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PREFACE

In the day-to-day operation of water resource systems, forecasting is
extremely important for establishing optimal design and control strategies.
In the past few years, considerable attention has been paid to real-time con-
trol of water resource systems in an on-line operation mode. Several tech-
niques have been developed to approach this important practical problem.
However, there were, and still are, some basic problems needing further
clarification. For example, the nonlinear, spatial, stochastic characteristics
of water resource systems cause problems in the implementation of algo-
rithms adapted from other fields. Progress in overcoming these problems has
been made throughout the world. At the International Institute for Applied
Systems Analysis (ITASA), the Water Resource Project had a research effort
devoted to the methodology of real-time forecasting and control of water
resource systems. Research was being done in several places, but without
mutual cooperation. It was felt that a small international workshop would
serve as an important forum to exchange experiences and ideas. Thus, IIASA
hosted a workshop from October 18 to 20, 1976, in which 52 scientists
from 17 countries participated. Twenty-six papers were presented, of which
17 are included in this volume. The papers in the workshop and in this
volume were divided into four areas: overviews of forecasting methodologies,
forecasting of hydrological systems, control, and operation experiences. The
work in these proceedings represents an important interchange of ideas and
approaches, and forms the basis for future developments in the area of real-
time forecasting and control of water resource systems.
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1 Introduction

This book represents the edited proceedings of a small workshop held at the
International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria,
from October 18 to 20, 1976. The workshop was held within the framework of the
research study "Methodology of Real-Time Forecasting and Control of Water Resource
Systems".

Current operational forecasting procedures for streamflows have developed from
deterministic hydrology and are based on either index catchment models or
conceptual catchment models. Such models tend to simulate the basin response to
hydrologic events and do not fully utilize information collected during an event.

Motivation for the research task and subsequent workshop was twofold: In the day-
to-day management of water resources, greater demands are being made on systems

to increase yields or provide better flood protection through better operation
rather than by expansion. Poor management of reservoirs can lead to the waste of
over 20 per cent of the available reservoir supply (that is, water that can be
delivered to users) because of needless discharges. This waste could be reduced
by better forecasts of demands and downstream supplies. The most cost-effective
procedure for reducing flood damage in the United States (which still runs at
about $1.5 billion annually and is increasing at about 6% per year in real terms)
and many other countries is through better forecasting techniques. Therefore, our
first motivation came from the knowledge that improved forecasting and control can
lead to the better use of water resource systems. The interest in the last few
years in operational, on-line control systems supports this claim.

The second motivation for our research was a belief that currently applied hydro-
logic forecasting and control procedures are not the best available. During a
flood, data arrives at the forecast center. This in-coming data contains valuable
information that the forecasting procedures and models must extract and utilize.
It is not evident that current operational models, like those presented in Part
Three, are formulated and developed to process this in-coming data adequately.

Lately, considerable interest has developed in forecasting techniques based on
state-space models. Most of the practical applications have been in the aerospace
field, and industrial applications are becoming more common. Recently, forecasting
algorithms, based on statistical estimation techniques such as the Kalman filter,

have been developed by hydrologists, water quality modelers and meteorologists.

Many important difficulties, both of a practical and of a methodological nature, remain
to be resolved before operational state-space models can be applied.

—l_
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The subject of the IIASA workshop and this book encompasses recent developments of
statistically estimated models for hydrologic forecasting in real-time for control.
By real-time, we mean a mode of operation in which a forecast is made for a given
time horizon (which may be a few hours for flood discharges from a catchment that
responds quickly, to a few days for water demands or supplies, to a month or more
for groundwater systems) in order to make a control decision. During the forecast
interval, data is collected and processed and new forecasts are issued so that the
control action can be modified.

STATE ESTIMATION

This volume is concerned with developing state-space models of hydrologic systems.
The concept of the "state" of the system is introduced as a mathematical convenience
in order to use the notions of causality and internal structure in the description
of the state (Casti 1977). The states need not represent a physically measurable
quantity. The only variables that do have physical representation are the inputs
and outputs, since these can be observed and measured.

The concept of the state is important since it permits models for the system
dynamics (often called the state equation) that describe the response of system
states to inputs, to be separated from models that relate the observed outputs to
the system states through an output equation (or measurement system).

In hydrologic analysis, the state may refer to the "correct" value of a measurable
quantity, for example, river levels, subcatchment discharges, precipitation rates,
or reservoir volumes. A measurement system would provide, through time, observa-
tions on these variables by using sensors or other measuring devices. The state
variable can also be a system parameter like the friction coefficient for losses

in overland flow or the permeability coefficient of a soil. These variables cannot
be directly observed but can be related to observed outputs; discharge rates from
overland flow are a function of the friction coefficient and well drawdowns in
groundwater systems are a function of soil permeability (through an output function).

The concept of states and state-space models allows great flexibility in describing
and modeling systems. The state equation models the behavior of the system by a
finite dimensional Markov process that has been "noise corrupted", that is, it is
subject to random error disturbances. Because of these random disturbances, the
states are random variables whose probabilistic properties are related to the
probabilistic properties of the error disturbances.

The measurement system observes (or measures) the precipitation in a catchment,

the stage of a river, the groundwater and so forth. The measurements of the output
variables are also in error due to the complex nature of the hydrologic systems.
For example, areal precipitation measurements will be in error because only a

small number of point measurements are taken and because the measurements may be

in error due to shortcomings in equipment. The (measured) outputs are related to
the state variables through the measurement (or output) equation that accounts

for the measurement errors through an additive error term.

Thus, the state-space model approach has two sets of equations. One, the state
equation, is a dynamic model that describes the behavior of the system over time
and is subject to modeling errors; the other is the measurement or output equation
that relates the observed output (from the measurement system) to the state
variables of the system.

Using both the state equation and the available measurements, it is possible to
estimate the state of the system. This procedure is regarded as state estimation.
Given measurement up to and including time t, three kinds of problems in estimating
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the state of the system, x(1), at time T, are of interest: filtering, estimating
x(1) when T = t; smoothing, estimating x(t) when T < t; and forecasting, estimating
x(1) when T > t. The estimator for x(t1) is often denoted as x{(t|t), showing that
the estimator uses measurements up to and including time t. The most commonly
applied filtering technique was developed by Kalman (1960) for estimating the state
of a linear system with known system dynamics and knowledge of the probability
properties of the error distributions.

Figure 1.1 illustrates the procedure of system measurement and estimation. The
survey paper by Mehra (Chapter 2) gives a review of state-space models and discusses
a number of estimation techniques. The introduction to Part One of the book
includes a derivation of the Kalman filter since many papers in that section apply
the technique. Filtering algorithms are emphasized because optimal forecasting

is based on filtering (Gelb 1974).

Model Error Measurement Error
Sources Sources
1 State
Systen System Measurement | Observation Kalman Estimate
Model St(at)e Model 2{t) Filter ;(‘ﬂt)
xit

Fig. 1.1 Procedure of system measurement and estimation
(after Gelb, 1974).

APPLICATION OF STATE ESTIMATION

For hydrologic systems, a number of practical problems arise when the Kalman filter
is applied. The Kalman filter provides an algorithm to process the measurement
data given, a (linear) model of the state dynamics, the probabilistic properties of
the model error and measurement error terms, and initial conditions consisting of
an (unbiased) estimate of the state at t = 0, x(0), and the error covariance matrix
of this estimator. The dynamics of hydrologic systems are often nonlinear (or
approximately linear), estimators for the parameter values are unreliable, and the
magnitude of the noise variances in the state equation and the measurement equation
are unknown.

The last problem is of critical importance because of the forecasting and updating
property of the Kalman filter algorithm. Prior to the processing of the measurement
at time t, an estimate of the state at time t (based on past measurements) is made.
The uncertainty of this estimate depends partially on the variance of the noise
terms that are influencing the state equation. After the (noise corrupted) output
variables are measured with the measurement equation, the estimate of the state
based on past measurements is updated to include the current measurement. The
updated estimate of the state is a weighted estimate of the uncertain prior

estimate of the state and the uncertain measurements, where the weight is a function
of the relative magnitudes of the variances of the state equation and measurement
equation noise terms. If the variance of the state equation noise term is much
smaller than the variance of the measurement equation noise term, then less weight
will be given to the new measurement in updating the state estimator.

Therefore, before the correct Kalman filter can be applied to hydrologic problems,
the problems of model structure, parameter values, and probabilistic properties of
the noise terms must be resolved. Part One addresses these issues specifically.

The aim of a forecasting algorithm is to fully utilize the information from the
incoming data. If it is fully utilized, the one-step-ahead residual errors will be
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uncorrelated and there will be cross-correlation between forecast error and
(prewhitened) input. The first property implies that the noise terms (in the state
and measurement equations) have been correctly modeled and estimated and the second
property implies adequacy in the structure and parameter values of the transfer
function between inputs and outputs (Box and Jenkins 1970).

The problem of determining the structure of the model and estimating the parameters
is often referred to as model identification. Part One of the volume is concerned
with this problem and a number of techniques are applied to models of hydrologic
systems. The problem of estimating probabilistic properties of the noise terms
(especially their variances) has not been adequately solved for those models
applied to hydrologic systems. Pioneering work by Mehra in this field is described
in Chapter 2 and a recursive algorithm (Wood and Sz8118si-Nagy 1978) has been
applied to real-world data (results were presented at the workshop but are not
reported in this volume).

OPTIMAL CONTROL

The aim of water resource management is to control the system in a manner that is
"most preferred." To determine what is meant by most preferred would require the
determination of appropriate cost, benefit, and loss functions for the water
resource system. This is a difficult task and one that is not addressed in this
volume. It will suffice, for our discussion, to assume that the appropriate
functions exist and have been adequately estimated.

The control strategy determines, over time, target levels for the preferred opera-
tion of the system. To develop meaningful control strategies for hydrologic
systems, the stochastic nature of the system must be taken into account. Stochastic
control theory is concerned with developing strategies for systems that are

subject to stochastic disturbances.

Control requires the adjustment of a variable whose effect on the state variable
is well known through the state equation; the purpose of the adjustment is to
maintain the established target level. The filtered and forecasted values of the
state equations are very useful for control problems. In fact, for certain types
of problems, these filtered and forecasted states of the hydrologic system can be
utilized in finding control policies when stochastic disturbances are present.

A fuller discussion of the important connection between the state estimation
problem and the control problem of stochastic hydrologic systems is presented in
the introduction to Part Two, Control of Water Resource Systems. Applications
presented in Part Two are for reservoir control, waste water treatment, and the
determination of in-stream water quality.

ARRANGEMENT OF THE BOOK

The papers have been grouped in such a manner that readers with varying interests
and mathematical backgrounds may approach the book in some logical manner. The
emphasis of the book is on hydrologic models that fit into the state-space
formulation. The papers describe the behavior of a dynamic system by a finite-
dimensional Markov process whose state is the output variable of the stochastic
differential or difference equation describing this process. This formulation is
subsequently embedded in a state-estimation filtering algorithm usually of a
recursive nature, for the processing of data from the real-time, sequential
measuring system.

For the reader who is unfamiliar with many of the concepts of state-estimation
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theory, Mehra's survey paper (Chapter 2) presents some of the fundamental problems
and approaches to state-space models, system identification, and forecasting.
Almost all of the major techniques represented in Part One are discussed.

Part One is the focus of the work and it is here that hydrologic problems are
formulated and analyzed within the state-estimation framework. This portion of
the volume are represented by Chapters 3 through 10 and can be divided into two
groups. The first group of papers focuses on system identification and parameter
estimation techniques. These papers describe many state-of-the-art techniques for
modeling and forecasting hydrologic phenomena. The second group of papers
emphasize the state estimation problem of hydrologic systems, and a variety of
approaches besides the Kalman filter approach are discussed.

Part One should be of great interest to both the researchers interested in applying
new methodology, and the operational or field hydrologists who want to evaluate

the potential of the proposed techniques. The paper by McLaughlin (Chapter 7) is
especially effective in the latter respect.

Part Two considers the problem of the control of water resource systems. The
paper by Beck (Chapter 11) relates many of the topics discussed elsewhere in the
book to the problems in the control of hydrologic systems and is an effective
introduction to readers who are not familiar with the concepts. Many hydrologists
may be able to profit from the formulation of problems of reservoir control
(Chapter 13), in-stream water quality (Chapters 11 and 14) and waste treatment
(Chapter 11). A more technical discussion of the relation between forecasting

and control of stochastic systems is provided by Sz8118si-Nagy and Wood (Chapter
12) and may be of interest to research hydrologists.

Both Parts One and Two have introductions in which the basic aims and concepts
developed within that section are discussed. The introductory material also
includes a literature review to assist those readers who are not familiar with
the historical development of the subject.

One of the aims of the workshop was to relate the state-estimation techniques to
operational forecasting. We attempted to do this by having, at the workshop,
papers describing some operational forecasting experiences in various countries.
These papers are presented in Part Three and represent an important link between
illustrative applications (of an academic type) and operational or field forecast-
ing. The research hydrologist must understand the problems inherent in large,
complex systems and the constraints that exist. Similarly, the field hydrologist,
who is probably using techniques described in Part Three, should attempt to apply
the techniques of Part One (or at least support their application) to see if
improved forecasting can be achieved.

It is possible for the hydrologist who usually works with deterministic models to
relate his methodology to the state-space modeling approach if he recognizes that
his approach will give identical results to the state-space model when only the
state equation of the system dynamics model is used for forecasting. On the
other hand, the state-space approach allows one to estimate and forecast the

state of the (stochastically disturbed) hydrologic system with the use of a filter
algorithm. This procedure will lead to results that are equal or better than a
procedure based on the state equation model alone. This invites further investi-
gation of the state-space approach. The editors hope that this volume will
encourage many hydrologists to consider the techniques described and to apply those
that appear promising to the day-to-day management of water resource systems.
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2 A Survey of Time Series Modeling and Forecasting Methodology

Raman K. Mehra

This paper reports on certain recent developments in time series analysis, system
identification, and forecasting in the hope that they may find applications in
hydrology. A number of concepts discussed here may be familiar to hydrologists,
though the details of the state-space formulation and the associated results may
not be widely known. The emphasis will be on model building using real data; there
will generally be a specific objective for modeling such as forecasting, control,
or simulation. Time series analysis is too vast to be covered in a single paper;
the selection of material, no doubt, reflects the author's own interests and
viewpoints on the subject.

HISTORICAL BACKGROUND

The systematic development of time series analysis started with the work of Yule
(1927), who showed that Wolfer's sunspot data could be represented satisfactorily
by a second-order autoregressive (AR) model. Wold (1938) showed that any non-
deterministic stationary time series can be decomposed into a moving average of
independent random variables known as "innovations" or the one-step-ahead
prediction errors.

The estimation of parameters in AR and other linear difference equation models was
considered in depth by Mann and Wald (1943); and Whittle, in a series of ground-
breaking papers (1951, 1952, 1952a, 1954, 1954a, 1954b), explored various aspects
of time series analysis, including spectral representation, maximum likelihood
estimation of parameters, hypothesis testing, tests of fit, and random processes
on a plane. From 1950 to 1970 several developments took place in the field of
spectral estimation and nonparametric modeling of time series; they are reported by
Bartlett (1966), Hannan (1960), Blackman and Tukey (1959), Parzen (1957), and
Jenkins and Watts (1968). The importance and usefulness of parametric modeling
was re-emphasized by Box and Jenkins (1970), who also showed that a number of
practical nonstationary time series could be modeled by using integrated and
seasonable autoregressive moving average (ARMA) models.

The work reported here is based on research sponsored by the Office of Naval
Research under Contract #N00014-76-C-1024.

-7-
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With the exception of the work of Quenouille (1957), the literature of time series
analysis until 1970 was largely confined to scalar time series. Since 1970,
however, multiple time series analysis has received 1increasing attention in both
the statistical and control literature (see Hannan 1970, Akaike 1974, Kashyap and
Rao 1976). The state-space theory of linear systems, developed during the early
1960s by Kalman (1960) and others, is described briefly below. Since the theory
is applicable to both physical and black box models, one can present a unified
treatment of modeling and forecasting methologies.

