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Abstract

Monte Carlo simulation methods have become more and more important in

the �nancial sector in the past years. In this paper, we introduce a new simulation

method for the estimation of the derivatives of prices of �nancial contracts with

respect to (w.r.t.) certain distributional parameters, called the �Greeks�. In par-

ticular, we assume that the underlying �nancial process is a Lévy-type process in

discrete time.

Our method is based on the Measure Valued Di�erentiation (MVD) approach,

which allows to represent derivatives as di�erences of two processes, called the

phantoms. We discuss the applicability of MVD for di�erent types of option payo�s

in combination with di�erent types of models of the underlying and provide a

framework for the applicability of MVD for path-dependent payo� functions, as

Lookback Options or Asian Options.
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1 Introduction

In Finance, simulation methods have become standard for pricing various,
but especially exotic �nancial contracts under various model assumptions.
This paper focuses on the estimation of sensitivities of option prices w.r.t.
changes of distributional parameters, the so called �Greeks�, when the un-
derlying stochastic model follows some Markov process of exponential Lévy-
type. Price sensitivities are used in measuring and managing risk and �nd
also application in hedging-strategies.

In the classical Black-Scholes framework, there exist closed formulas for
the Greeks of plain Vanilla European Call or Put Options. But if we turn
to more complicated payo� functions (eg Exotic Options) or if we consider
other driving Lévy processes than Brownian motion, numerical approaches
relying on Monte Carlo methods are needed to estimate both, the values and
their sensitivities.

Suppose that Sθ(t) describes the random price process of the underlying
and H is the payo� function of an option on this underlying with maturity
T . θ is some parameter governing the distribution of the process Sθ(·). The
current (time 0) fair option price is

EQ[e
−rTH(Sθ(T ))],

where Q is a probability law which makes the discounted process

S̃θ(t) = e−rtSθ(t) (1.1)

a martingale. Our goal is to calculate

∂

∂θ
EQ[e

−rTH(Sθ(T ))]. (1.2)

Since closed form expressions do not exist (except for very special cases),
estimations of (1.2) with high accuracy are needed.

There exist several Monte Carlo techniques for estimating the Greeks.
Each of those methods has its individual advantages and disadvantages, de-
pending on the model of the stock price and the structure of the payo�
function.

The most simple is the �nite di�erence (FD) approximation: The price
is estimated under θ + h and under θ and the di�erence of the estimates is
divided by h. Even if the variance of the FD estimate is reduced by taking
highly correlated estimates, there is still the bias issue: FD estimates are
biased. The more sophisticated methods are subdivided into methods which
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assume parameterized integrands

θ 7→
ˆ

H(θ, ω)dν(ω)

and methods with parametrized integrators

θ 7→
ˆ

H(ω)dνθ(ω),

see P�ug (1996). The pathwise method (In�nitesimal Pertubation Analy-
sis IPA) is a method of the �rst sort, see Glasserman (2004). Other di-
rect methods belong to the second group, as the Likelihood Ratio method or
Score Function method, see Glasserman (2004), theMalliavin calculus, (Sanz-
Sole (2005), Montero and Kohatsu-Higa (2003)), Algorithmic Di�erentiation,
Capriotti (2011) and the Measure Valued Di�erentiation, (Heidergott et al
(2010), Heidergott and Vasquez-Abad (2006), Heidergott et al (2008), Hei-
dergott and Leahu (2010), Vasquez-Abad and Heidergott (2008)).
The main contribution of this article is to demonstrate how the MVD method
may be applied for a variety of di�erent stock-price models and di�erent, no-
tably nondi�erentiable payo� functions. While pathwise derivation methods
work well for smooth payo� functions, they fail for nonsmooth ones. On
the other hand, likelihood ratio methods require the knowledge of the den-
sity. Often, the explicit form of the density is unknown. Glasserman and
Liu (2010) present an approximative method, which approximated the den-
sity from its characteristic function or cumulant function. This saddle point
approximation results in a certain bias, which has to be controlled. Our
measure-valued di�erentiation method is generally unbiased and does not
require the knowledge of the density or the characteristic function of the
Markov transition operator.

In this paper, we treat exclusively models with discrete time, a general-
ization for continuous processes will be treated in a subsequent paper. It is
organized as follows. In Section 2 we discuss some Markov models for the un-
derlying, in particular Lévy-type models. Section 3 introduces the measure
valued di�erentiation method and its extension for Markov processes. Section
4 comprised some numerical examples about the performance of the estima-
tion method for path-independent payo�s. The last section demonstrates how
the method can be applied to the sensitivity estimation for path-dependent
payo�s, such as Lookback and Asian Options.
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2 Exponentials of Lévy processes

In this paper, we assume that the price process of the underlying is Marko-
vian. While our methodology applies to any Markov processes, which can
be unbiasedly simulated in discrete steps (such as continuous time processes
with discrete random jumps), we restrict the presentation and the exam-
ples to exponentials of Lévy processes, since these processes are widely used
models for stocks prices in Finance.

A Lévy process has independent and stationary increments. It is fully
characterized by the characteristic function φ of its (in�nitely divisible) in-
crement distribution

E [exp (iu (X(t+ 1)−X(t)))] = φ(u).

By the Lévy-Khintchine formula, φ has to be of the form

φ(u) = exp
[
iau− σ2

2
u2 +

ˆ
R−{0}

(eiux − 1− iux1{|x|<1}) dν(x)
]

see eg Schoutens (2003). By the property of in�nite divisibility, the charac-
teristic function of the increment in time interval ∆ is just the ∆-th power
of φ

E [exp (iu (X(t+∆)−X(t)))] = (φ(u))∆ .

We assume that the price process of the underlying is an exponential of
a Lévy process, ie is modeled as

S(t) = S(0) · exp(X(t))

with X = {X(t), t ≥ 0} being a Lévy process with X(0) = 0 and S(0) is
today's price. Notice that both processes X(t) and S(t) are Markovian.

Change of measure. The fundamental theorem of asset pricing states
that the absence of arbitrage opportunity is equivalent to the existence of a
(not necessarily unique) equivalent measure Q under which S̃(t) = e−rtS(t)
is a martingale.

