








February 13, 1979 display protocol - 3

aoo wh ich can be displayed wi th actual parameters (canparable to a sub
program). The implementation of this concept requires a high level of
"local intelligence ll (programmability) of the display device.
Comp:ued to font elements, subsets are large and potentially recursive.
Each subset has its individual name.

register: small unit of memory allQCated to store a single value
window: area of the display limited by logical boundaries. It is associated

wi th the concept of an env ironment (context). More than one window can
be defined at a time, but only one window will be the current (active)
wiooow. windows can overlap, but they are hierarchical in the sense that
a display command can only have an effect within the current window, and
a change of window can only be made to a "parent" or "child" window, Le.
to the level directly above or below it.

environment, context: set of values of different parameters which affect the
behaviour of the writing device or the functioning of different commands.
Only one context can be current, but different context can be stored,
stacked or associated with different windows or different subsets.

stack: storage concept working by the LIFO (last in, first out) principle.
Information can be pushed onto a stack or popped off a stack.

~: set of caranands stored locally and which can be executed by calling it.
clipping: suppressing display information outside of defined boundaries
rectangle: portion of the display whose boundaries are p:lrallel to the x, y

(aoo z) coordinates
display primitives: set of high level program facilities called by a user pro

gram to specify his picture. This is the lowest program level a normal
application programmer is confronted with.

20/30: '!WO and Three dimensional display. Real 30 hardware does currently not
exist and is projected for visualisation into a 2D space.

parallel processing: prerequisite for fast real-time display modification
(e.g. for flight simulation). Only available on special hardware. A sup
port of this facility in a later implementation in a display protocol
should be possible.

GIN: abbreviation for "Graphical INput". There is a variety of devices (eg.
light pen, track ball, tablet, joy-stick, "rouse" ..• ) which essentially
only can change the current location of a target. GIN can to a certain
extent be simula.ted with a regular keyboard. Real-time drawing requires
software for interrupt handling and samplin::J. Since the target is often
used to position the writing device, GIN can be an output concept for a
display protocol.

target: location on the display directly associated with a GIN-device. It is
not to be confused wi th a cursor.



February 13, 1979 display protocol - 4

3. HENTIFICATION OF THE IDGICAL PARI'S OF A DISPLAY SYSTEM

Description of operation (see fig. 1): An application program resides on
some (lloost ll_) canputer; it creates, with the help of user specifications and
essentially non-graphical application data a device independent display file.
This file is not necessarily a disk-file but rather a logical file. The nor
mal user is never confronted directly with the creation of this file, but
rather calls display primitives of reasonably high level (eg. draw lines,
grids, labels, erase lines, select parameters) •

'Ihe device independent display file is transformed by a device dependent
display cooe generator into device dependent display code, which is now under
stood by the device driver, whose presence is not always obvious, since it is
often partially configured in hardware and/or incorporated in the graphics
output device (it does things like video-signal generation, plotter motor con
trol and the like) .

In this model of a display system, graphics input (GIN) is configured at
the device dependent level. Only passive GIN is foreseen, Le. GIN-mode is
triggered by the application program; no interrupt handling or sampling, no
unsolicited GIN is possible. Only the coordinates in device independent units
are transmitted.

In figure (1), A, B, B', C and D are the camnunication links between the
different program modules of the system. The required bandwidth (volLDne of
data transferred per logical unit of information) is increasing from A to D;
the content in structural information is decreasing (with the exception of B'
being a special case). The device independent part of the system is config
urec1 only once, the device dependent part is replicated at least once for
every device type. Information flow of Band C in the opposite (upward)
direction is difficult to implement. It would nevertheless be a handsome fa
cility to be able to sense certain device dependent conditions and do more so
phisticater )rocessing with it.

'Ihis ·_jel does offers limited interactivity since the modules can be exe
cuted in a synchronous manner, thereby offer ing 1I0ptical feedback ll ; changes to
the picture are done at the application program level (possibly with the as
sistence of a GIN device, which can forward the writing device to the target
location). A keyboard can replace real GIN to a certain extent.

'Ihe reader will realise the fact that in existing graphics installations
not all parts of this system are broken apart, but rather that one mooule
takes care of more than one logical function. Mainly the distinction between
level 0 and levell, the device dependent levels, is often very unclear.

To be able to share labor between a local and a remote computer, or with
more or less intelligent terminals, it is mandatory to break the described
tasks apart; to achieve device independent graphics, it is essential; for net
working applications it is desirable.



February 13, 1979 display protocol - 5

MODEL OF A DISPLAY SYSTEM (fig. 1)

DEVICES
PROGRM1
MODULES FILES

~
m
r-l
u.
Ul

.o-l
'0

..c:
o
m
Q)

I-l
o

4-l

Q)
o
s::
o

Q)
o
s::
o
~

r-l
s::
o

device depend
display code

device indep.
display file

level. 2

level 1

level 0

device dep.
display code
generator

device
driver

d..
Q)~

'0 0
m

Q).o
0'0

.o-l Q)
:> Q)
Q)4-l
'0

P..
Q)
'O~
s:: 0

.o-l m
,Q

Q)'O
o Q)

.o-l Q)
:>4-l
Q)
'0

application application
f---f:\-A--~ program tE:---~ data- base

'\J high level
display

primitives

device
depend.

~---:::::OI'tGIN

module

L _

l~
,0
1m
1.0
1'0
I Q)
IQ)
14-l
IL _



February 13, 1979 display protocol - 6

This model offers a clear logical data flow, which also facilitates later
changes and uwrades of this system. To post-process a device dependent
display code file for another device (or even worth, to cascade this process!)
is a bad design. Later changes to such a design are nearly impossible to im
plement.

Achieving device independence also implies that the picture definition
contains canprehensive enough (and even redundant) information to drive all
device dependent display code generators. Information not relevant to a
SPecific device is simply ignored.



February 13, 1979

4. GENERAL COOCEPI'S AND CONSTRAINrS
FCR A DISPLAY SYSTEM flIT IIASA

display protocol - 7

This paper does not try to reinvent the wheel. A lot of literature exists
about design and actual implementation of graphics systems (see bibliography).
The proposal contained in this paper tries to consolidate ideas here and there
and to merge them with our own ex~rience with in-house requirements.

