Accepted Manuscript

From Farm to Fork - A Life Cycle Assessment of Fresh Austrian Pork

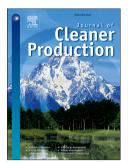
Thomas Winkler, Kerstin Schopf, Ralf Aschemann, Wilfried Winiwarter

PII: S0959-6526(16)00011-1

DOI: 10.1016/j.jclepro.2016.01.005

Reference: JCLP 6591

To appear in: Journal of Cleaner Production


Received Date: 20 July 2015

Revised Date: 26 November 2015

Accepted Date: 3 January 2016

Please cite this article as: Winkler T, Schopf K, Aschemann R, Winiwarter W, From Farm to Fork - A Life Cycle Assessment of Fresh Austrian Pork, *Journal of Cleaner Production* (2016), doi: 10.1016/ j.jclepro.2016.01.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

From Farm to Fork - A Life Cycle Assessment of Fresh Austrian Pork

3 4

Thomas Winkler^a, Kerstin Schopf^a, Ralf Aschemann^{a,*}, Wilfried Winiwarter^b

- a) University of Graz, Institute of Systems Sciences, Innovation and Sustainability Research, Merangasse
 18, 8010 Graz, Austria
- 7 b) International Institute for Applied Systems Analysis, Schlossplatz 1, 2361 Laxenburg, Austria
- 8 *) Corresponding author (<u>ralf.aschemann@uni-graz.at</u>, Tel +43 (0)316 380-3232; Fax +43 (0)316 380-9585)

9 Abstract

10 With 7.5% total nutritional value, pork is a staple food for many members of the Austrian population. Among 11 members of the general public, little is known about the environmental impacts "from farm to fork" in the 12 production of pork. This paper identifies three main impact categories for the environmental profile of Austrian 13 pork using the Life Cycle Assessment (LCA) method. In a transparent and comprehensive manner, this LCA 14 studied environmental impacts occurring throughout the production chain of pork, also including the transport 15 and consumption stages. The results are expressed in terms of the global warming potential (GWP), soil 16 acidification and eutrophication, specifically in CO₂-equivalents, SO₂-equivalents and NO₃-equivalents 17 normalized to one kg of fresh Austrian pork (carcass weight) as the functional unit. The main results of the study 18 indicated that the environmental burden is primarily related to the farming stage: 92.3% of GWP, 98.4% of soil 19 acidification and 95.4% of eutrophication. The processes taking place after the agriculture stage (i.e., during the 20 slaughtering stage, retail market and consumption) play a minor role, except for the relative impact of 21 eutrophication during the slaughtering stage. The transportation that took place between the different life cycle 22 stages only marginally influenced the emissions analysed, with private transport from the retail market to the 23 household contributing most of the emissions considered in this part of the life cycle. These results point to the 24 farming stage as the main focus for future improvements. Due to its high contribution to the GWP, soil 25 acidification and eutrophication potential, enhancing the efficiency and environmental protection measures 26 implemented during the farming stage (or improving the choice of commodities used from feed production) 27 could generate the highest reductions in impacts on soil acidification, eutrophication and potentially on the 28 global climate.

29

30 Keywords

31 Life cycle assessment; pork; agriculture; environmental profile; GHG emissions; eutrophication; acidification

32 1 Introduction

As one of the fastest growing subsectors of the agricultural economy, the production of livestock is a major contributor to global environmental problems (e.g., through its impact on the world's water, land and biodiversity resources). Moreover, livestock production contributes significantly to climate change and is responsible for about 18% of global anthropogenic greenhouse gas (GHG) emissions. When considering not only direct, but also indirect, effects such as grazing and the production of feed-crops, the livestock sector occupies approximately 30% of the ice-free terrestrial surface of the Earth (Steinfeld et al. 2006).

In global livestock production, meat production is an important element. In 2010, 37% of meat was produced from pigs and 24%, from chickens. The global annual production in 2010 of the three pig systems (backyard, intermediate and industrial) resulted in emissions of 668 million tonnes CO₂-equivalents (eq). The rising population and escalating demand for pig meat, which is projected to grow by 32% between 2005 and 2030, is predicted to result in further increases in the corresponding environmental problems (MacLeod et al. 2013).

44 Many scientific studies have dealt with the environmental effects of nutrition. One approach taken in these 45 studies is from the context of "footprints", or the assessment of the environmental consequences of certain 46 actions beyond the specific process in question. The "nutritional footprint" and "nutrient footprint" have been 47 analysed in this way recently (Lukas et al. 2015, Grönman et al. 2015). Another approach is through life cycle 48 assessment (LCA). LCA is a holistic approach that supports the detection of environmental "hotspots" and 49 allows the analysis of the most environmentally-friendly methods of the various life cycle stages from the 50 production phase of a certain commodity to the treatment of its remains after use. In this way, the LCA approach 51 can be used to detect and, as a consequence, avoid problem-shifting between life cycle phases, different 52 environmental effects or regions (Finnveden et al. 2009).

LCA has been previously applied to the agricultural sector, and several LCA studies and reviews have been undertaken with regard to the context of this paper, livestock production in general, or specifically pork production (cf. Dallegaard et al. 2007, de Vries and de Boer 2010, González-García et al. 2015, Kool et al. 2009, Kral 2011, MacLeod et al. 2013, Nemecek et al. 2005, Nguyen et al. 2010, Nguyen et al. 2011, Roy et al. 2012, Weidema et al. 2008).

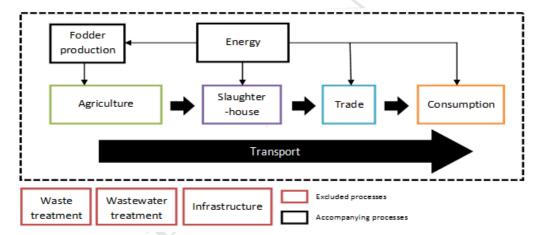
As one common key result of these LCAs, the environmental burden of the agricultural stage has been identified because it generates the highest share of relevant emissions along the meat supply chain. However, the majority of pork LCAs only considered the agricultural, slaughtering and transport stages; an exception was Woitowitz (2007), who also took the trade stage into account. In our "farm-to-fork" approach, we extend this concept to

62 include the consumer stage on a national level (including such aspects as packaging materials and electricity for 63 cooling). Along with literature reviews, the environmental effects of meat production and consumption need to 64 be assessed in a "bottom-up" manner and, thus, regional and sectoral quantification is necessary. A number of 65 country-specific pork LCAs have been published. Most of them have dealt with specific European countries, 66 namely Denmark (Dallegaard et al. 2007, Kool et al. 2009, Nguyen et al. 2011), Germany (de Vries and de Boer 67 2010, Weidema et al. 2008), Portugal (González-García et al. 2015), Switzerland (Nemecek et al. 2005) and 68 Austria (Kral 2011). In this paper, the focus is on Austria and on fresh pork. In 2009, 63% of the meat consumed 69 in Austria was pork, and represented a total consumption of 40 kg per capita (Statistik Austria 2013). To analyse 70 the environmental impacts of the production of Austrian pork, an LCA was performed that covered the life cycle 71 stages from "farm to fork", including the consumer stage as mentioned above, as well as the impacts from soy 72 bean importation from Latin America. This considerably extends the work of Kral (2011), which was thus far the 73 only pork LCA undertaken for Austria.

74 While most of the LCAs mentioned focussed on the climatic impacts of meat production, other impact categories 75 are also important. Because they were included in some other studies, soil acidification and eutrophication were 76 also considered during the current study. One chemical element, nitrogen, seems to be an important contributor 77 to all of these impact categories, and measures on nitrogen abatement could be generally beneficial (Sutton et al. 78 2011). The formation of particulate matter from livestock NH₃ emissions is another, additional nitrogen-related 79 aspect. Indeed, the abatement of agricultural NH₃ emissions has recently been described as an important and 80 cost-efficient way to reduce pollution with regard to particulate matter in Europe (Amann et al. 2014). Nitrogen 81 (N) per se is not considered an impact category in an LCA, however, because N is an important factor in food 82 production, it was also of interest to investigate this parameter in detail (see also Pierer et al. 2014, 2015).

