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PREFACE

Two previous papers (IIASA Professional Papers PP-78-10
and PP-79-3) have reported some of the results fro~ a small
collaborative project investigating the modeling and control
of the activated sludge process of wastewater treatment.
This brief paper provides a more detailed evaluation of a
fuzzy controller for the activated sludge process. Such an
approach to process control utilizes the empirical operating
experience of the plant manager. ~~ost conventional control
system design procedures, in contrast, are based upon analysis
of a model of process dynamic behavior. Given the current
limitations in understanding and instrumentation of the acti
vated sludge process, fuzzy control appears to be a particularly
appropriate approach to adopt for process control.
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SUMMARY

The activated sludge process is a commonly used method
for treating sewage and waste waters. It is characterized
by a lack of relevant instrumentation, control goals that
are not always clearly stated, the use of qualitative infor
mation in decision making and poorly understood basic behavior
mechanisms. In this brief paper we examine the behavior of
an experimental fuzzy control algorithm constructed to reflect
actual operational practicp.. We conclude that this algorithm
does rather well and that a fuzzy controller would be a
useful and practical way of regulating the activated sludge
process.
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1. !ntroduction.

Fuzzy controllers have been successfully used in a

variety of applications (see Tong, 1977 for a review). In all

of these applications, however, the control goals were clearly

specified, accurate and reliable measurements of the relevant

process variables were available and, perhaps more importantly,

none of the controlled processes had more than two inputs or

two outputs. It would be hard to argue, therefore, that these

were "difficult" control problems. Nonetheless, the success

has encouraged the belief, at least amongst its advocates,

that the fuzzy approach can be used on a wide variety of pro

cesses.

In this ~aper we report on some results fro~ a con

tinuing study of the role of fuzzy set theory in the control

of the activated sludge wastewater treatment process (ASP).

The ASP is characterized hy a lack of relevant instrumentation,

control goals that are not always clearly stated, the use of

qualitative information in decision making and poorly under

stood basic behavior mechanisms. As such, it appears to be

an ideal candidate for fuzzy control and is certainly a more

severe test of the methodology than previous applications.

Section two of the paper outlines the behavior of the ~SP

and highlights the principal control problems. Section three

discusses one particular controller with which we have experi

mented and analyzes some of the resulting closed loop re

sponses. We then make some general comments on the design of

fuzzy controllers.
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2. The Activated Sludge wastewater Treatment Process.

The ASP is one of a number of unit processes used for the

treatnent of sewage and waste waters. The basic feature of the

process is the decomposition of complex dissolved and suspended

organic substrates into simple end-products such as carbon

dioxide and water. Decomposition is achieved by a hetero

geneous culture of micro-organisms (the activated sludge), which

in part utilize the waste organic substrates in the synthesis

of their own biological cell material.

Our studies have been concerned primarily with a particu

lar ASP plant at the ~fuitlingham Treatment Works, Norwich,

England. This installation is shown diagramatically in Figure l~

If we consider only that part of the diagram within the dotted

lines, we see that there are two stages in the overall process:

an aeration tank followed by a clarifier/settler. Correct

operation of the process requires, among other things, the

following three items. First, the influent sewage entering

the process has to be mixed intimately with the recycled sludge;

in principle there exist ranges of desirable proportions in

which substrate (sewage) and organism (sludge) should be mixed

(cashion, Keinath, and Schuk, 1977). Second, air is blown

into the Mixed liquor through diffusers placed along the base

of the tank; this gives the required agitation of the mixed

liquor, provides the necessary aerobic environment for growth

of the sludge organisms, and can be a key factor in operational

control (Olsson and Andrews, 197C). Third, the settler must

effect good separation between the biological floc (sludge)
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and the clarified effluent; excess biological solids in the

ASP ~ay be manipulated by the removal of waste sludge. Recent

work on the application of automation and control to the ASP

is surveyed by Olsson (1977).

Local control action is taken at the Norwich ASP to help

achieve these aims. Thus, as shown in Figure 1, recycle sludge

ratio (defined as the ratio of influent flow rate, QI' to

recycled sludge flow rate, QR) is regulated by feedforward

control of QR using measurements of QI. Dissolved oxygen

(DO) in the aeration tank is regulated by feedback control of

the airblowers using a measurement of DO. v]aste sludge flow,

Qw' is set by the plant manager.

An ASP that is performing as required will be producing

an effluent that meets some standard. In Britain, this is

simply a reco~~endation that the total (S-day) biochemical

oxygen demand exerted by the effluent should be less than

20 gm- 3 and that the amount of suspended solid material in the

-3effluent should be less than 30 gm . Whilst these are

hard constraints on the process, a plant manager can choose

to operate as close to them as he feels is practical. In

a real sense, therefore, there is Borne fuzziness associated

with these values. There are secondary goals, but these

will differ from installation to installation and will depend

primarily on the quality and type of sewage that the process

receives. However, one of the most important of these is

that ammonia in the effluent is kept at acceptable levels.

The major disturbances to the process are in the form of

fluctuations in the composition and flow of the influent.
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There are short term diurnal variations as well as long term

trends which together can easily produce changes of up to

50% in the average quality of the influent.

