distributed under complete spatial randomness (CSR) within a rectangle 183 

of width 0.15 and height 1 embedded in an otherwise empty square with edges of length 184 

1 (0 ≤ x ≤ 1, 0 ≤ y ≤ 1). (b) A matching control pattern, generated by starting from an 185 

initial pattern with CSR and the same first-order structure (number of points) as the test 186 

pattern by successively moving individual points using the Metropolis-Hastings (MH) 187 

algorithm so as to bring its second-order structure (pair density) sufficiently close to that 188 

of the test pattern. (c) Pair densities as a function of pair distance for the test pattern 189 

(dashed line) and the control pattern (continuous line). Also shown are the pair densities 190 

for the CSR pattern used to initialize the MH algorithm (thin line). (d) The triplet 191 
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frequencies of the test pattern, represented as a contour plot of the triplet-frequency matrix 192 

T*. The measure I of triplet shape (angle between triplet edges in radians) varies along 193 

the horizontal axis, while the measure S of triplet scale (arithmetic mean of the 194 

corresponding edges) varies along the vertical axis. (e) The corresponding triplet 195 

frequencies of the control pattern, represented as a contour plot of the triplet-frequency 196 

matrix Tc* . (f) Contour plot of the excess triplet-frequency matrix e* * c*T T T= - . 197 

Excesses of triplets are shown in green (i.e., for these combinations of I and S, the test 198 

pattern has more triplets than the control pattern), while shortages of triplets are shown 199 

in red. The zero contour separating regions of excess and shortage is shown as a thick 200 

line. (g) Jensen-Shannon (JS) divergence D(S) of the triplet-frequency matrices of test 201 

pattern and control pattern as a function of the scale S. 202 

 203 

Figure 4. Third-order structure of rectangular bands of widths  0.05 (a), 0.10 (b), 204 

0.15 (c), 0.20 (d), and 0.25 (e). The number of points is 1,000, 2,000, 3,000, 4,000, and 205 

5,000 points, respectively, so that the singlet density within the bands is kept constant 206 

despite the change of band width. (f)-(j) Corresponding control patterns having the same 207 

first- and second-order structure as the test patterns. (k)-(o) Corresponding excess triplet 208 

frequencies. (p)-(t) Corresponding divergence D(S) of the frequency distributions of 209 

triplet shapes as a function of the triplet scale S. The optimal divergence threshold and 210 

the resultant estimates of the characteristic triplet scales are shown as horizontal and 211 

vertical lines, respectively. (u) Divergences D(S') as functions of the relative scale S' that 212 

is standardized to the reference width of 0.15 (the functions shown as thin dashed, thin 213 

continuous, continuous, thick, and thick dashed lines correspond to the band widths 0.05, 214 

0.10, 0.15, 0.20, and 0.25, respectively). The optimal divergence threshold is shown as a 215 

horizontal line. The reference band width of 0.15 is indicated by the vertical arrow. (v) 216 

Sum of squares of the deviations between the estimated relative characteristic triplet 217 

scales and the reference band width of 0.15 as functions of a continuum of candidate 218 
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divergence thresholds. (w) Comparison of the estimated characteristic triplet scales with 219 

the actual band widths. 220 

 221 

Figure 5. Third-order structure of arc-shaped bands of widths  0.05 (a), 0.10 (b), 222 

0.15 (c), 0.20 (d), and 0.25 (e). Points are distributed under complete spatial randomness 223 

(CSR) within a ring-shaped band,  with 224 

 and , that is clipped to an arc-shaped band within 225 

 and . The number of points is 1,048, 2,062, 3,229, 4,249, and 5,244, 226 

respectively, so that the singlet density within the bands is kept constant despite the 227 

change of band width. Other details as in Figure 4. 228 

 229 

Figure 6. Third-order structure of ring-shaped bands of widths  0.05 (a), 0.07 (b), 230 

0.09 (c), 0.10 (d), and 0.15 (e). Points are distributed under complete spatial randomness 231 

(CSR) within a ring-shaped band,  with  232 

and . The number of points is 2,357, 3,211, 4,015, 4,399, and 6,127, 233 

respectively, so that the singlet density within the bands is kept constant despite the 234 

change of band width. Other details as in Figure 4. 235 

 236 

Figure 7. Third-order structure of spiral-shaped bands of widths  0.02 (a), 0.03 (b), 237 