83

84 This paper describes and discusses the first comprehensive LCA of Austrian fresh pork by covering the three key 85 impact categories, global warming potential (GWP), soil acidification and eutrophication, which have also been 86 considered by comparable LCAs conducted outside Austria. In order to identify, analyse and describe the main 87 environmental problems over the entire life cycle of the pork (production, consumption and distribution), the 88 goal and scope of the LCA are presented first (section 2), followed by a depiction of the life cycle inventory 89 analysis (LCI) in section 3. Afterwards, the life cycle impact assessment (LCIA) is described in section 4 and, 90 subsequently, the results are described (section 5) and discussed using a comparative delineation (section 6). 91 Finally, conclusions are drawn in section 7.


92 **2 Definition of Goal and Scope**

93 2.1 Goal of the Study

The goal of this study was to identify the environmental profile "from farm to fork" of fresh Austrian pork. Pork represents 7.5% of the total amount of food consumed in an average Austrian household (Friedl et al. 2007). The analysis of the process chain was performed using LCA methodology according to the ISO standards 14040 and 14044 (ISO 2009; ISO 2006), with the aim to generate results that can help identify system parts with high levels of environmental impact. Therefore, the product life cycle was separated into five modules, namely (i) agriculture, including the feed production, (ii) slaughterhouse, (iii) trade, (iv) consumption and (v) transport.

100 2.2 System Boundaries

- 101 The system boundaries determined which processes were included in the life cycle assessment (ISO 2009). An
- 102 overview of the production chain of Austrian pork and the included process is presented in Figure 1.

103

104 Figure 1: System boundaries of the production chain of Austrian pork

105

The study included environmental impacts caused by the provision of energy, raw materials and operating resources as well as transport emissions and waste and wastewater directly generated as a result of these processes. Not included were the emissions related to waste/wastewater treatment beyond the consumer stage or emissions caused by setting up infrastructure. Furthermore, the provision, maintenance and disposal of capital goods were not considered.

The study focused on Austrian pork. Therefore, the geographic border reflects the Austrian border, and imports and exports of livestock or pig meat were excluded from the life cycle assessment. This assumption seemed reasonable at a national level of self-sufficiency of 106 % (Statistik Austria 2013). Data derived refer to an Austrian production system, characterized by a "model pig farm" (see section 3).

- 115 The reference period for the process data covered the time period from 2007 to 2010, as data from different
- 116 sources were not always available for identical years.

117 2.3 Functional Unit

A life cycle assessment for the analysis of the environmental impact of a product involved an evaluation of all resource flows and emissions within a system that were related to the production and delivery of an entity of a given magnitude, the "functional unit" (ISO 2006).

The functional unit chosen to best represent the pork production system was "1 kg fresh Austrian pork (carcass weight)", which is a common tare weight used in the retail trade. Only fresh pork, directly cut up at the slaughterhouse, was taken into account. Therefore, a carcass weight of 78% of the live weight of the pigs (ca. 120 kg), which equals an average 94 kg per animal (average value, cp. González-García et al. 2015, Jungbluth 2000, Walter et al. 2008), was used in this study. About 80% of the carcass weight is sold as packaged meat (Oklahoma State University, n.d., USDA, 2015).

127 **3** Life Cycle Inventory Analysis

A life cycle inventory analysis involves data collection and calculation to quantify the relevant input and outputs of a product system (ISO 2009). Thus, the first step taken was to identify all appreciable material and energy flows, following the concept illustrated in Figure 1. For the analysis, MS Excel software was used and all data was derived from the published literature. All details about the relevant flows within the production chain of Austrian pork can be found in the supplementary material.

For each of the five modules of the life cycle, an inventory analysis was created and filled with primary and secondary data. The data was extracted from statistical databases, environmental databases and the scientific and technical literature.

136 **3.1 Agriculture**

We analysed a "model farm" for Austria, rather than integrating a multitude of different individual farms with their respective differences, in order to hold complexity to a reasonable level. For this purpose, we attempted to mimic the real situation of farms in Austria as closely as possible. Thus, the reference farm used in this study contained more than 400 animals, because this reflects the actual situation of 60% of all pigs in Austria (VÖS 2011). This model farm also was considered to use conventional production (as is used on the majority of pig

- 142 farms in Austria), and no specific investigation of organic farming was conducted. The characteristics for the
- 143 assessment are summarized in Table 1.

145 Table 1: Characteristics of the model pig farm

	Characteristics	Reference
Size of the farm	more than 400 animals ¹⁾	according to VÖS (2011), also using their classification scheme
Type of production	Conventional ²⁾	according to Anderl et al. (2013)
Type of housing	Heated cot ³⁾	as suggested by AMA (2013)
Livestock breeding	Combined upbringing of piglets, feeding pigs and breeding animals; Fully slatted floor ⁴⁾	according to Statistik Austria (2012)
Feed use	90.5 % on-farm produced feed (feed supplements get purchased)	according to AGT (2009)
Manure management	Slurry based system with external storage tanks ⁵⁾	according to Amon et al. (2007) & Anderl et al. (2013)
Manure utilization	On-farm utilization	Authors' assumption
Manure application	Traction engine >80 kW, diesel	according to Wieser & Kurzwei (2004)
Observation period	1 year ⁶⁾	according to AMA (2013)
Average live weight	120 kg ⁷⁾	VÖS (2011)
 Conventional farming Heated cots provide of winter temperatures in Slatted floors are floot have slots. The manure excreted slatted floors for a sl applications (BMLFU) The agriculture database manure (Pöllinger et 	by the animals in the form of slurry (mixture of liquid and so hort interval. Then, the slurry is pumped to an external ste	cots with fully slatted floors, all surface a olid particles) is first stored in a pit beneath orage tank, where it is stored for use in to the fact that the annual amount of extra e needs of piglets, feeding pigs and bree
	(0-0 weeks) and fattening period (17-10) weeks.	

162 to a higher production in fresh meat. The energy and protein contents of the feed are particularly important.

163 Supplements such as vitamins or minerals can be given to support the pig's immune system. Therefore, a

balanced diet should include feed rich in energy (e.g., corn and crop), protein (e.g., soy, rapeseed and sunflower)
and minerals, which supplies vitamins and minerals as well as additional amino-acids as required (AMA 2013).
Based on data published by the study group "Gesunde Tierernährung" (AGT 2009), a feed ration of 4 kg is
calculated per functional unit. This ration consists of around 38.0 % corn, 19.0 % wheat, 19.0 % barley, 7.2 %
soy meal, 3.6 % rapeseed meal, 3.6 % sunflower meal and 9.5 % mineral feed. Furthermore, a water
consumption of 12 litres per functional unit has been proposed (Schafzahl 1999).

170

Energy use. Pig rearing in heated cots results in heat consummation and the expenditure of electricity for ventilation and light. Furthermore, energy is needed to pump raw sewage to the plant as part of the manure management system. Altogether, the production requires 0.35 kWh of electricity and 0.19 kWh of thermal energy per functional unit (KTBL 2005). Moreover, 1.21 kWh of mechanical energy is generally used for field manipulation and on-farm transportation (BMU 2012). This data, originally gathered in Germany, is considered relevant for Austria due to the many similarities in general conditions (e.g., outside temperatures and technologies used in animal husbandry).

178

179 Enteric fermentation. Enteric fermentation refers to processes in the animals' intestines that lead to the 180 emission of methane. To calculate the amount of these emissions, the "Tier 1-Method" developed by the 181 International Panel on Climate Change (IPCC 2006) has been applied for animals in Austria (Anderl et al. 2013) 182 and the results are 16.03 g CH₄ per functional unit.