It is crucial that various kinds of display hardware (~n-plotters,

storage tube displays, raster scan devices, graIilic-canpa.tible printers and
hardcopy terminals, phototypesetters, vector storage devices, Camputer
Output-Microfilm (COM) devices) are considered; later addition of new display
hardware should be easily feasable.

Graphical output can be considered as a special case of IIdisplayable ll out
put. In view of IIASA's network ambitions it should be possible to send to a
remote user normal text possibly intermixed with graphical data (if the desti
nation is aware of the display protocol). Anything not being interpreted as
display commands in interpreted as normal text.

This very s~cific requirement could be generalised in the following way:
it seems reasonable to define a display protocol, able to handle graIilical and
non-graphical data as well, based on character transmission (8-bit-bytes) for
which cheap communications hardware (TTY-interfaces, modems •.• ) exists and is
universally available. Special characters could indicate the begin of II graph
ics mode II , and the subsequent text until an end-of-graphics-mode-character
would not be interpreted as normal ASCII characters, but as picture definition
codes. Even if such a protocol contains enough redundant information not to
leave a device indefinitely confused in case of transmission errors, it should
allow information to be communicated in a reasonably condensed form.

To fulfill its dual function as IIgraphics"- and II character II-protocol , the
display protocol must have facilities to ~rform the typical plot o~rations

with high resolution as well as text manipulations and various screen editing
tasks.

The protocol must provide a limited interactivity, Le. the user must be
able to force buffers to be flushed, and after optical feedback to respecify
the picture through his application program and possibly through GIN.

In addition the protocol should be defined in a way to be flexible and
open to future enhancements (both in hardware and software).

These various constraints lead to the conclusion that the best place to
implement such a protocol is the link between levelland level 2 (see fig.
1), i.e. on the device independent level. The protocol defines the communica
tion link 118". Graphics data produced by an application program must conform
to the protocol.

It is obvious that such a protocol is network-campa.tible, even if network
ing is not its first aim. It is also open to distributed processing; display



February 13, 1979 display protocol - 8

code generators and/or device driver can operate locally as well as remotely.
'Ibis paper will not talk about network cammmication protocols. 'Ibe only re
quirement for the canrmmication protocol is that it is transparent to the
display protocol (8 bit transparent transmission).

Provision should be merle for several facilities, even if the features are
not implementable on all devices, or not implemented in a first stage

a. Multiple cursor control: each window (context or envirorment) will
"remember" the position of the cursor when the envirorment is left. Only
the active cursor will be associated with a marker visible on the display.
'!he protocol must allow to change the position of the active cursor
without altering the remembered location of the inactive ones (useful for
spli t-screen technique in interactive graJ;ilics). 'Ibe cursors should be
positionable in different units (two different addressing types): in stan
dard device independent units or in character units (horizontal and verti
cal character spacing or symbol box size) .

b. The protocol must have a 2D-3D switch, which would tell all the commands
eXPecting coordinates to be prepared to three instead of two operands.

c. Every graph or subgraJ;il should be able to be headed by a command specify
in;J the limits of the picture (or subpicture), Le. xlow, xhigh, ylow,
yhigh, (zlow, zhigh) , in device independent units: coordinate values out
side the limits will automatically be clipPed. This restriction will allow
synchronous execution of the different level modules. 'Ibe main graJ;il
should alro have a canmand to specify the intended real size in centime
ters on the hardware device. In case size commands are missing, defaults
apply.

d. Subpictures (picture subsets or picture segments). To make efficient use
of picture segments, these segments must be stored locally to the device
dependent display code generator (level 1) and accessible from there. If
retransmission for every execution is necessary, the concept becomes less
valuable. A stack must be foreseen to handle the parameters attached to
each subpicture level.

e. Labels and loops can be very useful, but imply (i) buffering like for sub
pictures and (ii) some "registers" (or counters) which can be set, modi
fied and tested for exit conditions.

f. "Rectan;Jle"-operations: these are operations applying to a whole area of
the display whose limits are parallel to the x and y (and z) axes: dif
ferent operations should be possible, like blanking (erasing), highlight
in;J, outlining, inverting, hatching such rectangle portions of the
display. Operations like rectangle blinking of a screen are hard to
achieve without hardware prevision (on raster-scan devices only in XQR
rrode) •
Local storage and processing power in the device will be inevitable.

g. "Wirrlows" or "Viewports": canpared to subsets or subpictures, which are



February 13, 1979 display protocol -9

procedural concepts, a window is a static concept describing an environ
ment in which oT;:eration takes place. Several windows can exist simultane
ously, only one window will be "active" or "current" at any time.
'Ibe default window is always the whole display (or a part thereof for
hardcopy devices). Like subsets, windows are considered strictly
hierarchical, i.e. it is impossible for a display command to affect any
thing outside the current window, without leaving the indow and going
back to the level above. 'Ibis is no restriction as to the creation of
overlapping windows, created (aoo controlled) by the same level. Since
for windows a tree structure is possible, a stack concept as for subsets
is insufficient. What is needed is some kind of hierarchical data-base
structure, where the different environments are stored (including a marker
for the cursor position). To ensure proper canmunication between windows,
a clear distinction between "global" and "local" variables is required.
Creating a window only initialises its parameters to certain defaults and
locates it within the current window. Nothing happens on the display un
less it is "entered".

h. lo1acros are a sequence of canmands that can be executed at any time. 'Ibey
do not change the current context. 'Ibey can be very useful to set up a
context in a window.

'Ibe concepts of macros, labels, windows, rectangles and subsets which are
introduced here should not be confused.

In the next two sections a device independent display protocol is pro
posed; the last section is devoted to' some aspects of high level picture de
finition.



February 13, 1979

5. PROPOSED DEVICE INDEPENDENT DISPIAY PROroCOL

display protocol - 10

It is essentially a one-directional protocol consisting of commands fol
lowed by a number of operands which is fixed for each canmand, and whose mean
ing depends on the canrnand. Inquiry about hardware features or states of the
display device ("feature handshake") is conceived as a separate graFhics chan
nel, which is "filled" by default values unless the destination device is
known at execution time.

