

Joanna Horabik-Pyzel, Nadia Charkovska, Olha Danylo, Zbigniew Nahorski, Rostyslav Bun

Conditionally autoregressive model for spatial disaggregation of activity data in GHG inventory: Application for agriculture sector in Poland

4th International Workshop on Uncertainties in Atmospheric Emissions Kraków, 7-9 October 2015 Development of spatial GHG inventory crucially depends on availability of *low resolution activity data*. In Poland, relevant information needs to be acquired from national/regional totals.

<u>Goal</u>

Application of **statistical spatial scaling methods** to produce higher resolution activity data

Disaggregation framework

Classification of inventory sectors

Energy (fossil fuel burning)

- power/heat production
- residential
- transport
- industry and construction
- others

Industry (chemical processes) Agriculture

Task

Livestock data available in *disticts*

to be disaggregated into *municipalities,*

making use of detailed land cover map.

CAR model for areal data

• Conditionally autoregressive (CAR) formulation of process $\theta = (\theta_1, ..., \theta_n)^T$

$$\theta_i \mid \theta_{j,j \neq i} \sim Gau\left(\rho_{j \neq i} \frac{W_{ij}}{W_{i+}} \theta_j, \frac{\tau^2}{W_{i+}}\right), \quad i, j = 1, \dots, n$$

 w_{ij} - neighbour weights: 1 for neighbour, 0 otherwise $w_{i+} = \sum_{j} w_{ij}$ - number of neighbours of cell *i* τ^2 - variance parameter

• Joint probability distribution of $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)^T$

$$\boldsymbol{\theta} \sim Gau_n(\boldsymbol{\theta}, \tau^2(\boldsymbol{D} - \rho \boldsymbol{W})^{-1})$$

 $D - a \text{ diagonal matrix with } [D]_{ii} = w_{i+}$ $[W]_{ij} = w_{ij} - a \text{ matrix with adjacency weights}$ $\tau^{2} - a \text{ variance parameter}$ $\tau^{2} (D - \rho W)^{-1} = N$ \bullet

X - Cell i

 Neighbours of cell i (w_{ij}=1) So, w_{i+}=4

Disaggregation model \rightarrow Specification in a *fine* grid

Y_i - random variable associated with emissions in a *fine* grid

 \rightarrow Specification in a *coarse* grid

• The model for a *coarse* grid: multiplication of (*) with aggregation matrix $C_{N^{\times}n}$ indicating which cells are aligned together

$$C\mu = CX\beta + C\theta$$
 $C\theta \sim Gau_N(\theta, CNC^T)$

N - # of observations in a *coarse* grid n - # of observations in a *fine* grid

 $N = \tau^2 (\boldsymbol{D} - \rho \boldsymbol{W})^{-1}$

• $\lambda = C\mu$ - the mean process for random variables $\mathbf{Z} = (Z_1, ..., Z_N)^T$ of the *coarse* grid

$$\boldsymbol{Z} \mid \boldsymbol{\lambda} \sim Gau_N \left(\boldsymbol{\lambda}, \boldsymbol{\sigma}_Z^2 \boldsymbol{I}_N \right)$$

Estimation

• The joint unconditional distribution of Z $Z \sim Gau_N(CX\beta, M + CNC^T)$ where $M = \sigma_Z^2 I_N$, $N = \tau^2 (D - \rho W)^{-1}$

- Maximum likelihood estimation based on the joint distribution of **Z**.
- Analytical solution for β , further maximisation performed numerically.
- Expected Fisher information matrix used to get standard errors of parameters.

Prediction in a *fine* grid

- The process μ underlying emission inventory is of our primary interest, with the optimal predictor given by $E(\mu|z)$.
- The joint distribution of (μ, Z)

$$\begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{Z} \end{bmatrix} \sim Gau_{n+N} \left(\begin{bmatrix} \boldsymbol{X}\boldsymbol{\beta} \\ \boldsymbol{C}\boldsymbol{X}\boldsymbol{\beta} \end{bmatrix}, \begin{bmatrix} \boldsymbol{N} & \boldsymbol{N}\boldsymbol{C}^T \\ \boldsymbol{C}\boldsymbol{N} & \boldsymbol{M} + \boldsymbol{C}\boldsymbol{N}\boldsymbol{C}^T \end{bmatrix} \right)$$

which yield both the predictor $\hat{\mu} = E(\mu | z)$ and its error $\hat{\sigma}_{\mu}^2 = Var(\mu | z)$

• The joint distribution of (μ, Z) allows us to see the approach in analogy to *block kriging*.

Case study

- Livestock (cattle, pigs, horses etc.) data based on agricultural census 2010
- Disaggregation from 314 districts (*powiaty*) into 2171 municipalities (*gminy*) needed
- Only rural municipalities considered
- → For **horses**, data are available also in municipalities, which enabled verification of the method.

Explanatory variables

- Population
- Considered CORINE classes
 - Pastures (231)
 - Complex cultivation patterns (242)
 - Principally agriculture, with natural vegetation (243)

For each municipality, we calculate the area of these land use classes, that can be related to livestock farming.