183

184 Manure management. Regular (e.g., weekly) removal of manure from the storage pits beneath the slatted floor 185 and proper storage of manure in outdoor tanks are essential points to support environmentally-friendly manure 186 management in livestock production. A valuable resource, manure is destined to be used eventually as fertilizer 187 on the farm. Therefore, it can act as a substitute for synthetic fertilizers to some extent. In this study, the 188 substitution rates for N, P and K were assumed to be 75 %, 97 % and 100 %. Following the methods in Nguyen 189 et al. (2011), we allocated all environmental impacts that were related to manure storage and application to pig 190 production (instead of to the crops produced from manure-fertilized fields), and we specifically accounted for the 191 reduction in environmental impacts associated with the avoidance of synthetic fertilizers. Calculations were 192 based on the total amount of manure excreted by the animals in the form of slurry in 2008 (Pöllinger et al. 2011), 193 and allowed us to estimate 10.3 kg slurry ex-animal per functional unit. Further estimates provided the dry

194 matter and volatile solids content, as well as the emissions (N, P, K, CH₄, NH₃, direct and indirect N₂O)

195 involved. The results and references are shown under manure management in Table 2.

- 196 The calculated amount of feed and energy input, manure output and on-farm emissions per functional unit are
- 197 summarized in Table 2.
- 198
- 199 Table 2: Inventory analysis of the agricultural process, normalized to the functional unit (1 kg fresh Austrian pork (carcass weight))

Input	Unit	Data	Source
Mineral feed ¹⁾	kg	0.38	
Corn	kg	1.52	
Wheat	kg	0.76	CY
Barley	kg	0.76	See AGT (2009)
Soy meal	kg	0.29	
Rapeseed meal	kg	0.15	
Sunflower meal	kg	0.15	
Water	1	12.02	See Schafzahl (1999)
Electricity	kWh	0.35	See KTBL (2005)
Heat	kWh	0.19	See KIBL (2005)
Mechanical energy	kWh	1.21	See BMU (2012)
Output	Unit	Data	Source
Livestock (1 kg carcass weight)	kg	1.28 ²⁾	
Enteric Fermentation	Unit	Data	Source
CH ₄	g	16.03	See IPCC (2006) & Anderl et al. (2013)
Manure Management	Unit	Data	Source
Slurry ex-animal	kg	10.32	
Slurry ex-cot	kg	10.32	
Slurry ex-storage	kg	11.20	
Dry matter ex-animal	kg	0.79	
Dry matter ex-cot	kg	0.75	
Dry matter ex-storage	kg	0.72	See Nguyen et al. (2011) & Resch
	1	0.65	et al. (2006)
Volatile solids ex-animal	kg	0.65	
Volatile solids ex-cot	kg	0.61	
Volatile solids ex-storage	kg	0.57	
Ν	g	41.22	
Р	g	5.16	
К	g	23.52	
CH_4	g	17.10	derived from IPCC (2006) & Anderl et al. (2013)
NH ₃	g	15.99	See Nguyen et al. (2011) & Resch

N ₂ O (direct and indirect; in-cot and outside storage)	g	0.07	See IPCC (2006) & Anderl et al. (2013)
Manure distribution on field	Unit	Data	Source
Transport to fields	Wh	175.3	
Application	Wh	55.9	
N ₂ O	g	0.4	
NH ₃	g	1.1	
Avoided fertilizer production (emission credit)			
Ν	g	-30.9	See Nguyen et al. (2011)
P	g	-5	See Hydyen et al. (2011)
K	g	-23.5	
Avoided fertilizer application (emission credit)			
Application	Wh	-3.90	
N ₂ O	g	-0.6	
NH ₃	g	-2.8	

a mixture of vitamins, minerals and additional protein- and energy-rich fodder
 a mixture of vitamins, minerals and additional protein- and energy-rich fodder
 It is assumed that the carcass weight is 78% of the animal's live weight and, therefore, 1 kg of carcass weight equals
 1.28 kg live weight.

206 emissions is shown in section 3.5.

207 3.2 Slaughterhouse

A carcass weight of about 93.6 kg is obtained from the live weight of one pig at the time of slaughter, which is 120 kg. In the present study, we assumed that the whole fresh meat was packed and cooled directly after slaughter and dismembering, without considering further processing steps such as curing or mincing. Different

211 packaging materials were considered - Expanded Polystyrene (EPS), High Density Polyethylene (HDPE),

212 Polypropylene (PP) and packaging paper and cardboard. Further details of the slaughtering process are listed in

- 213 Table 3.
- 214

215	Table 3: Inventory analysis of the slaughtering process, normalized to the functional unit (1 kg fresh Austrian pork (carcass
216	weight))

Input	Unit	Data	Source
Pig (live weight)	kg	1.28	
Water	1	2.56	
Liquid CO ₂	g	2.6	
Solid CO ₂	g	3.1	See Nguyen et al. (2011)
Electricity	kWh	0.14	
Heat	kWh	0.17	

²⁰⁵ At the end of the fattening period, the pigs are brought to the slaughterhouse. Detailed information on transport

ACCEPTED MANUSCRIPT			
ACCL1			1
EPS	g	4.20	
HDPE	g	3.60	
PP	g	4.70	See Jungbluth (2000)
Packaging paper	g	18.00	
Packaging cardboard	g	25.00	
Output	Unit	Data	Source
Fresh Austrian pork (packaged meat)	kg	0.80^{1}	
Waste	Unit	Data	Source
Organic waste (bones, bristles, etc.)	kg	0.20	See Jungbluth (2000)
Wastewater	Unit	Data	Source
Wastewater	1	2.56	See Nguyen et al. (2011)

¹ 80% of the dressed weight are retail cuts and can be sold in the store (this non-functional unit was used for certain parameters) (Oklahoma State University n.d., USDA ERS 2015)

217 3.3 Trade

The module "Trade" represents the process of keeping packed fresh pork cool in a retail store. This study acts on the assumption that the meat in shops is offered in open refrigerated units. The consumed amount of electricity is calculated according Nielsen et al (2003a) and accounted for 0.04 kWh per functional unit.

221 **3.4 Consumption**

The module "Consumption" covers the cooling and cooking processes that take place in households, including the production of emissions and waste. To arrive at the amount of electric energy required for cooling, 0.08 kWh per functional unit, we employed an equation developed by Nielsen et al (2003b). It was assumed that electric kitchen stoves are used to cook the fresh pig meat. Pursuant to Jungbluth (2000), the households need 0.20 kWh per functional unit for the cooking processes. Other commodities required (40.151 of water for cooking and cleaning, BMLFUW 2012) or waste streams produced (64 g of organic waste and 56 g of packaging waste) were not considered in this study.

229 3.5 Transport

This module includes the transportation connections between the four steps of the life cycle discussed above (i.e., from "Agriculture" to "Slaughterhouse", from "Slaughterhouse" to "Trade" and from "Trade" to "Consumption") plus the feed transport from Latin America (Brazil and Argentina) to the Austrian farm. The overseas transport of soy was considered to include transport by ship, train and truck to Europe and accounted for 243 g CO₂-eq/t. For one kg of pork, an estimated 290 g of soy is fed to the animals, resulting in 65.25 g CO₂eq/kg of pork (Castanheira and Freire 2013). In addition, the transport of soy from the harbour to the Austrian farm needs to be considered. Given the geographical location of Austria we assume a transport distance of about

237 1000 km to the farm (Nguyen et al. 2011 assume that soy is transported for about 500 km by trucks to Denmark, 238 incl. transport in Latin America). When all soy is transported by trucks (worst case), emissions from this action 239 would add up to 2.4 g CO_2/kg of pork resulting in an overall impact from feed transportation of 70.05 g CO_2 -240 eq/kg of pork. We are aware of a certain acidification and eutrophication potential of feed transportation from 241 Latin America to Austria, e.g. regarding the emissions of cross-Atlantic ship transport. However, it is not 242 considered in this paper due to difficulties in quantifying those data. The main impact from the transport of 243 livestock and meat is related to energy use expended during the transportation itself and as part of cooling 244 processes that are necessary during transport. The carcass is cooled from the point it leaves the slaughterhouse or 245 the retail store.

