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• We developed an improved estimation
of precipitation distribution over the
upper Indus basin.

• Results show clear non-linear increases
in precipitation with altitude.

• The estimated precipitation is much
higher compared to previous studies
and gridded products.

• The gridded precipitation products are
unsuitable to force hydrological models
in upper Indus.

• The basin-wide seasonal and annual
correction factors can be used for hy-
drological models.
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Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assess-
ment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally
fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of
the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers
to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations sig-
nified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of
precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a
predictor to appraise spatiotemporal distribution of meanmonthly, seasonal and annual precipitation for the pe-
riod of 1998–2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide
observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal sub-
stantially higher precipitation inmost of the sub-basins indicating two distinct rainfall maxima; 1st along south-
ern and lowermost slopes of Chenab, Jhelum, Indusmain and Swat basins, and 2nd around north-west corner of
Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products
covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively
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close to the observations followed byWFDEI and TRMM, while APHRODITE gives highly underestimated precip-
itation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded
dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution
can serve as a basis for bias correction of any gridded precipitation products for the study area.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Hindukush Karakoram Himalayan (HKH) mountain region and
adjoining ranges of Pamirs and Tibetan Plateau (TP) hold the world's
largest repositories of snow and ice mass outside the Polar Regions
(Qiu, 2008; UNESCO-SCOPE-UNEP, 2011). The Indus River System
(IRS), originating from TP and HKH mountain region and crossing
through China, India, Afghanistan and Pakistan, sustains livelihoods of
over 215 million people. Yet, little is known about environmental
change and mountain hydrology in this highly diversified and complex
mountain region (Immerzeel et al., 2012; Karki et al., 2011). There is
limited understanding of quantitative and spatiotemporal distribution
of precipitation, which provides the basic and critical input for hydro-
logical assessment, mass balance and climate change studies. The
current knowledge is mainly constrained by limited in-situ hydro-
meteorological and cryospheric mass balance observations in the
high-altitude catchments of Indus basin (Pellicciotti et al., 2012; Wake,
1987). Political environments, poor accessibility and harsh weather
conditions pose serious challenges for such observations in this region.
As a result, there are significant data, information and knowledge gaps
in hydro-climatic aspects.

Precipitation in the high-altitude catchments of Indus basin is
predominantly controlled by large-scale orography and remains
highly variable in time, space and altitude. Its variability and distri-
bution pattern mainly depends on the interactions and interplay of
orographic features with large-scale atmospheric circulation sys-
tems, regional climatic processes and local evapotranspiration
rates. Large changes in precipitation over short distances and within
short periods of time are common and high amplitude events are
often localized (Nesbitt and Anders, 2009). The zone of maximum
precipitation is usually the function of enhanced moisture condensa-
tion and exponential reduction in the quantity of available moisture
with increasing barrier height (Alpert, 1986). Hence, rainfall gradi-
ents in the complex terrains are often not linearly correlated with
altitude (Singh and Kumar, 1997; Loukas and Quick, 1996). Never-
theless, several other studies indicated that precipitation in the
HKH region exhibits a considerable vertical gradient (e.g. Pang
et al., 2014; Winiger et al., 2005; Hewitt, 2011; Weiers, 1995;
Wake, 1989; Dhar and Rakhecha, 1981; BIG, 1979; Decheng, 1978).

Precipitation is an important component of the hydrological cycle
that governs the renewable water resources affecting agro-economic
development, hydropower generation and environmental integrity.
Therefore, accurate assessment of precipitation is essential as small
errors in precipitation estimates may translate into major changes
in surface runoff estimates and associated water allocations. Accu-
rate assessment of precipitation requires good quality observations
with adequate spatiotemporal coverage to assess the sub-basin or
local scale variability. However, the existing rain gauge network in
this region is not only inadequate but also biased towards valley bot-
toms (Fowler and Archer, 2006). The solid precipitation (snowfall) at
higher altitudes is often difficult to accurately measure and generally
susceptible to undercatch by 20–50% (Rasmussen et al., 2012). Fur-
thermore, the Indus is an international river basin and the available
observational data are usually fragmented and scattered with differ-
ent organizations in four countries and are not freely accessible.
Therefore, there is an ever-increasing trend of using the easily avail-
able global and/or regional scale gridded datasets for hydro-climatic
assessment and mass balance studies (e.g. Lutz et al., 2014a; Sakai
et al., 2014; Immerzeel et al., 2012, 2010, 2009; Tahir et al., 2011;
Bookhagen and Burbank, 2006).

Indeed, the gridded datasets provide better information in terms of
spatial coverage and temporal consistency, butwith potentially large er-
rors particularly in high-mountains where the resolution of the data is
often larger than the spatial variability of precipitation and the adopted
interpolation schemes add further uncertainty. Also, satellite observa-
tions underestimate precipitation in areas with significant snowfall
(Andermann et al., 2011). Moreover, the gridded datasets covering the
high-altitude areas of Indus basin use station data of only a few com-
monly available old observatories predominantly located at the valley
floors, which do not reflect the topographical complexity and spatial
variability of precipitation in these areas (Reggiani and Rientjes,
2015). Hence, the accuracy of gridded datasets is particularly question-
able in this region requiring their correction and validation before use.
However, the limitations and internal inconsistencies of the gridded
datasets are often underestimated or overlooked in the hydro-climate
studies; where underestimated precipitation is often compensated by
underestimated evapotranspiration and/or overestimated snow/glacier
melt rates (Lutz et al., 2014a; Pellicciotti et al., 2012; Schaefli et al.,
2005). Ultimately, the inferences regarding precipitation distribution,
snow/glacier cover dynamics and associated melt water contributions
are inaccurately adjudicated. Point observations, on the other hand, pro-
vide relatively accurate local information, but their wider-scale use in
hydro-climate studies is constrained by their restricted accessibility,
limited spatiotemporal coverage and uneven distribution in both hori-
zontal and vertical directions. Paucity of precipitation measurements
in the high-altitude areas, where the bulk of precipitation falls, provides
an incomplete picture of precipitation distribution. Auspiciously, there
are few mass balance studies (e.g. Mayer et al., 2014, 2006; Hewitt,
2011; Shroder et al., 2000; Bhutiyani, 1999; Wake, 1989; Mayewski
et al., 1984, 1983; Kick, 1980; BIG, 1979; Decheng, 1978; Qazi, 1973)
that indirectly estimated net precipitation (as water equivalent) using
snow pillows, snow pits, and ice cores from the accumulation zones of
few important large glaciers in this region. These sparse but relatively
accurate and high-altitude point observations can be combined and
linked with the low-mid altitude observations to derive high-altitude
precipitation and to verify and correct the gridded datasets developed
through various means.

In addition, the specific runoffs (measured flow/drainage area) from
all the high altitude catchments of Indus basin are significantly higher
than the corresponding precipitation estimates by earlier studies
(Immerzeel et al., 2012, 2015). This indicates that either the estimated
precipitation is lower than the actual or these basins are receiving
bulk of their runoff from snow/glacier melt in the absence of an
adequate precipitation (snowfall) input to sustain the snow/glacier sys-
tems. The latter case certainly recognizes for tangible glacier retreat and
loss of glacial mass. However, the scientific research on precipitation
inputs and associated snow/glaciermass balance in the study area is un-
certain and largely contradicting duemainly to paucity of in-situ precip-
itation and glaciermass balance data (Kaab et al., 2012; Immerzeel et al.,
2009).Moreover, mass balance studies in this region are always difficult
as most of the glaciers based at the high-altitude areas (above 4000 m)
are often nourished by avalanches and redistribution by wind in addi-
tion to seasonal snow (Hewitt, 2013, 2011). While Kaab et al. (2015,
2012), Wiltshire (2014), Gardner et al. (2013), Jacob et al. (2012),
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Cogley (2011) and Immerzeel et al. (2009) noticed loss of ice mass and
consistent decrease in glacier extent in the HKH region, several other
studies (e.g. Bhambri et al., 2013; Minora et al., 2013; Gardelle et al.,
2013, 2012; Bolch et al., 2012; Scherler et al., 2011; Tahir et al., 2014,
2011; Schmidt andNüsser, 2012;Mayer et al., 2006; Hewitt, 2005) indi-
cated ‘Karakoram anomaly’ advocating stability or even growth of
Hindukush–Karakoram glaciers. The possible reasons for such an anom-
aly have been linked to the role of debris-covered areas in reducing ice
ablation (Scherler et al., 2011) and favourable changes inwinter precip-
itation and summer temperatures (Mathison et al., 2013; Hewitt, 2011,
2005; Fowler and Archer, 2006; Archer and Fowler, 2004).

Given the importance of precipitation and a large uncertainty over
its distribution, the major aim of this study is to analyse altitude depen-
dency of precipitation and derive its spatiotemporal distribution by
using the observed data/information available from different sources.
Therefore, we collected precipitation data of 118 meteorological sta-
tions; more than half of these are located at mid to high-altitudes and
have never been used for formation or calibration of precipitation
datasets. These station observations are further supported by 16 virtual
stations over major glacier accumulation zones, where average net an-
nual precipitation is estimated through mass balance studies. We
focus separately on each sub hydrological basin and explain howprecip-
itation amounts, seasonality and patterns are represented. The study
provides much improved estimates of precipitation distribution,
which are comparable and consistent with the corresponding observed
runoffs from the 12 sub-basins.
2. Study area

The Indus basin originates from the TP and the HKH region and
spreads over parts of China (8%), India (39%), Afghanistan (6%) and
Pakistan (47%). The study area extends over the high-mountain sub-
basins of Indus basin (Fig. 1). The total area of these high-altitude
catchments is 259,913 km2 of which 57.5% is laid above 4000m a.s.l. Al-
though, there is no definite boundary among the threemountain ranges
but it is generally assumed that the river Indus bisects the Himalayan
range from the Hindukush, Karakoram and TP. The eastern boundary
of Shyok basin limits the Karakoram range in the east, while the bound-
ary between Gilgit and Hunza basins separates it from the Hindukush
range. The study area is the largest source of fresh water resources
Fig. 1. a) Location of the study area, and b) location of sub-basins and mountain ranges. The
separated by different colour schemes.
(153 BCM year−1) of Pakistan and plays a crucial role in water, energy
and food security of the region.