Further references on the development of time series analysis may be found in Wold
(1965), IEEE (1974), and Mehra and Lainiotis (1976).
TIME SERIES ANALYSIS AND ITS APPLICATIONS

System identification and time series analysis involve developing mathematical
models and identifying relevant physical and mathematical characteristics of
systems using noisy operational input output data. The procedure may be divided
into the four subproblems shown schematically in Figure 2.1:

- Design of experiment

- Model structure determination

Parameter estimation

- Model verification and comparison

Input Unknown System Ouput
A priori Design of
Knowledge Experiment

Input-Output Data

J] Model Structure
Determination

A priori J
Parameter Parameter
Estimates Estimation

. Model No
Ds'fef;';rf" »|  Verification

Data and C(infanson

Model Selection
{Final Model)

Fig. 2.1 Steps in system modeling and identification
(from Mehra and Lainiotis, 197¢).

The model-building process involves several passes through the above four steps.
Implicit in the model verification step is the objective of identification. For
example, if the model is being developed for real-time forecasting of river flow
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one day ahead, then the model verification and selection is based on the ability of
the model to provide the best one-day-ahead forecasts. Several other criteria, such
as simplicity and the relation of the variables to reality, will be discussed in
later sections.

APPLICATIONS

According to Parzen (1976), one may distinguish six basic applications of time
series analysis:

- Forecasting (or extrapolation)
- Spectral analysis (or interpolation by harmonics)
- Parameterization (or data compression)

- Intervention analysis (detection of significant changes in forecasts or
parameters)

- Filtering and smoothing (signal-plus-noise decomposition)
- Control

For hydrology, and fields similar to hydrology, there are two other applications:
- Simulation or generation of synthetic time series for design purposes

- Understanding of the internal mechanism of a process by the estimation of
parameters in mechanistic (rather than black box) models

Some major areas of application system identification and time series analysis
outside hydrology are:

- Industrial processes: paper mills (Astrdm 1967); basic oxygen furnace (BOF)
(Mehra and Wells 1971); aircraft (Mehra and Tyler 1973)

- Energy systems: nuclear reactors (0Olsson 1976); turboalternators (Jenkins
and Watts 1968); electricity demand forecasting (Galiana et al. 1974)

- Biomedical systems: EKG and EEG analysis (Gustafson et al. 1977, Gersch
1972); respiratory models (Swanson 1972); human operator modeling (Phatak
et al. 1975); compartmental models for drug distribution (see survey by
Beckey 1976 for other applications and for problems peculiar to biomedical
modeling)

- Econometrics: (Theil 1971) and business forecasting (Management Science
1977)
MODELS USED IN SYSTEM IDENTIFICATION AND TIME SERIES ANALYSIS

General State Vector Model

A general state vector model can be used to represent mechanistic, conceptual, or
black box models. A state vector model is specified in terms of (a) three vectors
of input, output, and state variables; (b) a rule for transformation of the state
vector from one instant in time to the next; (c) a relationship between the output
variable and the input and state variables; (d) the initial state; and (e) joint
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Parameter Set 0

Random Measured Input u(t) Random
Unmeasured Measurement
Disturbance Noise

w(t) uft) uft) v(t)

State x(t)  x(t) Output
—

Transformation Model Transformation Madel

x(t)

xee D Stare

Unit

Delay

x(t+1) y{t)

Fig. 2.2 State vector model.

statistics of unknown parameters and random variables (Fig. 2.2). Mathematically,
in discrete time

x(t+l) = F(x(t),u(t),0,t) + w(t) (2.1)
y(t) = h(x(t),u(t),0,t) + v(t) (2.2)
t = 0,1,2...

where x(t) is an n-dimensional state vector, u(t) is an r-dimensional input vector,
w(t) is an n-dimensional process noise vector, © is an m-dimensional parameter
vector, y(t) is a p-dimensional output vector, and v(t) is a p-dimensional
measurement noise vector. The noise vectors w(t), v(t) are usually assumed to be
uncorrelated white noise sequences with known distributions. Similarly, the
distribution of x(0) is assumed known.

All mathematical models, including the state vector model, are only approximations
of reality. It has been shown by Sz8l18si-Nagy (1976) that a number of models used
in hydrology can be written in the form of Egs. (2.1) and (2.2). If the model is
mechanistic or conceptual, the state vector x{t) has a close relation to reality.
In black box or time series models, the state vector need have no real correlation;
however, it possesses a mathematical meaning that may be simply stated, for
heuristic purposes, as follows:

State vector x(t) collects information, from the past and present behavior of the
system, that is sufficient to predict its future behavior for a specified input
sequence. For mathematically rigorous definitions of the state vector, see Kalman
et al. (1969) and Akaike (1974).
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The linear form of (2.1) and (2.2) is the Gauss-Markov model, written as:

x(t+l) = d.x{(t) + G.u(t) + T.w(t) (2.3)

y(t) = Hox(t) + v(t) (2.4)

The parameter vector 6 is included in ¢ and H, and y(t) is no longer dependent on
the input vector u(t). The vectors w(t) and v(t) are assumed to be Gaussian white
noise (GWN) sequences with zero mean and covariances Q and R. The initial state
x(0) is normally distributed with mean Xy and covariance Pg. The matrices ¢, G,
H, T, Q, R, and Py are deterministic but may be time varying. The main advantage
of the Gauss-Markov model is that the mean, covariance, and correlation functions
for x(t) and y(t) can be computed recursively by solving a set of first-order
vector-difference equations. The general equations may be found in Bryson and Ho
(19692) and are summarized below:

Mean: Let x(t) = E[x(t)]. Then

X(t+l) = ® x(t) + G u(t) (2.5)
y(t) = H x(t) (2.6)
x(0) = 26 (2.7)

Covariance: Let I (t) = E[(x(t) - X(£))(x(t) - X(t))']. Then

E(te]) = @ I (1) @ + ror’ (2.8)
$(t) =HZ(t)H (2.9)
y X

200 =g, (2.10)

Correlation function: For the time-invariant case, let

C (k) = E[(x(tsk) - X(e4k))(x(t) - X(t)T] .
Then
k
c (k) = a5 k>0 (2.11)
HZ HT + R k =0
C (k) = (2.12)
y H oK I, HY k>0
and
.
c (-k) = C_ (k) (2.13)

The Fourier transform of Cy(k), known as the spectral density function Sy(w), is
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a rational polynomial matrix and is given by

T

-1 + HelY - oTy! EH + R (2.14)

T

B iw
Sy(w) =H(el -9 " LH

we [-m,7] .

Notice that a complete external description of the system from the knowledge of
inputs and outputs is provided by {y, Cy(k), k > 0} or {y, Sy(w), w e [-m,m]}.
Now consider parametric time series models that are based on” the above external
description.

Stationary Time Series Models

If in (2.3), the transition matrix ® has all eigenvalues inside the unit circle
and u(t) is stationary, the processes x(t) and y(t) are asymptotically stationary
processes. Furthermore, by a change of basis of the form x'(t) = Tx(t) where T
is a nonsingular n x n matrix, the system equations can be written as:

x'(t+1) = &'x'(t) + T T w(t) (2.15)
y(£) = H'x'(t) + v(t) (2.16)
where
ot =To Tt
T

and u(t) = 0 for simplicity.

The form of T can be chosen in such a way that the matrices T ¢ T'l and HT-l have
the canonical form. For single-output systems, by choosing T as the observability
matrix, i.e.,

H
T = |He™! (2.17)
ho"-1
one gets

H' = [1,0,0,..., 0] (2.18)

0 1 0 .. 0

0 0 1 ... 0
o = (2.19)

0 0 RO |

-0!.1 -0!.2 coe -OLn
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where (al,...,an) are the coefficients of the characteristic polynomial of ¢. For
single-input, single-output systems, the transition matrix of the transformed system
(which is the same as that of the original system) is a ratio of two polynomials
corresponding to an ARMA model of the following form:

n-1 n-1
y(t) + 1 oy y(t-i) = v(t) + & B1 v(t-1) (2.20)
i=1 i=1

where v(t) is the innovation or the one-step-ahead prediction error

(y(t) - §(t]|t-1)) where §(t|t-1) is the prediction of y(t) utilizing measurements
up to time t-1. Furthermore, {v(t)} is linearly related to {w(t)} and {v(t)}
processes. Since, given a realization of the process y(t), only the parameters
(¢i,Bf, i=1,...,n) and var(v) are estimable, the state vector model is identifiable
if and only if the parameters in {$,T,H,Q,R} can be obtained uniquely from the
ARMA parameters. The state vector canonical models are identifiable since they
satisfy this requirement (Popov 1972).

The AR and moving average (MA) models are special forms of the ARMA model with
BL = 0 or aj = 0, respectively. Furthermore, an ARMA model may be written as
either an infinite-order AR or an infinite-order MA model.

Canonical models for multi-input, multi-output (MIMO) systems are discussed by
Mayne (1972), Mehra (1973), and Akaike (1974), and multiple ARMA models are
discussed by Hannan (1970) and by Kashyap and Rao (1976). The single-input,
single-output ARMA model is identifiable, but the multiple ARMA model requires
restrictions on parameters to be identified.

Nonstationary Time Series Models

In many applications the class of stationary time series is too restrictive to be
useful. For example, the series of monthly river flows have means and variances
with seasonal dependence that is an essential part of the Thomas-Fiering (1962)
model, and many population and sales series have trend components. Models of the
following two classes are generally used to represent such time serles.

Covariance Stationary Models In covariance stationary models, (Parzen 1976,
Kashyap and Rao (1976), the mean 1s time varying, but the zero-lag covariance
function is constant and the higher lag covariance function depends only on the
lag variable. The time-varying mean is known as the trend and 1s generally
represented as a polynomial-sinusoidal function of time. The subtraction of the
mean, known as detrending, leads to a statlonary time series.

A generalization of the covariance stationary models is achieved by allowing the
covariance function to be the product of two functions, one dependent on time and
the other not dependent on time. The Thomas-Fiering model uses a periodically
varying covarlance structure, while Kashyap and Rao (1976) use parametrically
parsimonious models of the same type.

Autoregressive Integrated Moving Average Models Models obtained through repeated
integrations of stationary ARMA models are known as autoregressive integrated
moving averages (ARIMA) models (Box and Jenkins 1970). If the original ARMA series
has a nonzero mean, then repeated integrations result in a polynomial time trend.
Furthermore, irrespective of the mean, the variance of an ARIMA model would grow
with time. In many cases, such behavior may be observed by plotting the data, but
a better method 1s to examine statistical properties of the differenced time
series.

Box and Jenkins (1970) also consider seasonal ARIMA series, which can be obtained
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from stationary ARMA series or nonstationary ARIMA series by periodic summing of
terms. For example, a series with an annual cycle may be produced by shifting a
monthly series by 12 lags and adding it to the original series.

In practical time series analysis and system identification, the order of integra-
tion, the period, and the multiplicity of the seasonal component are unknown. It
is often possible to represent the series by models from different classes. The
final choice of a model is based on the nature of the situation being modeled and
the purpose of identification.

Tests of Stationarity Practical time series methods require transformation of
nonstationary time series into stationary time series because correlation and
spectral methods have been developed mainly for stationary time series. In
accordance with the discussion above, one may elther use detrending or differencing,
depending upon the assumptions regarding the form of the nonstationarity. In
either case, a test of stationarity is required to make sure that the transformed
series is stationary. According to Parzen (1976), the purpose of time series
analysis is to transform a given time series into white noise. Since an AR, an
ARMA, or a state vector model will convert most time series (in particular, linear
time series with rational spectra) into white noise, Parzen (1976) claims that the
approaches of detrending and differencing are asymptotically equivalent. However,
for finite sample sizes, Kashyap and Rao (1976) have demonstrated that one of the
approaches may be superior.

Several tests of stationarity have been proposed in the literature, but perhaps

the most general is the T¥*-test, discussed by Zaremba (1967, 1972) and Pleszczynska
(1971). The T*-statistic, defined below, tests the null hypothesis Hg: {Z{} = {Xt}
against the alternative hypothesis Hi: {Zt} = {Xt + yt¢}, (yt$0) where {X¢}, t = 1,
2,...,N is a linear purely stochastic process and yi is a deterministic real
function defined on t = 0, f1, *2,... satisfying the following conditions:

N-1

Nem = D (- J_;J_)sz N=0 (2.21)
NL n k=1-N ’
where
_ max
o " agean el (2.22)
N-|k|
Gen = WIRT B YeYeelk] (2.23)

and Q is a positive constant.

Zaremba (1967) and Pleszczynska (1971) have shown that all polynomial and periodic
functions of time satisfy condition (2.21). The T*-statistic is defined as
follows:

For each N, choose two integers u and v such that the product uv approximates N as
closely as possible and v is the smallest integer satisfying

W15 <y < N2
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Define
N-|s|
N T -
CY N TRTTST L Zties|s| ([s| = 0,1...,N-1) (2.24)
t=1
T L)
_1 s 2
=5 1 G- N) Cxy (2.25)
s=1-N
AY]
1l v ;2 _
C*,0,p =3 L Ziapy (p = 0,1...,u-1) (2.26)
t=1
u-1
| 2
U* = — * - C* .
Wy =T 1 o(c ovip " (2.27)
p=0
2
1/2 25*  + kC*
_f{u N 0,N
T L0 = (2) 1- ) (2.28)
HyV

where -ZsksR4R2-2, Rk being the kth cumulant of the innovation process of {Xt}.
For a normal process, R4R2>-2 = 0. Since the exact distribution of {Xt} is unknown,
k = -2 is recommended. Zaremba (1967) and Pleszczynska (1971) show that under H;

plim T*(k) = -» ,
N+ o (2.29)
HyV *

On the other hand, under Hy (or yt=0), T(R4R2'2) tends to normal distribution with
zero mean and unit variance and

+o  for k<R4R2'2

- for k>R4R2

(2.30)

plim T (k) = »

Thus, for k = -2, a test in which the critical set is defined by T*, \(k)<Ey has a
level of significance asymptotically equal to zero. Furthermore, this test can

be shown to have an asymptotic power (i.e., Prob(T*u’v(k)<£a|H1) of 1) if {Xt} has
finite moments up to order 8. The main advantage of the T*-test, besides its
attractive type I and II errors, is that very little is assumed a priori regarding
the process {Xt}. Pleszczynska (1971) also discusses a technique for polynomial
trend removal using the T*-test that has been extended to more general stationarity-
inducing transformations by Lissagor and Fihman (1976). Simpler but less powerful
tests for detecting trends and periodicities have been given by Fisher (see

Kashyap and Rao 1976), Bartlett (1966), and Jenkins and Watts (1968).
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STATE PREDICTION AND PARAMETER ESTIMATION

The methods that have been used for state estimation and prediction for the models

described in the preceding section are discussed below since these methods form the
basis for parameter estimation and for combined state and parameter estimation.

The basic assumption made here is that the model of the system is known in the

form of (2.1) and (2.2) except for a vector of constant unknown parameters ©. The

results stated here are generally exact for linear models but are only approximate

for the nonlinear model of (2.1) and (2.2). We start with the simplest linear

case in (2.3) and (2.4) with no unknown parameters. The results for this case

were first derived by Kalman (1960) in the form of a recursive filter, now commonly
known as the Kalman filter.

Kalman Filter

Let %(t|T) denote the best linear unbiased estimator of x(t) based on {y(l),...y(1)},
the state model (2.3) and (2.4), and the a priori statistics of the initial state
x(0). Let P(t|T) be the covariance matrix of the estimation error (x(t) - &(t|1)).
The Kalman filter computes (x(t|t),P(t|T)) for t>T using the following equations
recursively:

Update equations:

R(E|t) = R(t[t-1) + K(£)V(t) (2.31)
v(t) = y(t) - H&(t|t-1) (2.32)
K(t) = P(t|t-DH'E () (2.33)

I, () = HP(t|t-1)H'+R (2.34)

P(t|t) = (I-K(t)H) P(t|t-1) (2.35)

One-step-ahead prediction equations:

R(t[t-1) = #R(t-1|t-1) + Gu(t) (2.36)
P(t|t-1) = ®P(t-1|t-1)8" + TQr’ (2.37)
Initial conditions:

R(0]0) = xq (2.38)
P(0}0) = Po (2.39)

k-step-ahead prediction:
R(t+k|t) = OR(t+k-1]t) + Gu(t+k) (2.40)
P(t+k|t) = OP(t+k-1[t)o’ + TQr' (2.41)

k= 2,3,6,...