Exponentials of Lévy processes typically allow several equivalent martin-
gale measures and one has to select one for pricing purposes. In literature,
one �nds the following selection principles: (1) the Mean Correcting Martin-
gale Measure, (2) the Minimal Martingale Measure, (3) the Variance Optimal
Martingale Measure, (4) the Esscher Martingale Measure, (5) the Minimal
Entropy Martingale Measure, (6) the Utility Based Martingale Measure (see
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the overview by Miyahara (2005). In this paper, we concentrate on the
mean correcting martingale measure, which can be obained in a very simple
way by just changing the parameter values of the original Lévy process, see
Schoutens (2003). Notice that we consider only discrete-time processes, for
which the mean-correcting martingale measure is automatically equivalent.

2.1 Examples of Lévy processes

We now turn to some examples of Lévy-processes modeling the logprice of
stocks.

The Geometric Brownian Motion (GBM). The GBM is used in the
Black Scholes model. The pertaining logprice process is a Brownian motion
with constant drift µ and constant di�usion σ2

X(t) =

(
µ− 1

2
σ2

)
t+ σW (t)

where W (t) is a standard Brownian motion. Thus the increment distribution
is

X(t+ 1)−X(t) ∼ N

((
µ− 1

2
σ2

)
, σ2

)
with characteristic function φ(u) = exp[iu(µ − σ2/2) − σ2u2/2]. The stock
prices then follow the process

S(t) = S(0) exp

[(
µ− 1

2
σ2

)
t+ σW (t)

]
and under the (unique) equivalent martingale measure the discounted process
S̃(t) is distributed as

S̃(t) ∼ e−rtS(0) exp

[
(r − 1

2
σ2)t+ σW (t)

]
. (2.1)

The Gamma model. The Gamma(a, b)-process is the Lévy process
with increment distribution

X(t+ 1)−X(t) ∼ Gamma(a, b),

ie has a distribution with density 1
baΓ(a)

xa−1 exp(−x/b)1{x≥0} and character-

istic function φ(u) = (1− iub)−a.
The Variance Gamma model. If X1(·) is a Gamma(a, b1)-process and

X2(·) is an independent Gamma(a, b2) process, then the di�erence

X(t) = X1(t)−X2(t)
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is a Variance Gamma process (Schoutens (2003)), a process whose increment
distribution has characteristic function

φ(u) = (1−iub1)
−a(1+iub2)

−a = (1−iu(b1−b2)+u2b1b2)
−a = (1−iub+u2c)−a.

Here we have set b = b1 − b2 and c = b1 · b2. We denote this process by
VG(a, b, c). Under the mean-correcting martingale measure mentioned earlier
the discounted process satis�es

S̃(t) ∼ e−rtet(r+a log(1−b−c))S(0) exp(X(t)).

The Compound Poisson model. The Compound Poisson process is
de�ned as

X(t) =

N(t)∑
k

Zk t ≥ 0.

where N(t) is a Poisson process with intensity λ and (Zk) are i.i.d. jump
sizes, which are independent from N(t), (Schoutens (2003)). The increment
distribution is

X(t+ 1)−X(t) ∼
N(1)∑
k

Zk

with characteristic function

φ(u) = exp (λ (φZ(u)− 1)) .

where φZ is the characteristic function of the jump distribution.
We consider in particular jump distributions which are mixtures of Gamma

distributions on the positive resp. negative half line, ie

Zk =

{
V +
k with probability p

V −
k with probability 1− p

with

V +
k ∼ Gamma(a1, b1)

V −
k ∼ Gamma(a2, b2).

independent of each other. This jump distribution has characteristic function
φZ(u) = p(1− iub1)

−a1 + (1− p)(1 + iub2)
−a2 .

For this process we write CP(λ, a1, b1, a2, b2, p). IfX(·) ∼ CP(λ, a1, b1, a2, b2, p),
then the martingale corresponding to its exponential satis�es

S̃(t) ∼ e−rtemtS(0) exp(X(t))

with m = r − λ (p(1− b1)
−a1 + (1− p)(1 + b2)

−a2 − 1) .
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3 The Measure Valued Di�erentiation method

3.1 Introduction

The Measure Valued Di�erentiation method (MVD) is based on a weak no-
tion of di�erentiability of probability measures. Let θ be the parameter of
interest. We want to calculate or estimate

d

dθ
E[H(Sθ)] =

ˆ
H(ω)

d

dθ
νθ(dω).

where νθ is the distribution of Sθ under θ.

De�nition. Let H be a set of mappings H : R 7→ R which are absolutely
integrable with respect to νθ for any θ ∈ Θ ⊆ R,H ⊂ L1(νθ,Θ), the family
of all functions which are integrable w.r.t. all νθ, θ ∈ Θ. A function θ 7→ νθ
mapping an open subset of R into the family of all probability measures
is called H-di�erentiable (weakly di�erentiable w.r.t. H), if a �nite signed
measure ν ′

θ exists, such that

∀H ∈ H : lim
h→0

1

h

(ˆ
H(s)νθ+h(ds)−

ˆ
H(s)νθ(ds)

)
=

ˆ
H(s)ν ′

θ(ds).

Let cθ be a constant and ν+
θ and ν−

θ two probability measures such that

ˆ
H(s)ν ′

θ(ds) = cθ

(ˆ
H(s)ν+

θ (ds)−
ˆ

H(s)ν−
θ (ds)

)
for all H ∈ H, then the triplet (cθ, ν

+
θ , ν

−
θ ) is called a weak derivative triplet

of νθ.

The probability measures ν+
θ and ν−

θ can be obtained by decomposing
dνθ/dθ into a di�erence between two densities. Such a decomposition can
always be found by the Jordan-Hahn decomposition of signed measures, but
any other decomposition may also do the job.

