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Introduction

The paper is focused on construction of solution for bimatrix
evolutionary games basing on methods of the theory of optimal
control and generalized solutions of Hamilton-Jacobi-Bellman
equations. It is assumed that the evolutionary dynamics de-
scribes interactions of agents in large population groups in bio-
logical and social models or interactions of investors on finan-
cial markets. Interactions of agents are subject to the dynamic
process which provides the possibility to control flows between
different types of behavior or investments. Parameters of the
dynamics are not fixed a priori and can be treated as controls
constructed either as time programs or feedbacks.
Payoff functionals in the evolutionary game of two coalitions are
determined by the limit of average matrix gains on infinite hori-
zon. The notion of a dynamical Nash equilibrium is introduced
in the class of control feedbacks within Krasovskii’s theory of
differential games.
Elements of a dynamical Nash equilibrium are based on guar-
anteed feedbacks constructed within the framework of the the-
ory of generalized solutions of Hamilton-Jacobi-Bellman equa-
tions. The value functions for the series of differential games
are constructed analytically and their stability properties are
verified using the technique of conjugate derivatives.
The equilibrium trajectories are generated on the basis of pos-
itive feedbacks originated by value functions. It is shown that
the proposed approach provides new qualitative results for the
equilibrium trajectories in evolutionary games and ensures bet-
ter results for payoff functionals than replicator dynamics in
evolutionary games or Nash values in static bimatrix games.
The efficiency of the proposed approach is demonstrated by
applications to construction of equilibrium dynamics for agents’
interactions on financial markets.

Evolutionary Game

Let us consider the system of differential equations which de-
scribes behavioral dynamics for two coalitions:

ẋ = −x + u, ẏ = −y + v. (1)

Parameter x, 0 ≤ x ≤ 1 is the probability of the fact that a ran-
domly taken individual of the first coalition holds the first strat-
egy. Parameter y, 0 ≤ y ≤ 1 is the probability of choosing the
first strategy by an individual of the second coalition. Control
parameters u and v satisfy the restrictions 0 ≤ u ≤ 1, 0 ≤ v ≤ 1
and can be interpreted as signals for individuals to change their
strategies. The system dynamics (1) is interpreted as a version
of controlled Kolmogorov’s equations [5] and generalizes evo-
lutionary games dynamics [1, 2, 3, 9].
The terminal payoff functionals of coalitions are defined as
mathematical expectations corresponding to payoff matrixes
A = {aij}, B = {bij}, i, j = 1, 2 and can be interpreted as
“local” interests of coalitions:

gA(x(T ), y(T )) = CAx(T )y(T )− α1x(T )− α2y(T ) + a22, (2)

at a given instant T . Here parameters CA, α1, α2 are deter-
mined according to the classical theory of bimatrix games [12]:

CA = a11−a12−a21+a22, α1 = a22−a12, α2 = a22−a21. (3)

The payoff function gB for the second coalition is determined
according to coefficients of matrix B.
“Global” interests J∞A of the first coalition are defined as:

J∞A = [J−A , J
+
A ], J−A = lim inf

t→∞
gA(x(t), y(t)),

J+A = lim sup
t→∞

gA(x(t), y(t)).
(4)

Interests J∞B of the second coalition are defined analogously.
We consider the solution of the evolutionary game basing on
the optimal control theory [10] and differential games [8]. Fol-
lowing [4, 7, 8, 9] we introduce the notion of a dynamical Nash
equilibrium in the class of closed-loop strategies (feedbacks)
U = u(t, x, y, ε), V = v(t, x, y, ε).
Definition 1. Let ε > 0 and (x0, y0) ∈ [0, 1] × [0, 1]. A pair of
feedbacks U0 = u0(t, x, y, ε), V 0 = v0(t, x, y, ε) is called a Nash
equilibrium for an initial position (x0, y0) if for any other feed-
backs U = u(t, x, y, ε), V = v(t, x, y, ε) the following condition
holds: the inequalities:

J−A (x0(·), y0(·)) ≥ J+A(x1(·), y1(·))− ε,
J−B (x0(·), y0(·)) ≥ J+B(x2(·), y2(·))− ε,

(5)

are valid for all trajectories:

(x0(·), y0(·)) ∈ X(x0, y0, U
0, V 0), (x1(·), y1(·)) ∈ X(x0, y0, U, V

0),

(x2(·), y2(·)) ∈ X(x0, y0, U
0, V ).