Not all the theoretical properties of the Kalman filter will be discussed since
the information is readily available in texts such as those of Bryson and Ho
(1969), Meditch (1969), Jazwinski (1970), Gelb (1974), and Schweppe (1974).
Instead, we focus on some of the practical aspects such as unknown noise covari-
ances, numerical problems necessitating square root formulations, dimensionality
problems, robustness, and sensitivity properties.
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Adaptive Kalman Filters

In practical applications of Kalman filters, the nolse covariance matrices Q and R
are generally not known. A systematic study of adaptive Kalman filters estimating
Q and R recursively, in real-time, was started by Mehra (1968) by using the
crucial fact that the innovation sequence v(t) Eq. (2.32) contains all the
information necessary for the estimation of the steady-state Kalman gain K and the
measurement noise covarlance matrix R. Mehra (1968) also described a whiteness
test based on the innovation sequence to test the optimality of a Kalman filter.

Identifier
o e
o |[SEE B ) 8
i © o |Y.2 K C, =
= x » —»
Sxpieyd 5 [Cuyl &
22l © [ ~
a N e
V.
i
. x{ili) .
Y i-1 it | % , Unit | x{hi- 1}
i Unit i ni a
> r Z Delay » H g( Delay
L3 [ ] J
Physical System
H €

Kalman Filter
Fig. 2.3 An adaptive Kalman filter (from Mehra 1970).

A block diagram of the adaptive Kalman filter derived by Mehra (1970) is reproduced
here as Fig. 2.3. The following equations must be solved:

Consider a suboptimal Kalman filter with steady-state gain Kg and the innovation
sequence {v(t)}. Let (k) denote the k-lag sample correlation function after N
time steps

R N
C. (k) = % I v(t)v(t-k) . (2.42)
t=k

The actual covariance matrix of the suboptimal filter is denoted by Mj. Notice
that it is different from the covariance matrix computed b¥ (2.35) and (2.37) for
the suboptimal Kalman filter. Mehra (1968) shows that MjH! may be calculated
uniquely from the innovation covariance sequence (Cv(l),...,cv(n)) where n is the
order of the system. Then R is estimated using the equation

A T
= € ,(0) - HM}H (2.43)

The complete Q_matrix is not identifiable, and only those elements of Q that are
related to MjH' by a one-to-one transformation can be estimated. Alternatively,
the optimal gain K may be estimated uniquely as follows:

= (ﬂlHT + SMHT) (60 + Hom'y~1 (2.44)
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where M = (M—ﬁl) is the negative semidefinitive solution to the quadratic matrix
equation

Tk ke

~ A T T A T.-1 A
M= 0[6M - (MH' +:6MH') (Cy + HEMH)™" (HM, + HEM) + K 0 oo®o

~ ~ T
OHMl + MlH K

(2.45)

The estimates K and R are consistent and unbiased, but in general, they are not
efficient. The efficiency, however, may be improved by repeated iterations through
the data or by using the maximum likelihood method discussed in the introduction

to Part One and by Mehra and Krishnaprasad (1974). It should be pointed out that
simpler algorithms for estimating Q and R proposed by Sage and Husa (1969) and
Jazwinski and Bailie (1967) are inconsistent and should be used with caution.

A survey of other techniques that can be used for adaptive filtering is contained
in Mehra (1972). They may be classified as follows:

- Bayesian techniques, based on the computation of the posterior density
function p(x(t),0|y(1),...,y(t)) (Smith 1967, Magill 1965)

- On-1line maximum likelihood techniques using one Gauss-Newton iteration
(Mehra, 1972)

- Qutput correlation techniques (Mehra, 1971a)

- Covariance matching techniques (Sage and Husa 1969, Jazwinski and Bailie
1967)

Kalman Filter Sensitivity and Robustness

Figs. 2.4a and b show the sensitivity of root-mean-square (RMS) estimation error
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RMS error in state esti- estimation. og = process
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noise standard deviation. (from Mehra 1968).

(from Mehra 1968).
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to errors in the assumed values of measurement noise (R) and process noise (Q)
variance. It is seen that in filter design, it is better to assume that R is
larger than its expected value since there is extreme sensitivity to R on the lower
side. Computing Kalman filter sensitivity (both small-scale and large-scale) by
solving linear matrix equations (see, e.g., Gelb 1974) is a relatively straight-
forward procedure, and the information gained is very useful in practical filter
design and in deriving reduced-order filters. A particularly serious problem is
that of divergence, which can occur if some of the process noise terms are
neglected in filter design (Fitzgerald 1967).

Vandelinde et al. (1972) and Masreliez and Martin (1977) have derived robust filters
for non-gaussian statistics, including some simple techniques for reducing the
Kalman gain K for unusually large innovations v. Schweppe (1974) discusses a

number of practical aspects of using Kalman filters for power systems, but the
problems are common to other large systems and measurement devices. Two important
considerations in such cases are computational efficiency and reinjection of bad
data. The former is achieved by simplified covariance calculations and the latter
is achieved by statistical tests on the innovations.

Numerical Problems

A straightforward use of the Kalman filtering equations (2.31) - (2.41) can lead
to negative-definite covariance matrices and filter divergence, particularly when
the spread of eigenvalues of the error covariance matrix P is large. Square-root
filters have been used successfully in these cases (Potter 1963, Schmidt 1970,
Dyer and McReynolds 1969, Kaminski et al. 1971). Bierman (1976) gives a complete
description of these techniques and their numerical properties. It is also
possible to compute the Kalman gain directly without first computing the filter
covariance by using the so-called Chandrashekhar-type filters for time-invariant
systems (see Kailath 1973, Linquist 1974, and Morf and Kailath 1975 for further
details).

Nonlinear Filters

Conceptual hydrological models contain nonlinearities that would necessitate the
use of advanced nonlinear filters; extended Kalman filters would most probably be
inadequate. On the other hand, computational considerations would forbid the use
of optimal or nearly optimal nonlinear filters. A useful compromise could be
achieved by the use of the iterative sequential filters discussed in Jazwinski
(1970) and Mehra (1971). In these filters, the measurement update step is repeated
several times by linearizing around the latest best estimate until convergence is
achieved. Other more advanced nonlinear filters (second order filters, iterative
smoothing filters, and so on) are discussed in Wishner et al. (1971).

A serious problem with nonlinear filters is estimation of their performance, since
the filter covariance matrix may be very different from the actual error covariance
matrix. The only satisfactory way to judge the performance of nonlinear filters

is through Monte Carlo simulations, but these can be quite expensive because of

the computation time they require.

Parameter Estimation

The problem of parameter estimation in state vector models has received considerable
attention in the last decade. Next to least squares, the most widely used method

is the maximum likelihood (ML) method (Astrdm and Bohlin 1965, Kashyap 1970,

Mehra 1969, Gupta and Mehra 1974). The main advantage of the ML method is that

it can be shown to be asymptotically unbiased, consistent, and efficient under
certain mild regularity conditions. In fact, these properties make the ML method
more attractive than least squares, even though the computation is more expensive.
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Furthermore, ML can be used as a starting point for devising simpler techniques,
often generically called approximate ML, which trade statistical efficiency for
computational simplicity and recursiveness.

For on-line parameter estimation the most versatile technique is the instrumental
variable (IV) technique (Young 1970). The basic concept of the IV technique is
explained easily in terms of the following linear model:

Y = X0 + VT (2.46)

where Y is the N-dimensional vector of the dependent variable, X is an N x m matrix
of independent variables, © is an m-dimensional vector of unknown parameters, and

V is an N-dimensional vector of random errors. Here N denotes sample size and V

is normally distributed with zero mean and covariance Iy. The ordinary least square
(OLS) estimate of O is

-1, T

A T
SoLs = (X'X)"°x'y ., (2.47)

The generalized least squares (GLS) estimate of © is

A Teely =1 T -1
Ogs = Xy X TXILY . (2.48)

Both OLS and GLS estimates of © are unbiased and consistent as long as X and V are
uncorrelated (GLS has the additional advantage that it is also efficient). However,
when the state vector model of (2.3)-(2.4) or the ARMA model of (2.20) is expressed
in the form of (2.46) (Mehra 1973), X and V are found to be correlated. To obtain
unbiased and consistent estimates for this case, the IV estimate is computed as
follows:

A Ty\-1,T
Opy = (Z'X)7ZY (2.49)

where Z is an N x m matrix with the property that

=0

and (ZTX) is nonsingular. In other words, the columns of Z, known as instruments,
are uncorrelated with the error but are correlated with the independent variables
in such a way that the correlation matrix is invertible. The optimal choice of the
instruments is important for efficiency of the estimates and is discussed by Wong
and Polak (1967) and Finigan (1975). Finigan discusses in detail the on-line
estimates of parameters in linear dynamic models using the IV technique. It is
interesting that the optimal IV estimator involves a Kalman filter to obtain one-
step-ahead predictions of the independent variables, which are found to be
uncorrelated with the noise terms in the model. This can be demonstrated by
multiplying both sides of (2.3) by H and using (2.4) to obtain

y(t+l) = Hdx(t) + (HGu(t) + HIw(t) + v(t)) . (2.50)
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Now replace x(t) by (X(t|t-1) + e(t) where X(t|t-1) is the one-step-ahead predicted
state estimate obtained from the Kalman filter equations (2.31) through (2.39)
using measurements {y(1),...,y(t-1)} and inputs {u(1l),...,u(t-1)}. Since R(t|t-1)
is based on measurements up to time t-1 and since, by the orthogonality principle,
e(t) and R(t|t-1) are uncorrelated, we can choose R(t|t-1) as the instruments to
estimate unknown parameters in matrices (H®,HG). This argument assumes that the
Kalman filter and the parameter estimator are used iteratively such that each
requires the other's output. Finigan (1975) examines the stability question and
suggests the use of a third filter to ensure both stability and optimality of the
IV estimator.

MODEL STRUCTURE DETERMINATION

The problem of model structure determination occupies a central role in system
identification. In its most general form, it may be thought of as a hierarchical
problem (Fig. 2.5).

Objective Selection of Input Level 1
of Modeling and Output Variables _
Choice of
Transformations Level 2
Black Box Physical Physical Level 3
versus Black _
Box Model
Linear Linear Nonlinear
T versus Nonlinear 1
Model
. Structure .
Choice of of Nonlinearity Choice of Model
Canonical and Unknown Level 4
Form Parameter Set
Order Order Level 5
Determination Determination

Fig. 2.5 Hierarchical levels in model structure determination.

The selection at the first level is done subjectively and is based on the objectives
of modeling, on the understanding of the process to be modeled, and on the scope of
the modeling effort. The purpose of level 2 is to transform the measured variables
into a form suitable for different classes of models. For example, if an ARMA or a
linear state vector model is to be used, the transformations are chosen to induce
linearity and normality. The selection at level 3 between a mechanistic and black
box model is based on such factors as the objective of modeling, the degree of
belief in the mechanistic model, and the relative complexities of the mechanistic
and black box models. In many cases, a combination of the models, known as a gray
box or conceptual model, may be used, or both types of model may be fitted and
their performances compared before the final selection. Since linear models are
simpler to fit, one generally starts with a linear model and adds nonlinearities

if it is found to be inadequate. Mathematical and statistical techniques are



=22~

available for the analysis in levels & and 5 and will be discussed later in this
section and in the next section. However, it may be observed that experienced
judgment is required at each level of model structure determination, and, for this
reason, the process cannot be fully automated. Certain guiding principles of model
building have evolved from experience and are summarized below.

Parsimony The model should contain as few parameters as possible for adequate
representation; for example, if a particular time series requires a tenth-order AR
model to produce as good a fit to the data as a second-order ARMA model, then the
latter is preferable since it involves five parameters instead of eleven. The
reason for parsimony is that the sample size N from which the parameters are to be
estimated is finite, and the fewer the parameters, the lower the variance of the
estimates. Akaike (1974) has demonstrated this elegantly in terms of the final
prediction error (FPE) criterion for an AR model with m parameters and N samples
(Fig. 2.6).

mean square FPE = : t : x mean square fit error (2.51)

N+m
N-m

M Square FPE

Mean Square
Fit Error

»
»

Order of Model

FPE and Fit Error

Fig. 2.6 Final prediction error and fit error versus order
of the AR model, M* is the optimal order of the models.

Identifiability The unknown parameters in the model must be identifiable from the
given measurements. For linear state vector models, this necessitates the use of
canonical forms such as the companion form of (2.18) and (2.19) or the more general
forms derived by Popov (1972) and Akaike (1974) for multi-input, multi-output
systems. The problem is also of great importance in the simultaneous equation
models of econometrics, which have the form

Ay(t+l) = Oy(t) + Gu(t) + Tw(t) . (2.52)

In (2.52), A is nonsingular and only the parameters of A-1o, A-1G, and A-IT are
identifiable. Fisher (1966) and Goldberger (1968) discuss various conditions for
the identifiability of parameters in A, ¢, G, and T.

Representation The model should reflect reality as much as possible, that is, the
state variables should represent real conditions. Where it is necessary or
desirable to use black box models, the identified models should be subjected to
rigorous tests for reasonableness of behavior.

Application The objective of the modeling should be stated clearly e.g. forecasting,

control, understanding, and should influence the choice of the model. It should be
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kept in mind that a model suitable for short-term forecasting will generally not be
suitable for long-term forecasting and vice versa. Similarly, for control of feed-
back situations, a black box model may suffice even though it may not provide under-

standing of the internal workings of the system.

A specific procedure for model structure determination in MIMO linear systems was
devised by Akaike (1976a). A flow diagram of the procedure is shown in Fig. 2.7.
For simplicity, we consider the case u(t) = 0 (i.e., no deterministic #fnput).
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Fig. 2.7 Akaike's procedure for model structure determination
in MIMO linear systems.

The basic concept behind the method is that the state vector of a system, at current
time t, may be defined as a basis vector for the space spanned by the current output
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and future predictions:
{y(t), §(t+1it),... 9(t+k|t)...,)

This space is referred to as the predictor space of a system at time t. It can be
shown that this space is finite dimensional for a finite dimensional system and
that the dimension of the system can be determined by examining the canonical
correlations between the sets of variables U and V) for k = 1,2,3,... where

U= {yT(t),yT(t-l),...yT(t-k)}, K is sufficiently large, and
Vi = {yT(t),9T(t+1|t),...9T(t+k|t)}

By increasing k by 1 in each iteration and by considering elements of y in a given
order, the state vector x(t) of the system is determined as a subset of Vi as shown
in Fig. 2.7. Once the state vector is identified, the matrix ¢ is determined
simultaneously with x(t) from the canonical variables. The purpose of fitting the
AR model and computing the impulse response function is to estimate the Kalman gain
matrix K and the innovation covariance matrix I,,. Notice that the procedure
identifies the stationary Kalman filter model directly and does not involve solving
Ricatti equations. The computation of the AR model is based on the Levinson-Whittle-
Wiggins-Robinson-Burg (LWWRB) algorithm, and the order of the model is selected
using Akaike's minimum information criterion (MAICE) (Akaike 1976a). It has been
shown by Shibata (1976) that Akaike's Information Criterion (AIC) tends to over-
estimate the system order. This may also be true of the F-test, which has been
shown to be asymptotically equivalent to AIC by Soderstrom (1976). Akaike (1976b)
is investigating a new criterion, called BIC, which is a consistent estimator of
the system order. (Further discussion of Akaike's technique is given in Chapters

3 and &4.)

MODEL VALIDATION AND COMPARISON OF MODELS

Model validation involves testing an identified model and comparing it with other
candidate models. To validate a model, one can

- Simulate the identified model and generate synthetic time serles; compute
various statistical characteristics of these time series such as correlograms,
power spectra, threshold crossing frequencies, rescaled range (or Hurst range)
characteristics, or histograms; and compare these characteristics with those
of the process being modeled. (Fiering 1967, Kashyap and Rao 1976, Lawrence
and Kattegoda 1977).

- Test the null hypothesis that the identified model cannot be rejected as the
true model against the alternate hypothesis that some other model or class
of models cannot be rejected as the true model of the system (Wald 1943,
Whittle 1952). The difficulty with this approach is that there is generally
no simple way of defining the alternate hypothesis.

- Use an information-theoretic or entropy-related criterion to select the model
that optimizes the selected criterion (see Akaike 1972, Rissanen 1976).

The Bayesian decision theory approach This approach seems to be particularly
sultable for model validation and comparison (Kashyap 1976, Peterka 1976b).

Assume that K different models denoted by Mj;, Mp,...,M are entertained a priori as
candidates for the final model. The a priori probabilities p(Mj), i = 1,...,K are
first specified. Let each model Mj be of the form
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£,(y(6)) = g1 (t,y(t-1),r0py(t-m)) ©; + w, (1)

ng (2.53)

t=1,...,N, 0, ¢ R

i

2
where wi(t) is a zero mean, white noise sequence with variance oj. It is assumed
that the parameters (Gio-,mi,ni) are unknown, but prior distributions (informative
or noninformative) tor (9;,0;) can be specified.