The extensive Eurasian continent and the Indian and Pacific
oceans play an important role in atmospheric circulation and mon-
soon formation of the world's largest and most powerful monsoon
system in South Asia (Saha, 2010). The climate of Indus basin is char-
acteristic of the South Asian atmospheric circulation that is associat-
ed with the summer monsoon evolution and extra-tropical cyclonic/
anticyclonic circulations around troughs of low/high pressure areas
during winter. Thus, precipitation in the study area is predominantly
influenced by the two principal weather systems: the Indian summer
monsoon (ISM) advecting moisture from the Indian Ocean, Arabian
Sea and Bay of Bengal due to the differential heating between land
and sea during summer (e.g., Palazzi et al., 2013; Ahmad et al.,
2012; Krishnamurti and Kishtawal, 2000; Wu and Zhang, 1998; Li
and Yanali, 1996), and the western disturbances (WDs) bringing
moisture from the Mediterranean and Caspian sea as an extra-
tropical frontal system during winter and early spring (Filippi et al.,
2014; Pal et al., 2014; Mayer et al., 2014; Treydte et al., 2006; Syed
et al., 2006; Archer and Fowler, 2004; Archer, 2001; Singh et al.,
1995). Seldom, relatively weak storms of East Asian summer mon-
soon (Ding and Chan, 2005; Wang and Lin, 2002) also enter into
the Ladakh region from the eastern end.

The summer monsoon in the Indus basin, extending from July–
September, is the northwestern limit of the ISM. There are three
monsoon moisture trajectories: 1st from the Indian Ocean across
the Arabian Sea, 2nd along the Indian river valley to the western
Himalayas and TP, and 3rd from the Bay of Bengal moving northward
to the eastern Himalayas and TP along the Brahmaputra river valley
(Pang et al., 2014; Liu, 1989; Lin and Wu, 1990). The WDs enter the
north-west Indus basin during late November mostly in a diffused
state with distorted structure, but regain their frontal structure and
strength by interacting with the pre-existing orographically-
maintained trough of low pressure. They usually bifurcate into the
northern and southern branches around the Karakoram and western
TP regions due to topographic blocking (Pang et al., 2014). Winter-
time precipitation in the HKH region is mainly related to water va-
pour transport by the southern branch of WDs (Yihui and Zunya,
2008; Wei and Gasse, 1999). The interplay between these regional-
scale atmospheric circulation systems and the local climatic and to-
pographic features usually determine the amount and distribution
mountain ranges of Hindukush, Karakoram, Western Himalaya and South-west TP are
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pattern of precipitation in the high-altitude catchments of Indus
basin.

3. Data and methods

3.1. Station based point observations

Meteorological data of the Indus basin is scattered among different
organizations [e.g. Pakistan Meteorological Department (PMD), Water
and Power Development Authority (WAPDA) of Pakistan, Indian Mete-
orological Department (IMD), University of Boon under the Culture
Areas Karakoram (CAK) programme in the Bagrot valley and Yasin
catchment of Gilgit basin during 1990–91, and Ev-K2-CNR (an Italian
based organization) under the SHARE project]. However, not all these
data are freely accessible. PMDoperates a number ofmeteorological sta-
tions in Pakistan but their network of observatories in the high-altitude
catchments of Indus basin is sparse andmainly concentrated in the val-
leys with elevations less than 2500 m a.s.l. WAPDA installed a network
of meteorological observatories in various sub-basins of Indus basin
under the Surface Water Hydrology Project and more recently (1994–
99) under the Snow and Ice Hydrology Project mainly at the higher
altitudes. We collected climatic data of 21 stations from PMD and 44
stations from WAPDA located in the study area. Monthly summaries
of the observed precipitation at 41 observatories located in the Indian
Territory available from NOAA-NCDC’s website http://www.ncdc.noaa.
gov/cdo-web/datasets (NOAA-NCDC) were downloaded in June, 2014.
Meteorological data of 2 observatories installed by Ev-K2-CNR in Shigar
basinwere downloaded fromhttp://data.eol.ucar.edu/codiac/dss/id?76.
200 in June, 2014. Themeteorological data collected under the CAK pro-
ject in Gilgit and Hunza basins are not publicly available therefore we
derived average precipitation of 10 observatories from Winiger et al.
(2005), Miehe et al. (2001, 1996) and Eberhardt et al. (2007). Finally,
we assumed 16 virtual stations located at the accumulation zones of
major glaciers where average annual net precipitation is estimated
from mass balance studies (Table 1). The observed station data used
in this study are shown in Fig. 2 and further detailed in Appendix A.

3.2. Gridded datasets

Substantial progress has been made during the last three decades in
constructing the analysed fields of precipitation over global land areas
frommultiple sources. As such, a wide variety of global and/or regional
scale gridded precipitation products derived through various means is
currently available for climate change and hydrological assessment
studies. The most common and widely used products can broadly be
Table 1
Net annual precipitation as water equivalent (we) at the major glacier accumulation zones.

Sr. no. Virtual station Latitude
(dd)

Longitude
(dd)

1 Sentik 33.996667 75.95000
2 Nun Kun North 34.121927 76.10142
3 Batura 36.666667 74.38333
4 Baltoro 35.877780 76.55079
5 Urdok 35.766876 76.70253
6 Whaleback 36.057170 75.59149
7 Approach 36.067780 75.63310
8 Hispar East 35.849533 75.50639
9 Hispar Dome 36.010910 75.51872
10 Hispar Pass 36.028070 75.52151
11 Khurdopin 36.133770 75.61969
12 Nanga Parbat 35.167250 74.44442
13 Siachin A 35.470730 77.03757
14 Siachin B 35.523490 76.99150
15 Siachin C 35.518660 76.91160
16 Siachin D 35.624230 76.85924
classified into four categories; (i) based on climate models' reanalysis,
(ii) merged model (reanalysis) and station observations, (iii) merged
satellite estimates and station observations, and (iv) derived solely
from station observations. In this study, we have selected at least one
dataset from each basic category to underline the inherent errors asso-
ciated with these datasets and highlight the importance of their bias
correction before use in hydro-climate studies in the study area.

3.2.1. ERA-Interim
ERA-Interim (Dee et al., 2011) is a third generation global atmo-

spheric reanalysis product with an improved atmospheric model and
assimilation system, produced by the European Centre for Medium-
range Weather Forecasts (ECMWF) providing data from 1979 to pres-
ent. Estimates of precipitation associated with the reanalysis are pro-
duced by the forecast model, based on temperature and humidity
information derived from assimilated observations. These data are
available at sub-daily, daily and monthly intervals and at spatial resolu-
tion of 0.75° latitude–longitude grid, but we used monthly means of
daily means re-gridded at 0.125° available at http://apps.ecmwf.int/
datasets/data/interim-full-moda/, accessed in January, 2015. Berrisford
et al. (2011) provides a detailed description of the ERA-Interim product.

3.2.2. WFDEI
The WATCH Forcing Data-ERA Interim (WFDEI) dataset (Weedon

et al., 2014) is derived from ERA-Interim reanalysis product (Dee
et al., 2011) via sequential interpolation to a 0.5° resolution, elevation
correction and monthly-scale adjustments based on CRU TS3.1/TS3.21
(Harris et al., 2013) and GPCCv5/v6 (Schneider et al., 2013) monthly
precipitation observations for 1979–2012 combined with new correc-
tions for varying atmospheric aerosol-loading and separate precipita-
tion gauge corrections for rainfall and snowfall under the Water and
Global Change (WATCH) programme of the European Union. The
WFDEI is an open access dataset at ftp://rfdata:forceDATA@ftp.iiasa.ac.
at/. We accessed the data in December, 2014 and used CRU TS3.1/
TS3.21 adjusted WFDEI product.