Let us summarize the method: Suppose that Sθ is distributed according to
νθ and thatH ∈ H. Let us further assume that θ 7→ νθ is weakly di�erentiable
with triplet (cθ, ν

+
θ , ν

−
θ ). Then the fundamental equation

∂

∂θ
E[H(Sθ)] = cθ

[
E
[
H(S+

θ )
]
− E

[
H(S−

θ )
]]

(3.1)

holds, provided that the random variables realize the weak derivative, ie
they satisfy S+

θ ∼ ν+
θ and S−

θ ∼ ν−
θ . In our terminology, we call the random

variables S+
θ resp. S−

θ the positive resp. negative realization of the MVD.
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There are numerous papers, where the theory of MVD has been estab-
lished, (P�ug (1996), Heidergott and Vasquez-Abad (2006), Heidergott and
Hordijk (2004), Vasquez-Abad and Heidergott (2008)). The interchange of
expectation and di�erentiation is widely justi�ed, because probability den-
sities tend to be smooth functions of their parameters. The condition for
unbiasedness - the integrability condition- is a simple growth condition on
the payo� function H, see (Heidergott et al (2010)).

3.2 Examples of Weak Derivative triplets

Alternatively to the di�erentiation of measures, one may also di�erentiate
the characteristic functions: Suppose that φθ is the characteristic function of
νθ and suppose further that its derivative w.r.t. θ can be written as

∂

∂θ
φθ(u) = cθ(φ

+
θ (u)− φ−

θ (u))

where φ+
θ and φ−

θ are characteristic functions as well. Then we have found
the H-weak derivative triplet, where H is the space of all bounded functions,
which are continuous νθ-almost everywhere. For extension, suppose that Hp

is the space of all νθ-a.e. continuous functions, which do not grow faster
than |x|p. If we assume that (θ, u) 7→ φθ(u) is jointly di�erentiable in both
variables, but at least p-times w.r.t. u, then weak Hp-di�erentiability holds.

Before listing some examples, we review important relationships between
some probability distributions.

• If X ∼ Gamma(1/2, 2σ2) (ie a multiple of a χ2 distribution with one
degree of freedom), then

√
X is distributed as the absolute value of a

N(0, σ2) distribution.

• If X ∼ Gamma(1, 2σ2), (ie a multiple of a χ2 distribution with two de-
grees of freedom), then

√
X is distributed according to a Raleigh(σ2)

distribution, which is a Weibull distribution with exponent 2. The
Raleigh(σ2) distribution has density x

σ2 exp(− x2

2σ2 )1{x≥0} and charac-
teristic function

φ(u) = 1 + iuσ
√
2π exp

(
−u2σ2

2

)
Φ(iuσ),

where Φ is the analytic continuation of the normal Gaussian distribu-
tion function.
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Distribution νθ cθ Positive Part ν+
θ Negative Part ν−

θ

Poisson(θ) 1 Poisson(θ)+1 Poisson(θ)

Normal(θ, σ2) 1/σ
√
2π θ+Rayleigh(σ) θ−Rayleigh(σ)

Normal(µ, θ2) 1/θ ds-Maxwell(µ, θ2) Normal(µ, θ2)
Gamma(a, θ) a/θ Gamma(a+ 1, θ) Gamma(a, θ)

Gamma(a, b)+ θ 1/b Gamma(a, b) + θ Gamma(a− 1, b) + θ
Exponential(θ) 1/θ Exponential(θ) Erlang(θ,2)

Table 1: Examples of Weak derivatives. θ is the varying parameter.

• If X ∼ Gamma(3/2, 2σ2), (ie a multiple of a χ2 distribution with three
degrees of freedom), then

√
X is distributed according to a Maxwell(σ2)

distribution. The Maxwell(σ2) distribution has density√
2

π

x2

σ3
exp

(
− x2

2σ2

)
1{x≥0}

and characteristic function

φ(u) =

√
2

π
iuσ + 2 exp

(
−u2σ2

2

)
Φ(iuσ)(1− u2σ2).

The symmetrized and shifted version of it is called double sided Maxwell
distribution (ds-Maxwell(µ, σ2)). It has density

1

σ3
√
2π

(x− µ)2 exp

(
−(x− µ)2

2σ2

)
and characteristic function

φ(u) = (1− u2σ2) exp

(
iuµ− u2σ2

2

)
.

It is not di�cult to identify various weak derivative triplets using the
above relationships. The most important examples, to which we refer in this
paper are collected in Table 1. We can see that one of the realizations is often
distributed as the nominal part, which reduces the computational e�ort.

Remark 1. For a given continuous transform T, the image measure (push-
forward measure) νT of measure ν is de�ned as

νT(A) = ν(T−1(A)).
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If θ 7→ νθ is di�erentiable in the measure valued sense with derivative triplet
(cθ, ν

+
θ , ν

−
θ ), then also θ 7→ νT

θ is di�erentiable and has triplet (cθ, (ν
+
θ )

T, (ν−
θ )

T).
To put this into the level of realizations, if the triplet (cθ, X

+
θ , X

−
θ ) realizes

(cθ, ν
+
θ , ν

−
θ ), then (cθ,T(X+

θ ),T(X
−
θ )) realizes (cθ, (ν

+
θ )

T, (ν−
θ )

T).
This fact is especially important when one considers the transformation

of a Lévy process to an exponential Lévy process using the transform T(w) =
S(0) exp(w). If the two random variables X+ resp. X− realize the two parts
of the MVD of νθ, then S(0) exp(X+) resp. S(0) exp(X−) realize the two
parts of the MVD of νT

θ , ie of the exponential model.

3.3 The Measure Valued Derivative for Markov pro-

cesses

As was already said, we consider only discrete time homogeneous Markov
processes with in�nitely divisible increment distribution in this paper. Sup-
pose that ∆ is the time increment. With a slight abuse of notation, we write
now

Sθ(i) for Sθ(i∆)

bearing in mind that the maturity time T corresponds to the step n with
T = n ·∆.

To the process Sθ(i), i = 0, . . . , n we associate the transition operator

Pθ(w,A) = P{Sθ(i+ 1) ∈ A|Sθ(i) = w),

the starting distribution 3 γ and the payo� function H.
Introduce the following notations:

γPθ for the measure (γPθ)(A) =
´
Pθ(w,A) dγ(w),

PθH for the function (PθH)(u) =
´
H(w)Pθ(u, dw),

P2
θ(w,A) for the two-step transition P2

θ(w,A) =
´
Pθ(v,A)Pθ(w, dv),

Pn
θ (w,A) for the n-step transition.

Using this notation, we write for the expected payo� at maturity time
T = n ·∆

E [H(Sθ(n))] = γ Pn
θ H.