Kashyap (1976) derives the posterior distributions p(Mji|y(1),...,y(N)) for
i=1,...,K based on which, with the help of a suitable risk function, the final
model is selected. For an AR model, the Bayes risk function for minimizing the
probability of error is given by

2 2 a2
| -
R{ =N £n 61 +n; (An N cp/ai) (2.54)
where
8? = sample variance of residuals for model Mi
cg = variance of the process

Notice that in (2.54), the relative importance of the second term involving the
number of parameters nj varies with sample size N. In the AIC criterion given by
Akaike (1974), the factor multiplying nj is fixed at 2, but the BIC criterion of
Akaike (1976b) has a form similar to (2.54).

An interesting consequence of (2.54) and the associated probability of error (PE)

computation is developed by Kashyap (1976) for the case of two AR models M) and M,
with parameters n] and n, respectively, where M) is the alternate model and M is

the true model. Two cases arise

-(nl-nz)/z

(a) If ny>n PE = N (2.55)

2’

-N

PE = K (2.56)

(b) If ny < Ny,

Notice that if the true model M, has fewer parameters than the alternate model Mj
such that M2 can be obtained by setting some parameters in the alternate model to
zero (case a), then the convergence rate of PE is much slower than in case b,
where the true model My is compared with a model with fewer parameters and PE goes
to zero exponentially as N + =,

The advantages of using the Bayesian decision theory approach are that:
- More than two models of widely differing natures can be compared.
- The decision rule is transitive, i.e., if Mj is preferred to Mj and Ms is
preferred to Mk then Mi is preferred to Mk' Most hypothesis tests do not

possess this property.

- The loss function is well defined since both type I and type II errors are
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considered. The objective of identification, such as spectral estimation or
prediction error, may be considered directly.

MISCELLANEOUS TOPICS IN TIME SERIES ANALYSIS

Time-Varying Parameter Models

In many applications (Bohlin 1976, Peterka 1976a, Mehra and Krishnaprasad 1974), a
simple regression model is suitable if the coefficients are allowed to vary randomly
over time. The following Gauss-Markov model for parameters O(t) has been found
useful in these applications

O(t+l) = F 0(t) + w(t) (2.57)

y(t) = C(t) e(t) + v(t) (2.58)

i}

It is possible to estimate parameters in F, I, and Iy, which are covariance
matrices of w(t) and v(t), using the maximum likelihood technique. The on-line
tracking of parameters is performed easily by using a Kalman filter for the above
model.

Applications of the above technique to dryer control in a paper mill, EEG with
changing spectra, machine failure forecasting, and power load prediction have been
considered by Bohlin (1976). Peterka (1976a) and Mehra (1978) consider the
problem of detecting sudden changes in the parameters of a system using the above
model.

Nonlinear System Identification

There is a distinct lack of methods for identifying the structure of nonlinear
systems. One method that has been reported to be successful on applications is
Ivakhnenko's group method of data handling (GMDH). This method uses a network of
quadratic polynomials in a layering arrangement based on perception. At each
level, heuristic criteria are used to select models. Applications of this method
are described by Ivakhnenko (1975), Duffy and Franklin (1975), Ikeda et al. (1976),
and Barron (1975). An application of GMDH is given in Chapter 10.

Random Fields

Since environmental and hydrological processes are multidimensional in character,
the rapidly developing theory of random fields is particularly relevant for these
applications. The monograph by Bartlett (1976) covers the theory of random fields
from a statistical and modeling viewpoint. Two classes of models, nearest neighbor
models and Markov fields, are discussed with numerical examples. The literature

on random fields in the control and communication areas is discussed in Willsky
(1977). A class of models with many properties similar to Gauss-Markov models
discussed in previous sections has been proposed by Attasi (1976).

Fractional Noise Models

The so-called Joseph and Noah effects observed in hydrological time series
(Mandelbrot and Wallis 1968) have been modeled by using fractional noise models,
which are discussed in a survey paper by Lawrence and Kattegoda (1977). However,
the development of these models from finite sample data is quite involved and
the results obtained by Kashyap and Rao (1976) question the usefulness of these
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models for empirical time series analysis.

CONCLUSIONS

Time series analysis and system identification are arts. However, they possess a
very rich set of tools that have been used successfully for numerous applications
over the last fifty years. In recent years, further impetus has been provided by
developments in control, communication, and system theory. In particular, the
state vector models of control theory have emerged as a unifying link between
different classes of models. An attempt has been made in this paper to present a
comprehensive treatment of state vector models. Further research is required in
the following areas:

- Model structure determination for nonlinear systems

Validation for models involving both process and measurement noise

Nonstationarities present in real systems

Random fields.
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Part One

Forecasting Problems of Water
Resource Systems






Introduction

Hydrologic prediction or forecasting models, up until about six years ago, implied
physically based models that would simulate the behavior of the hydrologic system
for given (deterministic and error-free) inputs. Recently, models based on
concepts from time-series analysis and the control literature have been proposed
for hydrologic forecasting. The papers in this volume attest to the progress that
has been made in applying these new techniques to hydrologic problems.

In this volume forecasting and prediction are used interchangeably to mean the
determination of future states of a system, given the past and current state and
any future, deterministic inputs. In the control theory or time-series literature,
forecasting problems are referred to as "prediction" problems when the underlying
model has causal or physical structure related to the process, and "forecasting"
problems when the underlying model is a statistical black box model without any
apparent correspondence to the process. Most of the state-space models presented
here represent or reflect physical and causal relationships of the hydrologic
systems. This iIs not a requirement. A state-space representation can be construc-
ted for either causal models, time-series models, or a mix of the two. It is
possible to develop a state-space model consisting of a causal rainfall-runoff
model for stream discharges and an autoregressive time-series model for the
precipitation.

The problem of applying state-estimation techniques to hydrologic forecasting can
be divided into two interrelated subproblems: model development, which is usually
referred to as system identification, and optimal forecasting.

SYSTEM IDENTIFICATION

System identification, as it is generally referred to in the control theory
literature, denotes the iterative procedure of model specification, parameter
estimation, and model verification using noisy operative input and output data.
Figure 2.1 illustrated these steps. Chapter 2, by Mehra, surveys many of the
current techniques. The papers in this part develop particular techniques more
completely and apply them to general bydrologic forecasting problems. The purpose
of this introduction is to present the framework and concepts in which the
following papers can be interpreted.

While forecasting on-line, using recursive algorithms, is the aim of the operational
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mode of the proposed models, system identification can be carried out either prior

to or with the forecasting mode. The first method is often called off-line identi-
fication or one-shot identification and the latter is generally referred to as on-

line identification.

Off-Line Identification

Off-1ine or one-shot identification refers to those identification techniques that
do not process data as it becomes available (that is, recursively) but rather use

a set of data collected prior to the identification stage. Once the model structure
and parameters have been identified and verified, the model is used, in a recursive,
on-line mode, for forecasting.

For identifying the order of the model, the Akaike Information Criteria (AIC) is
one of the most practical and simple methods. It is used by Katayama (Chapter &)
and by Tamura and Kawaguchi (Chapter 3) who use the one-shot AIC method and
modify it for use in a recursive algorithm.

Maximum likelihood identification, which uses the innovation property of the optimal
filter, is also widely used for off-line identification of parameters when the
structure of the model is assumed to be known. Given a linear discrete-time system

x(t+l) = Fux(t) + G.u(t) + T.w(t) (1)
z(t) = Hox(t) + v(t) (2)
where
x(t) = nx1 state vector
u(t) = pxl input vector
w(t) = gqx1 vector of random model errors
z(t) = rxl output vector
v(t) = rxl vector of measurement errors
with

EWw(t)] = E[v(t)] = 0

E[w(t).w'1t)] = 08y,
Efvie).vT(9)] = RSy
and E[v(t).wT('r)_'] =0 for all t and T

where Gij is the Kronecker delta function.

The vector of unknown parameters from F, G, I', H, Q and R is denoted as ©. Assuming
© 1s identifiable, the maximum likelihood (ML) estimator is given by

o = Arg {max log p(ZNIO)} (3)
e
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where
Z, = [z2(1), 2(2),...,2(N)]
and
p(ZN|G) = conditional probability density of Zy given ©O.

Mehra (1974) and Schweppe (1974) present more complete algorithms. Katayama (Chapter
4) uses ML for his parameter estimation.

ML estimators are widely used for estimating the error covariance matrices. In fact,
the optimal steady-state Kalman gain K can be estimated in place of R and Q by

using an innovation representation of the state-space equations. This is discussed
by Katayama (Chapter 4) as well as by Mehra (1974).

On-Line Identification

On-line identification allows for the updating of the model structure or parameter
values in real-time whenever data are received. On-line identification is done

in parallel with the updating of the state estimates. The advantages of identifying
models recursively are that

Identification can be done on minicomputers since the processing of large quantities
of data 1s avoided

It 1s possible to identify slowly varying parameters in the system

For identifying the order of the model, Tamura and Kawaguchi (Chapter 3) used a
modified form of the AIC in a recursive form. Recursive parameter estimation
techniques have received far more attention in the literature than the problem of
determining the structure of the model. In water resources, many models have
physical cause-and-effect relationships that make the determination of the model
structure quite easy. Thus, it is the parameter estimation problem that is
crucial for optimal forecasting.

For on-line parameter identification, the most versatile technique uses instrumental
variables. Mehra discusses the technique briefly in Chapter 2. Another approach
which has been found useful when parameters can vary over time 1s the combination
of a Gauss-Markov model for the parameters ©(t) and an output equation that

relates measured output to the parameters. This set of equations is as follows:

o(t) = Fo(t-1) + Tw(t)

t

z(t) = H(t).0(t) + r(t)

The on-line tracking can be performed by using a Kalman filter. Examples of this
formulation are given in Chapter 5 and in Wood and Sz8ll8si-Nagy (1978). In
Chapter 5, Moore and Welss use an extended Kalman filter to handle the nonlinear
input-output function H(t).

Other recursive techniques may also be used even though the computational effort

may be prohibitive. For example, recursive Bayesian techniques, utilizing the
normality assumption of the error terms have been used (for example, Smith 1967).
Maximum likelihood estimators, which have attractive statistical properties, can be
estimated on-line by using a single iteration of the Gauss-Newton method (Mehra
1972), or can be used as a basis for developing techniques (often called "“approximate
maximum likelihood techniques') that are recursive and for which the computation is
easy.
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STATE PREDICTION AND OPTIMAL FORECASTING

System identification, parameter estimation, and state prediction can be and is
viewed as one integrated effort in time series analysis. The early work in fore-
casting for stochastic processes and time series analysis dealt with stationary
stochastic processes either for discrete-time (Kolmogorov 1941) or continuous-time
(Wiener 1949) processes. Kalman (1960) and Kalman and Bucy (1961) extended these
results to nonstationary processes with finite observation intervals. The Kalman
filter can be applied widely, its state vector formulation allows consideration of
both process and observation noise, and it is easily implemented with recursive
algorithms. These are the main reasons for the popularity of the Kalman filter.

Derivation of the Kalman Filter

Consider a discrete, linear, stochastic, time-invariant dynamic system whose
behavior is described by the state equation
x(t+l) = ¢ . x(t) + w(t) (4)
where
x(t) 1s an n-vector of state varlables
¢ 1s a transition matrix of size nxn

w(t) is an n-vector of Gaussian white noise
with statistics w(t) ~ N(0,Q)

Also consider a linear measurement (or output) equation of the form

z(t) = Hox(t) + v(t) (5)
where
z(t) is an n-vector of the measured output vector
h is an m x n measurement matrix
v(t) is an m-vector of measurement errors with

statistics v(t) ~ N(0O,R); the covariance
matrix R 1s positive definite

It is also assumed that the noise processes are uncorrelated with one another, that
is

E[}(t)T.w(T)] =0 for all t and T
and both processes are independent of the state which has the initlal statistics
x(0) = N(X(0),P(0)).
Let X(t|t) denote the best linear unbiased estimator of x(t) based on measurements

Z(t) = {z(1),z(2)y...,z(t)}. K(t|t) is the filtered estimator of x(t) since it is
the estimate of the state vector at the current time based upon all measurements
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including the current one. It will be shown that the optimal estimator for the
filtering problem will provide us with the optimal estimator for the prediction
problem,

Kalman (1960) rigorously derived the form of a recursive filter for the above
system - that is, a system with known structure, parameters, and error statistics.

The problem can be stated as follows: given a measurement sequence Z(t) observed
by the measurement equation (5), estimate the state of the dynamic system (4) such
that the error of estimate, X(t|t) = x(t) - X(t[t), will minimize the quadratic
performance function

3 = E[R(t|t).L.&"(t]t)] (6)

where L is any positive semidefinite matrix and, for simplicity, is chosen to be
the identity matrix I.

Assume that a prior estimate X(t|t-1) of the system state x(t) at t is based upon
previous measurements up to t-1. An updated estimate R(t|t) is desired which takes
into account the new measurement z(t) at t. Consider this updated estimate as the
linear combination of the prior estimate and the new (noisy) measurement; thus

R(t|t) = K()R(t]t-1) + K(t)z(t) (7)

where K(t) and K(t) are time-varying weighting matrices as yet unspecified.
Introducing (5) into (7) and utilizing the statistics of the noise process, it can
be seen that (7) is ar unbiased estimate only if K(t) = I-K(t)H. Hence, the state
estimator X(t|t), using the new measurement z(t), is of the form

R(t|t) = R(t|t-1) + K(t)[z(t) - HR(t|t-1)] (8)

where K(t) is still unspecified, and the initial condition at t=0 for the state
estimation is K(0{0) = X(0). A measure of accuracy for the estimate can be
expressed by the covariance matrix P(.) of the prediction error defined as

P(t|t) = E [i(tlt).iT(t|t)] (9)

the initial condition of which is P(0|0) = P(0). Using (7) with the measurement
noise statistics, it can be shown that the covariance matrix of R(t|t) can be
projected from that of R(t|t-1) as

P(t]|t) = (I-K(t)H)P(t|t-1)(I-K(t)H) " + K(t)RK' (t) (10)

Since the loss function (6) is the trace of the error covariance matrix (9), the
problem is to minimize the trace norm ||P(t|t)|| of P(t|t), that is, the length of
the estimation error vector. Using the properties of matrix derivatives, it can
be seen that the weighting matrix K(t) can be obtained from
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3
ey Ple) =0

as

K(t) = P(t|t-1)H [HP(t[t-DHT + R]™} (11)

which is referred to as the Kalman gain matrix. Equation (11) can be used to
simplify (10) into

P(t|t) = (I - K(t).H)P(t|t-1) (12)
The one-step-ahead prediction of the state vector, given observations up to t, is
R(t+1]t) = ¢.R(t|t) (13)

The propagation of prediction errors P(t|t)+P(t+lit) can be determined by computina
the predicted error covariance matrix, P(t+l]t) = E[E(t+l|t).iT(t+l|t)I. Using
(4), (9), and the independence of the error terms, we find that

P(t+1]t) = ¢.P(t|t).¢T +Q (14)

It can be shown that the one-step-ahead estimate of (13) will minimize (14); thus
by finding the optimal estimator for the filtering problem, the optimal estimator
for the prediction problem is obtained by (13). The optimal filter is summarized
in Table 1.

Table 1. Summary of discrete Kalman filter equation

System model (Eq. &) x(t+1) = ¢.x(t) + w(t)
Measurements (Eq. 5) z(t) = Hox(t) + v(t)
Initial condition and E[x(0)]=%(0),E[x(0).xT(0)]=P(0)

other assumptions
w(t)~N(0,0Q),v(t)~N(O,R)

Ew(t)vT(1)] = 0 for all t,t

State estimate update (Eq. 8) R(t|t)=R(t|t-1)+K(t) [z(t)-H.R(t|t-1)]
Error covariance update (Eq. 12) P(t]|t)=[I-K(t)H] .P(t|t-1)

Kalman gain matrix (Eq. 11) K(t):P(t|t-l)HT|:H.P(t|t-l).HT+R]'l
State estimate prediction K(t+1|t)=6.R(t|t)

(Eq. 13)

Error covariance prediction P(t+1]|t)=¢.P(t|t).¢T+Q

(Eq. 14)
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The results are exact for linear systems and only approximate for nonlinear models.
It should be noted that the problem of linear dynamics with unknown parameters
becomes a nonlinear estimation problem. Time-varying ¢(t), H(t), R(t), or Q(t)
does not cause any problems as long as they are known.