A canmand always consists of one character (8 bit bytes), operands can
consist of one or more characters. Commands and operands are distinguished by
their high-order bit: it is "1" for corrnnands and "0" for operands (this is al
ready a redundant information, but it guarantees that a device dependent
driver will not "forget" that it is in "graphics mode"; it also ensures that
transmission errors do not necessarily affect the whole picture, because syn
chronisation is reestablished with the next canrnand) •

ASCII characters not preceded by a protocol command are treated as normal
text. '!hus an ASCII text file is a valid display file.

Comments to the format of the protocol elements (cf fig. 2)

a. Commands: with seven bits available to code a command, 27 = 128 different
graphics commands are possible. I can think of only roughly sixty to eigh
ty reasonable graphics commands at present, so there is largely room for
later additions. A canrnand not "understood" by a specific device depen
dent display code generator is simply ignored (together with subsequent
operands) .

b. Operands: one byte operand also enable 27 = 128 different specifications;
two byte operand offer 2 (7+7) = 214 = 16384 possibilities (since the
high-order bit of all bytes of a multibyte operand must be "0"); three
byte operands offer 221 = 2097152 possibilities; four byte operands
268435456 etc.
Most cormnands will not need any operands at all, and another substancial
group will go along with one byte operands. It is mostly the coordinate
values that require a very large number of bits to achieve a resolution
that is sufficient for all device types.
If the decision is taken to use two bytes to specify absolute coordinates,
the lower left corner being defined as (0,0), (0,0,0) for 3D, than x and y
(and z) axes can run up to 16383 (214-1). For relative addressing one byte
appears to be sufficient. '!he convention could be adopted to have the
coordinates run from -64 to 63 (26_1), negative numbers represented as
twos-canplement. Especially for subpictures, character fonts (in vector
representation, not as dot-matrix), one-byte relative coordinates seem to
be sufficient. Twos-canplement notation slightly facilitates arithmetic.



February 13, 1979

FORMAT OF THE ELEMENTS OF THE
DISPLAY PROTOCOL

display protocol - 11

CO~~DS 1 byte

Nom·1AL 1 byte
OPERAND

ABSOLUTE 2 bytes
COORDINATES

RELATIVE 1 byte
COORDINATES

figure 2

1
I I

7 0

27=128 commands possible
range 200 to 377 (octal)
high order bit 1

o
1 I

7 0

72 =128 operands possible
range 0 to 177 (octal)
high order bit 0

7 07 0

27+7=16384 possible addresses
range 0 to 16383 (decimal)
high order bit 0
for both bytes

7 0

27=128 possible addresses
range -64 to 63 (decimal)
negative numbers in
2's complement
high order bit 0



February 13, 1979 display protocol - 12

c. Special ASCII codes: several ASCII control codes, some of which affect the
cursor position, keep their special meaning; all of them are duplicated by
display canrnands.

<CR> carriage return and line feed (same as CRLF)
<LF> line feed (same as CDN)
<BEL> acoustic signal (same as BELL)
<88> backspace (same as CLF)
<HT> horizontal tab (same as TAB)
<VT> vertical tab (same as CUP)
<FF> form feed (same as CLRW)



February 13, 1979 display protocol - 13

TABLE OF COMMANIS (fig. 3)

canrnand dec.
code

basic commands:

short description # operands

Nap

GBEG
GEND
LIM
SIZE
TSH
2D
3D
crn
PLTA
PLTR
MOVA

MOVR
ERSA
ERSR
SYMS
SYMA
FOm'
SYMB
SYME
RS'IH
BASL
RSSP
RSTF
FISH
SLEP
COLF
corn
CTRT
INI'N
INV
DATA
ERR
MSG
RECI'
TREX:
BELL

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

no operation
enable graphics
disable graphics
addressing space
real picture size
real size (text units)
2-D switch
3-D switch
clear device
plot aboo1ute
plot relative
rove aboo1ute
move relative
erase aboo1ute
erase relative
set symbol size
set symbol orientation
set character font
vector font-element follows
vector font-element end
set raster font height
set font base line
set inter-symbol space
raster font-element follows
flush buffer
sleep
set foreground colour
set background colour
set contrast
set intensity
invert window
pass without processing
error handling
error message
rectangle processing
recto proc. (text units)
acoustic signal

4 (6)

2(3)
2

2(3)
2(3)
2 (3)
2(3)
2(3)
2(3)
2(3)
1
1
1 (+n)

1
1
1
4+m

1
1
1
1
1

1 (+n)
1
n
5(7)
5



February 13, 1979

canmand to manipulate text:

WRAP 165 wrap mode
NWRP 166 nowrap mode
SCRU 167 scroll up mode 1
SCRD 168 scroll down mode 1
PAGE 169 page mode
TSCU 170 top scroll up
TSCD 171 top scroll down
BSCU 172 bottom scroll up
BSCD 173 bottom scroll down
ISHL 174 left shift left
ISHR 175 left shift right
RSHL 176 right shift left
RSHR 177 right shift right
HCl>1E 178 cursor home
CUP 179 cursor up
CDN 180 cursor down
CLF 181 cursor left
CRr 182 cursor right
CRLF 183 carriage return/line feed
SE'IT 184 set tabulator stop
CLTB 185 clear tabulator stop
TAB 186 rove to next tab stop
CLRW 187 clear to end of window
CLEL 188 delete to end of line
CLBL 189 delete to beg in of line
ERSC 190 erase character
RMQi 191 delete character
INSC 192 insert character
TX'IC 193 set cursor (text units) 2

advanced commands:

MULT 194 multiplier 1
GIN 195 graphics input
BLNK 196 set blink (highlight) on
NOBL 197 set blink (highlight) off
COpy 198 make hard copy 1
CHAN 199 set channel 1
XOR 200 set "excl usive or" mode
OR 201 set "or" mode (normal)
WID!' 202 line width 1
ENQ 203 enquire features 1

display protocol - 14



February 13, 1979

canrnands that require local programrnabili ty:

display protocol - 15

OPr-1A

CLMA
EXMA

WIND
'IWND
RMWI
ENI'R
RE'IN
LABL
JUMP
SET
INCR
TRFR

TEST

OPSS
CISS
CAT
EXOC

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

open macro
close macro
execute macro
wirrlow creation
wirrlow creation (text units)
rerrove a window
enter window
return from window
label
jump
set register
increment register
transfer register
test register
open subset
close subset
catalog subset or macro
execute subset

1

1
5(7)
5
1
1

1
1
2
2
2
3
1+4 (6)

1
1+5(7)

222 - 255 unused and free for future use



February 13, 1979

6. DISCUSSION OF SPECIFIC COMMANDS (see overview fig. 3)

display protocol - 16

There is of course freedom to select the codes for a ccmrnand as long as
they are unique; I would suggest to assign ascending values because it is
easier to keep track of available codes for later upgrades.
We select a II left-handed II coordinate system: the x axis runs from left to
right, the y axis from bottom to top, the z axis from the display away from
the viewer. By convention the viewer is at -f (the II focal ,length ll

) on the z
axis. Absolute (0,0,0) is defined as the lower left corner on the display
plane.

