Smarter every day The deceleration of population ageing in terms of cognition

Wittgenstein Centre

Ageing

- Increase in life expectancy
- Postponement of the onset of degenerative ageing (Vaupel 2010)
- Steadily increasing average scores on common tests of cognitive functioning, i.e., Flynn effect
 - Scant evidence on older populations (Baxendale 2010; Cristensen et al. 2013; Gerstorf et al. 2011; Rönnlund & Nilsson 2008; Rotrou et al. 2013; Skirbekk et al. 2013)

Cognitive functioning

- Characteristic of the individual that is associated with but not determined by chronological age
- Central component of successful aging (Rowe & Kahn 1987)
- Useful measure of differential ageing

- Little attention has been paid to subgroup differences, e.g. across education
- Some parts of the population start aging (in terms of cognition) earlier than others, education being a central factor in this regard

Research questions

Do we observe a deceleration of population ageing?

- Focus on cognitive functioning
- → Do we observe a **Flynn effect**?
 - \rightarrow What can explain it?

Data

- German Socio-Economic Panel 2006 & 2012
 - Age 50+
 - Symbol-Digit Task (SDT 30, 60, 90) taps abilities based on the mechanics of cognition
- English Longitudinal Survey of Ageing 2002 & 2008* (* refresher sample)

Descriptives

	Mean (s.d.)	Mean (s.d.)	min	max
SOEP	2006 (N = 2,013)	2012 (N = 2,878)		
SDT30	7.1 (3.4)	7.4 (3.3)	0	24
SDT60	15.2 (6.5)	16.2 (6.0)	0	38
SDT90	23.2 (9.0)	24.9 (8.1)	0	54
ELSA	2002 (N = 8,170)	2008 (N = 1,402)		
ANT	20.4 (6.1)	21.6 (6.3)	0	55
IR	5.8 (5.8)	6.1 (1.6)	0	10
DR	4.4 (2.0)	4.8 (1.9)	0	10
LCT	79.8 (13.8)	82.0 (12.0)	0	100

Age 50-74

the Zahl gehört zu dem Zeiche

·) + ⊢ \ ∨ (- + 123456789

- Immediate (IR) & delayed (DR) recall, a compound of fluid and crystallized intelligence
- Animal Naming Task (ANT) strongly based on the pragmatics of cognition
- Letter Cancellation Task (LCT), a measure of accuracy

Table 1. Mean and s.d. of the cognitive test scores.

Results

• People interviewed 6 years later match 2 symbols more and name 1 animal more

Figure 1. Predicted age-cognition profiles by survey wave. Linear fit over age, by survey year; controls: education, sex.

	SOEP			ELSA			
	SDT30	SDT60	SDT90	ANT	IR	DR	LCT
Age gain	4.9	6.4	7.9	6.2	4.8	5.7	7.5

Table 2. Age-gains for the different cognitive tests.

Conclusion

Method

- Repeat cross-sectional approach to identify, quantify, and explain the Flynn effect
 - estimate the difference in mean cognitive test scores across 2 points in time
 - explanatory variable: Flynn effect (i.e. wave dummy)
 - controls: age, sex, education
 - calculate the 'constant characteristics age' (Sanderson & Scherbov, 2013) and the 'age gain' 2.

- test if increasing technology explains the observed Flynn effect 3.
- additional controls: use of PC and mobile

The contribution of technology

	SC	DEP	ELSA		
	SDT90 – M1	SDT90 – M2	ANT – M1	ANT – M2	
Age	-0.294***	-0.249***	-0.146***	-0.120***	
	(0.012)	(0.013)	(0.009)	(0.009)	
Flynn effect	2.334***	1.933***	0.904***	0.488**	
	(0.227)	(0.231)	(0.169)	(0.172)	
Education ¹	0.604***	0.489***	4.076***	3.402***	
	(0.042)	(0.044)	(0.153)	(0.164)	
PC / internet ²	-	1.752***	-	1.314***	
		(0.281)		(0.142)	
Mobile ³	-	1.248***	-	0.540***	
		(0.336)		(0.135)	
Ν	4,891	4,891	9,572	9,572	
R2	0.166	0.179	0.125	0.147	

Table 3. Coefficients and se from linear regressions. Notes: 1. Years of education in SOEP, High vs. low in ELSA; 2. in household in SOEP, use in ELSA; 2. in household in SOEP, owner in ELSA. All models control also for sex.

The German Socio-Economic Panel Study

- The results of this study show the existence of a Flynn effect on 50+ year olds
 - The Flynn effect remains constant over age and education
 - The age-cognition profile does not vary with the educational attainment of test participants
- Increasing levels of education over cohorts may have driven a good part of the Flynn effect in earlier decades
- Technology in terms of PC and mobile phone use contributes, to a certain extent, to the explanation of the Flynn effect
- Other possible explanations that require further research:
 - "Social multiplier" effect
 - Modern technology use in everyday life, other than use of PC and mobile phone.