More complete proofs, and proofs for the case of continuous linear dynamic systems
can be found in many tests, for example, see Jazwinski (1970).

LITERATURE REVIEW

Modern state estimation techniques have not, as yet, found wide application in
hydrology. The purpose of this review is to cite some of the work that has been
done to date. For a general survey on forecasting techniques, the reader is
referred to the paper by Mehra (Chapter 2), and Olsson (Chapter 6), who looks
mainly at developments in water quality and wastewater facilities.

Some of the first work in hydrology to try to apply results from the early filter
theory work included the work of Eagleson et al. (1966), who modeled runoff as a
single-input, single-output linear system and then inverted the Wiener-Hopt
equations to obtain the transfer function for the system. Similar work was done
by Barrera and Perkins (1967) for multiple storms to represent time-varying
systems. The identification problem was also considered by Amorocho (1967), using
nonlinear transfer functions, and by Blank and Delleur (1968}, using Fourier
transform methods.

These and similar analyses regarded the hydrologic systems as a black box; that is,
system transfer functions were derived from observed inputs and outputs without
regard to the form of the functions or physical constraints that should be
considered. This, along with certain computational instability problems,
restricted the practical applications of the techniques.

Recent formulations, which use the state-space approach, have avoided many of the
above problems. Many hydrologic processes can be described by differential or
difference equations and the state-space framework provides an intuitively appealing
way to relate time series analysis to deterministic modeling. Certainly, the
filtering theory results that have been applied in other areas, most notably aero-
space navigation and guidance, have provided motivation to test the concepts in
disciplines like hydrology.

Some workers in rainfall-runoff include Hino (1970, 1973) and Wood and $z8118si-Nagy
(1978), who used the Kalman filter recursively to estimate the parameters of the
rainfall-runoff response function. Hino (1973) assumed perfect observations and

did not forecast future discharges, and Wood and Sz8118si-Nagy (1978) recursively
estimated the error covariance matrices and forecast future discharges based on the
recursively estimated response function. Duong et al. (1975) used an extended
Kalman filter applied to the Prasad model and Toyoda et al. (1969) investigated

the stability and adaptivity of a state-space runoff prediction model as applied to
the Sagar River in Japan. Todini and Bouillot (1975) developed a Kalman filter

for a linear runoff model.

Other areas of hydrology include: rain-gauge network design (Bras and Rodriguez-
Iturbe 1975, 1976}, typhoon forecasting (Takeuchi 1976), groundwater modeling
(McLaughlin 1975) and water supply consumption (Fallside and Perry 1975).

There have also been a number of applications in water quality and wastewater
treatment. Olsson (Chapter 4) surveys many of these applications. Also, in water
quality monitoring, there have been applications by Moore (1973), Lettenmaier
(1975) and De Guida et al. (1977). In water quality identification for parameter
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estimation of dissolved oxygen/biochemical oxygen demand (DO/BOD) models, there is
the work by Koivo and Phillips (1971, 1972, 1976) as well as work by Beck (1976)
and Beck and Young (1975, 1976).

The papers in this part of the volume are structured into two groups. The first
group deals primarily with the system identification parameter estimation problem.
The first four papers structure the problem within a state-space formulation and
present detailed discussions and results of many of the techniques surveyed by
Mehra in Chapter 2.

The second group of papers deals primarily with the forecasting or prediction of
future states. These papers cover Chapters 7 to 10; the first two focus on a
Kalman filter algorithm for the predictions. The remaining papers present other
related techniques. These include a self-tuning predictor (Chapter 9) and a
heuristic self-organization method (Chapter 10).
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3 Real-Time Estimation of Orders and Parameters of
Distributed-Lag Models of River Quality

Hiroyuki Tamura and Tatsuro Kawaguchi

The Streeter-Phelps model (1925) and its modifications have been widely used for
analysis and control of river quality, where it is assumed that concentration of
biochemical oxygen demand (BOD) and dissolved oxygen (D0) suffice to describe the
biochemical processes in rivers. As an accurate and simple BOD-DO model of river
quality, distributed-lag models (Tamura 1974, Rinaldi et al. 1978) have been
proposed. The discrete time, distributed-lag model of river quality, which can be
interpreted as an approximate Streeter-Phelps dispersion model (Rinaldi et al.
1978) is described by a multidimensional linear difference equation of high order,
and can take into account diffusion and dispersion. However, we need to estimate
the order and parameters of the model on the basis of observation data of BOD and
DO (or, when possible, of DO only).

Among the various methods of statistical system identification (Box and Jenkins
1970; Parzen 1974, 1975; Akaike 1970, 1971, 1974), Akaike's method is one of the
most practical and simple. However, the method is a one-shot procedure, which
uses a fixed set of time series data. Hence, the method is not sulted for on-line,
real-time use.

In this paper, Akaike's method of statistical system identification is modified and
used recursively for real-time river quality modeling; the modified method can
update the model in real time whenever observation data are obtained. The
advantages of identifying the river quality system recursively, instead of using a
one-shot procedure, are the following:

- The convergence profile of the identification can be followed in real time so
that the procedure can be stopped when the identified results do not vary
significantly.

- It is possible to identify slowly varying orders and parameters of the system.

- There is no need to store large amounts of old data on the computer.

This work was supported in part by the Ministry of Education in Japan for the
science research program, "Monitoring and Control of Environmental Pollution", under
Grant No. 111219.
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A DISTRIBUTED-LAG MODEL OF RIVER QUALITY
Considering a stretch of a river composed of a sequence of N reaches, a continuous-

time, distributed-lag model of river quality can be derived from the Streeter-
Phelps dispersion model and can be written as (Rinaldi et al. 1978)

6 = -(k + gl)b + gl:lb* (t) + SEiE (t)
11 V1 i V1 i-1 V1 i
(3.1a)
Q Q r
° i i-1 El i
dy = kyyby = (kyy v W)di * —Vi_d*i-l(t) * v_i"i(t) A
where
x t
by 1y (8) = £ 0y (Db (e-m)de
(3.1b)

t t
dy () = fo 'y _y(Tby 4 (t-T)dT + fo by (0dy 4 (e-T)dT

1i=12,...,N

bo(t) , do(t) given.

In (3.1) variables and parameters with subscript i denote variables and parameters for
the reach 1, and

b = BOD concentration (mg/1)

d = DO deficit concentration (mg/1)

Q = river flow rate (m3/day)

vV = volume of water in the reach (m>)

kl = BOD decay rate and deoxygenation rate (day‘l)

ky = reoxygenation rate (day-1)

E = BOD concentration of effluent discharge (mg/1)

p = DO deficit concentration of effluent discharge (mg/l)

QE = flow rate of effluent discharge (m3/day)

r = net addition of DO deficit by the combined effects of photosynthesis,

resplration, and bottom sludge (mg/day)
¢y ¢', b = parameters for distributed lag

Figure 3.1 shows the schematic diagram of a stretch of a river composed of N
reaches. Derlvation of (3.1) from the Streeter-Phelps dispersion model can be

found in Rinaldi et al. (1978). Equation (3.la), which represents the mass balance
of BOD in reach i, can be interpreted as follows. The evolution of BOD is described



Fig. 3.1 A stretch of a river composed of N reaches.

as the sum of BOD removal by self-purification in reach i and by the transport
from reach i to reach (i+l), BOD addition from reach (i-1) to reach i, and BOD
addition by the effluent discharge into reach i. Between the adjacent reaches we
assume a hypothetical channel that represents distributed time lag, whose mathe-
matical model can be written as (3.1b). By suitably selecting ¢(t), ¢'(1), and
y(1), we could obtain dynamics of river quality close to those of the dispersion
model.

Only discrete-time measurements every At days are assumed to be available, so we
first need to make model (3.1) discrete with respect to time. By integrating

(3.1a) from time kAt to (k+l)At and writing, for simplicity, bj(k) and di(k) instead
of bj(kAt) and dj(kAt), we obtain

Y
"k Ty 10t 0 At
b, (k+l) = e b,(K) + ——b* (k) + =, (k)
1 1 v, 211 7
(3.2)
9 9
kyg -(k21 + VI)At -(kli + VI)At
di(k+l) = k—_k—(e -e )bi(k)
117K21
9
“lkyy ¢ g0 0, M Qg At ryAt
ve d (k) + g (k) + Ep 4 1
1 1-1 Vo PL TV
v, i i

i=1,2,...,N k =0,1,¢4.,T-1

The discrete version of (3.lb) can be written as
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0

bé, (k) = I ¢ (Db, (k-})
3=0
6 6

i) = L0000 (Db g (k-3) + Ty (3dy (ke0)
j=0 j=0

Egs. (3.2) and (3.3) can be combined as

b, (k+1) = a,b, (k) G G Db, - (ked) + Ele (k)
glerd) = ogbylio vy = 2001 (300 ted) v 7%y
=0 1
9.1 ° ., .
dy(k+1) = ajby (k) + B;d; (k) + v, j50¢ 1.1 (Dby_ (k=1)
Q ] Q r
i-1 . El 1
Pmlor oy (Dd (k-1 + ~Sp (k) + o
Vi 1=0 i-1 i-1 Vi i Vi

i=1,2,...,N k= 0,1,...,T-1

where
Q.
i
—(kli + -\_/;)At
o; = e
9 9
kg -(k?_i + VI)At -(kli + V;)At
ai = k—'r(e -€ )
11 21
9
-(kZi + VI)At
By = e

(3.3)

(3.4a)

(3.4b)

and Qy, Q3_1y QEi,y and ry stand for QjAt, Qj_jAt, QejAt, and rjAt, i.e., At is the
unit of time. The boundary conditions bg(t), dg(t), and the initial conditions
are assumed to be given. Eq. (3.4) is the discrete-time, distributed lag model

for river quality, which was proposed by Tamura (1974).

Eq. (3.4) can be written in vector-matrix form as

x(k+l) = Aoi(k) + Ali(k'l) + oees + A@i(k‘e) + u(k)

where

(3.5)
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;
x(k) = [by(k),d; (k), «uv y by(k), dy (k)]
Aoy © ++- O 0
Agsp Agzz + ¢+ - O 0
Ag=| 0 Aggp--- O 0
0 0 - Agn,N-1 Ponn
0 0 ... 0 0
Ay 0 -« 0 0
0 Agp-v- O 0 §=1,2,0..,0
0 C .. A, 0
0 1Nl 0|
[ oy 0
AOi.‘l = i=1,2,...,N
o By
\ o, [P 0 1 =2,3,..0,N
BLI-LV el ) v (D) 3= 0,1,..0,0
T T T
a) = 07, w07, e, g 0]
0 Q 0 Q r
% El 0 EL . FLT
u (k) = [ybg(k) + =€, k), gdo(k) + 7o) + 7]
1 1 1 1 1
Q Q. r
u, (k) = -éf{i(k),?§£ p; + vi L 1=2,3,.00,N
i

Eq. (3.5) can be thought of as a general discrete-time, distributed-lag model,
for which we need to estimate the order © and the parameters Ag, Aj,..., Ag of the
model by using the time series data x(k) and u(k).
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THE MODIFIED AKAIKE'S METHOD

Akaike's Method

Akaike's method fits n-dimensional time series data x(k), k = 1,2,...,N, to an
autoregressive (AR) model of finite order. This method can estimate the order and
the parameters of the model. For simplicity, let the mean of x(k) be O. The
order M of the AR model should be chosen such that the residual series

M
elk) = x(k) - I Ay(m)x(k-m) (3.6)
m=1

of the AR model can be considered as a white noise process. Akalke (1970) proposed
a criterion for estimating the order M such that the multivariate final prediction
error (MFPE),

Mn o+ 1.1

n
Mn + 1,7 () . It dy” det(ny,) (3.7)

MFPE(M) = (1 + —

is minimized with respect to M, Dy denotes the estimates of covariance matrix for
e(k), and det(+) denotes determinant. The MFPE given by (3.7) gives the final
prediction error for the multivariate AR model. The important thing to note is
that the predictive quantities of a model do not improve monotonically with the
increase of M even though the fitting error det(Dy) decreases monotonically with
the increase of M. In other words, Akalke's criterion takes into account the
error covariance and the amount of data N. The estimates of the model parameters
AM(m) can be obtained with the least squares method. The normal equation for
estimating parameters can be written with matrices as

oy My ... Moen|[A,mT] [T
i’ Moy L. e [A@T] M)
: : . - . (3.8)
Noo T N o T N AT Nt
_f (M-1)' C"(M-2)'. . . C(0) J _AM(M) i f (M) i
where
N  N-¢ T
) = I x(kel)x(K) , £ = 0,10, (3.9)
k=1

1s the estimate of the covariance matrix for lag £, and L 1s a prescribed maximum
number of the order. For simplicity, this normal equation is written as

(3.10)

In the following, N or M will sometimes be omitted. For each M, this equation can
be solved using the recursive relations with respect to M. _That is, in the process
of obtaining A (m), m = 1,2,...,L, the parameter estimates Ay(m), m = 1,2,...,M and
DM for each M up to L can be obtained. Computing MFPE(M) for all M, the order and
the parameters that minimize MFPE(M) can be estimated.
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A brief summary follows of Akaike's algorithm for time series x*(k), k = 1,2,...,N,

Step 1 : Delete the mean from the data as

— 1 N
1 = N' I 5*(’()
k=1
x(k) = x*(k) - x , k = 1,2,...,N .

Step 2 : Calculate CV(£), £ = 0,1,...,L.
Step 3 : Set Ag(m) = By(m) = (0], m=1,2,...,L.

Step 4 : For M = 0,1,...,L calculate

M ~
by = M) - ¢ AM(m)CN(m)T
m=1
N Mo N
E, = C(M+1) - Z A,(m)C (M+1-m)
M M
m=1
M
Fy = N0 - I BM(m)CN(m)
m=1
B -1
Gy = By Fy
T -1
Hy = Em Dy
3 m KM(m) - Gy By(M+Ll-m) , m=1,2,...,M
m =
M+l Gy » m = M+l
By (M) - Hy KM(M+1-m) , M= 1,2,.00,M
Byep (M) =
H, , m = Ml

M

Step 5 : Find the AR order M and the parameter estimates KM(m), m=1,2,...,M
that minimize MFPE(M).

See Chapter 2 for more information about Akailke's information criteria.

Modified Akaike's Method

Akalke's method gives a recursive algorithm with respect to the order of the model,
however, 1t gives only a one-shot procedure with respect to time, that 1s, the
method uses a fixed set of time series data. In this section, a recursive version
of Akalke's method which can be used in real time is proposed. It can update the
model whenever time series data are added.

In the real time recursive situation, the recursive relationship between KM(m) and
AM4+1{(m) cannot be obtained, since the estimates of covariance matrices in the normal
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equation (3.8) are evolving with the increase of data; furthermore, the estimate of
the order may change with the increase of data. But the inverse of matrix R in
(3.10) can be used for estimating the parameters, and updated recursively with the
increase of data. The real time recursive algorithm proposed here can be divided
into three parts as follows.

- Evolve the estimates of the covariance matrices
- Evolve R~ without changing the order

- Calculate R'l for varlous orders, and determine the order and the parameters
of the model.

The AR model obtained by this method is expected to be updated with the increase
of data as shown in Fig. 3.2. From the evolution and the convergence profile of
the identified AR model, one can easily find whether the model represents the
system satisfactorily or not.

AR Order

v

T U T
No N; Ny N3 Ny Ng

Number of Data
Fig. 3.2 Evolution of the AR model with increasing data.
Evolution of the covariance matrices. When some data are added, the estimates of

the covariance matrices C(£) are re-estimated. With subtraction of the mean, (3.9)
can be written as follows for the initial N data.

N
N2 D xx(k)
k=1
LN
Nk = x* (k) - XN (3.11)
N-2
') - 2 M), 2 -o0,1,...,L
k=1
Moy = & sV, £=0,1,...,L

and for the next step we calculate
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N N-£
ey =z Nk, £=0,1,...,L
k=1
N-£ (3.12)
N -
q (L) = Z x (k+2), £ =0,1,...,L
k=1

Next, we consider the case when K data x*(k), k = N+1, N+2,...,N+K, are added.
Deleting the mean is performed as

N+K
JRICE TS - I
k=N+1
NeK 1 T(N+K)
N
(3.13)
NeK xt(k) - XK L Kk = Ne,Ns2,...,NeK
= (k) - B , K = NeL+1,N-L42,...,N
where
—~ =N+ =N,
X=X -x

The estimates of the covariance matrices based on N+K data can be obtained from

MKy = sNe) + (-08x ax - ax P!
N+K
-dwax + 0 MK k-nT (3.14)
k=N+1
MKy = NiK sMKeey , 2 =-0,1,...,L .

