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Abstract 

This paper deals with the issue of reconciling competing stochastic estimates provided 
by independent sources. We employ an integration method based on a principle of 
mutual compatibility of prior estimates. The method does not take into account 
credibility of the sources of the estimates, including their past performance. The quality 
of integration is evaluated in terms of change in the probability distribution. We use the 
method to integrate two types of estimates of the annual Net Primary Production (NPP) 
of the forest ecosystems in seven bioclimatic zones in Russia. The estimates are 
generated based on an empirical landscape-ecosystem approach and on an ensemble of 
dynamic global vegetation models; the gaps in their estimates reach 23%. Elimination 
of the gaps may help better quantify the input of the terrestrial ecosystems to the global 
carbon cycle. The main result of this paper is the evidence of applicability of the method 
for selection a set of candidates for credible integrated estimates of uncertain ecological 
parameters (like forest NPP) integrating prior estimates.  
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1 Introduction  

Complex socio-environmental systems are at the focus of systems analysis nowadays. Such 
systems are usually under-understood and are seen by researchers as fuzzy and highly uncertain. 
Due to a high complexity of the underlying process, any model designed to describe it, is bound 
to capture part of its critical elements and ignore the others. In the absence of formal procedures 
prescribing a modeller how to select “important” aspects to be included in the model, the 
modeller bases his/her choice on a mixture of theory, intuition, individual preferences and 
personal expertise. In this context, it is not surprising that in the half-a-century history of systems 
analysis competing models have been created to describe the same phenomena. As a rule, the 
modeling results for such systems cannot be verified/validated in a solid formal way (National 
Research Council, 2012). Known approaches to revealing the models’ skills are based on 
assessment of the models’ abilities to reproduce the past and the present states of the underlying 
systems; however, it has been reported that different assessment metrics may produce different, 
sometimes contradictory, results and, consequently, provide different rankings of the models 
(Gleckler et al., 2008). 
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Uncertainty in ranking the models has, to some extent, motivated development of a multi-
model approach in system analysis. Instead of aiming at constructing the “best” model, 
researchers tend more and more frequently to use multi-model ensembles. Climate change is the 
research field, in which recognition of the value of the use of the multi-model approach has 
pioneered. For example, the Fourth IPCC Report relies on the results of 23 global climate models 
(Randall et al., 2007) considering their means; for the Fifth IPCC Report, the IPCC Expert group 
developed recommendations on good practice in assessing multi-model climate projections and 
combining those with advanced statistical approaches (Knutti, 2010a).  

Each model taken from a multi-model ensemble relies on its particular set of assumptions 
and modeling tools, and views the underlying phenomenon from a specific angle. Each model is 
usually attributed with its intrinsic uncertainties, often grouped into uncertainties in initial 
conditions, uncertainties in boundary conditions, parameter uncertainties and structural 
uncertainties (Tebaldi and Knutti, 2007). For that reason, each model’s outcome is commonly 
represented as a random variable (or a random process). A systems analyst deals then with a 
family of probability distributions providing alternative descriptions to the same object.  

In particular applications, researchers facing such phenomena employ specific features of 
the systems under investigation to reconcile alternative pieces of information and generate 
integrated knowledge (see, e.g., Nilsson et al., 2007). However, the subjectivity of the experts’ 
experiences involved in such research efforts makes those research efforts vulnerable for 
criticism. Development of a well-justified tool for integration of different viewpoints into a 
single picture becomes a challenge in systems analysis.  

There have been several impressive attempts undertaken to create a formal methodology 
for integration of alternative models-based results. To our knowledge, such attempts concentrate, 
primarily, on the question of weighting (in an appropriate way) results of the models that form a 
multi-model ensemble, based on assessment of the models’ performance for the past and the 
present (Rajagopalan et al., 2002, Robertson et al., 2004, Tibaldi and Knutti, 2007); the weights 
may also incorporate information on the degree of the models’ interdependence (see, e.g., Knutti, 
2010b for an overview of currently available approaches). Knutti (2010a) pointing out serious 
difficulties in weighting the models, claims that “a robust approach to assigning weights to 
individual model projections of climate change has yet to be identified. … Studies should 
employ formal statistical frameworks rather than using ad hoc techniques.” In this paper we 
present an illustrative example of a unified formal approach to posterior integration of prior 
random estimates (probability distributions) provided by independent statistically inaccurate 
observation methods.  