'!he following order is always followed in the description of the ccmrnands:
mnemonic name, decimal code, name, number of operands and description.

a. Basic commands (certainly to be implemented in a first stage)

NOP 128 no operation
In grap-'lics mode this is a null operation; as heading of a file, a
series of a NOP and a GBEG (llmagic number ll ) will tell the device depen
dent modules that display coonnands can be expected. OOP can also serve
for "brackettingll (terminate an argument list for certain commands).
Special bracketting canrnands will nevertheless be foreseen, to provide
correct resynchronisation in case of transmission errors while executing
nested commands that require bracketting of parameters.

GBEG 129 enable graphics -
Enable graphics mode; this possibly redundant code allows a device
dependent initialisation as well as an lIearl y warning ll that display com
mands will follow. Recorrunended at the begin of a display file (see OOP).

GEND 130 disable graphics
Disable graphics mode; all buffers are flushed and released.

LIM 131 addressing space 4(6)
this coonnand sets up a virtual addressing space in which the user will
specify his display coordinates in the current window or subset. '!he
o'[:erands specify these limits in device independent absolute units
(0~x,y(,z)~16383). Every window as well as every picture subset can
have its own virtual space defined. '!he four (six) operands are xlow,
xhigh, ylow, yhigh, (zlow, zhigh). Any value outside this range is au
tomatically clipped; LIM expects 2-byte operands. Should this canrnand
be missing, the asslltlption is that the coordinates will cover the full 0
to 16k range.



February 13, 1979 display protocol - 17

SIZE 132 real picture size 2(3)
given in centimeters. 'Ibis canrnands specifies into which real size the
top level window (default 16k x 16k, if not specified otherwise) is to
be mapped. 'Ibe canrnand is only allowed in the top level window, ignored
elsewhere. 'Ibe picture is centered on the hardware device ~ defaults to
full screen on CRr or to a certain maximum for hard copy devices. A
faulty o{)?rand is replaced by default values.

TSIZ 133 real size (text units) 2
similar to SIZE. Specifies how many columns and rows have to be allocat
ed to map the virtual space (either the default 16k x 16k space or the
space defined with LIM) of the highest level window. 'Ibe first 2 byte
o{)?rand specifies how many columns the picture should be wide, the
second how many lines it should have. The picture will be centered on
the display.

2D 134 2-D switch
default. Turns two-dimensional mode on. Only x and y operands are ex
pected by addressing commands.

3D 135 3-D switch
Turns three-dimensional mode on. Commands ex{)?cting coordinates eXPect
x, y and z operands.

CLR 136 clear device
Clear device completely~ reinitialise it. For hardcopy devices move to
next frame. If encountered in picture segments or windows, clear only
the segment or window area.

PLTA 137 plot absolute 2(3)
the writing device is moved from its current location to the position
specified in aboolute coordinates (2-byte operands). A line is drawn.

PLTR 138 plot relative 2(3)
the writing device is moved relatively to its current position as speci
fied in the relative coordinates (I-byte operands). A line is drawn.

MaVA 139 move aboolute 2(3)
moves the writing device, but will not produce a line (2-byte operands)

MOVR 140 move relative 2(3)
the writing device is moved relatively to its current position as s{)?ci
fied in the relative coordinates (I-byte operands). No line is drawn.



February 13, 1979

ERSA 141 erase absolute 2(3)
same as PLTA, only erases instead of drawing.

ERSR 142 erase relative 2(3)
same as PLTR, only erases instead of drawing.

display protocol - 18

SYMS 143 set symbol size 2(3)
defines the symbol size in x and y (and z) directions: the range is 0 to
16383 (2-byte operands). If a 0 size is specified, a default, transfor
mation independent size is taken.

SYMA 144 set symbol orientation 1
ang Ie wi th the x axi s in degrees (mnnber is taken mod 360) counted
counterclockwise (2-byte operand)

FONT 145 set character font 1
The one byte operand indicates which font is to be taken for symbol gen
eration. The fonts will be taken from the font library if the code
designes a software font. One or several codes are foreseen for
hardware fonts. If this command is ommitted, hardware font (code 0) is
default.
Vector-fonts are described in relative coordinates ranging from -64 to
63. Font description may only consist of commands PLTR, MOVR, SYMB
and SYME. Start point for font processing is always assumed to be (
64,-64(,-64», the default base line is assumed to be y=0.
Raster fonts are only meaningful on r aster-sean-devices and matrix
printers or other display devices that permit p.:>int addressing (COM, Di
ablo, Phototypesetter).

SYMB 146 vector font-element follCMs 1 (+n)
tells the system to begin vector font processing. The first bytes until
the first canmand represent the table code for the font. One byte will
be the rule, several bytes only for ligatures. Optional subsequent text
has the same format as symbol fonts in the font library (range -64 to 63
for the I-byte relative coordinates, default base line is y=0). 'Ibis
enables sending of fonts in standard units for devices which have not
enough memory to store fonts, but enough to process them.

SYME 147 vector font-element end -
is mandatory to terminate font processing. Is required even if no font
description text follows SYMB, Le. the minimum sequence for the
descr iption of one symbol is three bytes long (SYMB code SYME).

RSTH 148 set raster font height 1



February 13, 1979 display protocol - 19

Number of rows the raster matrix of the font-elements is made of. The
command is needed for sending of raster font elements.