De�nition. The Markov transition Pθ(·, ·) is called weakly H-di�erentiable,
if there is a signed transition P′

θ such that for all functions h ∈ H and every
point mass δw (ie the probability distribution concentrated on the point w)

1

s
|δwPθ+sh− δwPθh− s · δwP′

θh| → 0

3While γ is in most cases just the point mass δS(0) at S(0), we allow here some slight
generalization.
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as s → 0.
The �nite signed transition P′

θ may be decomposed as

P′
θ(w,A) = cθ(w)[P+

θ (w,A)− P−
θ (w,A)], (3.2)

where P+
θ and P−

θ are regular Markov transitions. 4

Remark 2. For exponentials of processes with independent increments, the
situation simpli�es considerably. Since Sθ(t +∆) = Sθ(t) · exp(Xθ(t +∆)−
Xθ(t)), by weakly di�erentiating the increment distribution Xθ(t + ∆) −
Xθ(t), giving a positive realization, a negative realization and a constant
cθ, these can be transformed by the exponential transform (see Remark 2)
and this triplet does not depend on the previous state Sθ(t). Thus due to
the independent increment property of Lévy processes, the measure valued
di�erentiation of increments can be done very e�ciently.

Recall now the Leibnitz rule for the derivation of a power of operators

(Pn
θ )

′ =
n∑

i=1

Pi−1
θ P′

θPn−i
θ . (3.3)

Using the decomposition (3.2) this can be written in terms of MVD

∂

∂θ
E [H(Sθ(n))]] = γ

[
n∑

i=1

Pi−1
θ cθ

(
P+
θ − P−

θ

)
Pn−i
θ

]
H (3.4)

for bounded, continuous H, see Heidergott et al (2010).
Formula (3.4) can be used in di�erent ways to construct unbiased esti-

mates of ∂
∂θ
γ Pn

θ H as we introduce them below: the exact estimate MVDe,
the randomized estimate MVDr and the compromise estimate MVD(k). The
randomized estimators make use of the identity

n∑
i=1

ai = E[naτ ]

for a random τ , which is uniformly distributed on the integers 1, . . . , n. For
a compact presentation, we explain the compromise estimate MVD(k) �rst,
since the other estimates are special cases. The estimate MVD(k) generates
k phantom pairs (see below), where k is a divisor of n.

The compromise estimate MVD(k). Suppose that n = k · q.
4Notice that c(·) can be chosen in a measurable way, if (3.2) is the decomposition in

the positive and negative part. If another decomposition is chosen, one has to require
measurability.
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1. Sample k random uniform times τ1, ..., τk in (1, ..., q), ..., (q · (i− 1) + 1, ..., q · i),
..., ((k − 1) · q + 1, ..., k · q = n)

2. Sample Sθ(0) from the starting distribution γ.

3. Sample n steps with transition Pθ, giving Sθ(0), . . . , Sθ(n)

4. For all i = τ1, ..., τk sample one transition step from Sθ(i − 1) with
transition P+

θ and one with transition P−
θ , giving S+

θ,i−1(i) resp.S
−
θ,i−1(i)

using a coupling technique (see below). Store cθ(i).

5. Continue these processes S+
θ,i−1(l) resp.S

−
θ,i−1(l), l = i + 1, ..., n using

transition Pθ. It is advisable to use for both phantom processes the
same multiplicative increments as they were generated in step 2. The
processes (S+

θ,i−1(·), Sθ,i−1(·)) are called positive phantoms, resp. nega-
tive phantoms, together they are the phantom pairs.

6. The unbiased estimate is

m ·
k∑

i=1

cθ(i)
[
H(S+

θ,i−1(n))−H(S−
θ,i−1(n))

]
. (3.5)

7. The �nal estimate is the arithmetic mean of N independent replications
of estimate (3.5).

The MVD(k) algorithm includes the extreme cases: The exact algo-
rithm MVDe=MVD(n), where k = n, ie all n possible starting points for
the phantom process are considered; and the fully randomized algorithm
MVDr=MVD(1), where only one random starting point is considered.

MVDr tends to have a higher variance, because of introducing an ad-
ditional random variable τ. On the other hand, the MVDe algorithm has
smaller variance but because of summing up n elements, the computational
e�ort is much higher. The MVD(k) algorithm is a compromise between the
randomized estimator and the exact estimator.

The extreme algorithms MVDe and MVDr illustrated in Figure 3.3.

3.4 Variance reduction via coupling

The variance of a MVD estimator of the form c · (H(S+)−H(S−)) is given
by

c2 ·
(
V ar

[
H(S+)

]
+ V ar

[
H(S−)

]
− 2Cov

[
H(S+), H(S−)

] )
.

An appropriate choice of the positive and negative phantoms may cause
positive correlation and therefore lead to a reduced variance of the estimator.
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Figure 3.1: Left: MVDe with t = 1, n = 10 (all phantom pairs); Right:
MVDr, with τ = 4 (one randomly selected phantom pair).

Example. Sensitivity estimation w.r.t. µ in the Gaussian case:
Consider a normal distributed random variable X ∼ N(µ, σ2). When

calculating the sensitivity w.r.t. µ, the variable splits up into X+ ∼ µ +
Rayleigh(σ) and X− ∼ µ − Rayleigh(σ) according to the weak derivative
triplet, see Table 1. For coupling we have just to use the same Rayleigh(σ)
for the positive and negative part, see Heidergott et al (2008).

Example. Sensitivity w.r.t. σ in the Gaussian case:
Consider X ∼ N(µ, σ2) and we are interested in the sensitivity w.r.t. the

volatility σ. According to Table 1 we have that X+ ∼ µ+ ds-Maxwell(0, σ2)
and X− ∼ µ + N(0, σ2). According to Heidergott et al (2008), we use
following coupling method: First simulate V ∼ ds-Maxwell(0, σ2) and set
X+ = µ + V . Then sample an independent uniform random variable U
on (0, 1) and set X− = µ + UV . Then X− is normally distributed with
parameters µ and σ and is positively correlated with X+.

Example. Sensitivity w.r.t. λ in the Poisson case:
As it was already shown, a pair realizing the weak derivative in the Poisson

case can be chosen as X− ∼ Poisson(λ) and X+ = X− + 1.