Some attempts have been made to develop approaches to weighting models with no use 
of information on their performance in the past and the present. For example, Quegan et al. 
(2011) suggest weighting prior Gaussian estimates inverse proportionally to their variances 
within the Bayesian approach; this results in a posterior Gaussian estimate to which terms with 
higher uncertainty (variance) contribute less that those which are more certain.  
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As opposed to the abovementioned techniques, Kryazhimskiy (2013) suggests an 
approach which does not employ the weighting paradigm and does not use information on the 
models’ performance in the past and in the present. Therefore, it can be used in situations, where 
either the models’ performance in the past and in the present is hard (or impossible) to estimate, 
or the future systems dynamics is anticipated to be radically different from that observed in the 
past and in the present. The core element of the methodology is the posterior event formed in the 
product of the probability spaces associated with the prior stochastic estimates. We use mutually 
compatible realizations of the prior random estimates to build a probability distribution on the 
posterior event. The Bayesian probability conditioned to the posterior event has identical 
projections onto the coordinate spaces; its common projection is defined to be the posterior 
integrated random estimate.  

The illustrative case study presented in this paper focuses on assessment of the Net 
Primary Production (NPP) of the Russian terrestrial ecosystems. Along with heterotrophic 
respiration, the NPP represents the main flux of carbon exchange between ecosystems and the 
atmosphere and determines the degree of impact of vegetation on the global carbon budget. The 
NPP governed by climate and site conditions is an unbiased quantitative index of an ecosystem’s 
response to climatic changes. Forests of the boreal zone (including Russia) represent one of the 
main stabilizing elements in the planetary climatic system functioning at high latitudes.  

Due to a high complexity of the phenomenon, its intrinsic uncertainty, differences in the 
credibility of background information and diversification in methodologies, the existing 
estimates of the NPP of the Russian terrestrial ecosystems, obtained from different sources vary 
by more than 100% – from 204 to 614 g C/m2 per year (Bazilevich, 1993; Zamolodchikov and 
Utkin, 2000; Moiseev and Alyabina, 2007; Gower et al., 2001). Each of the estimation methods 
used has scientific and methodological advantages and disadvantages. In this paper we provide 
integrated estimates of the NPP of the Russian terrestrial ecosystems, which reconcile the 
estimates generated by two alternative methods.  

The paper is organized as follows. In section 2 we briefly describe the integration 
methodology we use in our study. Section 3 supplies information on data of the NPP of the 
Russian terrestrial ecosystems specified for seven bio-climatic zones. Section 4 presents the 
results of integration of the NPP of the Russian terrestrial ecosystems for seven bio-climatic 
zones. In Section 5 we conclude and discuss.  

2 Methodology  

To reconcile (integrate) random estimates provided by alternative observation (modeling) 
methods, we use the methodology suggested by Kryazhimskiy (2013). The methodology is based 
on construction of a posterior event in the product of the probability spaces associated with the 
prior random estimates. A brief description of the methodology is as follows. Suppose an 
unknown element z0of a finite set of elementary events, Z, is observed (modeled) using 
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alternative independent observation (modeling) methods 1, … , n . Each method, 𝑖𝑖, is inaccurate in 
a statistical sense, namely, method , 𝑖𝑖 describes 𝑧𝑧0 as a probability distribution 𝜋𝜋𝑖𝑖 on 𝑍𝑍. The 
probability distributions π1, … ,πn serve as prior random estimates for z0.We consider a posterior 
situation that occurs after the use of methods 1, … , n . In the posterior situation elements 
z1, … , zn ∈ Z  resulting from n independent random tests from methods 1, … , n are true if and only 
if z0 = z1 =. . . = zn. Since z0 is unknown, z1 =. . . = zn is a necessary posterior consistency 
condition in the product probability space (Zn, P) =  (Z,π1) × … × (Z,πn).. The posterior 
consistency condition determines a posterior eventE* = {(z1, … , zn) ∈ Zn: z1 =. . = zn} =
{(z, . . , z): z ∈ Z} which is necessarily realized in (Zn, P) in the posterior situation. We have  

 P(E*) = ∑ π1(z)z∈Z …πn(z).  