246

In order to reduce stress on the animals, the route of transport between the farm and the slaughterhouse should be as short as possible. Considering the location of the agricultural and meat-processing businesses, a distance of 50 km was assumed (VÖS 2011), considering that the pigs need to be shipped by a truck with a capacity of 20 t. This allowed us to estimate the amount of fuel needed per functional unit. Because emission factors are available for specific distances, we allocated a certain distance to each functional unit, which was mathematically identical, even if physically less plausible. By doing so, we obtained a distance of 59 m per functional unit for the transport distance between the farm and the slaughterhouse.

254

Refrigerated transport is needed between the slaughterhouse and the retail store. We estimated that a typical travel distance would be 110 km. Again, at a capacity of 20 t, this results in a calculated distance of 117 m per functional unit. In order to additionally account for the energy costs related to refrigeration, we used an incremental factor of 10.4 % based on that published by Nguyen et al. (2011).

259

Assuming that the average distance covered during daily shopping is 11.55 km (BMVIT 2007), and assuming that pork represented 7.5% of the total average food consumption in Austria (7.5%) (Statistik Austria 2013), we estimated that a distance of 400 m was travelled by car per functional unit. Thus, this aspect represented the highest environmental burden, relatively speaking, within the transport stage of this LCA. Furthermore, we calculated a distance of 6.72 m per functional unit, when public transportation (bus) was used.

265 4 Life Cycle Impact Assessment

In its LCIA phase, the LCA considered only the impact categories "global warming potential (GWP)", "acidification potential (AP)" and "eutrophication potential (EP)", the choice of which can be justified as follows:

(i) The three chosen impact categories are commonly used to draw a picture of the environmental profile of
agricultural products, which is considered to be comprehensive(cf. Perrin et al. (2014), who considered GWP,
AP and EP to be the three crucial impact categories in an analysis of 72 cropping systems in the field of the LCA
of vegetable products).

(ii) Six other relevant studies in the field of life cycle assessment for pork have been conducted, namely Kral
(2011), Nguyen et al. (2011), Kool et al. (2009), Hirschfeld et al. (2008), Koerber et al. (2007) and Woitowitz
(2007) (cf. Table 9 in the discussion (in section 6)). All authors included GWP as an impact category and, thus, a
comparison with the results of this paper is possible. However, only Nguyen et al. (2011) additionally considered
AP and EP. On the other hand, Nguyen et al. (2011) did not consider trade and consumption within the life
cycle. Therefore, this paper is a more comprehensive pork LCA with regard to both life cycle stages and impact
categories.

(iii) Other impact categories, such as land-use change (LUC) or use of energy, which this paper did not take into account, are indirectly considered because the energy use (e.g., electricity used for cooling, emissions from transport) is closely related to the emission of CO_2 . The emissions of CH_4 and N_2O that are needed to determine the impact category GWP also cover land-use to a certain extent. However, it is very difficult to include emissions from LUC in a LCA, as noted by Nemecek et al. (2014): there is a lack of "[...] international consensus on how to consistently and systematically address LUC in life cycle inventory, despite significant research in the LCA community."

287

In order to assess GWP, data from the latest IPCC assessment report (IPCC 2013) were used to quantify the respective contributions of CH_4 and N_2O with respect to CO_2 . This yielded the factors of 36 and 298, respectively, which could be converted into CO_2 -eq for a 100-year time horizon. For the last two categories, AP, and EP, emission equivalents according to Klöpffer & Grahl (2011) were used to estimate the environmental impacts. These characteristic factors reflect stoichiometric relationships between nitrogen and sulphur (AP), and nitrogen and phosphorous (EP), and their respective derivatives.

294

The respective emission factors needed for the impact assessment were taken from different databases or the literature. For the input factor, electricity, the Austrian mix according to "ProBas" was used (BMU 2013). The factors for heat, which were different in the farming and slaughtering stages, were extracted from the literature (Pölz 2007; Wieser & Kurzweil 2004). The emission factors of wastewater from the slaughtering and consumption phases also differed, as well as those appearing in the associated literature (Nguyen et al. 2011; Antranikian 2006). Wieser & Kurzweil (2004) provided emission factors for the different various means of transportation.

302 For the input factors feed, synthetic fertilizers and packaging materials, the calculated CO₂-, SO₂- and NO₃-eq 303 were used (shown in Table 4). The emission factors for feed were based on a study using the SALCA (Swiss 304 agricultural life cycle assessment) method by Nemecek et al. (2005) and implicitly included GHG emissions 305 such as N₂O. Due to similarities between Swiss and Austrian agriculture, these parameters could be directly 306 transferred. It is important to consider that these emission factors are much higher than those estimated from 307 different studies (e.g., Denmark - compare with Nguyen et al. 2011). It can be argued that emission factors from 308 soy meal are higher in landlocked countries, which have a suboptimal climate for soy planting, than in coastal 309 lands characterized by soy imports. Furthermore, improved techniques of manure application may result in 310 different levels of NH_3 release (see Bittmann et al. 2014), which may also further explain discrepancies 311 observed.

312

313	Table 4: Emission factors per kg feed, kg synthetic fertilizer and kg packaging material, expressed as Global Warming
	Potential (g CO ₂ -eq), Acidification Potential (g SO ₂ -eq) and Eutrophication Potential (g NO ₃ -eq)

Feed	g CO ₂ -eq	g SO ₂ -eq	g NO ₃ -eq	References
Corn	565	6.44	12.50	
Wheat	692	5.10	17.40	
Barley	605	4.80	19.40	
Soy meal	1,532	8.60	25.90	Nemecek et al. (2005)
Rapeseed meal	1,304	14.40	19.70	
Sunflower meal	1,123	7.29	20.31	
Mineral feed	729	6.34	4.43	
Fertilizer	g CO ₂ -eq	g SO ₂ -eq	g NO ₃ -eq	References
Nitrogen fertiliser	4,250	33.20	58.90	
Phosphorous fertiliser	2,690	41.00	26.40	Nguyen et al. (2011)
Potassium fertiliser	804	1.40	1.90	
Packaging material	g CO ₂ -eq	g SO ₂ -eq	g NO ₃ -eq	References
HDPE	1,960	6.39	4.36	
EPS	3,672	10.44	6.53	Plastics Europe (2013)
PP	2,000	6.13	4.44	
		1.4		

	ACCEPT	ED MANUS	CRIPT	
Paper	1,172	6.32	6.93	
Cardboard	745	11.42	2.89	BUWAL (1996)

315 **5 Results**

- 316 Table 5 summarizes the environmental performance of the five modules in the three impact categories
- 317 considered per kg fresh Austrian pork (carcass weight).
- 318
- 319 Table 5: The total environmental impact per kg fresh Austrian pork (carcass weight)

Life cycle module	GWP	AP	EP
	g CO ₂ -eq	g SO ₂ -eq	g NO ₃ -eq
Agriculture	4,383	60.48	363.82
Slaughterhouse	142	0.61	16.96
Trade	8	0.01	0.02
Consumption	50	0.10	0.13
Transport	168	0.28*	0.50*

³²⁰ 321

- * does not include feed transport from Latin America to the Austrian farm
- 322 The total impact per functional unit (including credits from manure management) is estimated at 4,751 g CO₂-eq, 323 61.5 g SO₂-eq and 381.4 g NO₃-eq for the typical Austrian pork production. Table 5 shows that the 324 environmental impacts are notably related to the agricultural production stage (with a contribution of 92.36% 325 contribution to GWP, 98.4% to soil acidification and 95.4% to eutrophication) and much less so to the 326 subsequent modules. The high contribution of agriculture to GHG emissions of Austrian pork production is in 327 line with the results of similar studies (slightly higher value for Austria: Kral 2011; slightly lower value for 328 Portugal: González-García 2015). The impact of eutrophication during the slaughtering stage is considerable, 329 contributing to 4.4% of the total eutrophication, whereas the remaining values in Table 5 represent less than 330 0.01%. Eutrophication during the slaughtering stage originates from organic pollutants, nitrogenous and 331 phosphorous compounds in the wastewater. However, the prominent role of agriculture with regard to its 332 environmental effects is striking and, thus, it is worthwhile to consider this farming stage in more detail.
- 333

Table 6: Environmental profile of the agricultural stage per kg fresh Austrian pork (carcass weight)

Life cycle module for	GWP	АР	EP
the agricultural stage	g CO ₂ -eq	g SO ₂ -eq	g NO ₃ -eq
Feed	2,923	25.41	295.66
Energy use	519	8.01	15.30
Enteric fermentation	545	0.00	0.00
Manure management	602	30.06	58,20

Credits (mineral fertilizer savings)	-206	-3.00	-5.36

335 336

As Table 6 shows, "Feed" is the major contributor during the farming stage (see Nguyen et al. 2011 for comparable results) when considering all three impact categories analysed, whereas "Manure management" turns out to be a major contributor in terms of acidification and eutrophication. Energy use and enteric fermentation are minor contributors with reference to eutrophication and acidification, but along with manure management are each responsible for 11-12.5% of the GWP. The credits gained due to the substitution of synthetic fertilizers only slightly alleviated the environmental impacts of the agricultural stage with regard to GHG emissions, acidification and eutrophication.