For the next step we calculate

N+K N+K
) =p Negy - (Nn-£)8X + & x T (k-2)

k=N+1

N+K

(3.15)

N+K N+K
@ = '@ - n-orx vz MK

k=N+1 ~

N+K

Equations (3.11) to (3.15) give the recursive relationship between CN(Z) and CN+K(£).



_56_

Evolution of inverse matrix. If (R:jl)'l is known, we can calculate (RN“LK)'l for the
unchanged AR order M as follows. Using RN;K which is composed of CN+K(£), (RN;;K)'l
can be obtained by using the iterative formula of second-order convergence
_ N+K
Xk+l = xk(ZI - R M Xk) (3.16)

Setting Xg = (R:)’l, Xk converges to (RNI";K)'l with sufficient accuracy after a few
iteration steps. This iteration is terminated when the matrix in the parentheses
converges to a unit matrix as accurate as expected. Hence, the new parameter
estimates for unchanged AR order are obtained as

AN+K N+K,-1 _N+K
A MoS (R M ) @ Mo (3.17)

These computations correspond to the revision of the system identification along
the horizontal arrows in Fig. 3.2.

When the AR order is changed from M to (M+1), (RM.1)-1 can be obtained from (Ry)-1
by means of the matrix inversion identity (Fortmann 1970)

-1
co) : o, 0,7l ¢+ o lgTr-l
-1 - Oy Mo+ Dy Oy Ry
Ry = |oeirede e B Gae)
o "TiR IS SRR A AR SR SRR 1
Mo 2 Ry R, Yo 0,7t 1R ter, To,0, M0, R,
where
) T. -1
b, = ¢0) - ¢," R, o, .

On the other hand, when the AR order is changed from M to (M-1), (RM_l)‘l can be
obtained as

u, T (3.19)

-1
(Ry.p) = =T M-1 Ov-1 Un-1

M-1 ~ Y

where each term in the right-hand side can be obtained from

D -1 T

)-l - M-1 M-1
UM-l

(R

U
M T

M-1

Using (3.18) or (3.19), or both, we can obtain (Ry)-l for different orders around
the one that was estimated in the previous step, and at the same time MFPE(M) for
each M can be evaluated using Dy. Now, let MN be the AR order estimated by using
N data. When K data are added, MFPE(M)s are calculated for each M around MN, and
MN+K which minimizes MFPE(M) locally, can be obtained. These computations
correspond to the revision of the system identification along the vertical arrows
in Fig. 3.2. This MN is converging to an integer which minimizes MFPE(-) as N
increases.
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The algorithm of the modified Akaike's method. The algorithm of the modified
Akaike's method can be summarized as follows:

Step 1 : Delete the mean from the initial Ndata and calculate SN(£), cNey, Bﬂ(l),
and gN(£), for £ = 0,1,...,L, with (3.11) and (3.12).

Step 2 : Find MN that minimizes MFPE(M) and at the same time calculate (RNN)'1
and KNN. M
M

Step 3 : If K = 0, the computation is terminated. Otherwise, delete the mean from
the added data and calculate SN+K(£), cN+K(g), pN+K(2), and gN+K(£), for
£ =0,1,...,L, with (3.13) to (3.15).

Step 4 : Calculate (RNEK)‘I with (3.16).
M

Step 5 : Calculate (RN;K)-l for M around MN with (3.18) and (3.19), and find MM+k
that minimizes MFPE(M) locally. At the same time, calculate A:ﬁfk with
(3.17). Set N+K + N and go back to Step 3.

In this algorithm, the number of data that have to be stored in the computer memory

is only K+L, as seen from (3.13) and (3.14).

Modified Akaike's Method with Observed Random Input

When an r-dimensional, stationary Gaussian input u(k) exists with an n-dimensional
output x(k), the method described above can also be applied. A random input u(k)
should be uncorrelated with the noise experienced by x(k). An AR model' for an

augmented (n+r) dimensional vector z(k) = x(k)T, u
m [ Agm B, m (k)
2Z(k) = I Jeeeeeetannans| z(k-m) + [oo... (3.20)
m=1 x T w *

can be fitted in a way similar to that in the preceding section. Instead of the
MFPE of the final prediction error criterion

n =-Nn
FPEC(M) = (1 + M‘“*ﬁ} + 1y - “‘"*ﬁ} + 1y det(Dy ) (3.21)

can be used (Akaike 1971). 1In (3.21), DM,n denotes the nxn upper left part of Dy,
the estimate of the covariance matrix of the residuals.

NUMERICAL EXAMPLE FROM THE YOMO RIVER

A stretch of four km of the Yomo river is divided into four reaches as shown in
Fig. 3.3. The values of the parameters kj; and k; for all four reaches are

1 1

kg = 0.53 (days™™) , ky; = 0.10 (days™ ™)

2
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Fig. 3.3 The four-reach river basin of the Yomo river.

The values of the other parameters are listed in Table 3.1; At = 1/8 days. For
simplicity, the unknown order and parameters of only the BOD model, (3.4a) are
estimated. Since only steady state data of this river were available, realistic
time series data were generated by computer simulation, and these "synthetic" data
were used for the identification study. The simulation model used for obtaining
time series data is

0.0640 0 0 o o o o
0.246 0.436 0 0 0.1030 0 0
2 =10 0.046 0.436 0 x(k-1) + 1o o150  o%k-2)
0 0  0.120 -0.064 0 0  0.3000
o o o o0 oo 0 o0
0.020 0 0 00 o0 0
*lo o.s60  of2Kk3) 15 00230  of Xk-#) +ulk) + v(k)
0 0 0.1200 0 0  0.0600

where input u(k) = [0.85, 5.25, 41.1, 4.67]T, and v(k) is a vector of white Gaussian
noise with zero mean and variance 0.1.

The identification was recursively performed for every 100 data (K = 100). The
evolution of the estimated results for the order is shown in Fig. 3.4. The
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Fig. 3.4 The estimated results for the order of the BOD model
in the Yomo River study with increasing data.

parameter estimates were, with 1,000 data:

-0.057 0.038 0.020 -0.015 -0.036 -0.011 -0.009 0.046
N _ 0.198 0.443 0.030 -0.013 0.138 0.020 0.007 -0.004
Az(l) = AZ(Z) =

0.005 0.011 0.420 -0.018 0.009 0.165 0.013 0.022

-0.020 0.020 0.098 -0.005 0.018 0.029 0.378 0.019

and with 2,000 data:

-0.042 -0.027 -0.009 -0.019 -0.041 -0.016 0.009 0.029
N B 0.220 0.448 0.026 0.007 N _ 0.131 -0.029 -0.029 -0.018
A3(l) = A3(2) =

-0.007 0.026 0.411 -0.023 0.001 0.117 0.023 0.026

-0.004 0.001 0.120 -0.040 0.026 0.026 0.284% 0.019

-0.006 -0.002 -0.011 -0.010
" 0.018 0.030 0.018 0.011
A3(3) =

0.011 0.058 0.002 -0.002

-0.009 -0.026 0.139 0.001

To test the accuracy and convergence of the identification algorithm, we evaluate

N
CN =3 I (yk) - 9k (x(k) = (k)
k 1

:N-K+

The development of C(K,N) is plotted in Figure 3.5, where

=4

M A
y(k) = I A(m)y(k-m) , gk) = = A(mG(k-m)
m=1

m=1

aqd M and R(m) are the estimates of M and A(m). For our case, n = 4, K = 100, and
M = 4. C(K,N) shows the difference between the real system and the identified
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log C(100,N)
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0 500 1,000 1,500 2,000

Fig. 3.5 The correspondence between the real system and the
BOD model in the Yomo River study with increasing data.

model. Although the estimated order is lower than that of the real system (i.e.,
simulation model), the similarity of the parameter values and the convergence
profile of C(K,N) show that the real-time recursive algorithm of the modified
Akaike's method is quite satisfactory.

CONCLUDING REMARKS

In the numerical example, we estimated only the BOD part of the model for four
reaches at the same time (n = 4). However, since the river quality models in the
different reaches are not affected by each other, we could have identified both

the BOD and DO part of the model reach by reach; the size of each identification
problem would have been small (n = 2). Furthermore, since we can analyze data
recursively in the algorithm and since the time increments between data collections
are sufficiently long (1/8 day), it is possible to carry out system identification
for the multiple reaches using parallel processing.
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4 Application of Maximum Likelihood Identification
to River Flow Prediction

Tohru Katayama

Planning and control of water resource systems have recently become the subject of
research of systems and control engineers. To predict river flow, one must know
the behavior of the river basin. There are two different approaches for the
development of dynamic models of the river basin; one is based on hydrologic theory
and the other on statistical estimation theory.

This paper is concerned with an application of the maximum likelihood (ML) identifi-
cation method to rainfall/runoff modeling. Both linear and multiplicative models
are used. The parameter identification was carried out by using the daily rainfall/
runoff data of the Karasu river in the Kanto district of Japan. The derived models
are used for one-day-ahead prediction of the river flow.

THE LINEAR MODEL

In general, a discrete-time, single-input, single-output (SISO) linear system 1is
expressed as

x(t+l) = Fx(t) + Gu(t) + Lw(t)

(4.1)

y(t) = Hx(t) + v(t)

where x(t) 1s an n-dimensional state vector at time t, and u(t) and y(t) are a
scalar input and a scalar output. F, G, H, and L are parameter matrices with
appropriate dimensions. The system and observation noises w(t) and v(t) are
Gaussian white noise sequences with zero means. In Chapter 2 of this volume,

Mehra shows that only the innovation representation of (4.1) is suitable for
parameter ldentification (see also, Kaillath 1968 and Mehra 1971). In other words,
(4.1) is redundant with respect to noise and system parameters, so that not all the
parameters in (4.1) are identiflable (Tse and Weinert 1975). In order to derive

an ldentifiable form, we define the one-step predicted estimate R(t) of the state
x(t) based on the observations yt=1 = {y(1),...,y(t-1)} and ut-1 = {u(1),...,u(t-1)}

This work was supported by the Ministry of Education in Japan under the special
research project, "Evaluation and Control of Environmental Systems."
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as
&(t) = Elx(t)|oly®™L, ut1y) (4.2)
where o(yt-1, ut-1) is the o-field generated by yt-1 and ut-1, and E{+|:} denotes

the conditional expectation. By using Kalman filter theory (Bucy and Joseph 1968),
we have an innovation representation of system (4.1):

R(t+l) = FR(t) + CGu(t) + Kv(t)

(4.3)

y(t) = HR(t) + v(t)

where v(t) is the innovation process representing Gaussian white noise with mean
zero and variance o?. The innovation process v(t) expresses the one-step prediction
error for y(t) based on yt-1 and ut-1, namely,

v(t) = y(t) - §(t) = y(t) - HR(t) (4.4)

The K 1s an n-dimensional vector that denotes the steady-state Kalman filter gain.
It should be noted that in (4.3) the state vector is the one-step predicted
estimate of the original state vector in (4.1) and that (4.3) is the mean value of
the process represented by (4.1). When the parameters are identified, it readily
follows from (4.3) that the steady state Kalman filter is given by

R(t+1) = FR(t) + Gu(t) + K[y(t) - HX(t)] (4.5)

Hence, if the parameters in (4.3) are known, it is not necessary to solve a Riccati
matrix equation to obtain the steady-state Kalman filter gain. In the following,
we consider the system (4.3) as a state-space representation of the process to be
identified.

It 1s well known that an SISO system has canonical representations (Kalman 1963).
In this paper, we use an observable canonical form, namely,

0 0 ... a, bn n
0 ... a1 bn-l kn-l
F = 1 G = - K = N (4.6)
0 ‘.1 a b1 k1

H=[0...01]

For convenience, we define
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1 1 1
a b c

2 = 2 E = 2 E =
an bn cn

where ¢y = kj - ai (1 = 1,..., n). We see from (4.6) that the pair (H, F) is
observable. However, the pairs (F, G) and (F, K) are not always controllable.

Therefore, to obtain a minimal realization that contains the least possible number

of parameters, the uncontrollable parts of the state vector R(t) should be

eliminated. There exist several algorithms for the minimal realization (Ho and

Kalman 1966, Mayne 1968, Furuta 1973).

By using (4.6), (4.3) can be transformed into an autoregressive moving average

(ARMA) model:

n n n
y(t) = Z aiy(t-i) + Z biu(t-i) + v(t) + Z civ(t-i)
i=1 i=1 i=1

where it is assumed that the initial conditions

u(0), u(-1)ye.e, u(-n+l)

y(O), y(-l),..-, y('n+l)
are known. Taking the z-transform of (4.7) yields

Az Yy () = Bz hu(t) + ez hyv()

where
A(z'l) =1- alz'l . vee - anz-n
Bzl = bzta b2
C(z-l) =1+ clz'l b oeee + cnz_n

and z™™ is the backward shift operator defined as z-My(t) = y(t-m). In the
following, we take the ARMA model (4.7) as our model for identification.

For the parameter identification, it is assumed that

- All the roots of A(z-l)

0 lie in the unit circle of the z-plane.

- All the roots of C(z-l) = 0 lie in the unit circle of the z-plane.

(4.7)

(4.8)

(4.9)

The first assumption implies that the homogeneous equation corresponding to (4.7)

is asymptotically stable, and the second implies that C(z-1) is invertible.

The problem approached by this paper is to find an optimal order ny of the system
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and to identify the parameters a, b, and ¢ based on the given input and output
data. To find the optimal order of the system is much more difficult than the
parameter identification for a fixed n. Appendix B is devoted to the discussion
of this problem.

If the parameter identification is done, it follows from (4.5) and (4.6) that the
one-step predicted estimate §(t) of the output y(t) is recursively given by

l'\

n
g(t) + I ci9(t-i) u(t i) + Z kiy(t -i) (4.10)
i=1 i= l i=1

with the initial conditions

§(0) = §(-1) = .o. = §(-n+l) =

It should be noted here that the second assumption is necessary for ensuring the
asymptotic stability of the homogeneous part of (4.10).

THE MULTIPLICATIVE MODEL

Since the output observation of a river flow, say, y(t), takes positive values only,
we can assume the following multiplicative form

n b, n c,v(t-j)
y(t) = T y(t-}) on u(t-5) 3 Teld (4.11)
j=1 3=1 3=0
where a, b, and ¢, with ¢g = 1, are unknown parameters to be identified, and v(t)

is a Gaussian white noise innovation process with mean zero and variance o? , as in
the previous section. Taking the logarithm of both sides of (4.11) gives

n n
z bji(t-j) +v(t) + Z cjv(t-j) (4.12)

n
n(t) = I ajn(t-j) +
j=1 j=1

j=1
where

n(t) = log y(t), E(t) = log u(t)

Since (4.12) is the same ARMA model as (4.7), we will not repeat the necessary
assumptions and related arguments in the previous section. By using the ML method
in the next section, the parameters a, b, and ¢ and o? are identified.

Let fi(t) be the conditional mean estimate of n(t) based on nt -1 and gt l. Since
the logarithm function glves a one-to-one, monotonic mapping, G(nt 1 £ ‘l) is
equivalent to o(yt-1, and

t-1

f(t) = E{n(e) ontL, 41y

(4.13)

E{n(t) oty 1, ut 1y}
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Referring to (&4.10), the conditional mean estimate fi(t) satisfies the following
equation

n n
cjﬂ(t—j) = IbE(t-]) + kjn(t~j) (4.14)

n
A(t) + 1
j= i=1 j=1

Jj=1

where k3 = cj + aj (j = 1,..., n). The one-step predicted estimate of y(t) based
t-1J t-1
on y and u is given by

9(t) = Ely(t) |oly™™ 1)} = explfi(t) + 02/2} (4.15)

and its variance is

A 2
V() = E{(y(t) - 9(t)%} = @GN’ - 1], (4.16)

as shown in Appendix A. Since we see ‘from (&4.15) that §(t) is a function of 02,
the estimation of o2 is very important for a multiplicative, lognormal system.