If  P(E*) = 0, methods 1, … , n are in contradiction in the sense that for every  z ∈ Z  there 
is a method,  i , which evaluates the observed element z0as z with a zero probability, πi(z)  =  0. 
Suppose  P(E*) > 0, implying that methods 1, … , n are not in contradiction in the sense that there 
exists a  z ∈ Z such that all the methods give non-zero probabilities for the fact that z0 =  z . The 
Bayesian conditional probability distribution   P(⋅ |E*) on E* is given by 

𝑃𝑃((𝑧𝑧, … , 𝑧𝑧)|𝐸𝐸∗) = 𝜋𝜋1(𝑧𝑧)…𝜋𝜋𝑛𝑛(𝑧𝑧)
𝑃𝑃(𝐸𝐸∗)

  

for every  z ∈ Z . We define a probability distribution π1 ⋅ … ⋅ πn  on  Z by setting 

(𝜋𝜋1 ⋅ … ⋅ 𝜋𝜋𝑛𝑛)(𝑧𝑧) = 𝑃𝑃((𝑧𝑧, … , 𝑧𝑧)|𝐸𝐸∗)  

for every z ∈ Z. In the probability space (Z,π1 ⋅ … ⋅ πn) for every  z ∈ Z the probability of z0 = z is 
proportional to π1(z) ⋅ … ⋅ πn(z) – the probability of the fact that all the methods admit that z0 = z. 
The latter probability is a measure of a ’consensus’ of methods 1, … , n in conjecturing that z0 = z. 
All the methods contribute to the value of the ’consensus measure’ π1(z) ⋅ … ⋅ πn(z) equally, and 
each method, i, has a ’power of veto’ in the sense that the ’consensus measure’ of  z vanishes if 
πi(z)  =  0. Thus, probability distribution π1 ⋅ … ⋅ πn provides an integrated knowledge on z0, 
which results from a posterior analysis of the use of methods 1, … , n . According to 
Kryazhimskiy (2013), π1 ⋅ … ⋅ πn is the posterior integrated random estimate resulting from the 
prior random estimatesπ1, … ,πn. The transformation of π1, … ,πn into π1 ⋅ … ⋅ πn is called 
integration of π1, … ,πn. 

Often, the observed element is a real number. In that case,  Z  is a finite set of reals 
numbers, and every probability distribution, 𝜋𝜋, on  Z describes a discrete random variable taking 
values in Z. The variance of that random variable, V(π), is a standard measure of informativeness 
of  π. If  V(π1 ∙ … ∙ πn) < V(πi) for all  i = 1, … , n , the posterior random estimate, π1 ⋅ … ⋅ πn , is 
more informative than every prior random estimate, πi. A straightforward interpretation is that 
the prior random estimates enhance each other through integration and are therefore structurally 
compatible. If, conversely,   V(π1 ∙ … ∙ πn) > V(πi) for all  i = 1, … , n , the posterior random 
estimate, π1 ⋅ … ⋅ πn , is less informative than every prior random estimate, πi. Then all the prior 
random estimates are structurally incompatible; consequently, some of them are misleading. In 
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an intermediate situation, where  V(πi) <  V(π1 ∙ … ∙ πn) > V(πj) for some i  and  j, there is no 
clear agreement among the prior random estimates.  

3 Uncertainties in NPP estimates  

3.1 NPP estimation methods and associated uncertainties 
 

Large uncertainties in estimates of the contribution of the terrestrial ecosystems to the global 
carbon cycle (see, e.g., Shvidenko et al. 2003, 2013) hinder scientific understanding of the 
problem of reduction of greenhouse gas emissions (see, e.g., Schulze 2002) and hamper political 
and economic decision making (see, e.g., Janssens et al. 2005). The full carbon account (FCA) 
approach (Shvidenko et al., 2010a,b) is aimed at providing a reliable and comprehensive (to a 
possible extent) account for carbon cycling uncertainties. The FCA evaluates spatial and 
temporal uncertainties in the complex fuzzy dynamic system of carbon cycling. The result of 
application of every specific CA method includes both a method-specific uncertainty and the 
structural, “true” uncertainty. The latter, however, is inseparable from the whole uncertainty, 
especially if the FCA is applied at a national or continental scale.  

A natural way to extract “true” uncertainty and eliminate the influence of the method 
might be the use of several specific independent FCA methods, including their harmonization 
and identification of mutual constraints in intermediate and final estimates (Shvidenko et al., 
2010a). Such kind of analysis requires a formal methodology for integrating uncertain estimates 
provided by either alternative carbon cycling assessment methods, or by alternative approaches 
to assessment of the ecosystems’ major biophysical indicators. 

