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PREFACE

This paper deals with the convergence of stable and consis­
tent one-step approximations for linear parabolic initial­
boundary-value problems with non-smooth solutions. The proofs
given may be extended to semilinear parabolic problems using
H.B. Keller's stability concept. Finally an extension to Lax's
convergence theorem is given.
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NUMERICAL SOLUTION OF PARABOLIC
PROBLEMS WITH NON-SMOOTH SOLUTIONS

P. Markowich

In this paper we consider the problem:

= a(x,t)U + b(x,t)U
x

+ c(x,t)U + f(x,t),xx

(x,t) E: (0,1) x (O,T)

II) U(x,O) = U (x)
o ,xE:[0,1] , T > 0

III) U(O,t) = YO(t), U(1,t) = Y1 (t), t E: (O,T]

(I) is called a linear inhomogenous parabolic differential equa­

tion in one space ,variable x, (II) the initial condition and

(III) the boundary conditions.

For the following we make the assumptions:

(A) a, b, c, f E: Cr ([0,1] x [O,T]), r sufficiently large

(B) a(x,t) ~ k > 0, (x,t) E: [0,1] x [O,T] stability condition

(C) Uo(O) = Yo(O), Uo (1) = Y1 (0) continuity of initial and

boundary functions.
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We know that the initial and boundary functions determine the

differentiability (smoothness) of the solution U in the points

(0,0) and (1,0), which is important for the smallness of the local

error of a consistent numerical procedure.

If U , Y and Y1 are continuous functions then a unique solu­
o 0

tion U exists, which is continuous on [0,1] x [O,T] and therefore

bounded in the closed set [0,1] x [O,T], and if U E C
3

([0,1]);o
YO' Y1 E c2

([O,T]) and Y; (0) (y~ (0)), u; (0), U~ (0), Uo (0)

(U" (1), U' (1), U (1)), set for Ut ' U , U , U into the differen-o 0 0 xx x
tial equation I), fulfill I), then U, Ut ' U , U are continuousx xx
and -bounded on [°,1] x [0, T]. See [1] and [ 2] .

We gain a numerical procedure by choosing numbers Nand M,

and by forming the step sizes n = 1./N in x- direction and

k = 1./M in t- direction, and by substituting appropriate differ­

ence approximations for Ut ' U , U in the net-points (x., t )- x xx 1 n
with x. = ih and t = nk. So we can write our procedure in the

1 n
following form assuming that h = h(k) with lim h(k) = °

k-+O

(*) n = 1 (1 ) H with

U
O = U0 = (U°(X 1 ),. . .. ,

If BO(k,tn ) = I, we call the scheme explicit, otherwise implicit.
nThe U 's are (N-1)- vectors with the approximate solutions on the

n-th time level, R(k,t ) is the (N-1)- vector with worked-in
n "-

boundary-conditions on the n-th time level, f(t ) is the vector
n

with the approximations for f(x.,t ), i = 1 (1)N-1, i.e.,
"- 1 n T

Ilf(t) - (f(x 1 ,t), ... , f(xN 1,t) 11-+0 for k-+O with some appro-n n - n
priate norm, and B (k,t ), B1 (k,t 1) are (N-1)- square matriceso n n-
derived from the difference approximations for the derivatives.

We define the local error of the procedure (*) for the para­

bolic problem I), II), III) in the solution U as the sequence of

vectors.
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- f (tn ), n = 1 (1 ) M

where U(t.) are the vectors containing the solution U evaluated
~

in the net-points of the i-th-time-Ievel. Further we say that

(*) is consistent with I), II), III) in U of order I if

IILn (u,k)11 ~ C(U)k l , where C(U) is bounded and independent of n.

We can show by Taylor's expansion that C (U) is a finitelinear com-:­

bination of bounds of partial derivatives of U on the rectangle

[0,1] x [O,T], if II-II is the maximum norm. The second important

concept concerned with difference approximations is stability.