344

345 Table 7: Environmental profile of the feed per kg fresh Austrian pork (carcass weight)

Feed	GWP	AP	EP
rttu	g CO ₂ -eq	g SO ₂ -eq	g NO ₃ -eq
Mineral feed	278	2.42	28.16
Corn	861	9.81	84.34
Wheat	527	3.88	58.70
Barley	461	3.66	65.45
Soy meal	444	2.50	33.29
Rapeseed meal	189	2.09	12.66
Sunflower meal	163	1.06	13.05

346 347

348 The environmental burden of the total feed ration per functional unit is estimated at 2,920 g CO₂-eq, 349 25.41 g SO₂-eq and 295.66 g NO₃-eq. The major contributor was corn with reference to GWP and AP, and corn, 350 barley and wheat, with reference to EP. We noted that the impact was derived from both the emission factor and 351 the amount used. The amount of feed and its composition was similar to that described in a comprehensive EU 352 study (Leip et al. 2010), which described a greater use of corn and soy meal, but less of rapeseed and sunflower 353 meals. For example, corn has a lower emission factor than rapeseed, but plays a bigger role due to its higher 354 consumption levels. Using a different recommendation for feed composition by the Austrian organisation of 355 swine production (VÖS 2011) resulted in a calculated increase in GWP by 1.7%, acidification potential by 1.6% 356 and eutrophication potential by 1.2% (cp. Table 8). In Austria, around 10% of the total amount of feed for pigs is 357 not produced by the farmers (AGT 2009) and needs to be bought and/or imported from abroad. One way to 358 reduce the impact on the environment would be to decrease the amount imported feed. Another way would be to

- 359 alter the dietary composition, for example, by using phase feeding. For example, Pierer et al. (2015)
- demonstrated decreases in N-leakages by phase feeding.

361 Table 8: Comparison of different feed compositions (AGT 2009, VÖS 2011)

Feed	Assumption in this study (kg)	Recommendation by VÖS (2011) (kg)
Mineral feed	0.38	0.12
Corn	1.52	1.80
Wheat	0.76	0.00
Barley	0.76	1.24
Soy	0.29	0.42
Rapeseed	0.15	0.21
Sunflowers	0.15	0.21

363 When examining manure management during the agricultural LCA stage, the environmental impact was mainly 364 caused by methane emissions from the manure and, to a lesser extent, by direct and indirect N_2O emissions. With 365 reference to acidification, the environmental impact was related to the on-farm emission of NH₃, and the 366 emissions in the category eutrophication could be attributed to the nitrogen and phosphorus derivatives released.

367 6 Discussion

362

368 The results of our analysis clearly demonstrated that the environmental burden of fresh Austrian pork is 369 primarily associated with the agriculture stage. Environmental burdens associated with other stages such as 370 trade, transport or slaughterhouse, have a relatively minor impact. During the agriculture stage, the foremost 371 source of environmental impacts identified was the production of feed, which was shown to be more important 372 than manure management or energy use on farms. The proper selection of feed, therefore, may also influence the 373 environmental impact of pig farming. The result of this LCA allows us to provide recommendations to optimize 374 the environmental performance of pig farming, especially when considering feed production.

When optimizing feed rations with regard to environmental aspects, animal requirements and animal welfare aspects cannot be neglected. It is necessary to optimize growth for economic reasons, but a waste of protein (generally an expensive commodity) should be avoided. Phase feeding allows animal requirements to be more specifically addressed, while avoiding the addition of excess protein and, at the same time, release of excess nitrogen into the manure of the animals (Amon et al. 2014).

380 When compared to other animals (see e.g., Steinfeld et al. 2006, Leip et al. 2010), pigs display similar 381 environmental impacts as chickens, but clearly have a lower impact than cattle. The environmental impacts of

enteric fermentation, which are rather low for pigs, play an important role in cattle farming. This fermentation is a result of symbiotic microbial processes in the rumen of cattle, which allow them to digest grass. The formation of methane is directly linked with the digestion of a commodity that is *per se* not accessible to humans: grass. Pigs, on the other hand, partly compete for the same resources as humans (e.g., corn or wheat). It is necessary to raise awareness about this fact and, therefore, an efficient mitigation option would be to adjust human diets to encourage lower meat consumption levels (Stehfest et al. 2009).

388 Most notably, pig rations in Austria are mostly based on the availability of local products (corn, wheat), in 389 contrast to many other European countries, where pig production is based on the availability of soybeans, which 390 are mostly imported from Latin America (see e.g., for Spain, Laselletta et al. 2014). While soybeans and soy 391 meal are considered a significant cost factor in Austrian production, cheap ship transport allows their use in 392 coastal regions of Europe. The different environmental footprints associated with soybean vs. other foodstuff 393 have been discussed by Hörtenhuber et al. (2014), inter alia. The use of soy meal as feed has a significant impact 394 on the environment as indicated in these LCA results. The range of uncertainty, however, is rather high for 395 impact of soy as compared to that of other crops. GHG emissions from soy production in South America manly 396 depend on emissions from land-use change and vary greatly, depending on where the soy is planted. In an LCA 397 study on soy-bean production in Brazil and Argentina, Castanheira and Freire (2013) showed that the GHG 398 emission per kg of product varied between 0.3 kg - 17.8 kg CO₂-eq (including emissions from cultivation, land-399 use change and transport).

400

401 Careful and continuous evaluations using LCA or a similar method, on the level of individual countries, are 402 necessary to monitor the progress of the release of undesired substances. Some mitigation may be technically 403 feasible (e.g., air pollutants as in Bittman et al. 2014), which then could result in a direct positive response in the 404 LCA, while in other cases (predominantly greenhouse gas related emissions), structural changes leading to a 405 production shift may be more appropriate.

406

407 In order to verify the results determined and the robustness of the results, we compared the findings obtained 408 with those published in other available studies, where the conditions and studied issues mirrored those in 409 Austria. The following table shows the results of the chosen studies, their respective geographical coverage, and 410 the references. Only a few studies were available beyond the stage of the farming process.