Bl\SL 149 set font base line 1
For raster fonts the parameter designates the row number of the raster
matrix which is to be considered as base-line for the positioning of the
symbol en the text line. For vestor fonts the parameter designates the
y coordinate which is to be considered as base line. 'Ibis canmand is
needed for sending of font elements.

RSSP 150 set inter-symbol space 1
Space to be left free between two consecutive symbols on a line. For
r aster fonts the par ameter s corresponds to the number of column, for
vector fonts to the number of standard units on the x axis, to be left
free. 'Ibis distance will be modified by the Illeft kern ll of the indivi
dual characters. NeErled for sending of font elements. Optional with
library fonts and then overwrites the font specification.

RSTF 151 raster font-element follCMS 4+m
Raster fonts are stored (and sent) colUIIU1wise. 'Ibe first bytes until
NOP represent the table code of the font. One byte will be the rule,
several bytes for ligatures. 'Ibe second parameter (1 byte) specifies
the significant width (i.e. the number of significant columns) of the
raster symbol. 'Ibe third 1 byte operand specifies the Illeft kern ll

, and
the fourth the "right kern", which are the increments to the horizontal
inter-symbol-gap (RSSP). A kern can be negative or positive. The fol
lowinj m bytes contain the raster, columnwise; the number of bytes is
given by the formula (RSTH*significant width/7) rounded to the next in
teger. 'Ibe reason for the existence of this canmand is the same as for
SYMB.

FISH 152 flush buffer
process all unprocessed text in the buffers; implies no change in the
display context.

SLEP 153 sleep 1
No action is taken for the number of secooos specified in the I-byte
operand (0<n~127); enables manipulation on the device like changing pa
per... It will generally be a good practice to precede this canmand
with a FISH canmand. SLEP 127 will pause until a signal or interrupt is
sent to the executing process; only then execution resumes.

COLF 154 set foreground colour 1
select the colour for the writing device



February 13, 1979 display protocol - 20

0018 155 set background colour 1
select the background colour for the current window

CTRT 156 set contrast 1
select contrast grade (saturation) for the current window

INTN 157 set intensity 1
select intensity for the writing device. Intensity "0" means erase, in
tensity "I" is default.

INV 158 invert window
Foreground and background reversed for the whole current window

DA.TA 159 pass without processing 1 (+n)
The I-byte operand is a transparent count specifying that the next n
bytes (8 bits) are to be passed to the device without processing (tran
sparent IOOde) •

ERR 160 error handling 1
the 1 byte operand specifies different error handling options. '!he
value of the operand ranges from -64 to 63. Negative values indicate the
number of protocol errors allowed before aborting. -64 means ignore er
rors. 0 means execute a GIN canmand on error. 1 enables error messages
to be sent by the MSG canrnand, 2 disables these messages. Other codes
are free for future additions. An example could be to send a "bell" tone
in case of illegal addressing.

MSG 161 error message n
'!he follCMing text is to be displayed in some device dependent way if
error messages are enabled. No terminator is required since the next
protocol command (or a NJP, if no subsequent commands are foreseen) ter
minates the message text.

RECT 162 rectangle processing 5(7)
The second to fifth (or seventh) operands of this cc.mrnand define a rec
tangle (20) or cube (3D). Since a rectangle can be considered as a tem
porary window, the same conventions for the specification of its limits
(operands 2-5 or 2-7) apply as for the WIND (see there) command. If no
arguments follow the first ofer and , the whole window is taken to be the
current rectangle, an the operation executed for the window. The first
one byte operand specifies a limited set of operations which are defined
for the whole area: INV (invert), CLR (clear), ooLF (foreground colour),
C018 (backgrOlmd colour), BINI< (blink), NOBL (noblink), BOX (frame
around the rectangle), different hatching pattern: vertical, horizontal,



February 13, 1979 display protocol - 2

diagonal left, diagonal right, crossed horizontal, crossed diagonal,
dotted, dashed etc.
Specific patterns can be obtained by issuing consecutive RECT commands
for rectangles contained in, or overlapping other rectangles.

TREC 163 rect. proc. (text units) 5
Same as for REX:T, except that the rectangle is defined in terms of char
acter units and only in 2D. Since the rectangle can be considered as a
sort of tempnary window, the same conventions as for 'IWND (see there)
apply to the parameters. If no arguments follow the first operand, the
whole window is the default rectangle.

BELL 164 acoustic signal -
issues an acoustic signal at the display device. Could be configured as
an optical signal an some devices.

b. canmaoos for text oriented manipulation of the cursor

In this set for most of the commands positioning and addressing is done
in character size (syrnbol-box-units, i.e. character spacing and line
spacing) units, rather than in standard coordinate system units.
The protocol assumes that the displays always work in overstrike mode,
i.e. text issued at the cursor location overlays existing text informa
tion without destroying it. It is recalled that ASCII-characters not
preceded by ccmnands are simply interpreted as text, so that no special
text or graphics-escape commands are required.

WRAP 165 wrap mode
Commams that would position the cursor outside the edges of the window
condinue their relative movements on the opposite side of the display;
text exceeding the right margin continues on the next line at the left
margin.

INWRP 166 nowrap mode
Cornmaoos that would position the cursor outside the edges of the window
are ignored and leave the cursor at the edges; text that exceeds the
window will not be displayed; the last character will not be overwrit
ten.

pCRU 167 scroll up mode 1



February 13, 1979 display protocol - 22

scrolling up of the top n lines; a <CR> or CRLF in the n-th line of the
window will move the top n lines of the window up one line; the top line
of the window will be lost; the cursor will be left in the first column
of the n-th line of the window.

SCRD 168 scroll down mode 1
scrolling down of the bottom n lines; a <CR> or CRLF in the n-th line of
the window counted from bottom will move the bottom n lines of the win
dow down one line; the oottom line will be lost; the cursor will be left
in the first colLUnn of the n-th line of the window counted from bottom.

PAGE 169 page rrode
no scrolling; <CR> or CRLF in last line of the window will put cursor on
first line of the window; subsequent characters will overwrite existing
information. Relative cursor movements from the bottom line of the win
dow will cause wrap to top.

TSCU 170 top scroll up
From the current cursor position to top of window scroll up one line; a
blank line is inserted at the cursor; the top line is deleted; the cur
sor I;X)sition is left unchanged.