The NPP is among the most important forest ecosystems biophysical FCA indicators. 
Methods for estimating the terrestrial ecosystems’ NPP include statistical methods based on 
direct in situ measurements; dynamic vegetation modes; ecophysiological carbon flow models; 
remote sensing methods; production efficiency models; and others. Each method has its 
advantages and shortcomings (Goetz, 1997; Mokronosov, 1999; Shvidenko et al., 2007b) and 
evaluates the NPP with uncertainty, which often results in a biased estimate. The sources of 
method-specific uncertainties include inconsistency of the background definition of the NPP and 
field measurements; a dynamic character of the NPP; oversimplification of the models used; 
problems with adequate descriptions of numerous interacting drivers; and many others.  

Below we give short descriptions of two independent forest ecosystems NPP estimation 
methods – the landscape-ecosystem approach (LEA) and the ensemble of dynamic global 
vegetation models (DGVMs). In Section 4 we use NPP estimates provided by those two 
alternative methods to demonstrate the applicability of the model integration techniques 
presented in Section 2 in assessment of the NPP of the Russian forests as a promising approach 
to reconciling the results and their uncertainties obtained by different models in diverse 
ecological applications.  

5 

 



3.2 The landscape-ecosystem approach 
 

The landscape-ecosystem approach (LEA) suggests a methodology for aggregating empirical and 
semi-empirical methods for studying terrestrial ecosystems carbon cycling. The LEA postulates 
that, firstly, an ecosystem (understood as a set of vegetation-soil ensembles of various scales) is a 
primary unit for scientific descriptions, modeling efforts and interpretations, and, secondly, the 
processes of energy and matter exchange within ecosystems are strongly influenced by the 
properties of landscapes. The LEA accumulates all relevant empirical knowledge and all 
available semi-empirical aggregations for a region under investigation. It comprises ground-
based quantitative descriptions of the regional ecosystems and landscapes – a multi-layer and 
multi-scale Integrated Land Information System (ILIS); remote sensing data; results of 
measurements of fluxes and concentrations of gas compositions in the atmosphere; ecological 
models of various types and scales; and auxiliary models. The ILIS includes a GIS hybrid-land-
cover (HLC) representation of a territory, and attributive databases (DB). The DBs include 
measurements in situ, numerous physical and socio-economic indicators, empirical and “semi-
empirical” aggregations, data from relevant surveys and inventories, etc. The HLC is developed 
based on a multi-sensor remote sensing concept and utilizes available reliable ground 
information. Detailed descriptions of the structure and features of the LEA and ILIS can be 
found in Schepaschenko et al., 2011 and Shvidenko et al., 2010a,b. 

Within the LEA, forest ecosystems’ NPP is estimated using the (presumably) unbiased 
method described in Shvidenko et al., 2007a. The method employs regionally distributed 
empirical growth and bio-productivity forest models and is based on modeling full productivity 
of the forest ecosystems’ live biomass.  The annual NPP is estimated for each one-square-km 
pixel based on data on the dominant species, age, site index and relative stocking of forest 
stands.  

3.3 Dynamic global vegetation models 
 

Dynamic global vegetation models (DGVMs) describe physiological and biogeochemical 
processes within ecosystems and play a substantial role in accounting NPP. In practice, DGVMs, 
in spite of a number of shortcomings (the use of aggregated vegetation classes, incomplete 
representations of disturbances, operation with ‘potential vegetation’, exclusion from 
consideration of some important vegetation classes, e.g., agriculture or wetlands, etc.) constitute 
the only tool for capturing the drivers of the ecosystems functioning. 