We call the difference scheme (*) stable, if BO(k,tn ) is invert­

ible for k ~ ko and for all n ~ N and if IIB O-1 (k,tn ) II ~ P for

k ~ k and n ~ N where P is independent of k and n and ifo

with 1 ~ m ~ n, where L is independent of n, m and k. Further

we say that (*) is convergent to U, if for t = t = nk fixed,n
limIlUn(k) - U(tn)11 = 0 uniformly in t(Un(k) = Un).
k+O
n+oo

The sequence of vectors En(k) = Un(k) - U(t ) is called global
n

error. We easily conclude convergence from stability and consis-

tency. By solving the recursive relation (*) for Un = Un(k) we

find: IIUn (k)1I ~ Llluoll + P(TL+1) max IIf(t.)1I presuming
1~i~ ~

YO = Y1 = O. That means that Un(k) depends ~ontinuously on the

initial condition UO and on the disturbance f (in the norm II II).

For the following we set II xII = max Ix. I for
i=1(1)N_t

T N-1
X = (X 1 ' . _., ~-1) e: JR - Now we can prove:

Theorem 1: consider the parabolic problem I), II) and III) with

the assumptions (A), (B) and (C). Let (*) be a finit difference

approximation to I), II) and III), which is stable and consistent

of the order I with problems of the form 1*, 11*, III with
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solutions in e m ( [0,1] x [O,T]) (problem-I), II), III) with inhomo­

genity in e m- 2 ([0,1] x [O,T]) and changed initial function) and

let Uo' YO' Y1 of the given problem fulfill:

a) YO (0)

b) Y1 (0)

" I
= a(O,O)U (0) + b(O,O)U (0) + c(O,O)U (0) + f(O,O)
000

" I
= a(1,0)U

o
(1) + b(1,0)Uo (1) + c(1,0)Uo (1) + f(1,0)

with YO' Y1 s em([O,T]), Uo s e 3 ([0,1)], then the numerical pro­

cedure (*) is convergent for the given problem I), II) and III)

in the maximum norm.

Proof: as mentioned before there exists a unique solution U of

the given problem, so that U, Ut ' Ux' Uxx are continuous and

bounded in [0,1] x [O,T]. (Proof in [1]).

Now let s>o be fixed. We construct the sequence of Bernstein

polynomials to U on [0,1] x [O,f]

Bn(U,x,t)

and know that: B
n

(U, • , .) -+ U

a
Bn (U, • , • ) -+ Utat

a
Bn (U , . , . ) -+ U

ax x

a2
---2 B (U,.,.) -+ U
ax n xx

uniformly on [0,1] x [O,T] for n -+ 00.

1 2As Butzer has shown in [3] for functions U in e ([0,1] ), we

can prove it for our case.

Now we set Us = Bn(U,.,.) with n > N(s) fixed so that

and define: V s = Us -[(1-x) (UsP,t)-YO(t)) + x (Us (1,t)-Y 1 (t))].



We have {vE (O,t) = YO (t)}

v E (1 ,t) = Y1 (t)
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and v E is a function

in Cm([0,1] x [O,T]), because· YO' Y1 are in Cm([O,T])
00

Bn(U, .. ) = UE is in C ([0,1] x [O,T]) and moreover:

II U-v II 00 +11 Ut-v til 00 +11 U -v II 00 +11 U -v II 00 ~ 2E+2E+2E+E = 7 EE E X EX XX EXX

That means, that we have constructed a function v in Cm ([0,1] x
E

x [O,T]) which has the boundary values as U and which approximates

U, Ut ' Ux and Uxx uniformly on the closed rectangle [0,1] x [O,T].

We consider the neighboring problem:

1*) v
t

= a(x,t)vxx + b(x,t)vx + c(x,t)v + f(x,t) +

(x,t) E (0,1] x (O,T]

11*) v(x,O) = v (x, 0), X £ [0 , 1 ]
E

III) v(O,t) = YO(t), v(1,t) = Y1 (t), t E [O,T] [111* = III]

which has the unique solution v = v .
E

m-2Z E C ([0,1] x [0,1]),
E

and conclude

liz 1l00~IUt-a(x,t)U -b(x,t)U -c(x,t)U';"f(x,t}lI+E xx x

+IIUt -v t-a(x,t) (U -v )-b(x,t) (U -v )-c(x,t) (U-v )II~E xx EXX X EX E



The numerical procedure for 1*),11*), III) has the form

, n = 1(1)M

T= (v E: (x1 ' 0), - , V E: (x N- 1 ' 0) )

and converges to v of oider 1, that means:s
IIVn(k) - V (t )11 ~ C(s)kl , because the order of convergence is

s s n
the same as the order of consistency in the case of smooth solu-

tions.