Example. Sensitivity w.r.t. b in the Gamma case:
IfX− is generated according to Gamma(a, b), thenX+ ∼ Gamma(a+1, b)

may be generated as X+ = X− + V , where V ∼ Exponential(1/b).

4 Numerical results

In this section we present numerical results of sensitivity estimates. In par-
ticular, we consider two types of payo� functions:
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• The plain vanilla call payo�

H(s) = max(s−K, 0),

• The digital payo�
H(s) = 1{s>K}.

Since the second payo� is not di�erentiable, the pathwise di�erentiation
method fails in this case. For comparison, we have also considered the plain
vanilla payo�, showing the the results are reliable also in the di�erentiable
case.

Remark 3. Notice that in case that the derivative is taken w.r.t. the interest
rate r, ie if θ = r, also the derivative w.r.t. the discount factor e−rT has to
be taken into account. In this case

∂

∂r
E[e−rTH(Sr(n))] = −Te−rTE[H(Sr(n))] + e−rT ∂

∂r
γ Pn

r H. (4.1)

If however the sensitivity w.r.t. some other parameter is searched for, we
have just to calculate

∂

∂θ
E[e−rTH(Sθ(n))] = e−rT ∂

∂θ
γ Pn

θ H. (4.2)

In all the numerical examples we show, the time unit is 1 year and the
maturity time was set to T = 1. The elementary time step was set to one
trading day thus we chose n = 252 and ∆ = 1/n.

Remark 4. When considering the mean-correcting martingale measure, one
has to take also a derivative w.r.t. the exponential of the location parameter
into account. For instance, using the previous result about derivatives w.r.t
location parameter of the Gamma distribution, we obtain that the weak
derivative of E[H(S(n)em(θ))] w.r.t. θ, where S(n) = exp[X(n)], withX(n) ∼
Gamma(a, b) is

m(θ)′

b
[H(S(n)em(θ))−H(exp(V −)em(θ))]

where V − ∼ Gamma(a− 1, b).

4.1 The Geometric Brownian Motion

4.1.1 Rho (ρ): Sensitivity w. r. t. r

ρ =
∂

∂r
E
[
e−rTH(Sr(T ))

]
.
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Renaming the process Sθ(i∆) simply Sθ(i) we arrive at logS(i+1)−logS(i) =
V with V ∼ N(n−1(r − σ2/2), n−1σ2). According to the weak derivative
triplet of a Normal distribution, see Table 1, the positive resp. negative
realizations of the weak derivative are

[logS(i+ 1)− logS(i)]+ = (r − σ2/2)/n+ V +

[logS(i+ 1)− logS(i)]− = (r − σ2/2)/n− V −

with V + = V − ∼ Rayleigh(σ2/n) and cr =
1

σ
√
2πn

.

The Rho (ρ) for a Plain Vanilla Option. It is well known that the exact
value of Rho of an option on a non-dividend-paying stock can be calculated
as

ρ = KTe−rTΦ(d2)

with

d2 =
log(S(0)/K) + (r − σ2/2)T

σ
√
T

,

where Φ(x) is the standard normal cumulative probability function, see Hull
(2005).

Table 2 shows the performance of IPA (=Pathwise method), the FD (=Fi-
nite Di�erence method), MVDr (=randomized phantom estimator), MVDe
(=Measure Valued Di�erentiation with total di�erentiation) and MVD(6)
(Measure Valued Di�erentiation with di�erentiation at 6 random points)
when calculating the ρ for a plain Vanilla Option, whereas the Measure Val-
ued Derivatives were computed according to (4.1).
A single simulation of each estimator is based on N = 200 replications of the
stockprice path. 5 To compare the computational e�ort of the methods we
use the �work-normalized variance� (WNV) which is given by the product of
the variance and the expected work per run, see Glynn and Whitt (1992).

In this case, the IPA method performs better, but MVD(6) is not much
worse and is applicable for a much larger class of payo� functions.
The Rho (ρ) for a Digital Option. With the same inputs as we had
before for the Vanilla Option, we obtain the results shown in Table 3 for the
ρ of the Digital Option. The value of BS-Rho was taken out of
www.math�nance.de/optioncalculator.php.

4.1.2 Delta (∆): Sensitivity w. r. t. S(0)

∆ =
∂

∂S(0)
E
[
e−rTH(SS(0)(T ))

]
.

5Throughout the paper each estimator was simulated 300 times to get the arithmetic
mean of the estimator, the arithmetic mean of the computational time and the variance.

15



ρ̂ Variance computation time WNV

exact value 56.379

IPA 56.058 11.090 0.794 8.809

MVDr 55.901 20.736 0.824 17.088

MVDe 56.673 11.051 3.533 39.036

MVDc(6) 56.393 15.195 0.923 14.027

FD 63.135 1006.390 1.574 1584.51

Table 2: The Rho for a Vanilla Option in the BS-model, N = 200, S(0) =
100, r = 0.01, σ = 0.05, K = 100.

ρ̂ Variance computation time WNV

exact value 7.15

MVDr 7.070 4.508 0.783 3.528

MVDe 7.135 2.015 4.459 8.986

MVDc(6) 7.162 2.752 0.869 2.391

FD 6.37 23.773 1.5298 36.368

Table 3: The Rho for a Digital Option in the BS-model, N = 200

Notice that the parameter S(0) only in�uences the �rst step

logS(1) ∼ N

(
logS(0) +

(
r − 1

2
σ2

)
1

n
, σ2 1

n

)
.

According to the weak derivative triplet of a normal distribution

[log S(1)]+ = logS(0) + (r − σ2/2)/n+ V +

[log S(1)]− = logS(0) + (r − σ2/2)/n− V −

with V + = V − ∼ Rayleigh(σ2/n) and cS(0) =
√
n

S(0)σ
√
2π
.

Since only the �rst transition is parameter-sensitive, all three presented
algorithms coincide in this case.
The Delta (∆) for a Plain Vanilla Option. The exact value of Delta of
an option on a non-dividend-paying stock can be calculated by

∆ = Φ(d1)

with

d1 =
log(S(0)/K) + (r + σ/2)T

σ
√
T

16



∆̂ Variance computation time WNV

exact value 0.589

IPA 0.588 0.0013 0.7819 0.0010

MVDr 0.594 0.0022 0.7612 0.0017

FD 0.950 1122.625 1.498 1682.507

Table 4: The Delta for a Vanilla Option in the BS-model, N = 200.