3.2.3. TRMM
The Tropical Rainfall Measuring Mission (TRMM), launched in No-

vember 1997 as a joint project by NASA and the Japanese Space Agency
(JAXA), is instrumented with Precipitation Radar (PR), TRMM Micro-
wave Imager (TMI), and Visible Infrared Scanner (VIRS). The PR pro-
vides three-dimensional maps of storm structure giving information
on the intensity, distribution and type of rain, storm depth and the
height at which the snow melts into rain. The TMI quantifies water
vapour and cloud water content as well as the rainfall intensity in the
Altitude
(m)

we
(mm)

Data source

4908 620 Mayewski et al. (1984)
5200 900 Mayewski et al. (1983) and Qazi (1973)
4840 1034 Batura Investigation Group (1979)
5500 1600 Mayer et al. (2006) and Decheng (1978)
5400 1060 Mayer et al. (2014)
4900 1790 Hewitt (2011, 2006) and Wake (1989)
5100 1880 Hewitt (2011, 2006) and Wake (1989)
4830 1070 Hewitt (2011, 2006) and Wake (1989)
5450 1620 Hewitt (2011, 2006) and Wake (1989)
5100 1420 Hewitt (2011, 2006)
5520 2240 Hewitt (2011)
4500 2000 Shroder et al. (2000) and Kick (1980)
4800 484 Bhutiyani (1999)
4950 526 Bhutiyani (1999)
5050 662 Bhutiyani (1999)
5350 855 Bhutiyani (1999)

http://www.ncdc.noaa.gov/cdo-eb/datasets
http://www.ncdc.noaa.gov/cdo-eb/datasets
http://data.eol.ucar.edu/codiac/dss/id?76.200
http://data.eol.ucar.edu/codiac/dss/id?76.200
http://apps.ecmwf.int/datasets/data/interimulloda/
http://apps.ecmwf.int/datasets/data/interimulloda/
mailto:forceDATA@ftp.iiasa.ac.at
mailto:forceDATA@ftp.iiasa.ac.at


Fig. 2. Elevation distribution, sub-basins considered for altitudinal variation of precipitation, and location of rain gauges and river gauges (the numbers refer to the respective rain gauges
mentioned in Appendix A).
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atmosphere, while the VIRS provides the cloud context of the precipita-
tion and connects microwave precipitation information to infrared-
based precipitation estimates from geosynchronous satellites. The
TRMM Multi-satellite Precipitation Analysis (TMPA) combines all the
available precipitation datasets from different satellite sensors and
monthly surface rain gauge data to provide a “best” estimate of
precipitation at spatial resolution of 0.25° for the 50°N–S areas
(Huffman et al., 2007). We used TRMM 3B43 version 7 monthly precip-
itation product released by TMPA in May 2012. Huffman et al. (2007)
provide detailed information on the algorithms and different processing
steps. The dataset available at http://disc.sci.gsfc.nasa.gov/daac-bin/
DataHoldingsPDISC.pl?LOOKUPID_List=3B43 was accessed in Decem-
ber, 2014.
3.2.4. APHRODITE
Asian Precipitation-highly Resolved Observational Data Integration

Towards Evaluation of Water Resources (APHRODITE) is the state-of-
the-art high resolution daily precipitation dataset developed by a con-
sortium between the Research Institute for Humanity and Nature
(RIHN) Japan and the Meteorological Research Institute of Japan Mete-
orological Agency (MRI/JMA) from a dense rain gauge observational
network in Asia. We used the latest and improved version of daily
dataset for Monsoon Asia (APHRO_MA_V1101) covering 60.0E–
150.0E, 15.0S–55.0N at a high spatial resolution of 0.25° for the period
extending from 1951–2007 (Yatagai et al., 2012). The precipitation
data from a dense network of rain gauges is 1st interpolated on to a
grid of 0.05° using themodified version of the distance-weighting inter-
polationmethod (Shepard, 1968), which considers sphericity and orog-
raphy by the Spheremap (Willmott et al. 1985) and the Mountain
Mapper (Schaake, 2004) methods respectively. This dataset is then re-
gridded to 0.25° and 0.5° products using the area-weighted mean. The
algorithm is improved in that the weighting function considers the
local topography between the rain-gauge and interpolated point
(Yatagai et al., 2012). The very high resolution (0.05°) dataset is restrict-
ed to the partner institutes only and is not publicly available. Therefore,
we used the latest and improved version of daily dataset for Monsoon
Asia (APHRO_MA_V1101) covering 60.0E–150.0E, 15.0S–55.0N at a
high spatial resolution of 0.25° for the period extending from 1951–
2007 (Yatagai et al., 2012). The dataset, available at http://www.
chikyu.ac.jp/precip/, was accessed in July, 2014.

3.3. River flow data

Historical daily discharge data at the sub-basin level for twelve sta-
tions (Fig. 2; Indus at Kharmong, Shyok at Yugo, Shigar at Shigar,
Hunza at Dainyor, Gilgit at Gigit, Astore at Doyian, Indus at Tarbela,
Chitral at Chitral, Swat at Chakdara and Zulam bridge — on Punjkora
tributary, Jhelum at Mangla, and Chenab at Marala) in the study area
are available from WAPDA. The current study uses river discharge
data for the 1998–2012 period for consistency with the observed and
gridded precipitation products.

3.4. Methods

The pre-processed void free Shuttle Radar Topography Mission
(SRTM) digital elevation data of 90 m resolution freely available from
http://hydrosheds.cr.usgs.gov/are used to delineate the watershed
boundaries according to the methodology explained by Khan et al.
(2014). However, for consistency with the precipitation datasets, the
boundaries are also delineated from 1 km (30 s) DEM available from
the same site.

We selected all the stations that covered at least three years of data
to cover the recent installations and keeping in view the paucity of the
observed data. Daily precipitation observations were converted into
monthly totals if nomore than three daysweremissing in amonth. Sim-
ilarly, seasonal and annual totals were calculated if nomonth wasmiss-
ing in a season or year. The study used station observations of average
monthly, seasonal and annual precipitation totals from134 points locat-
ed within the study area to analyse altitudinal dependency and derive
spatiotemporal distribution of precipitation averaged over the 1998–
2012 period. In order to appraise the influence of elevation on precipita-
tion, the average annual precipitation of a group of stations located
within or closest to each sub-basin for the common time period are
plotted.

For estimation of precipitation distribution, we selected the best
suited spatial interpolation scheme based on literature review and spe-
cific geo-hydro-climatological conditions of our study area.While going

http://disc.sci.gsfc.nasa.gov/daacin/DataHoldingsPDISC.pl?LOOKUPID_List=43
http://disc.sci.gsfc.nasa.gov/daacin/DataHoldingsPDISC.pl?LOOKUPID_List=43
http://www.chikyu.ac.jp/precip/
http://www.chikyu.ac.jp/precip/
http://hydrosheds.cr.usgs.gov
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through the literature, we noticed that with wide and increasing appli-
cations of the spatial interpolationmethods, there is also a growing con-
cern about their accuracy and precision for a given set of conditions
(Hartkamp et al., 1999). In general, when quality and amount of sam-
pled data is sufficiently high, most of the spatial interpolation methods
are accurate and produce almost similar estimates (Burrough and
McDonnell, 1998). Minasny and McBratney (2007) however argued
that improvements in prediction rely more on representativeness and
quality of input data rather than onmore sophisticatedmethods. A thor-
ough review of spatial interpolation methods by Li and Heap (2014)
could not infer any simple answer or consistent findings regarding the
choice of bestmethod, but it provided guidelines and suggestions by de-
scribing and comparing the features, strengths and weaknesses of a
number of interpolators. Li and Heap (2011) analysed the performance
of 32 spatial interpolation methods and observed that their perfor-
mance depends not only on the structure of the method itself, but also
on the nature of interpolating surface as well as quality and amount of
the input data. They found kriging methods better than non-
geostatistical methods and recommended Kriging with External Drift
(KED) method. Many other studies (e.g. Tobin et al., 2011; Haberlandt,
2007; Verfaillie et al., 2006; ICES, 2005; Hengl et al., 2003; Rivoirard
and Wieland, 2001; Bourennane et al., 2000; Bishop and McBratney,
2001; Goovaerts, 2000) also compared different geostatistical and
non-geostatistical methods in a variety of situations and noticed that
Kriging with KED usually provided better estimates than all other
methods. The KED interpolation method (Schabenberger and Gotway,
2005) allows the processing of non-stationary random functions taking
into account the spatial dependence of a primary variable known only at
a small set of points aswell as its linear relation to one ormore addition-
al covariates (secondary variables/predictors) exhaustively known at all
points over the whole domain. It uses semivariograms or covariances,
cross-covariance, transformations, trend removal, and allows for error/
uncertainty check. It is most appropriate when there is an overriding
trend in the sampled data, which can be modelled by a deterministic
polynomial function. Moreover, Masson and Frei (2014) observed sim-
ple one-predictor KED model markedly better than the multilinear re-
gression model with nine predictors and noticed only marginal
improvement with the inclusion of complex physiographic predictors.
Therefore, we selected KED interpolation method with elevation as a
predictor to predict unknown values from these observations, as our
study area is largely an under-sampled and complex high-mountain
terrain exposed to threemain circulation systems leading to reasonable
spatial (directional) and altitudinal bias/trend in precipitation
distribution.

The KEDmodel includes a component of spatial autocorrelation and
a component formultilinear dependence on pre-defined variables (pre-
dictors). It considers the observations (Y) at sample locations (s) as a
random variable of the form (e.g. Diggle and Ribeiro, 2007):

Y sð Þ ¼ μ sð Þ þ Z sð Þ ð1Þ

μ sð Þ ¼ β0 þ∑K
k¼1βk ∙xk sð Þ ð2Þ

Here, μ(s) describes the deterministic component of the model (ex-
ternal drift or trend) and is given as a linear combination of K predictor
fields xk (s) (trend variables) plus an intercept (β0). βk is denoted as
trend coefficients, while Z(s) describes the stochastic part of the KED
model and represents a random Gaussian field with a zero mean and a
2nd order stationary covariance structure. The latter is conveniently
modelled by an eligible parametric semi-variogram function describing
the dependence of semi-variance as a function of lag (possiblywith a di-
rectional dependence). To derive the climatology ofmeanmonthly, sea-
sonal and annual cycle of precipitation from the point observations, we
applied KED interpolation method with elevation as a predictor sepa-
rately for monthly, seasonal and annual precipitation totals averaged
over the period of 1998–2012. The KED-based estimated precipitation
distribution was further converted into grid format (1 km grid size)
for computation of sub-basin scale precipitation and ultimate compari-
son with the gridded datasets.

Daily river discharge data from the available outlets (gauges) are
used to compute the averagemonthly, seasonal and annual specific run-
off (measured flow/drainage area) for each sub-basin. The KED-based
estimated annual precipitation totals from each sub-hydrological basin
are validated by the corresponding average specific runoff and the pat-
tern of glacier cover using ICIMOD glacier inventory (Bajracharya and
Shrestha, 2011) and compared with earlier studies.