0.04 (c), 0.05 (d), and 0.06 (e). Points are distributed under complete spatial randomness 238 

(CSR) within a spiral-shaped band generated as follows. Using independent random 239 

numbers uniformly distributed between 0 and 1, 1 2 3, , [0,1)i i iR R R U: , a series of points 240 

( , )i ix y  is generated as x
i
 (

i
cos

i
) / 6 d

i
cos

i
, y

i
 (

i
sin

i
) / 6  d

i
sin

i
, 241 

with i
 6 R

1i , d
i
 w R

2i , and ia = 2R
3i

. The first terms on the right-hand sides 242 

of ix  and iy  describe an Archimedean spiral, while the second terms describe points 243 

distributed under CSR within a band following this spiral. The number of points is 1,906, 244 

2,860, 3,813, 4,767, and 5,720, respectively, so that the singlet density within the bands 245 
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is kept constant despite the change of band width. Other details as in Figure 4. 246 

 247 

Figure 8. Third-order structure of crosses of three rectangular bands of widths  0.05 248 

(a), 0.07 (b), 0.09 (c), 0.10 (d), and 0.15 (e). Points are distributed under complete spatial 249 

randomness (CSR) within the three rectangular bands generated as follows. Using 250 

independent random numbers uniformly distributed between 0 and 1, , [0,1)i ix y U: , a 251 

series of points  is generated by accepting points for which the distance between 252 

the point and at least one of three lines * *( )sin ( )cos 0j j j jx x y ya a- - - =  is less than 253 

w / 2 . The three lines are specified by 1 / 4a p= , * *
1 1( , ) (0.5,0.8)x y = , 2 / 3a p= - , 254 

* *
2 2( , ) (0.5,0.2)x y = , and 3 / 7a p= , * *

3 3( , ) (0.8,0.4)x y = . The number of accepted 255 

points is set to 3,000, 4,200, 5,400, 6,000, and 9,000, respectively, so that the singlet 256 

density within the bands is kept nearly constant despite the change of band width. Other 257 

details as in Figure 4. 258 

 259 

Figure 9. Third-order structure of three disks with radii  0.05 (a), 0.075 (b), and 0.1 260 

(c). Points are distributed under complete spatial randomness (CSR) within disks centered 261 

at (0.25, 0.25), (0.75, 0.25), and (0.5, 0.683). The number of points is set to 630, 1,416, 262 

and 2,514, respectively, so that the singlet density within the disks is kept constant despite 263 

the change of disk radius. Other details as in Figure 4. 264 

 265 

Figure 10. Dependence of the triplet frequencies of a control pattern on the accuracy with 266 

which the pair densities of a test pattern and a control pattern are sampled and matched. 267 

(a) & (c) Two test patterns given by, respectively, a rectangular band of width 0.05 and 268 

by a ring-shaped band of width 0.05 (left column) and corresponding control patterns 269 

(other columns) obtained for different bin widths for sampling and matching the pair 270 

densities. From left to right, the bin width decreases from 1.5, to 0.1, 0.01, and 0.0015. 271 

(b) & (d) Corresponding triplet-frequency matrices of the test pattern and control patterns. 272 

(e) & (f) Corresponding pair densities (distributions of inter-point distances) for the test 273 

( , )i ix y
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pattern and control patterns (rectangular band and ring-shaped band, respectively). Thick 274 

dashed gray curves show the pair density of the test pattern and thick continuous black 275 

curves show those for the control patterns (the corresponding bin widths are distinguished 276 

by labeled arrows). (g) Divergence in second-order structure as a function of bin width 277 

(the sampled bin widths are 0.0015, 0.005, 0.01, 0.015, 0.03, 0.05, 0.10, 0.15, 0.3, and 278 

1.5). Filled circles correspond to the rectangular band and filled squares to the ring-shaped 279 

band. The arrows indicate the bin widths of 0.0015, 0.01, 0.1, and 1.5 shown in (a) to (f). 280 

Note that the horizontal axis is logarithmically scaled. (h) Total divergence in third-order 281 

structure as a function of bin width. Other details as in (g). Our conjecture that perfect 282 

accuracy (corresponding to an infinitesimal bin width) would typically result in control 283 

patterns that are identical to test patterns (up to translation, rotation, and reflection), so 284 

that the total divergence becomes zero, is schematically indicated by the dashed lines. 285 