TSCD 171 top scroll down - From the current cursor I;X)sition to top of win-
dow scroll down one line; the current line is deleted; a blank line is
inserted at the top; the cursor position is left unchanged.

BSCU 172 bottom scroll up
From the bottom of window to the current line scroll up one line; the
current line is deleted; a blank line is inserted at the bottom. the
cursor position is left unchanged (typically "delete line").

BSCD 173 bottom scroll down -
From the current line to oottom of window scroll down one line; the oot
tom line is deleted; a blank line is inserted at the cursor; the cursor
position is left unchanged (typically Ilinsert line").

ISHL 174 left shift left -
From the current cursor position to the left margin shift the window
left a colLUnn; the first (leftmost) C01LUnn is deleted; a blank colLUnn is
inserted at the cursor; the cursor remains unchanged.

ISHR 175 left shift right
From the current cursor position to the left margin shift the window
right a column; the current column is deleted; a blank column is insert-



February 13, 1979 display protocol - 23

ed at the left margin; the cursor remains lD1changed.

RSHL 176 right shift left
From the current cursor position to the right marg in shift the window
left a column; the current column is deleted; a blank column is inserted
at the right margin; the cursor remains unchanged.

RSHR 177 right shift right
From the current cursor position to the right margin shift the window
right a column; the last (rightmost) column is deleted; a blank column
is inserted at the cursor; the cursor remains lD1changed.

Ha~E 178 cursor home
cursor moved to upper left corner of the current active window.

CUP 179 cursor up
cursor up one line; in wrap mode a cursor move across a window boundary
is continued on the opposite side; in nowrap mode, the cursor remains at
the boundary.

crn 180 cursor down
cursor down ore line; in wrap mode a cursor move across a window boun
dary is continued on the opposite side; in nowrap mode, the cursor
remains at the bOlD1dary.

CLF 181 cursor left
cursor left one column; in wrap mode a cursor move across a window boun
dary is continued on the opposite side; in nowrap mode, the cursor
remains at the bOlD1dary.

CRI 182 cursor right
cursor right one column; in wrap mode a cursor move across a window
boundary is continued on the opposite side; in nowrap mode, the cursor
remains at the boundary.

CRLF 183 carriage return/line feed cursor moved to first column of
next line; in page mode, a CRLF in the last line of the window will put
the cursor to window home; in scroll mode, a CRLF on the input line will
cause a one line scroll up or down of the top or bottom n lines (see
SCRU and SCRD).

SEI'T 184 set tabulator stop - a tabulator stop
sition of the cursor; the tab is valid for
current window, not just for the current line.

is set at the current po
the whole column of the
Default tab settings are



February 13, 1979

8, 16, 24, 32 etc.

display protocol - 24

CLTB 185 clear tabulator stop - the tab stop at the current position of
the cursor is cleared for the whole column of the window. No action is
taken if no tab was set at the cursor position.

TAB 186 rove to next tab stop the cursor is right roved to the next
tab stop. If no tabs are set, puts cursor at the rightmost column of the
current window.

CLRW 187 clear to end of window
clear to end of window

CLEL 188 delete to end of line
delete to end of line. The cursor remains next to the last symbol of the
line.

CLBL 189 delete to beg in of line -
delete to begin of line; the text remalOlOg on the line is moved to the
leftmost column. The cursor is positioned at the beginning of the line.

ERSC 190 erase character 
blank current character

R1CH 191 delete character removes the current character; the
remainder of the line is left shifted one column.

INSC 192 insert character
insert a space at the current position of the cursor and move leave the
cursor unchanged. '!he remainder of the line is right shifted one
column.

TX'IC 193 set cursor (text units) 2
This canmand enables setting the cursor to some location inside the
current active window, relative to the lower left corner of the window.
'!he 2-byte operands are the coordinates in column and line units.
Example: ToXIC 50 12
will position the cursor on the 50th character position of the 12th line
of the current window. Exceeding values will leave the cursor at the
edges of the window.

c. advanced commands (second stage of implementation)



February 13, 1979 display protocol - 25

MOLT 194 multiplier 1
This is a count to be applied to the next canmand. The following command
is to be executed n tlines (if possible). For commands where a multiple
execution does not change anything, the count is ignored.

GIN 195 graphics input -
flush buffers: enter graphics input mode: move the writing device to the
target (position specified by the coordinates returned by the GIN
device). It is considered as an error to place the target outside the
current window.

BLNK 196 set blink (highlight) on-
subsequent display elements will be highlighted (e.g. blink)

NOBL 197 set blink (highlight) off
return to normal mode

COpy 198 make hard copy 1
make hardcopy on device n

CHAN 199 set channel 1
divert display output to channel (subdevice) n. '!he subdevice is assumed
to have exactly the same specifications than the master device.

XOR 200 set "exclusive or" mode -
This mode of operation is particularly useful for raster scan devices.
If the same picture element (pixel) is redrawn with the same intensity,
it is erased. Repeating the same drawing several times produces a
"software-blinki~", provided the CRJ is fast enough. Redrawing with
other intensity enables different blinking contrasts

OR 201 set "or" mode (normal)
normal operation (OV'erwrite mode)

WIor 202 line width 1
Thickness of lines drawn in standard coordinates (for raster scan dev
ices the operand specifies the average mnnber of pixels defining a
point)

ENQ 203 enquire features 1
prOV'ision for the possibility to return certain display device parame
ters or character istics to the higher level application program on re
quest. '!he one byte operand specifies which information is requested;
the communication is done through a graphics input channel. Example of



February 13, 1979 display protocol - 26

parameters: hardware character size, selective blinking, monitor resolu
tion, current cursor p:>sitions, current target p:>sition, real display
size.

d. commands that require local programmability

OPMA 2134 open macro 1
o"[)ens a macro whose name is specified on the 2 byte operand. '!he subse
quent canrnands until CLMA are diverted (stored, but not processed). No
SYntax checking is performed at creation time. All camnands can be put
into a macro, including other macros. A good application will be the
initialisation of windows.

CIMA 205 close macro
closes (terminates) a macro.

EXMA 206 execute macro 1
execute the macro named on the 2 byte operand. If an EXMA command is
found, the system looks if the macro was defined previously in the pro
tocol, if not, it looks in the subpicture/macro library. If a macro of
this name is not found, the command is ignored. If it is found, the se
quence of canrnands is executed. EXMA does by itself not change the
current window, nothing is pushed to a stack.