The selected griddedprecipitation products are re-gridded andproc-
essed to compute meanmonthly, seasonal and annual precipitation to-
tals at sub-basin scale. Afterwards, their accuracy relative to the KED-
based estimated precipitation is evaluated for each sub-hydrological
basin. For evaluation of precipitation patterns, the Taylor diagram is
used for the re-gridded precipitation values of all the products to a com-
mon grid of 0.05°; while for quantitative assessment, the seasonal and
annual biases relative to the KED-based estimated precipitation at the
sub-basin scale are analysed. Basin-wide seasonal and annual correction
factors are introduced to account for the inherent errors in each gridded
product. These correction factors are determined by dividing the respec-
tive grid values of the estimated precipitation by the gridded datasets
and averaging them at sub-basin level. For utilization, these factors
simply need to be multiplied with the respective gridded datasets for
the area of interest.

3.5. Uncertainty analysis

The major uncertainties involved in this study are associated with
the quality and amount of the observed data and the interpolation tech-
nique used to predict the unknown values from these observations. The
organizations operatingweather stations in the study area generally in-
dicate to apply WMO standards for collection of meteorological data.
Yet, in many cases, the quality of data is affected by instrumental prob-
lems, station locality and interruption of time series (Miehe et al., 1996).
PMD, WAPDA and Ev-K2-CNR use the tipping bucket rain gauges to re-
cord liquid precipitation in the low- tomid-altitude areas. In the case of
occasional snowfall, thewater equivalent calculatedmanually is usually
added to the daily precipitation records. The automatic data collection
platforms (DCPs) installed by WAPDA in the high-altitude areas during
1994–95 use snow pillows to measure both solid and liquid precipita-
tion as water equivalent. However, most of the installed snow pillows
encountered technical issues of interfacing with the transmission sys-
tem aswell as unexpected “jumps” due to possible ice bridging and rup-
ture effects (SIHP, 1997). Although, the problem was substantially
minimized in 1996 by attaching a precision potentiometer to convert
the shaft encoders from a digital output to an analogue, the snow pil-
lows are still subjected to underestimate solid precipitation under
strong wind conditions (Hasson et al., 2014). The automatic weather
stations installedwithin the framework of the CAKprojectmeasure pre-
cipitation using data logger, tipping bucket and snow depth gauge
(Miehe et al., 1996). Yet, measurement of solid precipitation in strong
windy conditions is subject to considerable errors due to constant blow-
ing away of snow from the ultrasonic sensors. GHCN-monthly summa-
ries of the observed precipitation for the study area are based on data
from IMD, which also follows WMO standards, and are subjected to a
suite of quality assurance reviews.

Another source of uncertainty is inconsistency in the precipitation
observations due to late installation of instruments, temporary sensor
failures or non-collection of data. The time series of the observed data
is variable, ranging from more than 30 years for a few stations to at
least 3 years for the most recently installed stations (Appendix A). We
used average precipitation during the period of 1998–2012, because
majority of data is available for this period except the GHCN dataset,
which contains precipitation data of some old observatories operational
between 1901 and 1970. To check for possible temporal change, we
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compared these stations' records with the nearest stations with up to
date data. We only found an insignificant trend. Similarly, the net pre-
cipitation estimated from glacier accumulation studies is also inconsis-
tent in temporal terms.

KED interpolation model produces both prediction as well as error/
uncertainty surfaces, giving an indication or measure of how good the
predictions are. It estimates an interpolated surface from randomly var-
ied small set of measured points and recalculates estimated values for
these measured points to validate the estimates and determine extent
of errors. Since, we used all of the available observations; there is no
more ground truth available to validate the performance of thismethod.
However, we used leave-one-out cross validation strategy to assess the
performance of the employed interpolation scheme. We applied cross
validation on the observed and predicted values from all the stations
to assess the errors/uncertainty associated with the interpolation
scheme by using error scores of the relative bias (B) and the relative
mean root-transformed error (E), which are defined as:

B ¼ ∑n
i¼1Pi

∑n
i¼1 Oi

ð3Þ

E ¼
1
n
∑n

i¼1

ffiffiffiffi
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Here Pi and Oi are the predicted and observed precipitation values
respectively, while O is the spatial average of the observations over all
(or a subset of n) stations. The cross validation results (Table 2) depict
relative bias values of slightly higher than for all months, indicating
only a small overestimation of the predicted values but at annual scale
it is almost zero. Similarly, E values less than 1 suggest typical errors
smaller than the spatial variations except for pre-monsoon season. In
summary, there are no serious uncertainties or constraints but further
improvements in the estimated precipitation distribution can be
achievedby usinghigher quality observed datawithmore spatiotempo-
ral coverage, particularly at higher-altitudes.

4. Results

4.1. Altitudinal variation of precipitation

The analysis of observed precipitation records revealed significant
altitude dependency of precipitation in all the sub-basins (Fig. 3),
which supports earlier studies (e.g. Pang et al., 2014; Winiger et al.,
2005; Hewitt, 2011; Weiers, 1995; Wake, 1989; Dhar and Rakhecha,
1981; BIG, 1979; Decheng, 1978). However, there is substantial differ-
ence in the rate and magnitude of variation from one basin to another
due to significant directional bias (spatial autocorrelation) and influ-
ence of highly diversified orography (topography and exposure)
interacting withmultiple weather systems. Therefore, the complex alti-
tudinal variation of precipitation in the high-altitude Indus basin cannot
be represented by a single relation. Such an elusive behaviour of precip-
itation gradient was also found by Immerzeel et al. (2014) in Nepalese
Himalayas, where a uniform valley wide precipitation gradient could
not be established due to influence of several scale-dependent mecha-
nisms. Although, we attempted a separate analysis for each sub-hydro-
logical basin, yet the spatial variability in each sub hydrological basin is
so high that the number of available observations is inadequate to infer
an accurate distribution of altitudinal precipitation. Rather complex and
nonlinear trend of precipitation increasewith altitude is evident inmost
sub-basins. The south-west TP and eastern Karakoram regions display
an elusive trend mainly due to higher variability and very less number
of observation points. Astore and Chitral basins depict mixed trend,
while Shigar, Hunza andGilgit basins infer relatively strongpositive ver-
tical gradients. The southern basins like Chenab, Jhelum, Swat and



Fig. 3. Altitudinal variation of annual precipitation in each sub-basin.
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Lower most reach of Indus main experience the zone of maximum pre-
cipitation at an altitude of around 2500 m. Pang et al. (2014) and Dhar
and Rakhecha (1981) also observed that the monsoon precipitation
above 2400m elevation in the central Himalayas decreases significantly
with rising elevation. The height ofmaximumprecipitation in rest of the
sub-basins is not clear but tends to increasewith latitude. Hence, the as-
sumptions of linear increase in precipitation with elevation by the ear-
lier studies (e.g. Immerzeel et al., 2012; Mayer et al., 2006 and
Winiger et al., 2005) could not be confirmed by this study as the avail-
able observations are highly inadequate to infer an accurate distribution
of altitudinal precipitation.

4.2. Spatial interpolation of precipitation observations

The KED-based interpolation of the point observations revealed
some important characteristics of precipitation distribution in the
study area. Monthly distribution of precipitation indicates largely bi-
modal weather system in the study area reflecting the wintertime pre-
cipitation associatedwith thewesterly systems and the impact of Indian
summer monsoon. The south-western Himalayan catchments (Chenab,
Jhelum and Indus-L) are dominated by the summer monsoon but also
receive considerable amounts of precipitation during winter and pre-
monsoon seasons. The Hindukush and Karakoram basins receive most
of their precipitation during winter (40–60%) and pre-monsoon (25–
45%) seasons. The winter precipitation usually strengthens in Decem-
ber, peaks in March and starts receding during April and is very impor-
tant for accumulated summer flows particularly in the Hindukush and
Karakoram regions (Fig. 4).

The hydrographs of estimated precipitation and specific runoff
(Fig. 4) indicate dominancy of snow/glacier melt contribution during
May–September. Since, snowfields and glaciers often perform an im-
portant function of regulating stream flows, the downstream areas usu-
ally receive heavy floods whenever higher precipitation in winter
season is followed by a relatively warm and wet monsoon season. Due
to varying inputs of precipitation and snowmelt components, there is
large variability in the amount (depth) of peak flows from different
sub-basins but the timing tends to be in late July for most of the basins.
Generally, the river flows are very lowduringwinter, start rising inMay,
peak in July–August and descend sharply until the start of next winter.
The high-altitude western and northern basins (Chitral, Gilgit, Hunza,



Fig. 4.Monthly distribution of basin wise area-weighted depths of estimated precipitation and specific runoff.

Fig. 5. Spatial distribution of KED based estimated precipitation for a) pre-monsoon (Apr–Jun), b)monsoon (Jul–Sep), c)winter (Oct–Mar) and d) annual basis. All values are inmm (note
different scales for each panel).
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Shigar, Shyok, Indus at Kharmong and Astore) are more dominated by
snow/glacier melt while the low-altitude southern basins (Swat,
Indus-lower, Jhelum and Chenab) receive substantial flows from direct
rainfall.