Cramer et al. (1999) presented cross-comparison of the NPP estimates provided by 17 
DGVMs combined in three groups: (a) satellite-based models whose variables are derived from 
remote sensing data, including CASA (Potter et al., 1993), GLO-PEM (Prince, 1991), SDBM 
(Knorr and Heiman, 1995), TURC (Ruimy et al., 1996), SIB2 (Sellers et al., 1996a,b); (b) 
models for assessment of biogeochemical fluxes, including HRBM (Esser and Lautenschlager, 
1994), CENTURY (Parton et al., 1993), TEM (McGuire et al., 1995), CARAIB (Warnant et al., 
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1994), FBM (Ludeke et al., 1994), PLAI (Plöchl and Cramer, 1995a,b), SILVAN (Kaduk and 
Heimann, 1996), BIOME-BGC (Running and Hunt, 1993), KGBM (Kergoat, 1998), and (c) 
models for assessment of seasonal biogeochemical fluxes and vegetation structures, including 
BIOME3 (Haxeltine and Prentice, 1996), DOLY (Woodward et al., 1995) and HYBRID (Friend 
et al., 1997). In the cross-comparison exercise, the models use standardized input data (climate, 
soil texture data and normalized difference vegetation index (NDVI) by 0.5º grid at a monthly 
temporal resolution scale), being substantially different in definitions of the underlying NPP 
production processes. The models of group (a) work with the actual land covers; the models of 
group (b) use, primarily, predefined vegetation distributions based on available maps of potential 
vegetation; and models of group (c) determine the vegetation types and structures by maximizing 
the NPP at a regional basis under observed or predicted climate conditions. Four models (CASA, 
CENTURY, SDBM and HRBM) relate the NPP directly to vegetation characteristics – 
temperature, solar radiation, precipitation, and others, while the remaining 13 ones represent the 
NPP as the difference between the gross primary production and autotrophic respiration. The 
modeled annual global NPP estimates turn out to be rather consistent across the models; although 
Cramer et al. (1999) state that additional calibration procedures may improve the degree of 
consistency. 

For the terrestrial ecosystems limited to the territory of Russia all 17 models were used to 
estimate the NPP means and standard deviations (st.d.). The estimates were collected as explicit 
geographic data1; the data overlap with a bio-climatic zone (BCZ) map and forest areas 
represented in a land cover (LC) map for Russia (Schepaschenko et al., 2011). The estimates 
were aggregated under an assumption that the NPP estimates provided by every particular model 
were inter-dependent across the grid cells and the NPP estimates provided by different models 
were independent in every grid cell. For the BCZ and LC categories the aggregated NPP values 
were estimated as those averaged over the grid cells. The resulting aggregate estimates for the 
NPP annual means and standard deviations by the BCZs agree essentially. Within each BCZ the 
variability of the aggregate estimates of the NPP across the models ranged from 13 to 18% 
slightly increasing towards the ecotones of the forest zone.  

3.4 Comparison of DGVMs- and LEA-based forest NPP estimates for Russia 
Table 1 compares the aggregate NPP means and standard deviations averaged over 17 DGVMs 
with those provided by the LEA. It should be noted that as only five DGVMs use information on 
the actual land covers (the other ones use information on potential vegetation), it is expected that 
the averaged DGVMs-based aggregate estimates for the NPP means exceed the LEA-based ones. 
Table 1 shows that this holds for the total NPP mean and for the NPP means in five of seven 
BCZs; exceptions are the forests in the tundra and steppe zones with limited areas of forests). 

1http://islscp2.sesda.com/ISLSCP2_1/html_pages/groups/carbon/model_npp_xdeg.html 
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While the LEA results do not have recognized biases, the DGVMs overestimate the “real” NPP; 
however, the degree of overestimation is relatively low.  

 

 

 

BCZs 

DGVMs-based 
estimates 

LEA-based estimates  

 

Differences  

 

mean 
NPP, 

g C/m2 
per year 

st.d. 
NPP, 

g C/m2 
per year 

mean 
NPP, 

g C/m2 
per year 

st.d. 
NPP,  

g C/m2 
per year 

mean 
NPP, 

g C/m2 
per year  

mean 
NPP,  

% 

 

Tundra 202 36 225 89 -23 -11 

Forest tundra and Northern 
taiga 

269 45 212 85 +57 +21 

Middle taiga 335 58 257 111 +78 +23 

Southern taiga 449 62 390 159 +59 +13 

Temperate 517 62 454 200 +63 +12 

Steppe 390 67 399 190 -9 -2 

Semi-deserts and deserts 423 56 360 182 +63 +15 

Total 348 48 282 141 +66 +19 

 

Table 1: Comparison of the DGVMs-based and LEA-based estimates of the Russian terrestrial ecosystems’ NPP. 

 

4 Results  
 
4.1 Data processing  
The full LEA-based data sets provide frequencies (further interpreted as probabilities) of the 
forests’ observed NPP values ranging from 35 to 1365 g C/m2 per year for seven bioclimatic 
zones in Russia. Due to observation errors, processing errors, and spatio-temporal 
heterogeneities, the frequencies viewed as probability distributions are highly irregular (see the 
left column in Table 2). To smooth out the distributions, we aggregate the original data into size 
classes. We consider two size classes – 10 and 90 g C/m2 per year.  