<u>VERIFICATION</u>: Data on horses available in *municipalities*

Results: Prediction for municipalities

NAIVE prediction – proportional to population

Residuals from predicted values

$d_i = y_i - y_i^*$ y_i - data y_i^* - prediction		MSE	Avg d _i	Min(<i>d_i</i>)	Max(<i>d</i> _i)	r
	CAR	3069.4	38.37	-275	469	0.784
	Naive	3374.4	38.17	-475	403	0.766
	LM	5641.2	51.28	-357	522	0.555

Scatterplots of data vs. predictions

Modification #1: Various regression models in regions

l=1,...,L index regions, e.g. voivodships, $n = \sum_{l=1}^{L} n_l$

X^{*} - block diagonal matrix of covariates

Separate sets of regression coefficients and variance ${\sigma^2}_{Y\!,l}$ for each voivodship

$$\boldsymbol{X}^{*} = \begin{bmatrix} 1 & x_{1k}^{1} & \cdots & x_{1k}^{1} \\ \vdots & \ddots & \vdots \\ 1 & x_{n11}^{1} & x_{n1k}^{1} & & \\ \hline & & \ddots & \vdots \\ \hline & & & \ddots & \\ \hline & & & & 1 & x_{1k}^{L} & \cdots & x_{1k}^{L} \\ \hline & & & & \ddots & \vdots \\ 1 & x_{nL1}^{L} & x_{nLk}^{1} & & \\ \hline & & & & \ddots & \vdots \\ 1 & x_{nL1}^{L} & x_{nLk}^{1} \end{bmatrix} \quad \boldsymbol{\beta}^{*} = \begin{bmatrix} \beta_{0}^{1} \\ \vdots \\ \beta_{k}^{1} \\ \hline \vdots \\ \beta_{0}^{L} \\ \vdots \\ \beta_{k}^{L} \end{bmatrix} \quad \boldsymbol{\tau}^{2} (\boldsymbol{D} - \boldsymbol{\rho} \boldsymbol{W})^{-1} = N$$

	MSE	Avg d _i	Min(<i>d_i</i>)	Max(<i>d_i</i>)	r
CAR	3069.4	38.37	-275	469	0.784
CAR*	3124.9	38.99	-256	446	0.783
Naive	3374.4	38.17	-475	403	0.766
LM	5641.2	51.28	-357	522	0.555

Modification #2: Accounting for data skeweness

Distributions of activity data (here: horses) are highly right skewed \rightarrow the assumption of normality should be revised.

Potential approaches

- log transformation
- truncated normal distribution
- trans-Gaussian kriging

However, none of the listed options support summation of random variables

...

 \rightarrow this is required in the developed model of spatial scaling (aggregation matrix $C_{N_{X}n}$)

Closed skew normal (CSN) distribution

- Introducing skewness to the normal distribution, while the distribution is closed under marginalisation and conditioning (Dominiguez-Molina et al. 2003)
- Density of multivariate CSN distribution: $Y \sim CSN_{p,q}(\mu, \Sigma, \Gamma, \nu, \Delta)$

$$f_{p,q}(\mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\nu}, \boldsymbol{\Delta}) = K \phi_p(\mathbf{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \Phi_q(\boldsymbol{\Gamma}(\mathbf{y} - \boldsymbol{\mu}); \boldsymbol{\nu}, \boldsymbol{\Delta})$$

where $K = \Phi_q^{-1}(0; \Delta + D\Sigma D^T)$, $\phi_p(\cdot)$ - standard normal pdf, $\Phi_q(\cdot)$ - standard normal cdf

Properties of closed skew normal distribution

• Closed under <u>linear transformation</u> (Gonzalez-Farias et al. 2004) Let $\boldsymbol{Y} \sim CSN_{p,q}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\nu}, \boldsymbol{\Delta})$ and $A_{n \ge p}$. Then $A\boldsymbol{Y} \sim CSN_{n,q}(\boldsymbol{\mu}_A, \boldsymbol{\Sigma}_A, \boldsymbol{\Gamma}_A, \boldsymbol{\nu}, \boldsymbol{\Delta}_A)$

 \rightarrow important for the disaggregation method

• <u>Conditioning property</u> \rightarrow important for estimation (Gibbs sampler within MCMC)

We propose a novel approach for allocation of activity data to finer grids, conditional on available covariate information.

We propose a novel approach for allocation of activity data to finer grids, conditional on available covariate information.

• Good results for livestock activity data of **agricultural sector**, but very limited e.g. in residential sector (natural gas consumption in households)

The approach is applicable for **AREA emission sources** which are **spatially correlated**.

We propose a novel approach for allocation of activity data to finer grids, conditional on available covariate information.

• Good results for livestock activity data of **agricultural sector**, but very limited e.g. in residential sector (natural gas consumption in households)

The approach is applicable for **AREA emission sources** which are **spatially correlated**.

 The method is feasible for disaggregation from <u>districts</u> to <u>municipalities</u>, but not from voivodeships to municipalities.

We propose a novel approach for allocation of activity data to finer grids, conditional on available covariate information.

• Good results for livestock activity data of **agricultural sector**, but very limited e.g. in residential sector (natural gas consumption in households)

The approach is applicable for **AREA emission sources** which are **spatially correlated**.

- The method is feasible for disaggregation from <u>districts</u> to <u>municipalities</u>, but not from voivodeships to municipalities.
- <u>Comparison with the naive (proportional) disaggregation:</u>
 In the case study, 9% improvement in terms of the mean squared error.

In general, it provides the assessment of the **significance of regression coefficients** and **uncertainty of calculated values**.

TAKE HOME MESSAGE:

A *structure of dataset* can give us an opportunity to develop an improved / alternative modeling approach, and thus to provide a better insight.

TAKE HOME MESSAGE:

A *structure of dataset* can give us an opportunity to develop an improved / alternative modeling approach, and thus to provide a better insight.

Thank you for your attention!