The estimated precipitation distribution (Figs. 4 and 5) signifies the
key features of mean annual cycle and seasonality of precipitation.
Moisture-laden westerly winds are intercepted by high mountains in
the west and north, leading to moisture condensation and precipitation
at higher altitudes. As such, winter precipitation tends to be stronger in
Chitral, Swat, Gilgit, Hunza, Astore and Shigar basins, which receive sig-
nificant precipitation in the form of snowfall during winter and spring
(pre-monsoon) seasons. The Indian summer monsoon mainly domi-
nates at southern parts (i.e. Chenab, Jhelum, Swat and Indus-lower ba-
sins). Northwardly oriented Astore, Shingo and Zanskar basins are on
the leeward side of western Himalayan range and thus receive lower
precipitation as compared to Chenab and Jhelum basins in monsoon
season. The Tashain glacier and Nanga Parbat massif located in the
south-west of Astore basin hinder further north-west movement of
the monsoon. However, stronger storms often divert northwardly and
penetrate in to the central Karakoram region. Highly elevated boundary
between Chenab and Zanskar basins hardly allows monsoon rains to
penetrate further northward; as such the Zanskar range and Ladakh re-
gion in the TP are relatively drier. The East Asian summer monsoon sel-
dom reaches to the Karakoram from the east. However, whenever it
does penetrate significantly, it interacts dramatically with the features
of the already present Indian summer monsoon and westerly systems
causing heavy downpours and extensive floods (e.g. Jul–Aug 2010
floods in Pakistan). The Indus main up to Chilas (climatic station num-
ber 5 in Fig. 2), which remains under the rain shadow of the surround-
ing high mountains on both sides, is least affected by both summer
monsoon and western disturbances.

4.3. Validation of KED-based estimated precipitation

The basin-wide KED-based estimated precipitation is validated by
the specific runoff (measured flow/drainage area) of respective sub-
basins (Fig. 6a). The specific runoff in snow/glacier fed basins is usually
affected by precipitation losses and the dynamics of snow/glacier mass
balance as the river flows are often regulated by changes in storage of
snow/glacier mass. In the absence of comprehensive and reliable mass
balance estimates, the estimated precipitation and the corresponding
specific runoffs can beused to infer the change in snow/glacialmass bal-
ance. Positive changes in storage are expected when the net precipita-
tion (excluding losses) is markedly greater than river runoff.
Conversely, higher runoff compared to the net precipitation may point
to loss of storage indicating negative mass balance. However, reliable
estimates on evapotranspiration, interception, sublimation and percola-
tion losses in the study area are lacking, forcing earlier studies (e.g.
Immerzeel et al., 2009; Tahir et al., 2011) to ignore these losses. The
Fig. 6. Validation of KED-based estimated precipitation
assumption that these components in water balance studies may be
negligible particularly in the Karakoram region are supported by the
fact that themajority of the landscape in this region is rockywith scarce
vegetative cover resulting in minor evapotranspiration, interception
and percolation. Nevertheless, these losses will result in reduced net
precipitation. We used net precipitation from the glacier accumulation
zones, which already excludes the losses from snowfields and glaciated
areas. Moreover, there may be some compensating errors because the
solid precipitation in the high-altitude andwindy areas is generally sus-
ceptible to undercatch by 20–50% (Rasmussen et al., 2012). Therefore,
we assume that the potential losses (evapotranspiration, sublimation,
interception and deep percolation) and possible gains (undercatch of
snowfall) cancel each other out and the net difference is insignificant
particularly in the Karakoram and north-west Hindukush regions. An-
other approximation to validate the estimated precipitation is superim-
position of glacier cover over the estimated precipitation (Fig. 6b) since
an adequate amount of precipitation is essential to sustain and surge the
glaciers in this area. The estimated precipitation coherently follows the
pattern of glacier cover in high-altitude areas except the eastern Shyok
basin.

Finally, the KED-based estimated precipitation is compared with the
estimates of earlier studies derived either from station observations or
gridded datasets. The comparative analysis, summarized in Table 3,
shows that the precipitation estimates by earlier studies are highly con-
trasting but consistent in underestimating precipitation in majority of
the areas. These earlier studies have used non-representative precipita-
tion data and/or overestimated basin boundaries resulting in highly bi-
ased precipitation estimates.

4.4. Evaluation of the gridded products

The gridded precipitation products often fail to capture the large and
abrupt changes in precipitation over short distances due to their coarse
resolution and pronounced orographic effects in the high mountain
areas. In this study, we evaluated accuracy of important precipitation
products derived through four different means for the high-altitude
areas of Indus basin. The spatial distribution ofmean seasonal and annu-
al precipitation totals fromERA-Interim,WFDEI, TRMMandAPHRODITE
products show contrasting timings and amplitudes (Table 4) and pat-
terns (Fig. 7) relative to theKED-based estimated precipitation. In quan-
titative terms, ERA-Interim largely overestimates precipitation in all the
sub-basins except Shigar andHunza,while the other three datasets con-
sistently underestimate precipitation in all the areas barring Ladakh re-
gion of the TP (Indus at Kharmong). However, the inter-comparison of
the four gridded products show a reasonable consistency between
TRMM and APHRODITE, while WFDEI tend to be slightly different and
ERA-Interim displays large overestimates. Within the ambit of overall
dry bias, WFDEI gives relatively better quantitative estimates for
Hindukush, Karakoram and north-western Himalayan regions but
a) with specific runoff, and b) with glacier cover.



Table 3
Comparison of KED-based estimated precipitation with the estimates of earlier studies.

River basin Precipitation
(mm)

Dataset used Reference study

Indus-Kharmong 388.0 Terrestrial Precipitation V2.01 (Matsuura & Willmott, 2009) Mukhopadhyay (2012)
277.3 Station data + KED interpolation This study
161.0 APHRODITE * 1.17 Lutz et al. (2014a)

Shyok 341.5 Station data + KED interpolation This study
251.2 Terrestrial Precipitation V2.01 (Matsuura & Willmott, 2009) Mukhopadhyay (2012)
175.5 APHRODITE * 1.17 Lutz et al. (2014a)

Shigar 917.2 Station data + KED interpolation This study
882.0 India-WRIS CWC and NRSC (2014)
550.0 Model Bocchiola et al. (2011)
264.0 APHRODITE * 1.17 Lutz et al. (2014a)
201.7 Terrestrial Precipitation V2.01 (Matsuura & Willmott, 2009) Mukhopadhyay (2012)

Hunza 828.0 Glaciers as proxy & station data Immerzeel et al. (2012)
732.8 Station data + KED interpolation This study
692.0 APHRODITE + Glacier as proxy Lutz et al. (2014b)
582.6 India-WRIS CWC and NRSC (2014)
229.7 Terrestrial Precipitation V2.01 (Matsuura & Willmott, 2009) Mukhopadhyay (2012)
205.0 APHRODITE * 1.17 Lutz et al. (2014a)
176.0 APHRODITE Tahir et al. (2011)
162.5 Station observations Akhtar et al. (2008)

Gilgit 582.6 India-WRIS CWC and NRSC (2014)
575.4 Station data + KED interpolation This study
326.0 APHRODITE * 1.17 Lutz et al. (2014a)
315.0 Terrestrial Precipitation V2.01 (Matsuura & Willmott, 2009) Mukhopadhyay (2012)
162.5 Station observations Akhtar et al. (2008)

Astore 904.6 Station data + KED interpolation This study
882.0 India-WRIS CWC and NRSC (2014)
496.0 Station observations Akhtar et al. (2008)
430.5 APHRODITE * 1.17 Lutz et al. (2014a)

Indus-Tarbela 675.0 ERA-Interim, NCEP/NCAR Reggiani and Rientjes (2015)
671.0 APHRODITE + Glacier as proxy Lutz et al. (2014b)
481.6 Station data + KED interpolation This study
315.0 Terrestrial Precipitation V2.01 (Matsuura & Willmott, 2009) Mukhopadhyay (2012)
311.0 TRMM 3B43 Immerzeel et al. (2009, 2010)
300.0 TRMM 2B31 Bookhagen and Burbank (2010)
218.9 APHRODITE * 1.17 Lutz et al. (2014a)

Jhelum 1175.2 Station data + KED interpolation This study
1052.5 India-WRIS CWC and NRSC (2014)

Chenab 1333.8 India-WRIS CWC and NRSC (2014)
1107.5 Station data + KED interpolation This study
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seems less accurate for the south-western Himalaya, whereas TRMM
shows opposite estimates for these areas. Similarly, TRMM gives better
estimates during monsoon but WFDEI is better for the other seasons.
The APHRODITE product is the least accurate among the four datasets
showing strong dry bias for almost all seasons and all areas, particularly
for winter and in the high-altitude catchments.

The pattern statistics of the mean annual precipitation in the study
area (Fig. 8) show normalized RMSE values ranging from 0.6 for
Table 4
Basin-wise mean seasonal and annual precipitation totals (mm) from estimated (EST), ERA-In
during 1998–2012.

River basin Pre-monsoon Monsoon

EST ERAI WEI TRM APH EST ERAI WEI TRM APH

Indus-U 29.2 129.5 79.8 56.6 33.0 69.4 206.2 128.2 124.7 81
Zanskar 92.6 247.7 92.7 84.2 53.3 126.8 191.7 132.8 146.8 80
Shingo 135.1 281.3 110.3 121.1 78.3 98.0 174.1 117.2 119.3 58
Shyok 77.0 148.4 59.4 59.6 40.2 100.1 116.8 27.3 79.1 41
Shigar 224.7 206.8 88.5 67.6 90.8 160.4 120.9 31.7 101.8 46
Hunza 198.6 251.6 92.4 84.9 70.6 188.6 177.3 26.4 115.1 46
Gilgit 156.2 371.7 133.7 97.8 133.2 162.2 234.1 86.3 109.5 61
Astore 235.5 352.1 124.6 129.7 135.6 153.0 262.1 116.6 138.8 64
Indus-M 151.9 362.6 127.9 94.4 117.6 101.5 295.2 111.8 119.2 53
Indus-L 237.6 343.1 22.7 187.2 214.9 355.8 662.4 330.1 347.3 338
Ind@Tar 115.7 228.0 102.2 86.0 77.7 133.1 231.6 109.6 134.6 86
Chitral 173.2 344.4 168.2 104.2 141.9 124.8 145.2 104.9 94.6 54
Swat 218.5 332.1 218.5 172.8 200.3 224.9 620.5 250.1 234.6 222
Jhelum 278.5 314.8 181.5 211.9 179.5 337.6 496.6 329.2 370.0 252
Chenab 242.4 289.9 140.1 162.7 137.5 353.6 401.6 303.3 427.1 272
APHRODITE to 0.62 for TRMM, 0.72 for WFDEI and 0.8 for ERA-Interim
product. The APHRODITE and TRMM products show a relatively higher
correlation coefficient of around 80% against 73% by ERA-Interim and
WFDEI products. It is important to note that these statistics only evalu-
ate the pattern of the gridded datasets.