∆̂ Variance computation time WNV

Delta 0.078

MVDr 0.078 0.0005 0.760 0.0004

FD -0.238 22.844 1.519 34.707

Table 5: The Delta for a Digital Option in the BS-model, N = 200.

where Φ(x) is the cumulative probability function for a standard normal
variable, see Hull (2005).

With the same inputs as we had before while calculating the Rho(ρ), we
obtain the results shown in Table 4 for the Delta (∆) of the Vanilla Option.

The Delta (∆) for Digital Options. With the same inputs as we had
before for the Vanilla Option, we obtain the results shown in Table 5 for the
∆ of the Digital Option. The value of BS-Delta was taken out of
www.math�nance.de/optioncalculator.php.

4.1.3 Vega (ν): Sensitivity with respect to σ

The realizations V, V +, V − are the same as for Rho. With probability p,

p =

|µ′
σ |

σσ

√
2π

|µ′
σ |

σσ

√
2π

+ σ′
σ

σσ

=
|µ′

σ|
|µ′

σ|+ σ′
σ

√
2π

=
σ
n

σ
n
+
√

2π
n

.

the positive and negative parts are

[log S(i+ 1)− logS(i)]+ =(r − σ2/2)/n− V +

[log S(i+ 1)− logS(i)]− =(r − σ2/2)/n+ V −

17



ν̂ Variance computation time WNV

exact value 38.897
IPA 38.923 19.393 0.789 15.293

MVDr 39.031 6889.428 0.771 5311.487
MVDe 38.715 83.938 5.635 473.001

MVDc(6) 38.943 1328.352 0.862 1144.891
FD 38.428 1186.400 1.5324 1818.002

Table 6: The Vega for a Vanilla Option in the BS-model, N = 200.

and with probability 1− p

[log S(ti+1)− logS(ti)]
+ = (r − σ2/2)/n+W

[log S(ti+1)− logS(ti)]
− = (r − σ2/2)/n+ UW.

with W ∼ ds-Maxwell(0, σ2/n) and U ∼ Uniform[0, 1]. For cσ we have

cσ = |µ′
σ|

1

σσ

√
2π

+
σ′
σ

σσ

=
|µ′

σ|+ σ′
σ

√
2π

σσ

√
2π

=

σ
n
+
√

2π
n

σ
√

2π
n

.

The Vega (ν) for a Plain Vanilla Option.
The exact value for Vega for an European Call or Put Option on a non-

dividend-paying stock is de�ned by

ν = S(0)
√
TΦ(d1)

with

d1 =
log(S(0)/K) + (r + σ2/2)T

σ
√
T

,

with Φ being the standard normal distribution, see Hull (2005), p. 336. With
the input arguments of the previous examples, we get results shown in Table
6.

4.2 The Variance Gamma model

4.2.1 Sensitivity w.r.t. b1

The log returns follow logS(i+1)−log S(i) = V1−V2 with V1 ∼ Gamma (a/n, b1),
V2 ∼ Gamma (a/n, b2) and

[logS(i+ 1)− logS(i)]+ = V +
1 − V2

[logS(i+ 1)− logS(i)]− = V1 − V2

18



Estimator Variance computation time WNV

MVDr -27.64 108.59 9.80 1064.71

MVDe -27.12 3.05 64.47 30.76

FD 11.69 14429.34 18.44 266077.03

Table 7: Sensitivity w.r.t. b1 of a Vanilla Option in the VG-model, N = 200.

with V +
1 ∼ Gamma(a/n + 1, b1) and cb1 = a

b1n
. Under the mean-correcting

martingale measure we have to calculate also the derivative w.r.t. the ex-
ponential of the correcting location parameter. According to Remark 4, we
calculate

[logS(T )− log S(0)]+ = W1 −W2

[logS(T )− log S(0)]− = W−
1 −W2

with

W1 ∼ Gamma(a, b1)

W2 ∼ Gamma(a, b2)

W−
1 ∼ Gamma(a− 1, b1)

and c = m
′

b1
/b = −a

b1(1−b1)
.

Sensitivity w.r.t. b1 for a Plain Vanilla Call Option.
In a simulation with input parameters: r = 0.01, a = 1, b1 = 0.01,

b2 = 0.01, S(0) = 100, K = 100, n = 252, h = 0.01 we get results shown in
Table 7.

4.3 The Compound Poisson model

4.3.1 Sensitivity w.r.t. b1

In the case of a Compound Poisson model the log returns follow

logS(i+ 1)− log S(i) =

N( 1
n
)∑

k=1

(p · V1 − (1− p) · V2)
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Estimator Variance computation time WNV

MVDr 31.104 116.727 0.259 30.28

MVDe 31.351 5.642 0.924 5.22

FD 31.176 1148.64 0.244 279.95

Table 8: Sensitivity w.r.t. b1 of a Vanilla Option in the CP-model, N = 200.

with V1 ∼ Gamma(a1, b1), V2 ∼ Gamma(a2, b2). Further

[logS(i+ 1)− logS(i)]+ =

N( 1
n
)∑

k=1

(
p · V +

1 − (1− p) · V2

)
[logS(i+ 1)− logS(i)]− =

N( 1
n
)∑

k=1

(p · V1 − (1− p) · V2)

with V +
1 ∼ Gamma(a1 + 1, b1) and cb1 = a1/b1.

Sensitivity w.r.t. b1 for a Plain Vanilla Call Option.
A simulation with input parameters: r = 0.01, λ = 10, a1 = 0.01, b1 =

0.01, a2 = 0.01, b2 = 0.01, p = 0.5, S(0) = 100, K = 100, n = 252, h = 0.01
yields results according to Table 8.

5 MVD for path-dependent payo� functions

In this section, we demonstrate how the MVD method can be modi�ed to
allow the sensitivity estimation of Lookback and Asian Options. These op-
tions are path dependent, ie the payo� depends on the whole history of the
underlying and not just on its value at maturity.