The procedure for I), II), III) is:

f(t )
n

We subtract (v) from (vv) and get:

T
••• , Uo (xN - 1 ) - v s (xN_1'O»

We use that the solution of a difference equation of this form

depends continuously on the initial condition and on the disturb­

ance, if the boundary conditions are homogenous:

We get for t = nk fixed in (O,T]:

IIU(t)-Un(k)II~IU(t)-v (t)II+lIv (t)-Vn(k)II+IIVn(k)-Un(k)ll~
s s s s

1 1
~7s + C(s)k + C2s = (7+C 2 )s + C(s)k



1
For k< (C td )I we get II U (t) _un (k) II ~(8+C2) E:, where C2 is independent

of n, E: and k. If we start the proof with 8+~ convergence follows.
2

Our second step is to neglect the conditions a) and b) in

Theorem 1. So we prove:

Theorem 2: consider the numerical procedure (*) for I), II) and

III) under the same assumptions as in Theorem 1. Let (A), (B)
mand (C) be valid. If Uo E:C([0,1]) and YO,Y 1 E:C ([O,T]), then the

numerical procedure (*) is convergent to the unique solution of

I), II) and III).

Proof: Let E:>O be fixed. Then we choose

so that lIu -UE:ll oo<E:. The existence of UE:
000

approximation theorem of Weierstrass. We

a function UE: in
o

is a consequence

define:

00

C [(0,1]),

of the

u~ = U~-[x(Y1 (O)-U~(1)) + (1-x) (YO(O)-U~(O))]

We get: U~(O) = YO(O) and U~(1) = Y1 (0) and

E: -E: IIlu -U 1I~lu -U 1I+lx E:+11-xlE:~E:o 0 0 0

Now we choose a

= yE:(1) = ° and

shall satisfy:

function yE:(x) E: C3 ([0,1]) fulfilling yE:(O) =
II yE: 1I oo~ and form VE: = uE: + yE:. The function VE:o 0 . 0

2) Y1 (0)

That means:

= a(O,O)vE:" (0) + b(O,O)VE:' (0) + c(O,O)vE:(O) + f(O,O)
000

= a ( 1 , 0) v~" (1) + b ( 1 , 0) v~' (1) + c (1 , °)v~ ( 1) + f (1 , °)

1a) YO(O) - [f(O,O) + a(O,O)uE:" (0) + b(O,O)UE:' (0) +
o 0

E: " ,
+ c(O,O)Uo(O)] = a(O,O)yE (0) + b(O,O)yE: (0)

1b) Y1 (0) - [f(1,0) +a(1,0)uE:"(1) +b(1,0)UE:'(1) +
o 0

E: E:" ,
+ c(1,0)Uo (1)] = a(1,0)y (1) + b(1,0)yE: (1)



-8-

E' E' E"
We choose y (0) = Y (1) = 0 and compute y (0) = Y1 and

E"y (1) = Y2 from the equations 1a) and 2a) and construct:

EY (x) =

Y 1 2 II

--2 x (x-t
1

)
2t

1

o

Y2 2 4
--(x-1) (x-t )
2t 2 2

2

O~~t
1

t ~x~t
1 2

t ~x~1
2

3EC ([0,1])

1 4;----
with 0 < t 1 < min (2,~29E ) for Y1 f 0 and

8TY11

Otherwise there is no restriction on t 1 resp t 2 (only

0<t
1

<t 2 <1) .

Now we consider:

(~ )

Vt = a(x,t)V +b(x,t)V +c(x,t)V+f(x,t)xx x

= VE(x)
o

(x,t) E (0,1] x (0 ,T]

xE[0,1]

tE(O,T]

E 3 rJn E E
We have: VOEC ([0,1]), YO' YOE~---([O,T]), Vo(O) = YO(O), Vo (1) =

E= Y1 (0) and Vo ' YO' Y1 fulfill the condition a) and b) in theorem

1. So we can conclude, that this problem has a unique solution

VE ' so that VE' VEt' VEX' VEXX are continuous in [0,1]x[0,T].