The DGVM-based data sets suggest estimates for the forests’ NPP means and standard 
deviations for the same seven bioclimatic zones in Russia. Based on those estimates, we 
reconstruct Gaussian distributions to accommodate for the entire NPP ranges.  
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 4.2 Integration results  
We apply the methodology described in Section 2 to integrate, posteriorly, pairwise, (i) the 
original LEA-based and DGVMs-based Russian forests’ NPP distributions; (ii) the LEA-based 
and DGVMs-based Russian forests’ NPP distributions aggregated into size classes of 10 g C/m2 
per year; and (iii) the LEA-based and DGVMs-based Russian forests’ NPP distributions 
aggregated into size classes of 90 g C/m2 per year. Table 2 shows the LEA-based and DGVMs-
based forest ecosystem NPP distributions and the integrated posterior forest ecosystems NPP 
distributions for the BCZs in Russia in cases (i), (ii) and (iii). Tables 3a, 3b and 3c summarize 
statistics on the NPP means and standard deviations of the LEA-based distributions, DGVMs-
based distributions and the corresponding integrated posterior distributions in cases (i), (ii) and 
(iii), respectively. Tables 3a, 3b and 3c show that in all cases and for all BCZs, the variances of 
the integrated posterior distibutions are smaller than those of the LEA-based and DGVMs-
based distributions with two exceptions being cases (i) and (ii) for the semi-deserts and deserts 
BCZ; case (iii) for semi-deserts and deserts BCZ demonstrates a boundary situation in which 
the variance of the integrated distribution equals the minimum of those of the LEA-based and 
DGVMs-based ones.  

Following the approach presented in Section 2, we conclude that the integrated posterior 
distributions improve both the prior LEA-based and DGVMs-based Russian forests’ NPP 
estimates for three cases of data aggregation and for all bioclimatic zones, with the exception of 
the semi-deserts and deserts zone, for which a valid estimate is obtained only for the size class 
of 90 g C/m2 per year.  
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BCZs 

 

Original NPP data  NPP data aggregated into size 
classes of 10 g C/m2 per year 

NPP data aggregated into size 
classes of 90 g C/m2 per year 

Tundra 

 

 

 

    
 

 

 

Forest 
tundra and 
Northern 
taiga 

   

Middle 
taiga 

 

 

 

    

Southern 
taiga 

 

 

    

Temperate 
forests 

 

 

 

    

10 

 



Steppe 

 

 

 

    

Semi-
deserts and 
deserts 

 

 

 

    

Total 

 

 

 

 

    
 
Table 2: The LEA-based distributions (blue), DGVMs-based distributions (red) and integrated posterior distributions 
(green) of the forest NPP estimates for Russia. The horizontal axis represents NPP values in g C/m2 per year, and the 
vertical axis represents frequencies (probabilities). 
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BCZs 

 

 

DGVMs-based 
estimates  

LEA-based estimates  Integrated estimates 

 

mean NPP,  

g C/m2  

per year 

st.d. NPP,  

g C/m2 per 
year 

mean NPP,  

g C/m2  

per year 

st.d. NPP,  

g C/m2  

per year 

mean 
NPP,  

g C/m2  

per year 

st.d. NPP,  

g C/m2  

per year 

Tundra 202 52 225 89 189 43 

Forest tundra and Northern 
taiga 

269 57 212 85 245 54 

Middle taiga 335 70 257 111 312 62 

Southern taiga 449 82 390 159 438 76 

Temperate 513 87 454 200 492 85 

Steppe 390 76 399 190 378 72 

Semi-deserts and deserts 423 81 360 182 403 86* 

Total 348 71 282 141 327 65 

Table 3a (case (i)): The original LEA-based and DGVMs-based and integrated posterior estimates of the forest NPP 
mean values and standard deviations for Russia. The upper star index marks the exceptional situation where the 
variance of the integrated posterior distribution is bigger than one of the LEA-based and DGVMs-based 
distributions. 