5.1 Lookback Options

A Lookback Option is based on the maximum value of the underlying. Let
Sθ(·) be the Markovian price process of the underlying. De�ne the maxi-
mum process as Mθ(i) = maxk≤i Sθ(k). The payo� of a Lookback Option is
H(Mθ(n)) and its fair price is
E[e−rTH(Mθ(n))]. Notice that the maximum processMθ is not Markovian it-
self, but it is the �rst component of the Markovian pair (Mθ(·), Sθ(·)). While
the evolution of the second component is as before and given by the transition
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of Xθ = log(S(t)), the transition of the �rst components is given by

Mθ(1) = Sθ(1)

Mθ(i+ 1) =

{
Sθ(i+ 1) if Sθ(i+ 1) > Mθ(i)

Mθ(i) otherwise.

Let P(M)
θ be the transition operator of this two-dimensional process. We aim

an unbiased estimate

∂

∂θ
E[e−rTH(Mθ(n))] =

∂

∂θ
e−rTγ

(
P(M)
θ

)n
H.

Here - of course -H applies only to the �rst component of the Markov process.
The MVDr algorithm for the Lookback Option.

1. Sample random uniform time τ in {1, ..., n}. Sample Sθ(1), ..., Sθ(τ) and
calculate Mθ(1), . . . ,Mθ(τ).

2. Then at time τ do
Use the positive resp. negative part of the derivative of Pθ to make one
transition from Sθ(τ − 1) to S+

θ (τ) and S−
θ (τ) respectively. Store cθ.

LetM+
θ (τ) = max(M(τ−1), S+

θ (τ)) andM−
θ (τ) = max(M(τ−1), S−

θ (τ)).

3. Continue the processes S+
θ (·) and S−

θ (·) using the transition Pθ and
calculate (M+

θ (ℓ), S
+
θ (ℓ)) resp. (M

−
θ (ℓ), S

−
θ (ℓ) for ℓ = τ + 1, . . . , n with

M+
θ (ℓ) =

{
S+
θ (ℓ) if S+

θ (ℓ) > M+
θ (ℓ− 1)

M+
θ (ℓ− 1) otherwise

resp.

M−
θ (ℓ) =

{
S−
θ (ℓ) if S−

θ (ℓ) > M−
θ (ℓ− 1)

M−
θ (ℓ− 1) otherwise

4. The unbiased estimate is

n · cθ · [H(M+
θ (n))−H(M−

θ (n))]. (5.1)

5. The �nal estimate is the arithmetic mean of N independent replications
of estimate (5.1).

To see the correctness of the algorithm notice that T(x) = max(x, c) is con-
tinuous therefore by Remark 2 it may be composed with the weak derivative
pair in the given manner.

As before, the MVDr algorithm constructs just one phantom pair. In
complete analogy to the standard option case, the MVDe resp. the MVD(k)
estimates can be constructed based on n resp. k pairs of phantoms.
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Estimator Variance computation time WNV

Rho 52.90

MVDr 52.849 19.557 0.761 14.873

MVDe 52.933 5.236 5.620 29.430

MVDc(6) 52.947 6.481 0.853 5.528

Table 9: The Rho for a Lookback Option in the BS-model , N = 200.

Estimator Variance computation time WNV

MVD 1.01 0.0014 0.76 0.0011

FD 1.40 1256.46 1.54 1933.6

Table 10: The Delta for a Lookback Option in the BS-model , N = 200.

Example (BS-model: The Rho (ρ) for a Lookback Option). In a simulation,
with S(0) = 100, r = 0.01, σ = 0.05, K = 100, T = 1 and a sample size of
N = 200 we get results shown in Table 9, whereas the Measure Valued
Derivatives were computed according to 4.1, just replacing Sr(n) by Mr(n).
The value for Rho was taken from www.wolframalpha.com.

Example (BS-model: The Delta (∆) for a Lookback Option). In a simula-
tion, with S(0) = 100, r = 0.01, σ = 0.05, K = 100 and a sample size of
N = 200 we get results shown in Table 10, where S+ respectively S− were
computed as described on page 21, and were implemented in the algorithm
for Lookback Options to obtain M+ respectively M−.

Example (VG-model: Sensitivity w.r.t. b1 for a Lookback Option). Table
11 shows the results with following input parameters: T = 1, S(0) = 100,
K = 100, r = 0.01, a = 1, b1 = 0.01, b2 = 0.01, n = 252, h = 0.01 (for FD).

5.2 Asian Options

An Asian Option is based on the average value of the underlying. Let Sθ(·) be
the Markovian price process of the underlying. De�ne the average process as
Aθ(k) =

1
k

∑k
i=1 Sθ(i). The payo� of an Asian Option is H(Aθ(n)) and its fair

price is E[e−rTH(Aθ(n))]. Notice that the average process Aθ is not Marko-
vian itself, but it is the �rst component of the Markovian pair (Aθ(·), Sθ(·)).
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Estimator Variance computation time WNV

MVDr 85.27 51.99 9.75 506.74
MVDe 84.58 2.47 20.99 51.93
FD 89.32 217.70 18.53 4034.30

Table 11: Variance Gamma process (Lookback), Sensitivity w.r.t. b1, N =
200

While the evolution of the second component is as before and given by the
transition of Xθ = log(S(t)), the transition of the �rst components is given
by

Aθ(i) =
i

i+ 1
Aθ(i− 1) +

1

i+ 1
Sθ(i). (5.2)

Let P(A)
θ be the transition operator of this two-dimensional process. We aim

an unbiased estimate

∂

∂θ
E[e−rTH(Aθ(n))] =

∂

∂θ
e−rTγ

(
P(A)
θ

)n
H.

Here - of course -H applies only to the �rst component of the Markov process.
The MVDr algorithm for the Asian Option.

1. Sample random uniform time τ in {1, ..., n}. Sample Sθ(1), ..., Sθ(τ−1)
and calculate Aθ(1), . . . , Aθ(τ − 1).

2. Then at time τ do: Use the positive resp. negative part of the deriva-
tive of Pθ to make one transition from Sθ(τ − 1) to S+

θ (τ) and S−
θ (τ)

respectively. Store cθ. Let

A+
θ (τ) =

1

τ + 1

τ · A(τ − 1)︸ ︷︷ ︸∑τ−1
i=0 Sθ(i)

+S+
θ (τ)


resp.