Overall, there is significant spatial (basin to basin) as well as tempo-
ral (season to annual) bias in the precipitation totals from all the four
gridded datasets (Fig. 9). ERA-Interim largely displays positive bias
terim (ERAI), WFDEI (WEI), TRMM (TRM), and APHRODITE (APH) precipitation products

Winter Annual

EST ERAI WEI TRM APH EST ERAI WEI TRM APH

.9 46.4 112.1 124.6 90.8 41.9 145.0 447.8 332.6 272.1 156.8

.7 254.8 339.5 147.5 131.3 87.5 474.2 778.9 373.0 362.3 221.5

.1 322.6 516.6 208.3 190.8 115.7 555.7 972.0 435.8 431.2 252.1

.2 164.4 157.3 143.0 69.3 56.8 341.5 422.5 229.7 208.0 138.2

.8 532.2 318.5 202.1 117.2 87.9 917.2 646.2 322.3 286.6 225.5

.1 345.6 308.3 208.2 156.1 59.0 732.8 737.3 327.0 356.1 175.7

.6 257.0 559.8 286.8 117.1 83.4 575.4 1165.6 506.8 324.4 278.2

.3 516.2 590.7 241.1 173.1 134.5 904.6 1204.9 482.3 441.6 334.4

.9 199.4 557.6 241.9 109.9 89.8 452.9 1215.5 481.6 323.5 261.3

.2 542.9 620.0 368.9 306.8 364.0 1136.3 1625.6 721.6 841.3 917.1

.9 232.9 317.7 191.8 127.6 94.9 481.6 777.3 403.6 348.2 259.5

.3 404.4 595.1 371.9 218.6 184.2 702.3 1084.7 645.0 417.4 380.4

.6 522.7 655.7 393.6 368.7 415.7 966.1 1608.4 862.2 776.1 838.6

.1 559.0 641.2 295.8 367.4 333.0 1175.2 1452.6 806.5 949.3 764.6

.6 511.6 563.4 198.5 290.8 288.3 1107.5 1254.9 641.9 880.6 698.4



Fig. 7. Spatial distribution ofmean precipitation by the estimated, ERA-Interim,WFDEI, TRMMandAPHRODITE datasets for a) pre-monsoon, b)monsoon, c)winter, andd) annual basis. All
values are in mm (note the different colour scales).
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(overestimation) while the other three datasets show substantial nega-
tive bias (underestimation) in most parts of the study area. The highest
negative bias is observed in the central Karakoram region consistently
by all the datasets, whereas the positive bias is mainly concentrated in
Fig. 8. Pattern statistics ofmean annual precipitation in the study area for the four gridded
products. The RMSE and standard deviations are normalized by those of the estimated
precipitation.
the Ladakh region. However, the estimated precipitation is very close
to net precipitation, whereas the gridded precipitation products give
gross precipitation amounts, which are subjected to some losses from
precipitation. Hence, some room for overestimation can be permitted.
Nevertheless, the extent of absolute bias suggests the importance of
bias correction of the four gridded datasets before their use in hydro-
climate studies in the study area. To support such a bias correction, we
analysed the seasonal and annual biases relative to the estimated pre-
cipitation at the sub-basin scale and introduced appropriate correction
factors to account for the inherent errors of each gridded dataset.
These basin-wide seasonal or annual correction factors, summarized
in Table 5, simply need to be multiplied with the respective gridded
datasets for the area of interest. This will ensure reasonably well quan-
tified estimates that can be used to avoid or minimize suboptimal cali-
bration of model input parameters and compensation of one variable
with another in the hydrological modelling and water balance studies.

5. Discussion

The altitudinal analysis of precipitation distribution demonstrates
the typical orographic precipitation trend, which increases up to a cer-
tain height of maximum precipitation and thereafter decreases, in
most of the sub-basins. However, the basin to basin difference in the
rate and magnitude of change is considerable. These results are in
good agreement with earlier studies for the Chenab basin (Arora et al.,
2006 and Singh et al., 1995). The altitudinal dependency of precipitation
expressed by the 2nd order polynomial functions indicates only the
generalized trend of precipitation variation with altitude. The exact be-
haviour of precipitation is too complex to be represented by such func-
tions. Presence of spatial autocorrelation and very high uncertainty
beyond the altitudinal extent of the point observations, particularly



Fig. 9. Absolute bias (in mm) of ERA-Interim, WFDEI, TRMM and APHRODITE precipitation relative to the KED-based estimated precipitation for a) pre-monsoon, b) monsoon, c) winter
and d) annual basis (note the different colour scales).
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higher than 4000 m which is attained by 57% of the study area, are the
major complexities. Generally, precipitation tends to decrease with
increasing latitude (from south to north), while longitude has seasonal
influence, positive inmonsoon and negative inwinter season. Similarly,
the southeastward and southwestward orientated locations mostly re-
ceive more precipitation in monsoon and winter seasons respectively.
However, the areas under the influence of rain shadow are notable ex-
ceptions, where precipitation tends to be far less throughout the year.

The core characteristics and spatial pattern of mean seasonal and
annual precipitation estimates show strong south–north precipitation
gradients containing the general rainfall maxima along the southern
and lower most slopes of Chenab, Jhelum, Indus main and Swat basins
Table 5
Basin-wide, seasonal and annual correction factors for each gridded precipitation product.

River basin Pre-monsoon Monsoon

ERAI WEI TRM APH ERAI WEI TRM A

Indus-U 0.21 0.37 0.52 0.86 0.36 0.57 0.63 0
Zanskar 0.33 0.89 1.01 1.70 0.61 0.84 0.83 1
Shingo 0.46 1.18 1.11 1.84 0.53 0.79 0.80 1
Indus-Khar 0.27 0.60 0.71 1.19 0.44 0.66 0.70 1
Shyok 0.49 1.22 1.35 1.73 0.84 8.74 1.45 2
Shigar 1.12 2.55 3.29 2.57 1.38 7.67 1.56 3
Hunza 0.77 2.06 2.27 2.77 1.07 9.75 1.62 3
Gilgit 0.42 1.16 1.58 1.22 0.74 2.11 1.46 2
Astore 0.65 1.85 1.82 1.75 0.57 1.26 1.17 2
Indus-M 0.45 1.24 1.70 1.33 0.42 1.05 0.92 1
Indus-L 0.77 1.09 1.32 1.11 0.51 1.03 1.01 1
Indus-Tar 0.47 1.09 1.30 1.50 0.64 3.43 1.07 1
Chitral 0.50 1.03 1.73 1.27 0.96 1.42 1.56 2
Swat 0.70 1.03 1.28 1.11 0.39 0.88 0.93 1
Jhelum 0.91 1.56 1.32 1.54 0.68 0.98 0.96 1
Chenab 0.84 1.70 1.47 1.83 0.80 1.05 0.76 1
(Fig. 5), which was also observed in previous studies (e.g. Palazzi
et al., 2013; Bookhagen andBurbank, 2006). However, the uniquedistri-
bution revealed by this study is the emergence of an unusuallywet zone
containing the 2nd precipitation maxima along the northern boundary
of central Karakoram region,which had never been detected by the ear-
lier datasets or studies. Despite the fact that this zone in the central
Karakoram region accommodates some of the largest glaciers (e.g.
Baltoro, Approach, Whaleback, Hispar, Biafo and Khurdopin), most of
which are believed to be stable or even surging with a net positive gla-
cier mass balance, the earlier datasets consistently and significantly
underestimated precipitation in this region. However, to sustain and
surge, the glaciers in this area essentially require more precipitation
Winter Annual

PH ERAI WEI TRM APH ERAI WEI TRM APH

.96 0.47 0.35 0.59 1.05 0.32 0.45 0.59 0.95

.80 0.66 1.53 1.72 2.81 0.59 1.23 1.30 2.41

.67 0.60 1.53 1.97 3.02 0.56 1.26 1.35 2.41

.25 0.53 0.78 1.04 1.72 0.42 0.74 0.86 1.49

.32 1.08 1.03 2.38 2.61 0.82 1.53 1.75 2.41

.35 1.81 2.61 4.52 6.30 1.53 2.93 3.17 4.23

.87 1.12 1.60 2.33 5.49 1.04 2.29 2.11 4.23

.72 0.48 0.88 2.23 3.23 0.52 1.17 1.79 2.22

.37 0.84 2.08 3.22 4.11 0.74 1.86 2.07 2.82

.93 0.38 0.85 1.82 2.21 0.40 0.99 1.43 1.73

.11 0.92 1.51 2.01 1.80 0.71 1.27 1.47 1.37

.94 0.76 1.08 1.84 2.60 0.63 1.24 1.43 2.09

.47 0.72 1.09 4.44 2.98 0.69 1.10 1.88 2.14

.02 0.86 1.38 1.43 1.36 0.62 1.18 1.27 1.22

.41 0.87 1.90 1.51 1.80 0.82 1.51 1.27 1.63

.35 0.87 2.58 1.75 2.11 0.89 1.77 1.28 1.84
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than their ablation/discharges. Our estimates of higher precipitation co-
herently follow the pattern and extent of the glacier cover in the high-
altitude areas. Contrary to the inconsistent and contrasting estimates
by the earlier studies, this study estimated significantly higher precipi-
tation in all the sub-basins, which are comparable and consistent with
the corresponding specific runoffs (measured flows). Similarly, the
drier areas under the influence of rain shadow, which are often ignored
and usually overestimated by the gridded datasets, are also well
recognized.