Our control problem is thus simply stated. How can we

manipulate recycle ratio set point (RRSP), dissolved oxygen

set point (DOSP) and waste sludge flow (SWR) so that we main

tain effluent quality despite these large variations in the

influent?

3. The Fuzzy Controller

At the core of the controller is a fuzzy algorithm for

determining the appropriate control actions given the current

state of the process. Because the algorithm expects fuzzy

sets as inputs, the non-fuzzy process measurements have to be

converted in some way. \1e have adopted the conventional

technique of representation by fuzzy singletons. Similarly,

since the process responds only to non-fuzzy control actions,

the fuzzy control sets generated by the algorithm have to be

de-fuzzified. We do this by selecting that control value

which divides the area under the membership function in half.

The closed loop configuration is thus as shown in Figure 2.

The basic design problem is to construct the fuzzy algo

rithm. In doing this we have relied on the considerable prac

tical experience of one of us (AL) in the day-to-day management

of the ASP. The first task is to determine the fuzzy input

(measurement) variables for the algorithm, the fuzzy output

(control) variables and the primary fuzzy sets associated with
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each of these. The set definitions have not been included here

because of space limitations; however, the input and output

variables are listed in Table 1.

We have experimented with several algorithms but will re

strict our discussion to one that has several interesting

features. It ·is shown in Table 2 and consists of 20 rules.

Symbols such as S, ~L and SP are mnemonics for fuzzy sets

which in this case are "small," "not large" and "small positive."

Each rule in the algorithm is interpreted as a fuzzy statement

of the form

WHEN:t.. DO ~

where ~ is a fuzzy proposition about process conditions in terms

of the measurements and whpre Q is a fuzzy proposition about

appropriate control actions. The propositions are interpreted

as multi-dimensional fuzzy sets and the rule itself is defined

as their cartesian product. Individual rules are cOIDbined

using the union (Aaxi~uM) operation to forn the overall con

troller relation.

The reasoning behind the algorithm is briefly as follows

(for a more detailed description of the role of similar rules

see Beck, Latten, and Tong, 1978). Rules 1-3 are resetting

rules in that, if the process is in a satisfactory state but

DOSP and/or SWR are at abnormal levels, then DOSP and/or SWR

are adjusted accordinqly. Rules 4-7 deal with high effluent

suspended solids caused by a rising or bulking sludge (these

terms are briefly defined in Table 1). Rules 8-11 deal with

high NII 3-N levels in the effluent. Rules 12-13 cater for high
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effluent solids caused by factors other than FIL or DNIT and

rules 14-18 describe the required control action if MLSS is

outside its normal range. Rules 19-20 deal with the problem

of a high effluent BOD.

Notice that most rules are concerned with changes to SWR.

This reflects the fact that in practice waste sludge flow is

used most often to correct for effluent quality variations.

Notice too, that the rule set does not, by any means, exhaust

all the possible process states. It may be thought of as a

"sparse algorithm." To test this algorithr'l we ran a simula

tion of the ASP using a non-linear differential equation

model (with 14 state variables) and applying a disturbance

sequence derived from corresponding observations recorded at

the Norwich plant. Conceptual aspects of the model are described

in Beck, Latten, and Tong (1978); some accompanying identifi

cation results are reported in Beck (1979).

Figure 3 shows thus the open loop response of ESS and

ETBD on an hourly basis for 600 hours (i.e., 25 days). Clearly,

the process is not functioning properly. There are large

excursions in both ESS and ETBD in the early and late parts

of the simulatjon (caused in fact by a bulking sludge condi

tion). Also, NE 3-N levels in the effluent are high except for

the first 100 hours.

The controlled responses to the saMe disturbance sequence

are shown in Figures 4-6. The controller sampling period is

set at 4 hours in this run (i.e., six possible changes in con

trol action in each 24 hours). Figure L~ shows the hourly ESS

and ETBD values; Figure 5 shows the hourly NH 3-N and MLSS
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values and Figure 6 shows the corresponding values of RRSP,

DOSP and SWR. Notice, straight away, that the early and late

bulking sludge conditions have been suppressed. Notice too

that the ETBD and ESS levels are well within the 20:30 limits,

except for three occasions between 400 hours and 475 hours.

These three occasions, which represent a significant loss of

solids over the clarifier weir, are precipitated by problems

of a rising and a bulking sludge, with both problems being

partly a complex function of over-aeration (see DOSP in Figure

6). There is generally good nitrification throughout the

period with NH~-N rarely being above 15 gm- 3
J

Our preliminary conclusion must be that the controller

works rather wAll. However, it does have some defects and in

exploring these we shall make use 0f an analytical tool which

we call a "rule activity chart." Figure 7 shows the rule

activity for 6DOSP (top two traces) and for 6RRSP (lower four

traces). Figure B shows the rule activity for 6SWR. The

horizontal axis is time and the vertical axis is the degree

to which the input proposition L is satisfied. Thus these

charts tell us which rules are contributing to the non-fuzzy

control actions applied to the process.