411

412 Table 9: Results for the functional unit, 1 kg pork (live and carcass weight) - geographical coverage and references

	Result	Results		
LCA	Conventional farming	Organic farming	Geographic coverage	Reference
		g CC	D ₂ eq	
	4,109	4,965	Germany	Woitowitz (2007)
	1,870		Germany	Koerber et al (2007)
	3,070	2,070	Germany	
A	2,790	1,700	Germany	Hirschfeld et al. (2008)
Agriculture	3,610	4,880	Germany	Kool et al. (2009)
	4,950	3,480	Austria	Kral (2011)
	2,882		Denmark	Nguyen et al. (2011)
	4,383		Austria	This study
	148	148	Germany	Woitowitz (2007)
	30	30	Germany	Kool et al. (2009)
Slaughterhouse	25	23	Austria	Kral (2011)
	179		Denmark	Nguyen et al. (2011)
	142		Austria	This study
T 1	18	18	Germany	Woitowitz (2007)
Trade	8		Austria	This study
Consumption	50		Austria	This study
	80	80	Germany	Woitowitz (2007)
	80	170	Germany	Kool et al. (2009)
Transport	61	67	Austria	Kral (2011)
	151		Denmark	Nguyen et al. (2011)
	168		Austria	This study
		g SC	D ₂ eq	
	56.15		Denmark	Nguyen et al. (2011)
Agriculture	60.48		Austria	This study
Sloughtonhouse	0.17		Denmark	Nguyen et al. (2011)
Slaughterhouse	0.61		Austria	This study
Transport	0.97		Denmark	Nguyen et al. (2011)
	0.28		Austria	This study
		g NO)3eq	
Agriculture	241.08		Denmark	Nguyen et al. (2011)
Agriculture	336,82		Austria	This study
Slaughterhouse	1.46		Denmark	Nguyen et al. (2011)
	16.96		Austria	This study
Transport	1.46		Denmark	Nguyen et al. (2011)
	0.50		Austria	This study
	-			~

413

In general, the conclusions drawn for Austria in this study may widely reflect a situation that has also been observed in other countries. Deviations are observed, but can be assigned to the varying settings of the goals and different system boundaries. Basically, the agricultural stage generated the highest emissions (92-99% of GHG emissions) in all analysed studies, which conforms to the calculated results. In particular, the outcomes of

418 Woitowitz (2007), Hirschfeld et al. (2008), Kool et al. (2009), Kral (2011) and Nguyen et al. (2011) generally 419 supported the results obtained here. A good agreement for acidification and overall eutrophication was found 420 that is in line with the results of different studies from other European countries. Daalgaard et al. (2007) 421 provided an additional overview of LCA studies on pork in several European countries (Denmark, Sweden, 422 France, Great Britain). However, the range of results indicated a high level of variability among environmental 423 impacts of pork production. GWPs in this overview varied from 2.6 - 5.6 kg CO₂-eq, APs ranged from 37 - 290 g 424 SO_2 -eq and EPs were assessed between 170 and 760 g NO_3 -eq per functional unit. The difference between the 425 EP in slaughtering and transport observed in this study and that published by Nguyen et al. (2011) may be due to 426 the different assumptions for waste water usage in the slaughterhouse and the absence of shipping in feed 427 transport.

When we compare the results of this study with those from other LCAs (Table 9 and Daalgaard et al 2007, Leip et al. 2010), we see that the environmental impact of pork production in Austria is rather average to high. This is mainly the results of the high emission factors associated with agricultural products (Nemecek et al. 2005), which are estimated to be much higher than in other LCA studies. However, we argue that this high estimation makes sense for Austria's pork production due to its geographical characteristics, the different approach taken during manure application and different dietary assumptions.

434 **7** Conclusions

This investigation of the environmental impacts of pork production allowed us to identify the major contributing factors and single out the stages of the production process that had only a minor impact. With 1 kg fresh Austrian pork (carcass weight) as the functional unit and the system boundary defined at the level of the consumer, the highest impacts are clearly caused by agricultural activities, specifically the feed production. With reference to eutrophication, the slaughtering stage is also important.

440 Similar impacts have been observed in comparable studies for greenhouse gas emissions, acidification and 441 eutrophication. These observations support the general conclusion that aspects of consumption, transport and 442 food preparation play only minor roles in the overall environmental impact of pork.

Clearly, any mitigation measures need to focus on animal feed production and total production numbers. It is not possible to single out just one contributor. Feed rations, however, may provide an alternative to explore in order to reduce the environmental impact. Eutrophication and acidification may potentially be reduced by ammonia abatement (see Bittman et al., 2014 for the respective options). In the long term, a change in diets is probably the only way to reduce emissions from pork and meat production in general. Raising awareness on this fact can lead

- 448 to a substantial reduction in GWP, AP and EP. Such behavioural changes have been previously discussed and
- 449 advocated in the scientific literature (e.g., Stehfest et al., 2009).
- 450 The situation in Austria differs with respect to those seen in the major pork-producing countries in Europe,
- 451 especially those situated along the Atlantic coast. Austrian pigs are raised on a diet of about 90% domestically
- 452 produced feed (AGT 2009), while many European countries rely on soy meal imports, often from South
- 453 America, and the environmental footprints include the respective environmental impacts in the source regions.
- 454 As compared results described in other European studies, Austrian pork production shows a tendency toward
- 455 higher environmental impact due to the high emission factors of the agricultural crops. Further studies will be
- 456 needed to ascertain whether this observed difference exceeds variability observed in data.

457 Acknowledgement

- 458 The authors would like to thank the two anonymous reviewers for their constructive, helpful and valuable
- 459 comments that helped to improve the quality of this paper.

460 **References**

- 461 AGT Arbeitsgemeinschaft Gesunde Tierernährung (2009) Jährlicher Futtermitteleinsatz in der österreichischen
 462 Landwirtschaft. http://www.mischfutter.at/arbeitsgemeinschaft-gesunde-tierernaehrung-agt/63.
 463 Accessed 22 March 2013.
- Amann M, Borken-Kleefeld J, Cofala J, Hettelingh J-P, Heyes C, Höglund-Isaksson L, Holland M, Kiesewetter
 G, Klimont Z, Rafaj P, Posch M, Sander R, Schöpp W, Wagner F, Winiwarter W (2014) The Final
 Policy Scenarios of the EU Clean Air Policy Package TSAP Report #11 version 1.1a. International
 Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, February 2014.
- 468AMA Agrarmarkt Austria Marketing GesmbH (2013) Begleitheft für den Unterricht: Schwein gehabt...469SchweinehaltunginÖsterreich.http://www.rund-ums-schwein.at/fileadmin/schwein/pdf/Booklet_DVD.pdf. Accessed 14 Sept 2014.
- 471 Weißensteiner Zablatnik B. Amon B. Fröhlich M, R. Amon T. (2007) Tierhaltung und 472 Österreich. Wirtschaftsdüngermanagement in 473 https://www.dafne.at/prod/dafne_plus_common/attachment_download/5a26b2c81f9cb4c8d89b878 474 363eb9af0/Endbericht_TIHALO_1441.pdf. Accessed 25 March 2013.
- Amon B, Winiwarter W, Anderl M, Baumgarten A, Dersch G, Guggenberger T, Hasenauer H, Kantelhardt J, Kasper M, Kitzler B, Moser T, Pötzelsberger E, Prosenbauer M, Schaller L, Schröck A, Sigmund E, Zechmeister-Boltenstern S, Zethner G (2014) "Farming for a better climate": Design of an Inter- and Transdisciplinary Research Project Aiming to Address the "Science-Policy Gap". GAIA 23/2:118-124.
- 480 Anderl M, Freudenschuss A, Friedrich A, Haider S, Jobstmann H, Köther T, Kriech M, Lampert C, Pazdernik K, 481 Poupa S, Schindlbacher S, Stranner G, Schwaiger E, Seuss K, Weiss P, Wieser M, Zechmeister A, 482 Zethner G (2013) Austria's National Inventory Report 2013 - Submission under the United 483 Protocol. Climate Change and the Kyoto Nations on under 484 http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0416.pdf. Accessed 7 May 485 2013.
- 486 Antranikian G (2006) Angewandte Mikrobiologie. Springer, Berlin/Heidelberg.