An obvious disadvantage of using the multiplicative system (4.12) for rainfall/
runoff modeling is that if u(t) = O for some t, that is, if there is no rainfall at
t, then the outputs of the system (4.12), y(s), arz zero for all s > t. This
cannot be true. A simple way of alleviating the difficulty is to introduce a
positive constant B and to define

E(t) = log(B + u(t))
We will discuss the choices of the constant B in a later section.

MAXIMUM LIKELIHOOD IDENTIFICATION

Given the conditional probability density function (pdf) of the output y(t)
conditional on O, we define the likelihood function of @ as

L(©) = ply|o) (4.17)

where P(Z|Q) is the conditional pdf. For a given sample value of y, L(9) is only
a function qf the parameter ©. A maximum likelihood estimate (MLE) of ©, which s
denoted by Gy , is the value of O that maximizes L(@). In other words the MLE Oy
is determined so that the sample value of y is most likely. It is well known

that the MLE has the following important statistical properties (Astrdm and Bohlin
1965, Anderson 1958).

- Asymptotic normality; the convergence of /ﬁ(@ML(N) - ©) to a random vector
with N(0, I), where GML(N) is the MLE based on N observations

- Asymptotic efficiency: the covariance matrix of éML(N) - O attains the
Cramér-Rao lower bounds for N + «
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- Consistency: §ML(N) converges in probability to © for N + <,
In the following, G denotes the aggregation of the unknown parameters a, b, and c.
Since v(t) in (4.7) (or in (4.12)) is Gaussian white noise with mean zero and

variance o2, the conditional pdf of yN given uN- 1, e, 0%, and initial conditions
(IC) (4.8) becomes

N
I p(y(t)|y(1), u(1), 1 < t-1, 8, o?)

p(yN| L, ¢, o2, 10)

1
==z

1 exp{- 1 vi(t)} (4.18)
t=1 v2m0? 202

where v(t) (t = 1,..., N) are computed from (4.7), or from (4.12) for given input
and output data and system parameters. Therefore the conditional log-likelihood
function is given by

log p (yN uN'l, 9, 0%, IC)

Ly(850%)

1 N
log(2ma?) - — I vZ(t) (4.19)

N
"2 202 t=1

Since the logarithm is monotonic increasing the MLEs 0 and 62 maximize the log-
likelihood function (4.19) with respect to © and o2, respectively. Thus, from the
likelihood equation

218, 0?) =0 (4.20)

~

302 o?=0
the MLE of o2 becomes

~2 _ 1 N 2
ot =y L vi(t) (4.21)

t=1

Substituting (4.21) into (4.19), we see that the MLE of © is obtained by minimizing

vi(t) (4.22)

™M=

1
L*E) = »
N N t=1

subject to equality constraints (4.7), or (4.12). Hence, the ML identification is
reduced to a parametric optimization problem that minimizes the innovation process.
Although the development 1s heavily dependent on the assumption that the innovation
is a Gaussian white noise process, the resultant minimization problem is quite
reasonable from an engineering point of view.

It should be noted from (4.7) or (4.12) that the innovation process v(t) is linear
with respect to parameters a and b for fixed input/output data. Therefore if ¢ = 0
in (&.7) or (&.12), then LN*(G) is reduced to a quadratic form in a and b, so that
the unique minimum point can easily be obtained by solving a so-called normal
equation by least squares (LS). But the LS estimates may be biased, because the

correlated noise {v(t) + Z?civ(t-i), t=1,...,N} was replaced by uncorrelated
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noise {v(t), t = 1,...,N}. For ¢ #£ 0, however, LN*(Q) becomes a complicated non-
linear function. Hence, for the numerical solution to the minimizing problem, we
have employed Davidon's conjugate gradient method (Kowalik and Osborne 1968). For
the algorithm of optimization, see the presentation by Katayama, Akimoto, and
Sawaragi (1976). Appendix B discusses the order of the model, and the overall
identification procedure is briefly summarized in Appendix C.

APPLICATION TO RIVER FLOW PREDICTION

In this section, the ML identification method is applied to rainfall/runoff modeling
of the Karasu river in Gumma, Japan. The Karasu river with a basin area of 156 km?
and length of 27 km, is one of the most important tributaries of the Tone River

(see Fig. 4.1). Daily input/output data from 1964 to 1965 (731 days) are

available. The rainfall inputs u(t) (mm/day) in the catchment area were obtained as
an average of the measurements of four rain gauges shown in Fig. 4.1, and the
outputs y(t) (m®/sec), the runoff, were estimated from the daily average of the
water levels at the gauging station. Tables 4.1 and 4.2 show the freguency
distributions of the input and output data. The normalized correlation functions
are depicted in Fig. 4.2.

Table 4.1. Frequency distribution of input data:
Rainfall from January 1964 to December 1965

Range (mm/day) Number of Days Frequency (%)
0- 2.5 540 73.87
2.5 5.0 54 7.39
5.0 - 7.5 27 3.69
7.5 - 10.0 19 2.60
10.0 - 12.5 18 2.46
12.5 - 15.0 16 2.19
15.0 - 17.5 7 0.96
17.5 - 20.0 4 0.55
20.0 - 25.0 15 2.05
25.0 - 30.0 5 0.68
30.0 - 35.0 3 0.41
35.0 - 40.0 é 0.82
40.0 - 50.0 6 0.82
50.0 - 60.0 6 0.82
60.0 - 70.0 1 0.14
70.0 - 4 0.55
Total 731 100.00

The identificatlion was carried out by using 1964 data (366 days). The results are
shown in Table 4.3, where 0°; denotes the minimum value of Ly*(Q) defined by (4.22).
Akaike's information criterion (AIC) and the final prediction error (FPE) are also
computed (Akaike 1974b). Comparing the variances of estimation errors with those
from some conceptual hydrologic models given in Table 4.4, we see that the parameter
identification has been done very well. Numerical studies show that the "whiteness"
of the innovation process is improved for larger values of n and that for n > 3

the autocorrelation functions are within the 95 percent confidence intervals.

Thus we see that the innovation process (or residuals) is, for practical purposes,
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o Recording Rain-gauges
A Level Gauging Station

Power Station
Fig. 4,1 The Karasu river catchment area.
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Fig. 4.2 Correlation functions of input/output data.

whitened for n > 3 (see Figs. 4.3 and 4.4). As shown in Fig. 4.5, we observe
that the impulse responses for n > 3 oscillate around the curve for n = 2. This
oscillatory nature may not be a true reflection of the actual dynamics of the
river basin, but may have resulted from the fitting process of linear models to
the input/output data disturbed by various nuisance variances inherent in complex
hydrologic systems. The models so obtained are applied to the one-day-ahead
prediction of the runoff from May 1 to September 10, 1965 (133 days); the results
are also shown in Table 4.3. The best performance was obtained by the second-
order model among those with n.g 10; the mean square error (MSE) is comparable to
that of Sugawara (Table 4.4), who has developed one of the best tank models (see
Sugawara 1972). The minimum of AIC(3n) was obtained at n = 9, and a local minimum
at n = 3, where n = 10. Based on the above numerical studies, we may conclude
that low order models with n = 2 or 3 will be sufficlent for the one-day-ahead
prediction of river flow. Moreover, the parameters in these models can be renewed



-71-

Table 4.2. Frequency distribution of output data:
Runoff from January 1964 to December 1965

Range (m®/sec) Number of Days Frequency (%)
0 - 2.5 72 9.85
2.5 - 5,0 396 54.17
5.0 - 7.5 148 20.25
7.5 - 10.0 43 5.88
10.0 - 12.5 27 3.69
12,5 - 15.0 14 1.91
15.0 - 17.5 9 1.23
17.5 - 20.0 9 1.23
20.0 - 30.0 10 1.37
30.0 - 40.0 1 0.14
40.0 - 50.0 1 0.14
50.0 - 60.0 0
60.0 - 70.0 0
70.0 - 80.0 1 0.14
Total 731 100.00

Table 4.3. Results of linear model identification

n 82n : LS FPE Szn : ML AIC Prediction
1 1.54000 1.55696 1.53464 0.444733 8.37474
2 1.38978 1.42066 1.32478 0.314313 6.803362
3 1.33280 1.37759 1.2759 0.293271 7.02037
4 1.33432 1.39462 1.28021 0.313319 7.23136
5 1.28463 1.35781 1.25482 0.310094 7.05388
[ 1.26286 1.349922 1.24077 0.315728 7.41441
7 1.26594 1.36863 1.21708 0.313446 8.29196
8 1.26790 1.38645 1.19631 0.313320 8.00905
9 1.26348 1.39753 1.12646 0.270337a 9.75737
10

1.26561 l.41161 1.20975 0.358952 7.99043

2 Minimum values,

as soon as new data are available. Figure 4.6 deplcts the actual flow y(t), the
estimates from the linear model with n = 3, and the estimates from Sugawara's tank
model (Tone River Dams Control Office 1967).

The multiplicative models described in the third section are also applied; the
results are summarized in Table 4.5, where B = 10, Numerical studies show that
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Fig. 4.3 Autocorrelation function of the innovation process (n = 2).
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Fig. 4.4 Autocorrelation function of the innovation process (n = 3).

the larger the constant B, the better the identification. This suggests that a
logarithmic transform of input data u(t) may not be relevant in this situation.

In view of the identification, we see that the parameter identification is
successful., Comparing Tables 4.4 and 4.5, however, we observe that prediction was
very poor. Although relatively few computer studies have been done until now, we
notice that the multiplicative models are sensitive to the waveform of the time

series. Therefore, for the use of the multiplicative model, extensive studies
remain to be done.
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Fig. 4.6 Actual river flow and estimates with the linear and tank models.




-74—-

Table 4.4. MSE performance of river flow estimation by tank models

Model Identificationd Prediction?
Sygawara 2.41324 6.54934
Nishihara 3.29951 13.08607
Storage
function 9.22446 15.16746

Source: Tone River Dams Control Office, 1967.
2 pata from January 1 to December 31, 1964 (366 days).
b Data from May 1 to September 10, 1965 (133 days).

Table 4.5. Results of multiplicative model identification:
MSE performance with B = 10

n Eﬂ:ntificatiiﬂé Predictionh
1 1.57057 1.56544 19.28503
2 1.28237 1.22938 15.87144
3 1.23342 1.,21886 15.75892
4 1.23361 1.23291 16.01611
5 1.19985 1.19949 16.00065
6 1.18723 1.18345 16.86354
7 1.20358 1.18203 16.84989
8 1.20258 1.18969 16.67419
9 1.19101 1.09863 19,.61833
10 1.15186 1.12629 17.24032

2 Data from January 1 to December 31, 1964 (366 days).

Data from May 1 to September 10, 1965 (133 days).

ACKNOWLEDGEMENT

The author would like to express sincere thanks to Professor Y. Sawaragl for his
guidance and encouragement during this study.



_75_
REFERENCES

Akaike, H. (1972). Information theory and an extension of the maximum likelihood
principle., Proc. 2nd Int. Symp. Information Theory, 267-281, House of Hungarian
Academy of Sciences.

Akaike, H. (1974a). Stochastic theory of minimal realization. IEEE Trans. Autom.
Control 19: 667-674, December.

Akaike, H. (1974b). A new look at the statistical model identification. IEEE Trans.
Autom. Control 19: 716-726, December.

Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis.
John Wiley, New York.

Astrdm, K.J., and T. Bohlin (1965). Numerical identification of linear dynamic
systems from normal operating records. Proc. 2nd IFAC Symp. on Self-Adaptive
Systems, 96-111.

Bucy, R.S., and P.D. Joseph (1968). Filtering and Stochastic Processes with
Applications to Guidance. Interscience, New York.

Chow, J.C. (1972). On estimating the order of an autoregressive moving average
process with uncertain observations. IEEE Trans, Autom. Control 17: 707-709,
December,

Furuta, K. (1973). An application of realization theory to identification of a
multivariable process. Preprints 3rd IFAC Symp. on Identification and Parameter
Estimation, TS-3, 939-942, Delft, The Netherlands.

Gersch, W. (1970). Estimation of the autoregressive parameters of a mixed auto-
regressive moving average time series. IEEE Trans. Autom. Control 15: 583, 588,
October.

Ho, B.L., and R.E. Kalman (1966). Effective construction of linear state variable
models from input/output functions. Regelungstechnik 14: 545-548, December.

Johnson, C., and E.B. Stear (1974). Optimal filtering in the presence of multipli-
cative noise. 5th Symp. Nonlinear Estimation and its Applications, 124-13%,
September.

Kailath, T. (1968). An innovations approach to least square estimation, Part I:
Linear filtering in additive noise. IEEE Trans. Autom. Control 13: 646-655.

Kalman, R.E. (1963). Mathematical description of linear dynamical systems. SIAM J.
Control Al (2): 152-192.

Katayama, T., K. Akimoto, and Y. Sawaragi (1976). Application of maximum likelihood
method to boiler system identification.

Kowalik, J., and M.R. Osborne (1968). Methods for Unconstrained Optimization
Problems. Elsevier, New York.

Mayne, D.Q. (1968). Computational procedure for the minimal realization of transfer
function matrices. Proc. IEE 115: 1363-1368, September.

Mehra, R.K. (1971). On-line identification of linear dynamic systems with applica-
tions to Kalman filtering. IEEE Trans. Autom. Control 16: 21, February.




_76_

Rao, R.A., and R.L. Kashyap (1974). Stochastic modeling of river flows. IEEE Trans.
Autom. Control 19: 874-881, December.

Sugawara, M. (1972). Method of Runoff Analysis, Kyoritsu Pub. Co., Tokyo.

Tone River Dams Control Office, Kanto regional construction bureau, Japan (1967).
Report on the Runoff- Analysis of the Upper Reaches of the Tone River, July (in
Japanese).

Tse, E., and H.L. Welnert (1975). Structure determination and parameter identifica-
tion for multivariable linear systems. IEEE Trans. Autom. Control 20: 603-613,
October.

Unbehauen, H., and B. G8hring (1974). Tests for determining model order in parameter
estimation. Automatica 10 (3): 233-244.

Woodside, C.M. (1971). Estimation of the order of linear systems. Automatica 7:
727-733, November.



APPENDIX A

A KALMAN FILTER FOR A MULTIPLICATIVE SYSTEM (Johnson and Stear 1974)
Consider a multiplicative, lognormal system described by

n

X, = I (x
t 7 gyt

fo n guw
y 3 pedtd, o, 2,... (4A.1)
¥=1

where xt is a state that takes positive values only, and wy is Gaussian white noise
with mean zero and variance Q. The output observation is expressed as

Ye = X © (4A.2)

where y¢ is an output taking positive values only, and vy is Gaussian white noise
with mean zero and variance R. It is assumed that the initial conditions

X3y J = -n+l,..., -1, O are lognormally distributed, that is, log xj are normally
distributed, and that the system and observation noises wt and vt, and the initial
conditions are mutually independent.

The purpose of this section is to derive the conditional mean estimate R¢ of the
state xt based on yt-1 = {yj,..., yt.1}, namely,

t-1
Qt = E{xtlc(y )} (4A.3)

where c(yt'l) is the o-field generated by yt'l.

Now we define

n(t)

f

log y,
(BA.4)

I
p(t) = [log Xg_pepre 1100 X¢ 1,109 xt]

_77_




_78_

where n(t) and u(t) are the transformed output and an n-dimensional state vector,
and the superscript T denotes the transpose of a vector or a matrix. We also
define the following matrix and vectors:

0O 0 ... fn 9,
1 0 ... f g
n-1 n-1
F = 1 c=1. (4A.5)
0 1 fl 9;

Then we have

plt+l) = Fu(t) + th (4A.6)

n(t) = Hu(t) + Ve (4A.7)

This is a state-space representation of an SIS0, linear discrete-time system
encountered in the second section of the paper.