WIND 207 window creation 5(7)
This command creates a new window; the first 2-byte operand specifies
its name which is local to the current window. '!he next four (or six)
2-byte operands define the p:>sition of this window in the current win
dow. '!he parameters are in the same order as for the command LIM. '!he
default window is the whole display. Windows created on the same level
can overlap. No action except initialisation of the window to "outer
modes" is taken. Nothing happens on the display unless the window is ac
tually entered. A window can have its own local limits (LIM), parame
ters, modes, a cursor, local and global registers.

TWND 208 window creation (text units) 5
This command "[)erforms the same task than the command WIND, but the win
dow is defined (i) only 2D and (ii) the limits are character ized in
terms of the current symbol-box width and height (lines and columns).
The first parameter is again the window name. The next four 2 byte
parameters specify the limits in the following order: left margin



February 13, 1979 display protocol - 27

(starting column of the window on the left side), the right margin (end
colLnTIn on the right side), the bottom margin (starting line from the
bottom) and the top margin (ending line at the top). No difference ex
ists between windows created with WIND and those created with 'IWND.

RMWI 209 remove a window 1
The window created with WIND or 'IWND is removed (disabled). After this
carnnand, the window cannot be entered any more. A window can only be re
moved from a active window of higher level. No action is performed on
the display which remains unaffected by this coounand.

ENTR 210 enter window 1
the current context (including the current cursor position) is saved.
'!he window named on the 2 byte p:lrameter is entered and becomes thereby
the "active" window. '!he context (environment) associated with the win
dow entered overwrites the old context. The cursor is moved to the loca
tion which it last had in this window (only thing that happens on the
display) • If the window is entered for the first time, the cursor is
put into home position of the window.

RETN 211 return from window -
the current context (including the current cursor position) is saved.
'!he context from the parent window is restored; the only direct effect
on the display is the change of the cursor position to its last position
in the previous (parent) environment. If a window is left and entered
again without changing gld:>al parameters, the switching of environment
will be totally transparent.

LABL 212 label 1
is a no-operation followed by a I-byte label to which control can be
passed with JUMP (128 labels possible)

JUMP 213 jump 1
transfer control to the location in the text defined by the appropriate
LABL number. If this label was not yet defined, the device dependent
code generator looks in forward direction (terminated by end of subpic
ture or GEND)

SET 214 set register 2
The first I-byte operand, the register, is set to Lhe value specified in
the second (2-byte) operand. Only registers 13 to 127 can be set with
SET.

INCR 215 increment register 2



February 13, 1979 display protocol - 28

The first I-byte operand, the register, is incremented with the value of
the second I-byte operand ranging from -64 to 63.

TRFR 216 transfer register 2
copy content of register designated by operand one (I-byte) to register
designated by operand two (I-byte)

TEST 217 test register 3
the register content designated with the first I-byte operand is tested
against the content of the third operand (I-byte: register number; 2
byte: actual content); the test relation is defined by the second I-byte
operand (0 EQ; 1 NE; 2 GI'; 3 GE; 4 LT; 5 LE). If < opl reI op2 > is
true, the next command is skipped.

OPSS 218 op:!n subset 1+4 (6)
op:!ns a picture subset (picture segment) whose name is specified on the
first 2-byte operand. Subsequent display commands until CISS are
diverted (stored, but not processed) •
Cperands two to five (seven) are as for LIM.

CISS 219 close subset
closes the subset

CAT 220 catalog subset or macro 1
catalog and store the subset or macro whose name is specified on the 2
byte op:!rand in the subpicture library under its name.

EXEX: 221 execute subset 1+5 (7)
executes a picture segment. The pararnetershave the following meaning:

2D op 1 name 2 bytes
op 2-5 limits as for LIM 4x2 bytes
op 6 angle as for SYMA 2 bytes

3D op 1 name 2 bytes
op 2-7 limits as for LIM 6x2 bytes
op 8 angle with x-axis 2 bytes
op 9 angle with y-axis 2 bytes
op 10 angle with z-axis 2 bytes

A 2D EXOC-cammand is followed by a total of 12 bytes, a 3D call by 20
bytes. 2D segments can be executed in 3D mode and vice versa. Execu
tion depends on the EXOC sequence. If an EXEC coounand is found, the
system looks if the segment was defined previously in the protocol; if



February 13, 1979 display protocol - 29

not it looks in the subpicture library. If a segment of this name is
not found, the command is ignored.
If it is found, the current context is saved to a stack, the register 0
(the level register) is incremented; if a command in the subset does not
explicitly change sane parameter (e.g. background colour), the parameter
of the higher level is default. EXECs can be nested to any depth (stack
size limitation). The limits specified in the EXEC command serve to re
calculate all coordinates of the subset. Example: given the sequence
OPSS name 0 1013 0 100 and
EXEC name 20 25 800 850 45,
the system will position the lower left corner of the picture segment
name at location (20,800); the unrotated upper right corner would be at
(25,850), but the segment is rotated 45 degrees around the point
(20,8130) •
Changes of parameter s in segments of lower level (higher level number)
never affect the higher level. At the end of the segment processing,
the original parameter set is restored from the stack and the level re
gister decremented.
In 3D, rotation in all directions is possible (ll rollll, IIpitch" and
"yaw") •

222 - 255 unused and free for future use

Proposal for the register allocation:

All 128 registers are 2 byte words.
registers 0 to 63 are global,

64 to 127 are local to current window or subset,
o to 31, 64 to 95 are for system use,

32 to 63, 96 to 127 are user-programmable.
Register 0 contains the stack-level; register 1 to 3 contain the current x,y
and z absolute coordinates of the writing device relative to the highest level
window; registers 4 to 6 contain the x,y and z coordinates of the lower left
corner, registers 7 to 9 the x,y and z coordinates of the upper right corner
of the highest level window; Register 10 contains the current window name, re
gister 11 the current subset name. 'Ihe remaining global registers from 12 to
31 (system use) and 32 to 63 (user) can be allocated for specific tasks.
'Ihe allocation of the 12 first local registers reflects logically the global
ones, but are local to a window or subset. 64 is the stack pointer to the pre
vious level, 65 to 67 the cursor position, 68 to 70 lower left, 71 to 73 upper
right, 74 the window name, 75 the subset name.
'!he remaining local registers from 76 to 95 (system use) and 96 to 127 (user)
can be allocated for specific tasks.