487 488 489	Bittman S, D	Dedina M, Howard CM, Oenema O, Sutton MA, eds. (2014) Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen. Centre for Ecology and Hydrology, Edinburgh.
490 491 492 493	BMLFUW -	Bundesministerium für Land- und Forstwirtschaft, Umwelt- und Wasserwirtschaft (2006) Richtlinien für die sachgerechte Düngung – Anleitung zur Interpretation von Bodenuntersuchungsergebnissen in der Landwirtschaft. <u>http://oebg.boku.ac.at/files/rl sgd.pdf</u> . Accessed 29 March 2013.
494 495 496 497 498	BMLFUW -	Bundesministerium für Land- und Forstwirtschaft, Umwelt- und Wasserwirtschaft (2012) Wasserverbrauch und Wasserbedarf – Auswertung empirischer Daten zum Wasserverbrauch. http://www.bmlfuw.gv.at/dms/lmat/publikationen/wasser/wasserwirtschaft_wasserpolitik/wasserverbrauch. <u>bttp://www.bmlfuw.gv.at/dms/lmat/publikationen/wasser/wasserwirtschaft_wasserpolitik/wasserverbrauch_wasserbedarf.pdf?1=1</u> . Accessed 29 April 2013.
499 500 501 502 503	BMU - Bunde	esministerium für Umwelt, Naturschutz und Reaktorsicherheit Deutschland (2012) Tierhaltung Mastschwein Nordeuropa 2010. <u>http://www.probas.umweltbundesamt.de/php/procid.php?prozessid={A8D0EE0B-451E-45A3-A9F2-9CB34DE52E26}&step=4&prozessid={5DC67B7D-6898-4C10-BBF6-DD934308D855}&style=procid. Accessed 10 Dec 2012.</u>
504 505 506 507	BMU - Bunc	lesministerium für Umwelt, Naturschutz und Reaktorsicherheit Deutschland (2013) Netz-el-AT-2010-lokal. <u>http://www.probas.umweltbundesamt.de/php/volltextsuche.php?prozessid=%7b1C0BD5BF-BC1E-4D7F-A0EA-58F5C4E168A8%7d&step=4</u> . Accessed 10 Dec 2012.
508 509 510	BMVIT - Bu	ndesministerium für Verkehr, Innovation und Technologie (2007) Verkehr in Zahlen - Österreich. <u>http://www.bmvit.gv.at/service/publikationen/verkehr/gesamtverkehr/viz2007.html</u> . Accessed 29 Nov 2012.
511 512	BUWAL - B	Rundesamt für Umwelt, Wald und Landschaft Schweiz (1996) Ökoinventare für Verpackungen. Schriftenreihe Umwelt, Band 250-252:1-246.
513 514 515	Castanheira H	EG, Freire F (2013) Greenhouse gas assessment of soybean production: implications of land use change and different cultivation systems. J Clean Prod 54: 49-60. doi:10.1016/j.jclepro.2013.05.026
516 517	Daalgaard R,	Halberg N, Hermansen JE (2007) Danish pork production - An environmental assessment. DJF Animal Science No. 82. University of Aarhus.
518 519	De Vries M,	De Boer IJM (2010) Comparing environmental impacts for livestock products: A review of life cycle assessments. Liv Sci 128:1-11. doi:10.1016/j.livsci.2009.11.007.
520 521 522	Finnveden G	, Hauschild MZ, Ekvall T, Guine'e J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent Developments in Life Cycle Assessment. J Env Man 91:1-21. doi: 10.1016/j.jenvman.2009.06.018.
523 524 525	González-Ga	rcía S, Belo S, Dias AC, Várzea Rodrigues J, Roberto da Costa R, Ferreira A, Pinto de Andrade L, Arroja L (2015) Life cycle assessment of pigmeat production: Portuguese case study and proposal of improvement options. J Clean Prod 100:126-139 doi: 10.1016/j.jclepro.2015.03.048.
526 527 528	Grönman K, Y	Ypyä J, Virtanen Y, Kurppa S, Soukka R, Seuri P, Finér A, Linnanen L (2015) Nutrient footprint as a tool to evaluate the nutrient balance of a food chain. J Clean Prod, in press. doi: <u>10.1016/j.jclepro.2015.09.129</u>
529 530 531	Hirschfeld J,	Weiß J, Preidl M, Korbun T (2008) Klimawirkungen der Landwirtschaft in Deutschland. http://www.klimateller.de/wp-content/uploads/2011/05/I%C3%96W- SR 186 Klimawirkungen Landwirtschaft.pdf. Accessed 10 Oct 2012.
532 533 534	Hörtenhuber	S, Piringer G, Zollitsch W, Lindenthal T, Winiwarter W (2014) Land use and direct land use change in agricultural LCAs and carbon footprints - the case for regionally specifically LUC versus other methods. J Clean Prod 73:31-39.
535 536	IPCC (2006)	IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/</u> . Accessed 07 May 2013.
537 538 539	IPCC (2013)	Working Group I Contribution To The IPCC Fifth Assessment Report (AR5), Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

540 ISO (2006) Umweltmanagement, Produkt-Ökobilanz, Anforderungen und Anleitungen. ISO 14044, 541 International Organization for Standardization, Brussels. 542 ISO (2009) Umweltmanagement, Produkt-Ökobilanz, Grundsätze und Rahmenbedingungen. ISO 14040, 543 International Organization for Standardization, Brussels. 544 Jungbluth N (2000) Umweltfolgen des Nahrungsmittelkonsums: Beurteilung von Produktmerkmalen auf 545 Grundlage einer modularen Ökobilanz. Dissertation, Technische Universität Berlin (University of 546 Technology Berlin). 547 Klöpffer W, Grahl B (2011) Ökobilanz (LCA) Ein Leitfaden für Ausbildung und Beruf. Wiley-VCH, Weinheim. 548 Koerber Kv, Kretschmer J, Schlatzer M (2007) Ernährung und Klimaschutz - Wichtige Ansatzpunkte für 549 verantwortungsbewusstes Handeln. Ernährung im Fokus, 7-05/07:130-137. 550 Kool A, Blonk H, Ponsioen T, Sukkel W, Vermeer H, Vries J, Hoste R (2009) Carbon footprints of conventional 551 and organic pork - Assessment of typical production systems in the Netherlands, Denmark, 552 England and Germany. 553 http://www.blonkmilieuadvies.nl/en/pdf/Carbon footprint pork engels.pdf. Accessed 10 Oct 554 2012. 555 Kral I (2011) Treibhausgasemissionen von Rind- und Schweinefleisch entlang der Produktionskette 556 Landwirtschaft bis Großküche unter besonderer Berücksichtigung der landwirtschaftlichen 557 Produktionsform. http://www.wien.gv.at/umweltschutz/nachhaltigkeit/pdf/kral-2012.pdf. Accessed 558 8 Sept 2014. 559 KTBL (2005) Energieversorgung in Geflügel- und Schweineställen - KTBL Fachgespräch vom 14.-15. 560 November 2005 in Osnabrück. Kuratorium für Technik und Bauwesen in der Landwirtschaft, 561 Osnabrück. 562 Lassaletta L, Billen G, Romero E, Garnier J, Aguilera E (2014) How changes in diet and trade patterns have 563 shaped the N cycle at the national scale: Spain (1961–2009). Reg Environ Change 14:785-797. 564 Leip A, Weiss F, Wassenaar T, Perez I, Fellmann T, Loudjani P, Tubiello F, Grandgirard D, Monni S, Bialal K 565 (2010) Evaluation of the livestock sector's contribution to the EU greenhouse gas emissions 566 (GGELS) - final report. European Commission, Joint Research Centre, Ispra. 567 Lukas M, Rohn H, Lettenmeier M, Liedtke C, Wiesen K (2015) The nutritional footprint - integrated 568 methodology using environmental and health indicators to indicate potential for absolute reduction 569 of natural resource use in the field of food and nutrition. J Clean Prod, in press. 570 http://dx.doi.org/10.1016/j.jclepro.2015.02.070 571 MacLeod M, Gerber P, Mottet A, Tempio G, Falcucci A, Opio C, Vellinga T, Henderson B, Steinfeld H. (2013) 572 Greenhouse gas emissions from pig and chicken supply chains - A global life cycle assessment. 573 Food and Agriculture Organization of the United Nations (FAO), Rome. 574 Nemecek T, Huguenin-Elie O, Dubois D, Gaillard G (2005) Ökobilanzierung von Anbausystemen im 575 schweizerischen Acker- und Futterbau. agroscope, FAL Reckenholz, Zurich. 576 Nemecek T, Bengoa X, Lansche J, Mouron P, Rossi V & Humbert S (2014) Methodological Guidelines for the 577 Life Cycle Inventory of Agricultural Products. Version 2, July 2014. World Food LCA Database 578 (WFLDB). Quantis and Agroscope, Lausanne and Zurich, Switzerland. 579 Nguyen TLT, Hermansen JE, Mogensen L (2010) Fossil energy and GHG saving potentials of pig farming in the 580 EU. En Pol 38:2561-2671. doi:10.1016/j.enpol.2009.12.051. 581 Nguyen TLT, Hermansen JE, Mogensen L (2011) Environmental Assessment of Danish Pork. Report Number 582 103. http://web.agrsci.dk/djfpublikation/djfpdf/ir_103_54761_indhold_internet.pdf. Accessed 8 583 Sept 2014. 584 Nguyen TLT, Hermansen JE, Mogensen L (2012) Environmental costs of meat production: the case of typical 585 EU pork production. J Clean Prod 28:168-176. doi:10.1016/j.jclepro.2011.08.018. 586 Nielsen PH, Nielsen AM, Weidema BP, Frederiksen, RH (2003a) LCA Food Database: Cool and frozen storage 587 in wholesale. http://www.lcafood.dk/processes/trade/wholsalecoolstorage.htm. Accessed 23 March 588 2013.