A−
θ (τ) =

1

τ + 1

τ · Aθ(τ − 1)︸ ︷︷ ︸∑τ−1
i=0 Sθ(i)

+S−
θ (τ)

 .

3. Continue the processes S+
θ (·) and S−

θ (·) using the transition Pθ and
calculate (A+

θ (ℓ), S
+
θ (ℓ)) resp. (A

−
θ (ℓ), S

−
θ (ℓ) for ℓ = τ + 1, . . . , n with

A+
θ (ℓ) =

ℓ

ℓ+ 1

(
A+

θ (ℓ− 1) +
1

ℓ
S+
θ (ℓ)

)
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resp.

A−
θ (ℓ) =

ℓ

ℓ+ 1

(
A−

θ (ℓ− 1) +
1

ℓ
S−
θ (ℓ)

)
.

4. The unbiased estimate is

n · cθ
[
H(A+

θ (n))−H(A−
θ (n))

]
. (5.3)

5. The �nal estimate is the arithmetic mean of N independent replications
of estimate (5.3).

Also in this case, one may use the variants MVDe and MVD(k).

Example (BS-model: The Rho (ρ) for an Asian Option ). The payo� func-
tion of a plain vanilla Asian Call Option is de�ned as

H(S(T )) = e−rT max

(
0,

1

T

T∑
t=1

S(t)−K

)
.

With S(0) = 100, r = 0.01, σ = 0.05, K = 100, T = 1 we get re-
sults shown in Table 12, where the value for the BS-Rho was taken from
www.wolframalpha.com.

Estimator Variance computation time WNV

BS-Rho 27.111

MVDr 27.30 8.12 0.7617 6.18

MVDe 27.14 2.80 6.3196 17.68

MVDc(6) 26.99 3.01 0.8968 2.70

Table 12: BS-Rho (Asian) via Average process, N = 200.

6 Relation to Portfolio Risk Optimization and

Conclusion

The �Greeks� can be seen as measures of the risk against changes of parame-
ters of the underlying processes. In a portfolio hedging situation, one may try
to compose a portfolio, which is as little sensitive w.r.t. parameter changes
as possible. Suppose that there are m contracts in a portfolio, where the
value V (i) of the i-th contract depends on parameters (θ1, . . . , θℓ). Denote

the parameter sensitivity w.r.t. θj of the i-th contract by V
(i)
θj
. With the
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portfolio weights xi, the objective is to make
∑m

i=1 xiV
(i)
θj

as close to 0, e.g.
by minimizing (

m∑
i=1

xiV
(i)
θj

)2

.

One sees that this requires to estimate V
(i)
θj
, which is the topic of this paper.

We have presented the fundamentals of Measure Valued Di�erentiation
(MVD) and provided new MVD-type algorithms to derive the �Greeks� for
Lévy-type processes in discrete time. We have tested MVD within the clas-
sical Black-Scholes framework, obtaining consistent results for the Greeks.

The strength of MVD solidi�es in the case of discontinuous payo� func-
tions (ie Digital Option) and for Lévy type, where pathwise di�erentiation
fails. In cases where MVD and the Score Function method can be applied,
MVD has typically smaller variance, see Heidergott at al (2008). Also, for
MVD the knowlegde of the explicit form of the transition density is not
required in contract to the SF method. With the compromise estimator
MVD(k) one can balance computational e�ort against precision.

References

Capriotti, L. (2011). Fast Greeks by algorithmic di�erentiation. The Journal
of Computational Finance Vol. 14, No. 3, pp. 3-35

Fu, M. Variance-Gamma and Monte Carlo. In: Advances in Mathematical
Finance (M. Fu, R.A. Jarrow, J.-Y. Yen and R.J. Elliott eds.) pp. 21-35,
Birkhauser, Boston, 2007 Glasserman, P. (2004). Monte Carlo Methods in
Financial Engineering. Springer Verlag

Glasserman, P. and Liu, Z. (2010). Estimating Greeks in simulating Lévy-
driven models. The Journal of Computational Finance, Vol. 14, No. 2, pp.
3-55

Glynn, P. and Whitt, W. (1992). The asymptotic e�ciency of simulation
estimators. Operations Research, Vol. 40, No. 3, pp. 505-520

Heidergott, B. and Hordijk, A. (2004). Single-run gradient estimation via
measure-valued di�erentiation. Automatic Control, IEEE Transactions, Vol.49,
No.10, pp. 1843- 1847

Heidergott, B. and Leahu, H. (2010) Weak di�erentiability of product mea-
sures. Mathematics of Operations Research, Vol. 35, pp. 27-51

25



Heidergott, B. and Vazquez-Abad, F.J. (2006). Measure-valued di�erentia-
tion for random horizon problems. Markov Processes Related Fields, Vol. 12,
pp. 509-536

Heidergott, B., Vazquez-Abad, F.J., P�ug, G.Ch. and Farenhorst-Yuan, T.
(2010). Gradient estimation for discrete-event systems by measure-valued
di�erentiation. ACM Transactions on Modeling and Computer Simulation
(TOMACS) , Vol. 20 (1), Association for Computing Machinery

Heidergott, B., Vazquez-Abad, F.J. and Volk-Makarewicz, W. (2008). Sen-
sitivity estimation for gaussian systems. European Journal of Operations
Research, Vol. 187, pp. 193-207

Hull, J.C. (2005). Fundamentals of Futures and Options Markets. Pearson
Education, �fth edition

Miyahara, Y. (2005). Martingale measures for the geometric Lévy models.
Graduate School of Economics Nagoya City University. Montero, M. and
Kohatsu-Higa, A. (2003). Malliavin Calculus applied to Finance. Physica,
Vol. 320, pp. 548-570

P�ug, G.Ch. (1996). Optimization of Stochastic Models. Kluwer Academic
Publishers

Sanz-Sole, M. (2005). Malliavin Calculus. EPFL Press

Schoutens, W (2003). Lévy Processes in Finance. Wiley Series in Probability
and Statistics

Vazquez-Abad, F.J. and Heidergott, B. (2008). Measure-valued di�erentia-
tion for Markov Chains. Journal of Optimization Theory and Applications,
Vol. 136, pp. 187-209

26