February 13, 1979

7. SOME ASPECTS OF HIGH LEVEL PIcrURE DEFINITION

display protocol - 30

When a grap-dcs system is restructured and rebuilt from scratch, and if
additional hardware is implemented, it would be a bad idea to use any of the
graf*1ics software on the "primitives" level currently available at IIASA.
These programs will have to be completely rewritten. It is clear that a new
subroutine package of graf*1ics primitives must provide at least the same fa
cilities than the present one. In addition a set of subprograms to define,
update, handle and execute picture segments will be required.
It might be a good idea to implement these user level functions as a graf*1ics
language, hosted by FORTRAN, but run through a preprocessor before compila
tion. This facility will improve debugging of the graphics program, since part
of the error checking will already be done in the preprocessor. The user
would not have to worry about the correct mlnber of arguments or the proper
dimensioning of ar r ays •
The produced source code should be aboolutely basic "roRT"able FORTRAN.
In a first stage of implementation, the existing graphic primitives should be
rewritten (simulated), which will make existing higher level graphical
software operational for a certain transition period. Their names should
nevertheless be different from the old ones, even if the parameter list
remains the same. Program "hits" like "PLOT" will run with minor enhancements
in the first stage, a later "reincarnation" will nevertheless be unavoidable
if the new available hardware is to be used accurately.



February 13, 1979

8. BIBLIOGRAPHY

display protocol - 31

[1] Walker ~. ~., Gurd ~. ~., Drawneek E. ~.: Interactive computer graphics,
~rnold, London, 1975

[2] Newman~. ~., Sproull ~. F.: Principles of interactive computer graphics,
McGraw-Hill, 1973

[3] Stallman ~.: The SUPDUP graphics extension, NWG/RFC#746, RMS 17-Mar-1978

[4] Crispin ~.: SUPDUP Protocol, NWG/RFCi734, RMS 7-Apr-1978

[5] Sproull R. F., Thomas E. L.: A network graphics protocol (ARPA), Computer
Graphics, SIGGRAPH Quarterly, Aug. 1974

[6] Schwenk g. ~. et al.: INI'ERroL - an interactive plotting package for off
line CAL<DMP systems, US Army Ballistic Research Lab., Aberdeen,
Mar-1978

[7] McCann ~.: graphic display interaction - part 1 - literature review,
springfield, ntis, 1978

[8] McCann ~., Innes 1.: graphic display interaction - part 2 - information
structure and basic functions, springfield, ntis, 1978

[9] Levine~. g.: seminar notes "ccrnputer graphics state of the art techniques
and applications", Lawrence Livermore Laboratories, Rev. 5, 1978

[10] Integrated Computer Systems, Inc: Manufacturers' Literature - Computer
graphic ccrnp:ments and systems,1978

[11] Cohen Q., Taft ~.: An interactive net\'K>rk graphics system, Comp & Graph
ics, Vol 1, Pergamon, 1975

[12] Smith 1. ~.: An example of a pragmatic approach to portable interactive
graphics, Comp & Graphics, Vol 1, Pergamon, 1975

[13] Marovac !'i., Elliot ~. ~.: An network-oriented language - a new approach
to network design, using interactive graFhics, Comp & Graphics, Vol
2, Pergamon, 1977

[14] Cotton I. W.: Standards for network graphics ccrnmunication, Comp & Graph
ics, Vol 1, 1975



February 13, 1979 display protocol - 32

[15] Feldmann g. ~., Heller §.. g., Bacon~. g. !.: An interactive, versatile,
three-dimensional display, manipulation and plotting system for
biomedical research, J. of Chemical Doc, Vol 12, No.4, 1972

[16] Le Lous y.: Les besoins actuels en logiciels de visualisation (Present
requirements for grafilics software), Llome Electrique, Vol 57, No.
12, 1977

[17] Newman ~. !i., Sproull g. f.: An approach to graphics system design, Proc.
of the IEEE, Vol 62, No.4, 1974

[18] Scranton!?. ~., Manchester ~. ~.: Use of SIMPWI'rER - a high level plot
ting system, Ames Lab., ICMA, Mar 1978

[19] Chernoff !!.: Graphical representation as a discipline, Techn. Rep. 11,
MIT, Carob. Dept of Math, Apr 1978

[20] Teitelrnan ~.: A display oriented prograrruner' s assistant, XEROX PARe Re
port CLS 77-3, Mar 1977

[21] Bergeron g. !?.: Standards for interactive computer graphics software,
Proc Workshop pict Data Descr & Management, Chicago, Apr 1977

[22] Wexler ~.: Minimizing traffic between two processors used for interactive
graphics, DECUS Europe 8th Seminar Proc, Strasbourg, Sep 1972

[23] Michel ~., Van Darn ~.: Experience with distributed processing on a
host/satellite graphics system, Computer Graphics, Vol 10, No 2,
1976

[24] Mudur §.. ~.: cevice independent graphics software, J of the Comp Soc In
dia, Vol 6, No.1, Dec 1975

[25] Garrett ~. !.: An interpretive/interactive subroutine system for raster
graphics, ~CM Sigplan Notices, Vol 11, No.6, Jun 1976

[26] Cohen !?., Taft ~.: Fast interactive canputer graphics over the ARPA net
work, 7th Hawaii Int. Conf on Systems Sciences, Jan 1974

[27] Schweeger ~.: PLOT Users Manual, IIASA Graphics Library, 2. BJ, 1978

[28] Ryder ~. ~.: The PFORT verifier, Software Pract & Experience, No.4, 1974

[29] Sproull g. F.: OMNIGRAm: simple terminal-independent graphics software,



February 13, 1979 display protocol - 33

XEROX PARe Report CLS 73-4, 1973, Reprint Apr 1977

[30] watson C. R.: An interactive computer graphics system applied to the life
sciences, diss. Oregon St. U., 1974

[31] Giloi ~. ~.: Interactive computer graphics - data structures, algorithms,
languages, Prentice-Hall, 1978