The basin-wide estimated precipitation and corresponding values of
specific runoff shown in Table 3 do not support the idea of a positive
mass balance in the study area. Higher values of specific runoff for Gilgit,
Astore, Shyok and Shigar basins suggest essentially a negativemass bal-
ance in these basins. Similarly, Chenab, Hunza and Chitral basins show
slightly higher precipitation and may have neutral to slightly negative
mass balance. Swat, Jhelum and Chenab basins indicate precipitation
greater than river flows. However, evapotranspiration and percolation
losses from these basins may be relatively large due to higher tempera-
tures (large area below the 0 °C isotherm), greater vegetative cover and
availability ofmoisture for evapotranspiration/percolation (more runoff
from rainfall and seasonal snow). Thus, these basinsmay also be consid-
ered to have neutral to negativemass balance. The estimates for Zanskar
basin and Ladakh region in the TP are relatively uncertain due to very
low number of observation points in these areas. The precipitation esti-
mates relative to the corresponding river flow for the Indus at
Kharmong basin seem to be on thehigh side. Therefore, a neutral to neg-
ative mass balance can be expected for this catchment. The Indus at
Tarbela combines drainage of the upstream catchments, which are ei-
ther neutral or experience a negative mass balance. However, the net
impact is likely to be a negative mass balance as precipitation is only
marginally higher than the specific runoff. Our results are in good agree-
ment to available glacier mass balance studies (e.g. Gardelle et al., 2012;
Kaab et al., 2012, 2015).

The selected gridded precipitation products provide only a marginal
resemblance of the actual precipitation. ERA-Interim largely overesti-
mates precipitation in all the sub-basins except Shigar and Hunza,
while the other three datasets consistently underestimate precipitation
in all the areas barring Ladakh region of the TP (Indus-U up to
Kharmong). The overestimated precipitation in the TP region by the
APHRODITE and TRMM 3B43 products was also observed by Palazzi
et al. (2013), Prakash et al. (2013), Andermann et al. (2011) and Yin
et al. (2008). ERA-Interim is prone to underestimate precipitation by
up to 40% in the areas with low evaporation rates and overestimate by
about 150% under conditions with high evaporation rates (Bumke,
2015). The overall underestimated precipitation by WFDEI and TRMM
datasets, also observed by Li et al. (2013), may be attributed to the
fact that their correction/validation is donemainly by the use of stations
predominantly located in valley bottoms. This was also reported by
Reggiani and Rientjes (2015) who observed un-corrected reanalysis
data from ERA-Interim and NCEP/NCAR products as the better option
in terms of quantitative estimates of precipitation in the UIB up to
Besham Qila. Several studies (e.g. Andermann et al., 2011; Rajeevan
and Bhate, 2009; Krishnamurti et al., 2009; Yatagai and Kawamoto,
2008; Yatagai and Xie, 2006) consider APHRODITE as an accurate
dataset, but its accuracy greatly depends on the density of station data
in the area of interest. In the high-altitude areas of the Indus basin, the
APHRODITE product uses non-representative low-altitude stations to
derive the spatial distribution of high-altitude precipitation. Therefore,
it reflects highly underestimated precipitation in all of the sub-basins.
Moreover, the four gridded products completely fail to reproduce the
zone of 2nd precipitation maxima in the central Karakoram and could
not properly detect the drier areas under the influence of rain shadow.
They tend to smooth the precipitation due to their lower spatial resolu-
tion resulting in significant overestimated precipitation in these areas.
This study incorporates high-altitude observations, which have never
been used in the formation or validation of precipitation datasets. The
KED-based interpolation scheme further amplifies the precipitation at
the higher altitudes by taking into account the spatial autocorrelation
and elevation effects at local scale. The pattern statistics indicate that
despite better quantitative estimates, ERA-Interim andWFDEI products
are relatively poor in reproducing the spatial pattern of estimated pre-
cipitation mainly due to their lower spatial resolution and use of non-
representative data in their formation and/or validation. The relatively
better patterns shown by APHRODITE are due to the fact that this
dataset is derived from station observations.

In view of significant biases in the gridded precipitation products
covering this region, we determined basin-wide seasonal and annual
correction factors for each dataset. These correction factors can be
used for lumped hydrological modelling studies. Like, Lutz et al.
(2014a) appropriately multiplied APHRODITE precipitation by a con-
stant factor of 1.17 to account for the inherent underestimation and
avoid undue compensation by suboptimal input parameters. However,
this factor is still on the lower end as our analysis suggests an average
correction factor of 2.1 for the UIB up to Tarbela dam, which varies sig-
nificantly for all other sub-basins. Hence, the use of underestimated pre-
cipitation by Lutz et al. (2014a) might have resulted in an exaggerated
snow/glacier melt contribution and a biased conclusion of the associat-
ed snow/glacier cover extent. Nevertheless, our KED-based precipita-
tion estimates and correction factors can efficiently be used for bias
correction of any gridded precipitation product and improved hydro-
climate assessments for the study area.

Although, the methods employed in this study are straightforward
and robust, further improvements in precipitation estimation can be ex-
pected once higher quality observed data with more spatiotemporal
coverage, particularly above 4000 m a.s.l., become available. Moreover,
the employed methods are equally applicable for other regions of the
world, especially with similar geo-hydro-climatological conditions.

6. Conclusions

Precipitation in the high altitude areas of the Indus basin governs
the renewable water resources and associated developments, but a
comprehensive assessment of precipitation distribution in this re-
gion is largely lacking. Here, we attempt to explain how precipitation
amounts, seasonality and patterns are represented in the study area.
The altitudinal analysis of precipitation observations in each sub-
basin demonstrated the important role of orographic precipitation.
Yet, the topographical variability even at the sub-basin and local
scale is so high that the available observations are insufficient to
infer an accurate distribution of altitudinal precipitation. Instead,
rather complex and nonlinear trends of precipitation increase with
altitude are evidently depicted.

The study providesmuch improved estimates of precipitation distri-
bution, which are comparable and consistent with the corresponding
observed runoffs from the 12 sub-basins. The geo-statistical analysis of
precipitation observations revealed substantially higher precipitation
in most of the sub-basins compared to earlier studies. The study area
largely experiences a bimodal weather system reflecting wintertime
precipitation associated with the westerly systems and the impact of
Indian summer monsoon. The analysis demonstrated two distinct rain-
fall maxima; 1st along southern and lower most slopes of Chenab, Jhe-
lum, Indus main and Swat basins, and 2nd around north-west corner
of Shyok basin in the central Karakoram.Moreover, the estimates better
recognize the drier areas under the influence of rain shadow, which are
often overlooked by the gridded datasets.

Our analysis shows that the selected gridded precipitation products
derived from four different sources are prone to significant errors pro-
viding only a marginal resemblance of the actual precipitation in the
study area. We conclude that the uncorrected gridded precipitation
products are highly unsuitable to estimate precipitation distribution
and to derive glacio-hydrological models in water balance studies in
the high-altitude areas of Indus basin. The suggested basin-wide
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seasonal and annual correction factors for the four gridded precipitation
products can be useful for lumped hydrological modelling studies.
The estimated precipitation distribution can effectively serve as a
basis for bias correction of any gridded precipitation products for
the study area.
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Appendix A
Details ofmeteorological stations used in this study. The stationsmentioned at S. No. 1–21 are operated by PMD, 22–65 byWAPDA, 66–67 by Ev-K2-
CNR, 68–108 by IMD (taken from GHCN), 109–118 by University of Boon's CAK project (synthesized from Winiger et al., 2005; Miehe et al., 1996,
2001; Eberhardt et al., 2007), and 119–134 are virtual stations detailed at Table 1.
Sr. no.
 Station name
 Lat
(dd)
Long
(dd)
Elevation
(m)
Data period
 Sr. no.
 Station name
 Lat
(dd)
Long\(dd)
 Elevation
(m)
Data period
Astore
 35.3667
 74.9000
 2394
 1954–2012
 68
 Bhadarwah
 32.9667
 75.7167
 1690
 1911–1968

Babusar
 35.1458
 74.0444
 4160
 2005–2012
 69
 Banihal
 33.5000
 75.1700
 1630
 1961–1970

Balakot
 34.5500
 72.3500
 995
 1957–2012
 70
 Baramula
 34.2000
 74.3700
 1572
 1902–1970

Bunji
 35.6667
 74.6333
 1372
 1953–2012
 71
 Charisharif
 33.8700
 74.7700
 1616
 1960–1970

Chilas
 35.4167
 74.1000
 1251
 1953–2013
 72
 Digar
 34.2500
 77.7500
 5182
 1956–1964

Chitral
 35.8500
 71.8333
 1498
 1964–2012
 73
 Dras
 34.4333
 75.7667
 3066
 1901–1968

Dir
 35.2000
 71.8500
 1425
 1967–2010
 74
 Durroo
 33.5700
 75.2300
 1790
 1924–1964

Drosh
 35.5667
 71.7833
 1464
 1951–2012
 75
 Gondla
 32.5200
 77.0300
 3144
 1951–1970