Also we can conclude that Z = U-V is the unique solution of
E

Z(O,t) = Z(1,t) :: 0

Zt = a(x,t)Z + b(x,t)Z + c(x,t)Zxx x

Z (x, 0) = U0 (x) V~(x)
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(U is the unique solution of the given problem) .

We know that the solution Z depends continuously on the initial

data Z(x,O), so we have:

IIzll oo=IIU-V II~.lIu -v£II~£
£ 0 0

The numerical procedure to the given problem has the form:

f(t )n

and to (l~)

f(t )n

We conclude by subtracting:

-k1 [BO(k,t) (Un(k)-Vn(k» - B,(k,t 1) (Un-'(k)_Vn- 1 (k»] = 0n . £ n- £

Applying theorem

for all k<k (£),
o

So, ,

1 we conclude, that there is a ko(£»O so that

Bv (t) - Vn(k)lI~ for t = nk fixed in [O,T].
£ £

II U(t) _Un (k) II ~I U(t) -v (t) II +11 v (t) _Vn (t) II +II~ (t) _Un (k) II~£ £ £ £

~£ + £ +3L£ = (C+1+3L)£

And that means convergence.

Putting the used proof-methods on a more formal level we can

derive an extension to Lax's convergence theorem for stable ap­

proximations to linear operator equations which are consistent

for data in a dense set. Consider the linear and invertible

operator F : (A, II. II A) -+ (H, II II B where A, B are appropriate linear
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spaces and let II F II B be bounded by k 1 . That means that the

solution U of the equation FU = g depends continuously on the

data g. For the numerical computation of U we use approximations

FhUh = gh with the following properties:

1)

2)

Fh : (Ah ,1I II A ) -+ (Bh ,1I liB ) for O<h~o (step-size, grid
h h

parameter), where A
h

, Bh are appropriate linear spaces.

-1
Fh is linear and invertible and IIFh liB ~2 for all

h
h~ •

o

The last property of F h is called stability:

3) There exist linear and uniformly bounded operators,

4) B
Ill:Ih(g) - gh"B = 0(1) for h-+o.

h

5) The scheme FhUh = gh is consistent with PO = g for all

gEXCB, where X is dense in B, i.e.,

IIFh(l:I~) - gh"B = 0(1) for h-+O
h

where U is the solution of FU = g.

We can conclude:

Theorem 3: under the given assumptions on F and F h the procedure

FhUh = gh is convergent to the solution U of the equation FU = g,

for all gEB, i.e.,

Ill:IA
h

(U) _·U II = 0 (1) for h-+O.
h Ah

Proof: We have the following situation:



A

t:.
A
h
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F
~B

t:.
B
h

F
h ... Bh

Let E fixed be greater o.

For solving FU = g we consider the scheme FhUh = gh. Because X

is dense in B we can choose g EX so that IIg-g IIB~. Instead of
E E_ 1

FU = g we now solve FUE = gE. We conclude IIU-UEIIA~IF II IIg-gEIi B
that means:

Now we consider FhUEh = gEh and we easily prove the conver­

gence of U h to U for h+o and fixed E>O by the usual consistency -
E E

stability method:

IIc (h)II BE h
= 0(1) for h+o and fixed

E>O because g EX.
E

-C (h)=>
E

B)

cE(h)+O for h+o

E fixed 9reater than o.

Now we want to find a bound for U
Eh

- U
h

:

C)

= k 2d E (h) + 0 for h+O and E>O fixed

because of the assumptions 2), 3) and 4). So we can conclude

from (A), (B) and (C):
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We can find for every €>o a h<h (E:) -so that 116~-U II A <CE: where C
h h

is independent of €, h and that means convergence.

It is easy to extend Theorem 3 to cases where the difference

scheme Fh is uniformly continuous in h (stable) in some components

of the data-vector g, but not in all. The methods for doing this

are the sane as used in Theorem 2, because stability of one step

difference - approximation means that the solutions Un(k) depend

uniformly continuous (in the grid-parameter k) on the initial

data and on the disturbance but not on the boundary values.

Remark

I am very grateful to Professor R. Weiss from the Institute

for Numerical Mathematics at the Technical University of Vienna

for his aid during the work.
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