Since in this paper we are primarily concerned with the

operational aspects of the fuzzy algorithm, rather than a

detailed analysis of the ASP's responses, we shall limit

ourselves to a discussion of just two features of the closed

loop behavior. Despite our assertion that in practice SWR

is the most often used control variable, we see from Figure 6
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that RRSP is frequently changed. The activity charts of

Figure 7 indicate th~t this is primarily due to rules 12 and

17. But notice that these rules are often activated at very

low levels. This suggests that \>ore mi~ht introduce some kind

of threshold for rule activation.

A way of doing this that is consistent with the fuzzy

set theory is to employ the concept of "truth qualification"

(see Zadeh .. 1978). Thus we can modify the rules in our

algorithm so th~t they have thp. form

where T is a fuzzy truth set which modifies the proposition

t . +:t. 0 glve 1.. • +Following Zadeh, Y is defined by a membership-
function such that

~ +(y)
Y-

= ~T(~ (y))
Y-

A suitable choice for T will achieve the desired effect (e.g.,

~ (t) = t if t > threshold, ~ (t) = 0 if t < threshold).
T - T

We believe that this technique could have been applied to

all the fuzzy controllers that have been reported. Because

it allows us to weight the importance of individual rules,

it is a very flexible and useful design tool.

The second point we should like to highlight is the

behavior of the control variable SWR. A comparison of the two

responses shows that SWR is highly correlated with MLSS but

lags it by approximately 20 hours (see Figures 5 and 6). There

are two main reasons for this. Firstly, because of the
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incremental form of the rules for SNR it takes tiMe for SWR to

achieve the necessary levels demanded by the process conditions.

Then secondly, because the rules do not take into account

rate-of-change of MLSS they cannot di~tinguish between a

condition in which action is required (e.g., MLSS low and

decreasing) and one in which it is probably not (e.g., MLSS

low but increasing). Thus SWR is being changed long after

such changes are required. Consequently, it is felt that in

general an incremental fuzzy algorithm should take account

of both the level and rate-of-change of the appropriate

measured variables. We note that many of the pUblished algo

rithms do exactly this.

Obviously, there are many other features of these responses

which are of interest. However, they require a detailed under

standing of the ASP and are outside the scope of this paper.

4. Conclusions.

Our aim in this brief paper has not been to present a

final solution to the ASP control problem. Rather it has been

to show that a fuzzy algorithm based on practical experience

can be made to work on this difficult process. In doing so,

we have made some general comments about the form and struc

ture that fuzzy algorithms should take.

Our results must clearly be qualified by the fact that

evaluation of the controller has been undertaken with a

process simulation. The present level of accuracy for such

models for biological waste treatment processes is but little

advanced beyond the primitive stage. Nevertheless, we do not
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hesitate in asserting that a fuzzy algorithm would be a

useful and practical way of regulating the activated sludge

process. Indeed, a recent su~,ey of factors limiting waste-

water treatment plant performance by Hegg, Rakness and

Schultz (1978) lends substantial support to our argument.

They observed, in particular, that:

"The highest ranking factor contributing to
roor plant performance was operator applica
tion of concepts and testing to process con
trol."

" •.• present plant personnel are an untapped
source for achieving improved performance."



TABLE 1.

Input Variable

ETBD

ESS

MLSS

RASS

DNIT

DOSP

SWR

Output variable

DOSP

RRSP
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Description

the rotal BOD exerted by the effluent

the suspended solids in the effluent

the suspended solids in the sludge

leaving the aeration tanks (the mixed

liquor)

the suspended solids in the recycled

sludge

the ammonia-N in the effluent

a measure of a condition in the clari

fier called "bulking sludge"; this is

caused by the presence of filamentous

bacteria which prevent settling.

a measure of a condition in the clari

fier called "rising sludge"; this is

caused by denitrification whereby

nitrogen gas is fermed and then rises

to the surface of the clarifier brin~ing

sludge with it.

the DO set point in the aeration tank

the waste sludge flow rate

Description

change in DOSP; i.e., DOSP(t)=DOSP(t-l)

+llDOSP(t)

change in recycle ratio set point; i.e.,

RRSP (t)=k+llRRSP (t) where k is a constant



SWR
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change in SWR: i.e., SWR(t)~SWR(t-l)

+L\s~m (t)



TABLE 2.
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0
Z 0-, P-t P4'-

P4 U) U) p::
(lJ Cl U) U) I E-i p:: 0 p:: ~
r-l o::l U) U) U) M H H U) ..-
::l E-i U) H ~

::r: H Z 0 :?: Cl p:: U)

p:: ~ ~ ~ Z ~ Cl Cl U) <J <J <J

1 S S M M S L LN

2 S S M H S S SP

3 S S M M S L SN

4 M 1 SP

5 L 1 LP

6 M 1 SN

7 L 'I LN

8 S M SP

9 S M SN

10 S L LP

11 S L LN

12 .L M SP

13 L L LP

14 L LP

15 S SN

16 VS LN

17 VS S SP

18 L L SN

19 M S S SN

20 L S S LN
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Figure 2. Closed loop configuration.
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