GD Poto
 34.2167
 73.6167
 814
 1955–2012
 76
 Gulmarg
 34.0500
 74.4000
 2655
 1951–1971
0
 Gilgit
 35.9167
 74.3333
 1460
 1951–2012
 77
 Gund
 34.2500
 75.0800
 2052
 1956–1970

1
 Gupis
 36.1667
 73.4000
 2156
 1955–2012
 78
 Gurez
 34.6300
 74.8500
 2417
 1933–1958

2
 Hunza
 36.3220
 74.6460
 2374
 2007–2012
 79
 Handwara
 34.4000
 74.2800
 1585
 1958–1970

3
 Kakul
 34.1833
 73.2500
 1308
 1952–2012
 80
 Inshan
 33.7500
 75.5000
 2440
 1971–1980

4
 Kotli
 33.5167
 73.9000
 614
 1953–2012
 81
 Kargil
 34.5700
 76.1300
 2679
 1908–1966

5
 Malakand
 34.5500
 71.9167
 800
 2003–2008
 82
 Khaltse
 34.2500
 76.8333
 3205
 1956–1970

6
 Malamjaba
 34.7500
 72.9000
 2591
 2003–2008
 83
 Khangral
 34.3333
 76.5000
 3887
 1956–1971

7
 Murree
 33.9000
 73.4000
 2168
 1980–2012
 84
 Kishtwar
 33.3000
 75.7500
 1215
 1901–1970

8
 Muzaffarabad
 34.3667
 73.4833
 702
 1955–2012
 85
 Kokernagh
 33.9200
 75.2800
 1676
 1960–1970

9
 Pattan
 35.1000
 73.0000
 752
 2004–2012
 86
 Koksar
 32.4160
 77.2190
 3507
 1951–1970

0
 Saidusharif
 34.7333
 72.3500
 961
 1974–2010
 87
 Kukernag
 33.6000
 75.3000
 1865
 1961–1970

1
 Skardu
 35.3000
 75.6833
 2210
 1952–2012
 88
 Kulgam
 33.6300
 75.0200
 1615
 1902–1970

2
 Besham
 34.9333
 72.8833
 480
 1971–2003
 89
 Kyelong
 32.5833
 77.0667
 3500
 1903–1970

3
 Burzil
 34.9056
 75.0917
 4030
 1999–2012
 90
 Langet
 34.3700
 74.3000
 1588
 1916–1970

4
 Dagar
 34.5100
 72.4864
 732
 1984–2001
 91
 Leh
 34.1500
 77.5667
 3514
 1876–1969

5
 Deosai
 35.1000
 75.6000
 3910
 1995–2011
 92
 Matsal
 33.9833
 76.6167
 4325
 1971–1981

6
 Dhudnial
 34.7000
 74.1170
 534
 1984–1997
 93
 Mulbek
 34.3333
 76.3333
 3926
 1956–1969

7
 Domel
 34.3678
 73.4689
 686
 1984–2001
 94
 Nowshera
 33.1500
 74.2300
 599
 1913–1969

8
 Doyian
 35.5450
 74.7042
 2454
 1979–2003
 95
 Panamik
 34.7500
 77.5000
 4056
 1956–1970

9
 Gujar Khan
 33.2500
 73.3000
 457
 1984–2001
 96
 Pendras
 34.4167
 75.5833
 4880
 1956–1971

0
 Hushy
 35.3667
 76.4000
 3010
 1994–2010
 97
 Phalgam
 34.0300
 75.3300
 1707
 1960–1972

1
 Jabbar
 34.6717
 73.2278
 2134
 1984–2001
 98
 Prang
 34.2800
 74.8700
 1588
 1960–1973

2
 Kalam
 35.4700
 72.6010
 2744
 1984–2010
 99
 Qazi Gund
 33.5800
 75.0800
 1690
 1962–1974

3
 Kallar
 33.4167
 73.3667
 518
 1984–2001
 100
 Ramban
 33.2500
 75.2500
 945
 1901–1969

4
 Kelash
 35.6955
 71.6547
 2810
 2000–2013
 101
 Riasi
 33.0800
 74.8300
 585
 1901–1970

5
 Khandar
 33.5000
 74.0500
 1067
 1984–2001
 102
 Shiquanhe
 32.5000
 80.0830
 4280
 1962–2012

6
 Khot
 36.5167
 72.5833
 3505
 1994–2012
 103
 Shopian
 33.7200
 74.8300
 1615
 1960–1970

7
 Khunjrab
 36.8500
 75.4000
 4730
 1995–2012
 104
 Sonemarg
 34.3167
 75.3167
 2515
 1902–1969

8
 Kotli
 33.4847
 73.8811
 610
 1984–2001
 105
 Sopore
 34.3000
 74.4700
 1574
 1930–1970

9
 Lora
 33.8833
 73.2833
 1482
 1989–1992
 106
 Srinagar
 34.0833
 74.8333
 1587
 1993–2013

0
 Mangla
 33.1333
 73.6333
 305
 1984–2001
 107
 Uttamchipura
 34.5000
 74.6700
 3145
 1901–1956

1
 Naltar
 36.2167
 74.2667
 2810
 1995–2012
 108
 Verinagh
 33.5300
 75.2500
 1646
 1965–1970

2
 Naran
 34.9000
 73.6500
 2363
 1984–2001
 109
 Alambar
 36.7000
 73.4833
 4400
 1991–1999

3
 Oghi
 34.5000
 73.0167
 1128
 1984–2001
 110
 Bagrot
 36.0167
 74.5500
 2310
 1993–2009

4
 Palandri
 33.7167
 73.7000
 1402
 1984–2001
 111
 Bulibalsirbar
 36.3667
 73.2500
 4050
 1991–1999

5
 Phulra
 34.3333
 73.0833
 915
 1984–2001
 112
 Garmashbar
 36.5167
 73.5333
 3600
 1991–1999

6
 Pir Chenasi
 34.3850
 73.5450
 2650
 2004–2013
 113
 Khaimetbar
 36.5000
 73.0500
 3600
 1991–1999

7
 Puran
 34.7500
 72.7000
 1067
 1984–2001
 114
 Khunjrab
 36.8800
 74.4167
 4700
 1993–2012

8
 Rama
 35.3583
 74.8056
 3140
 1999–2012
 115
 Dadormal
 36.0167
 74.4167
 3780
 1991–1999

9
 Ratu
 35.1528
 74.8056
 2920
 1999–2013
 116
 Dame
 36.0500
 74.6667
 3560
 1991–1999

0
 Rawlakot
 33.8667
 74.2667
 1677
 1984–2001
 117
 Diran
 36.0500
 74.6000
 3650
 1991–1999
(continued on next page)
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continued)
Sr. no.
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6

Station name
 Lat
(dd)
Long
(dd)
Elevation
(m)
Data period
 Sr. no.
 Station name
 Lat
(dd)
Long\(dd)
 Elevation
(m)
Data period
1
 Saifulmulk
 34.8438
 73.6875
 3200
 2000–2013
 118
 Baldihel
 36.3500
 74.8000
 3900
 1994–1996

2
 Sehrkakota
 33.7333
 73.9667
 915
 1984–2001
 119
 Sentik
 33.9967
 75.9500
 4908
 1963–1980

3
 Shahpur
 34.9167
 72.6667
 2012
 1984–2001
 120
 Nun Kun N
 34.1219
 76.1014
 5200
 1973–1980

4
 Shangla
 34.8808
 72.5908
 2160
 2000–2007
 121
 Batura
 36.6667
 74.3833
 4840
 1973–1974

5
 Shendure
 36.0861
 72.5250
 3719
 1994–2012
 122
 Baltoro
 35.8778
 76.5508
 5500
 1973–1980

6
 Shigar
 35.5300
 75.5917
 2470
 1996–2012
 123
 Urdok
 35.7669
 76.7025
 5400
 2004–2006

7
 Shinkiari
 34.4667
 73.2667
 991
 1984–2001
 124
 Whaleback
 36.0572
 75.5915
 4900
 1985–1986

8
 Shogran
 34.6200
 73.4856
 3205
 2000–2013
 125
 Approach
 36.0678
 75.6331
 5100
 1985–1987

9
 Tandar
 33.2039
 73.9764
 671
 1984–2001
 126
 Hispar East
 35.8495
 75.5064
 4830
 1985–1988

0
 Tarbela
 34.0667
 72.7700
 610
 1984–2001
 127
 Hispar Pass
 36.0281
 75.5215
 5100
 1984–1986

1
 Ushkore
 36.0175
 73.3583
 3353
 1999–2012
 128
 Hispar Dome
 36.0109
 75.5187
 5450
 1982–1986

2
 Yasin
 36.6333
 73.3000
 3353
 1999–2013
 129
 Khurdopin
 36.1338
 75.6197
 5520
 1984–1986

3
 Yugo
 35.1833
 76.1000
 2469
 1984–2001
 130
 Nanga Parbat
 35.1672
 74.4444
 4500
 1984–1997

4
 Zani
 36.2833
 72.1500
 3000
 1994–2012
 131
 Siachin A
 35.4707
 77.0376
 4800
 1986–1991

5
 Ziarat
 36.8333
 74.2778
 3669
 1995–2012
 132
 Siachin B
 35.5235
 76.9915
 4950
 1986–1992

6
 Askole
 35.6806
 75.8153
 3015
 2005–2008
 133
 Siachin C
 35.5187
 76.9116
 5050
 1986–1993

7
 Urdukas
 35.7281
 76.2861
 3926
 2004–2008
 134
 Siachin D
 35.6242
 76.8592
 5350
 1986–1994
6
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