BCZs 

 

 

DGVMs-based 
estimates  

LEA-based estimates  Integrated estimates 

 

mean NPP,  

g C/m2  

per year 

st.d. NPP,  

g C/m2 per 
year 

mean NPP,  

g C/m2  

per year 

st.d. NPP,  

g C/m2  

per year 

mean 
NPP,  

g C/m2  

per year 

st.d. NPP,  

g C/m2  

per year 

Tundra 202 52 224 90 188 43 

Forest tundra and Northern 
taiga 

269 57 213 85 244 54 

Middle taiga 335 70 257 111 312 62 

Southern taiga 449 82 390 159 438 76 

Temperate 513 87 455 201 491 85 

Steppe 390 76 400 190 377 72 

Semi-deserts and deserts 423 81 360 183 402 85* 

Total 348 71 282 141 327 65 

 
Table 3b (case (ii)): The LEA-based and DGVMs-based aggregated into size classes of 10 g C/m2 per year and the 
corresponding integrated posterior estimates of the forest NPP mean values and standard deviations for Russia. The 
upper star index marks the exceptional situation where the variance of the integrated posterior distribution is bigger 
than one of the LEA-based and DGVMs-based distributions. 
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BCZs 

 

 

DGVMs-based 
estimates  

LEA-based estimates  Integrated estimates 

 

mean NPP,  

g C/m2  

per year 

st.d. NPP,  

g C/m2 per 
year 

mean NPP,  

g C/m2  

per year 

st.d. NPP,  

g C/m2  

per year 

mean 
NPP,  

g C/m2  

per year 

st.d. NPP,  

g C/m2  

per year 

Tundra 202 58 224 94 184 44 

Forest tundra and Northern 
taiga 

269 63 208 93 242 59 

Middle taiga 335 75 258 114 310 66 

Southern taiga 449 86 390 162 437 78 

Temperate 513 91 456 205 490 86 

Steppe 390 80 400 194 380 74 

Semi-deserts and deserts 423 85 364 188 399 85 

Total 348 76 282 144 326 69 

 

Table 3c (case (iii)): The LEA-based and DGVMs-based aggregated into size classes of 90 g C/m2 per year and the 
corresponding integrated posterior estimates of the forest NPP mean values and standard deviations for Russia.  

 

5 Discussion and conclusions  

In this paper, we demonstrated an application of a theoretical approach to posterior integration of 
alternative prior stochastic models of an unknown “true” biophysical indicator of ecosystems. 
Our study focused on posterior integration of the estimated frequency (probability) distributions 
of NPP values for the Russian terrestrial ecosystems, which resulted from two alternative prior 
NPP estimation methods – the landscape-ecosystem approach (LEA) and the ensemble of 
dynamic global vegetation models (DGVMs). The original LEA-based and DGVMs-based data 
and size-aggregated LEA-based and DGVMs-based data were integrated pairwise into a 
posterior distribution for each of the seven bioclimatic zones.  

Although the mean zonal LEA-based and DGVMs-based NPP estimates differ for up to 23%, 
we find out that for the majority of the bioclimatic zones, firstly, the LEA and DGVMs 
approaches are structurally compatible and, secondly, the integrated posterior NPP estimates are 
more credible (namely, have lower variations) than both the prior LEA-based and DGVMs-based 
ones. For every bioclimatic zone, in each of cases (i), (ii) and (iii), the variance of the DGVMs-
based NPP distribution is lower than that of the LEA-based one. 
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The LEA-based and DGVMs-based data underestimate and, respectively, overestimate the 
integrated estimates of the NPP means for all bioclimatic zones, except for tundra, for which the 
integrated estimate for the NPP mean is smaller than both the LEA-based and the DGVMs-based 
ones.  

Posterior integration with the DGVMs-based data adjusts the LEA-based data significantly; 
for example, the LEA-based estimate of the total NPP mean grows, thanks to posterior 
integration with the DGVMs-based data, by approximately 16% in each case. Posterior 
integration with the LEA-based data adjusts the DGVMs-based data less strongly; for example, 
the DGVMs-based estimate of the total NPP mean decreases, thanks to posterior integration with 
the LEA-based data, by approximately 6% in each case.  

This example illustrates an additional field of potential applications of the posterior 
integration method. If one of available estimates is considered as “true” (much more certain than 
the others), one can use posterior integration to assess applicability of other stochastic estimation 
methods more preferable in practical aspects (e.g., requiring the minimum amount of resources 
in practical implementation).   

We conclude by stating that the approach presented here is applicable in cases where two or 
more stochastic estimates are used to describe a real quantity, while errors embedded in these 
estimates cause gaps between them and all prior estimates are equally likely to describe an 
unknown “true” indicator. Further development of this approach is seen in the direction of 
including amounts of information associated with each prior estimate that would differentiate 
contributions of those to a posterior integration based on some principles.  
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