589 590 591	Nielsen PH, Nielsen AM, Weidema BP, Frederiksen, RH (2003b) LCA Food Database: Cool storage in private homes. <u>http://www.lcafood.dk/database/processes/cooking/coolstorageprivate.htm</u> . Accessed 23 <u>March 2013</u> .
592 593	Oklahoma State University (n.d.) How much meat? Oklahoma Agriculture Food Forestry - Food Safety Division. http://www.oda.state.ok.us/food/fs-hogweight.pdf. Accessed 23 June 2015.
594 595 596	Perrin A, Basset-Mens C, Gabrielle B (2014) Life cycle assessment of vegetable products: a review focusing on cropping systems diversity and the estimation of field emissions. Int J Life Cycle Assess 19: 1247- 1263. doi: 10.1007/s11367-014-0724-3.
597 598	Pierer M, Winiwarter W, Leach AM, Galloway J (2014) The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy 49: 128-136. doi: 10.1016/j.foodpol.2014.07.004
599 600	Pierer M, Amon B, Winiwarter W (2015) Options to reduce N losses from agricultural food production - economic assessment & uncertainty. Paper submitted.
601 602 603	PlasticsEurope - Association of Plastics Manufacturers (2013) The PlasticsPortal – Plastics & Sustainability – Eco profiles - Browse by flowchart. <u>http://www.plasticseurope.org/plasticssustainability/eco-profiles/browse-by-flowchart.aspx</u> . Accessed 23 March 2013.
604 605 606 607 608 609 610	 Pöllinger A, Kropsch M, Leithold A, Huber G, Amon B, Breininger W, Längauer M (2011) Projektbericht: Emissionen - Gülleausbringung, -lager; Projektteil 1: Evaluierung der ÖPUL-Maßnahme "Verlustarme Ausbringung von flüssigen Wirtschaftsdüngern und Biogasgülle". <u>http://www.raumberg-</u> gumpenstein.at/cm4/de/forschung/publikationen/downloadsveranstaltungen/finish/1818- sonstige/14583-evaluierung-der-oepul-massnahme-verlustarme-ausbringung-von-fluessigen- wirtschaftsduengern-und-biogasguelle.html. Accessed 02 May 2013.
611 612 613 614	Pölz W (2007) Emissionen der Fernwärme Wien 2005: Ökobilanz der Treibhausgas- und Luftschadstoffemissionen aus dem Anlagepark der Fernwärme Wien GmbH. <u>http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0076.pdf</u> . Accessed 27 Jan 2013.
615 616 617 618 619	Resch R, Schwab E, Schwaiger E (2006) Erträge, Futterqualitäten, Bodenzustand und botanische Zusammensetzung bei unterschiedlicher Grünlanddüngung und Nutzung auf 27 Versuchsstandorten in Österreich. <u>http://www.raumberg-</u> <u>gumpenstein.at/cm4/de/forschung/publikationen/downloadsveranstaltungen/finish/129-</u> <u>klimaseminar-2006/908-ertraege-futterqualitaeten-bodenzustand.html</u> . Accessed 17 April 2013.
620 621 622	Roy P, Orikasa T, Thammawong M, Nakamura M, Xu Q, Shiina T (2012) Life cycle of meats: An opportunity to abate greenhouse gas emission from meat industry in Japan. J Env Man 93:218-224. doi:10.1016/j.jenvman.2011.09.017.
623 624 625 626	Schafzahl W.(1999) Gumpensteiner Bautagung – Aktuelle Fragen des landwirtschaftlichen Bauens: Wasserversorgung beim Schwein. <u>http://www.raumberg-</u> gumpenstein.at/cm4/index.php/de/forschung/publikationen/downloadsveranstaltungen/finish/89- bautagung-1999/290-wasserversorgung-beim-schwein-schafzahl.html. Accessed 30 March 2013.
627 628 629	Statistik Austria (2012). Veterinärinformationssystem - Bestand von Schweinen nach Gemeinden 2012. http://www.statistik.at/web de/statistiken/land und forstwirtschaft/viehbestand tierische erzeugu ng/tierbestand/index.html. Accessed 04 Sept 2013.
630 631 632	Statistik Austria (2013) Versorgungsbilanz für Fleisch nach Arten 2007 bis 2012. http://www.statistik.at/web_de/statistiken/land_und_forstwirtschaft/preise_bilanzen/versorgungsbi lanzen/. Accessed 01 Feb 2013.
633 634	Stehfest E, Bouwman L, van Vuuren DP, den Elzen MGJ, Eickhout B, Kabat P (2009) Climate benefits of changing diet. Climatic Change 95:83-102.
635 636 637	Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C. (2006) Livestock's Long Shadow - Environmental Issues and Options. Food and Agriculture Organization, <u>http://www.fao.org/docrep/010/a0701e/a0701e00.htm</u> . Accessed 8 Sept 2014.
638 639	Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B, eds. (2011) The European Nitrogen Assessment, Cambridge University Press.
640 641	USDA ERS (2015) Pork: Supply and disappearance (carcass weight, million pounds) and per capita disappearance (pounds). United States Department of Agriculture - Economic Research Service.

	ACCEPTED MANUSCRIPT
642 643 644	http://www.ers.usda.gov/datafiles/Livestock_Meat_Domestic_Data/Quarterly_red_meat_poultry_a nd_egg_supply_and_disappearance_and_per_capita_disappearance/Pork/WASDE_Pork.pdf. Accessed 25 June 2015.
645 646 647	VÖS (2011). Jahresbericht 2009 - Schweinehaltung in Österreich. Verband Österreichischer Schweinebauern <u>http://www.schweine.at/fileadmin/Lenz/Downloads/Jahresbericht 2009.pdf.</u> Accessed 21 Feb 2013.
648 649	Walter B, Kügler I, Öhlinger A, Lapmert C (2008) Tierische Nebenprodukte 2004 - 2006 - Erhebung der Mengen an tierischen Nebenprodukten in Österreich. Umweltbundesamt, Wien.
650 651 652	Weidema BP, Wesnæs M, Hermansen T, Kristensen T, Halberg N (2008) Environmental Improvement Potentials of Meat and Dairy Products. JRC Scientific and Technical Reports, European Commission. http://ftp.jrc.es/EURdoc/JRC46650.pdf. Accessed 8 Sept 2014.
653 654	Wieser M, Kurzweil A (2004) Emissionsfaktoren als Grundlage für die österreichische Luftschadstoff-Inventur - Stand 2003. Umweltbundesamt, Wien (Vienna).
655 656 657 658 659	Woitowitz A (2007) Auswirkungen einer Einschränkung des Verzehrs von Lebensmitteln tierischer Herkunft auf ausgewählte Nachhaltigkeitsindikatoren - dargestellt am Beispiel konventioneller und ökologischer Wirtschaftsweise. Dissertation, Technische Universität München (University of Technology Munich).

25

Highlights

First comprehensive LCA of Austrian fresh pork

LCA incl. consumer phase, usually neglected by national LCAs of food products

Importance of nitrogen abatement for different impact categories

Detailed comparison of similar LCAs of pork