Here the symbol X stands for the set of trajectories, which start
from the initial point (x0, y0) and are generated by the corre-
sponded strategies (U0, V 0), (U, V 0), (U0, V ).
Dynamic Nash equilibrium can be constructed by pasting posi-
tive feedbacks u0A, v0B and punishing feedbacks u0B, v0A accord-
ing to relations [4]:

U0 = u0(t, x, y, ε)

{
uεA(t), ‖(x, y)− (xε(t), yε(t))‖ < ε,

u0B(x, y), otherwise,
(6)

V 0 = v0(t, x, y, ε)

{
vεB(t), ‖(x, y)− (xε(t), yε(t))‖ < ε,

v0A(x, y), otherwise.
(7)

Value Function for Positive Feedback

The main role in construction of dynamic Nash equilibrium be-
longs to positive feedbacks u0A, v0B, which maximize with guar-
antee the mean values gA, gB on the infinite horizon T → ∞.
For this purpose we construct value functions wA, wB in zero
sum games with the infinite horizon. Basing on the method of
generalized characteristics for Hamilton-Jacobi-Bellman equa-
tions we obtain the analytical structure for value functions. For
example, in the case when CA < 0 the value function wA is
determined by the system of four functions:

wA(x, y) = ψiA(x, y), if (x, y) ∈ EiA, i = 1, ..., 4, (8)

ψ1A(x, y) = a21 +
((CA − α1)x + α2(1− y))2

4CAx(1− y)
,

ψ2A(x, y) = a12 +
(α1(1− x) + (CA − α2)y)2

4CA(1− x)y
,

ψ3A(x, y) = CAxy − α1x− α2y + a22,

ψ4A(x, y) = vA =
a22CA − α1α2

CA
.

Here vA is the value of the static game with matrix A. The value
function wA is presented in the Figure 1.

Fig. 1. Structure of the value function wA.

It is shown that the value function wA has properties of u-
stability and v-stability [6, 8] which can be expressed in terms
of conjugate derivatives [11]:

D∗wA(x, y)|(s) ≤ H(x, y, s), (x, y) ∈ (0, 1)× (0, 1),

s = (s1, s2) ∈ R2,
(9)

D∗wA(x, y)|(s) ≥ H(x, y, s), (x, y) ∈ (0, 1)× (0, 1),

wA(x, y) < gA(x, y), s = (s1, s2) ∈ R2.
(10)

Here the conjugate derivatives D∗wA, D∗wA and the Hamilto-
nian H are determined by:

D∗wA(x, y)|(s) = sup
h∈R2

(〈s, h〉 − ∂−wA(x, y)|(h)), (11)

D∗wA(x, y)|(s) = inf
h∈R2

(〈s, h〉 − ∂+wA(x, y)|(h)), (12)

H(x, y, s) = −s1x− s2y +max{0, s1} +min{0, s2}. (13)

Model Applications

Application 1. Let us consider payoff matrices for two players
on financial markets of bond and assets. Matrices A, B reflect
the behavior of “bulls” and “bears”, respectively:

A =

(
10 0
1.75 3

)
, B =

(
−5 3
10 0.5

)
.

In the Figure 2 we depict the static Nash equilibrium NE,
switching lines KA, KB for feedback strategies, the new equi-
librium at the point ME of their intersection, and equilibrium
trajectories T1, T2, T3. The new equilibrium point ME differs
essentially from the static Nash equilibrium NE and provides
better results for payoff functions of both players.

Fig. 2. Equilibrium trajectories for the financial markets game.

Application 2. Let us consider an example of coordination
games. These games envisage coordinated solutions. Such
situation describes the investment process in parallel projects:

A =

(
10 0
6 20

)
, B =

(
20 0
4 10

)
.

Figure 3 presents the case with three static Nash equilibria N1,
N2, N3. The intersection point of switching lines KA, KB does
not attract equilibrium trajectories T1, T2, T3, T4. Trajectories
converge to intersection points of lines KA, KB with the edges
of the unit square and provide better payoff results than the
Nash equilibrium N2.

Fig. 3. Equilibrium trajectories in the coordination game of
investments.
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