Let o(nt-1l) be the o-field generated by nt-1. Since (4A.6) and (4A.7) are linear
and are subjected to Gaussian white noises, the conditional pdf p(u(t)|o(nt-1)) of
the state vector u(t) given nt-1 is Gaussian. Thus, by using Kalman filter theory

(Bucy and Joseph 1968), the conditional mean {i(t) and covariance matrix P(t) can
be expressed as

fi(t+1) = FA(t) + K(t) [n(t) - HO(t)] (4A.8)
and

P(t+1) = F[P(t) - P(OH [HP(O)H' + R]“HP(t)]FT + oGt (4A.9)

where the optimal gain K(t) is

K(t) = P(t)H IHP(OH' + RI7L (4A.10)

and
) = E{H(t)lc(nt'l)} (4A.11)
P(t) = E{[u(t) - u()] fuce) - 6e)] "y (4A.12)

Since the logarithm is a monotonic, one-to-one mapping, the o-field a(nt-1) is
identical to the o-field o(yt-1), generated by the original output observation

up to time t-1. Therefore, the conditional gdf p(p(t)|o(yt-1)) of u(t) given yt-1
is equal to the conditional pdf p(u(tj|o(nt-l)), that is,
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p(u(t) oyt 1)) = p(u(t) lo(nt~1)) = caussian (4A.13)

so that_the conditional pdf p(x(t)|o(yt=1)) of the state vector x(t) = Xtonsl oov
xt+1 xt]! based on yt-1 1s lognormally distributed. From

Hj(t) = log x = log Ej(t) (F = 1,000y N) (4A.14)

t-n+}

it follows from the property of lognormal distribution that

_ t-1
gd(t) = E{gj(t)lo(y )}

= exply,(t) = % Pyy(t) (G = 1yeeey n) (4A.15)
and

Vi () = EL(x4(6) = &, () (% (£) - R (£))}

P (t)
= gj(t)gk(t)[e J - 1] (Fy k = 1,000y n) (4A.16)

where Psik(t) is the j,k-component of P(t). Since x¢ = xpn(t), the optimal estimate
R¢ and its variance Vi are given by

R, = exp{l (t) + 1P ()} (4A.17)

and
~ P (t)
Vo = Ellxg - 802 = 3% ™ - 1] (4A.18)



APPENDIX B

ESTIMATION OF ORDER OF ASSUMED MODEL

The problem of estimating the system order has received great attention in recent
years. For deterministic systems, the order determination problem has already

been solved as the minimal realization algorithms (Ho and Kalman 1966, Mayne 1968).
For stochastic systems, however, the problem remains to be solved and requires
extensive study and numerical evidence (Akaike 1974a). Many methods for determining
the order of stochastic systems have been developed (Astrdm and Bohlin 1965, Gersch
1970, Woodside 1971, Chow 1972, Unbehauen and G8hring 1974). The algorithms in
these papers have shown very good results for digital simulation studies. However,
for real processes, such as power plants, chemical processes, and environmental
studies, these methods do not necessarily yield reasonable results because real
systems are subject to disturbances and uncertainties. In other words, it is

very difficult to determine the system order uniquely from available input/output
data, because the real data will be contaminated by measurement errors and external
disturbances. Thus when applied to actual data, all such methods require, at

least in part,trial and error and value judgements.

A practical approach to statistical identification with order determination is

the following: (a) assign the order of the model and estimate the unknown
parameters from the data; (b) evaluate appropriate error measures, response
characteristics, such as impulse and step responses, and locations of poles and
zeros; (c¢) compare the results for n = 1, 2,..., nL, and take the ng as a possible
order of the model for which reasonable error measures and response characteristics
are obtained. If there is information about the structure of the system, it must
also be taken into account.

In this paper, we have used the following methods:
- AIC criterion The idea that the optimal order or dimension of the model is a
parameter to be estimated was introduced by Akaike (1972, 1974b) who proposed

an information theoretic criterion. For any maximum likelihood situation,
AIC(k) is defined as

AIC(k) = - 2log (maximum likelihood) + 2k (48.1)
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where k is the number of arbitrarily adjustable parameters in the model. The
order selected is the value of k for which AIC(k( is minimized. Some good
results with the use of AIC are presented for both artificial and real data
(Akaike 1974b).

Test for independence of the innovation process. This method, after Mehra
(1971), is used to test the assumption that the innovation process v(t),
(t =1,..., N), is a white noise. The autocorrelation function

N-t
Pyy(T) = % tflv(t)v(tw), T =0, 1,... (48.2)

must be zero for T # 0, if the model is acceptable. In fact, if v(t) is a
Gaussian white noise, then py(1)/p\,(0) is asymptotically a normal distribu-
tion with mean zero and variance 1/N (Anderson 1958), so that the 95 percent
confidence interval is (-1.96/¥N). Thus by using (4B.2), we can apply a
statistical test to evaluate the accuracy of the model.

Data checking. A simple but effective method for testing the structure of a
model is to use part of the given data as checking data. First we divide
the data into training data D] and checking data Dp. Then the model is
identified by using Dj and checked by Dp. In general, as the order n of the
model increases, the variance of the innovation process for D] decreases, and
the accuracy of the estimates of the parameters decreases because the training
data Dj is finite. Various numerical results show that for data Dy, the
variance of the prediction error decreases in relation to n for small n and
then gradually increases in relation to n because of the uncertainty
associated with the estimates of unknown parameters. A plausible order of
the model is the value ng for which the variance Dy is minimized. In a
sense, AIC(k) is a theoretical estimate of the logarithm of the variance of
the prediction error for the checking data.




APPENDIX C

OVERALL IDENTIFICATION ALGORITHM

We summarize the identification algorithm used in this paper.

Step l: Divide the data into Dy = {u(t), y(t), t = 1,...,N1} and Dy = {u(t), y(t),

Step
Step
Step

Step

Step

Step
Step

Step

2:
3:

t = N1+l,..., N}.
Set n = 1, and go to next step.

Let ¢ = 0, and find the estimates & and B.

: Using Davidon's algorithm, find the ML estimates én and 82n.

~

: Using the ML estimates Op obtained in step &, compute impulse and step

responses, and autocorrelation function py,,(T).

: Compute AIC(3n) by

AIC(3n) = 1og(3® ) + 2(3n)/N;, dim(9) = 3n (4C.1)

where it should be noted that under the Gaussian assumption, (4B.l) is
equivalent to NJAIC(3n) up to a constant (Akalke 1974b).

: For checking data D,, compute the varlance of prediction error.

If n <n, set n + n+l, and go to step 3; if n = n, then go to next step.

Based on the idea in the last section, find a possible order of the model.
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5 Real-Time Parameter Estimation of a Nonlinear Catchment Model
using Extended Kalman Filters

R.J. Moore and G. Weiss

Forecasts of flow at critical sites of a river network are required for optimal
short-term operation of a water resource system. They provide information for use
of the system to supply water, alleviate floods, dilute effluents, or generate
power.

In this paper, an existing deterministic-conceptual, nonlinear catchment model is
developed in a stochastic framework where its parameters are estimated and updated
in real-time as new data become available. The conceptual quality of the determin-
istic model is maintained so as to preserve the prior knowledge of the system

being modeled. The stochastic-conceptual model is presented as a system formulation
that can be used with two extensions of the Kalman filter algorithm.

THE DETERMINISTIC-CONCEPTUAL MODEL

A simple four-parameter catchment response model for simulating isolated storm
events has been developed and shown to yield realistic flood hydrographs for design
purposes (Natural Environment Research Council 1975, Mandeville 1975). This model
has been taken (with one generalization) as the basic element of our real-time flow
forecasting algorithm.

The conceptual routing elements of this deterministic model are the time-invariant,
nonlinear reservoir and the linear channel. The magnitude of flow in a river,

q = q(t), is considered proportional to some power of the catchment storage,

S = 5(t), as defined by the relation

q = ks" (5.1)

Combining (5.1) with the equation of continuity

ds _
i A (5.2)

where r = r(t) is the effective rainfall, gives
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1 n-1

dg _ _.n - n
gt - ™ (r -q)gqg
1
Making the parameter substitutions a = nKn, b = ﬂﬁl, we obtain
dq _ . b
gl (r ~q)q (5.3)

To account for the delay between rainfall and catchment response, a linear channel
element is introduced. Thus, in (5.3) r and q should be replaced by q(t) and

r(t - 1), where 1T is a pure time delay, but for convenience the fact that rainfall
is to be shifted in time with respect to flow is assumed without added notation.

A procedure is now required for conversion of measured rainfall, u = u(t), into
effective rainfall, r. The applied volume conversion procedure is based on the
contributing area concept in which the area of catchment contributing to runoff,
and consequently the runoff magnitude, is considered a function of the initial
catchment wetness. One measure of catchment wetness that is used operationally is
the soil moisture deficit (Grindley 1967) and is computed routinely by the United
Kingdom Meteorological Office. Essentially, this is an accounting procedure in
which the soil moisture storage is depleted by actual evaporation, computed as a
function of a Penman estimate of potential evaporation, vegetation type and the
current soil moisture deficit, and added to by rainfall. An approximate technique
for obtaining half-hourly estimates of soil moisture deficit from half-hourly
rainfall estimates and daily Penman evaporation estimates has been developed,
assuming evaporation to be sinusoidally distributed over the hours of daylight.

Mandeville (1975) found empirically that the ratio of effective to measured rainfall,
E y may be represented by an exponential function of the catchment soil moisture

deficit with a 75-mm root constant, Sy5, so that effective rainfall may be obtained
simply from

where ¢ and d are two parameters to be estimated. The complete model, representing
the dynamic response of a catchment to rainfall, may now be formulated as

Hea(cue® 5 ) (5.4)

In the work of Mandeville, n in the discharge-storage relationship of (5.1) was
restricted to 2 to permit an analytic solution of (5.4) and, in part, to reduce

the number of parameters to be estimated. This restriction was found too
restrictive in catchments where observed recessions were more concave than n = 2
could represent. We include it as a parameter but restrict the number of parameters
to be estimated by the extended Kalman filter to four by estimating the pure time
delay, T, prior to estimation of a, b, ¢, and d. We estimate 1 by obtaining the
approximate system impulse response function in the manner described by Box and
Jenkins (1970). Heuristic adjustment of T about this estimate, to ascertain whether
the model's predictive ability may be improved, may be made when applying the

filter algorithm. It 1s worth noting however, that in the practical real-time
situation, no measured rainfall is available for making forecasts for lead times

in excess of the pure time delay. Thus, an optimal lag, in the conventional model
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fitting sense where future rainfalls are assumed known, may not be optimal for real-
time flow forecasting and may be somewhat larger. This observation supports our
belief that the estimation of the pure time delay be considered separately from

that of a, b, ¢, and d.

STOCHASTIC MODEL FORMULATION

We now proceed to take account of the fact that our dynamic model cannot be a
perfect representation of the real situation, but is only an approximation to it.
Let the flow at time t, be qy, and let hx be a function satisfying

dh -dS

k 75
gt - 2 (cue

b
- hk)hk y Y <t <t (5.5)

with

h(t,) = q - (5.6)
Then a stochastic model describing the catchment response is

el = MelEpy) *+ Vi (5.7)

where vi.] 1s a random error term accounting for imperfections in the model
dynamics and noise entering the model. We will assume for tx equally spaced that
vk are independent and identically distributed Gaussian terms with mean 0 and
variance R.

The stochastic dynamic equation (5.7) describes a Markovian nonlinear model. When
the parameters are known this model can be used to give a prediction of the flow at
time ty,) by

= hk(t

9.1 ) (5.8)

k+l

The practical problem 1s one of parameter estimation which, once overcome, will
permit predictions of future flows via solution of the differential equation for
hk(tk ).
+1
SYSTEM DESCRIPTION
The system formulation for this estimation problem is set up as follows. The

state of the system at any time tyx is described by the four parameters a, b, c, and
d, which we will denote by the state vector

x, A (a, by ¢, d)T (5.9)
This state vector is assumed to be normally distributed with expected value x4, and

variance Pg at the initial time t,.

Since the parameters are assumed to be time-invariant, the system transition 1is
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described by

Xerl = %k (5.10)

As part of the system description we assume that river flow is measured without
error. This assumption has been fundamental in developing the system equations as
outlined in this section and is justifiable because observations of streamflow are
spatially integrated measurements of water voiume; they are considerably more noise
free than point-sampled measurements of rainfall volume. Rainfall measurement
errors will add to errors attributed to the inadequacy of the dynamic model itself,
and will be compensated for by the stochastic disturbance term. Filtered estimates
of river flow, and parameter estimates, using an augmented state vector have

proved unrewarding and have supported our belief that measured flow values are

best considered error free.

In order to conform with conventional notation we denote the measured flow at time
Ty by Yi» SO

ykzqk'
Then (5.7) yields the observation equation

Ykl = hk(tk+l) * Vel (5.11)

In order to stress the dependence of hi on the value of the parameters x and on
the initial condition hk(tk) = yx = gk, we shall replace it by h(t, x, yk). The
observation equation is then

= h( (5.12)

Yiel Y1 kel Yk F Vsl

with x  assumed independent of {vk}.

This approach of defining the state vector in terms of the model parameters and
the quantity (model output) to be predicted as the observation is not new. Mayne
(1963), Graupe (1972), and Sz8llYsi-Nagy (1975) have adopted it in parameter
estimation, but only for linear models.

EXTENDED KALMAN FILTER SOLUTION

An approximate solution to this stochastic nonlinear estimation and prediction
problem is provided by the extended Kalman filter algorithm. In the present
context where nonlinearities occur only in the observation equation, the solution
is derived easily from the Kalman filter algorithm for linear systems (Kalman 1960,
Kalman and Bucy 1961) when the measurement equation. has been linearized about the
current estimate of x as a first order Taylor series. For further details the
reader is referred to Jazwinski (1970).

We denote lek and 9k+l]k as the expected value of xk and xk,] respectively, given
observations up to and including tk, with Qolo 4 x,. Similarly Pk|k and Py, |k
denote the conditlional (error) covariance matrix o? (xk = fk|k) and (xk4+1 - %k+l k)
respectively, conditional on observations up to and including ti, and with P°|° i
Po. We also denote 9k+l|k and Ykl |k as the expected value of yy,; and the -



-8 7-

conditional (residual) variance of (yi.) - ¥k.1|k), respectively, conditional on
observations up to and including tg.

The extended Kalman filter is an algorithm that gives approximate values of
9k|k’ Pk [k 9k+1|k and Yk+1|k. For our nonlinear continuous-discrete stochastic
dynamic system described by the equations (5.10) and (5.12) the extended Kalman
filter solution is as follows.

At prediction:

State £k+1|k = Rk|k (5.13)
Output Dearlk = P Crarr R e Vi (5.14)
Error covariance P =P (5.15)
matrix k+llk = "k|k
At an observation:

State Bert ko1 = Banlk * Kol Dier = Fian i (5.16)
Error covari- P = (I - K M, .) P (5.17)
ance matrix k+1|k+1 k+l "k+l’ Tk+llk

T -1
Kalman gain Kk+l = Pk+l|k Mk+l Yk+1|k (5.18)

T

Residual Y =M P M + R (5.19)
varlance k+l|k = "k+l "k+l|k "k+l

The row vector, M, here of dimension four, is that of the linearized observation
equation and contains the first partial derivatives of h with respect to the four
parameters. Element i of M at tk+1 is

") h(ty 10 B,k Vi)
k+l’1L = jxi

1>

(5.20)

We consider, in addition, an extension of the Kalman filter where system non-
linearities are approximated to include second-order terms. The filter has been
derived and called the modified Gaussian second-order filter by Jazwinski (1970),
and was also developed independently by Athans et al. (1968). It is identical to
the extended Kalman filter algorithm given above, except in the addition of second
order terms to the predicted output and residual variance:

Predicted output 9k+1|k = h (tk+1’ gk+1|k’ yk) + % P3%h (5.21)

Residual variance M + R + % 32hP2%32%h (5.22)

T
Vel [k = Mea1 Prat|k Meel

If we let element (k,}) of the (4 x 4) matrix of second partial derivatives be

2
*h(ty, 1s faa ke Vi)

Bxiaxj

(h ) A

xx'1} = (5.23)
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then the two scalar quantities P32h and 32hP23%h may be defined as

Pa%h A tr(P ) (5.24)

kellk Mxx

92hP232h A tr(P (5.25)

2
k+1|k hyex)

CALCULATION OF FILTER COMPONENTS

The two filters we propose to employ, as an approximate solution to our parameter
estimation problem, have now been defined in terms of our particular stochastic
system formulation. We now must evaluate the predicted flow h(tk.1, Rk+1|ks YKk)»
the vector of first partial derivatives of this function with respect to the
parameters, and the matrix formed by its second partial derivatives, hyx. To do
this we use the conceptual rainfall-runoff model, that is;

B - tixh) (5.26)
where
f(x,h) = a(cue 9575 _h)n° (5.27)
with initial condition
h(0,x) = q (5.28)

The above set of equations are solved to obtain the value h = h(t,x). This may be
done numerically, using the Runge-Kutta method for example, or an analytical
solution can be derived (Ding 1967) for the case of no forcing function, i.e., no
rain, so that

b .1
h=(abt + q°) " b (5.29)

To form a general expression for the row vector of first partial derivatives, M, we
differentiate

h dhl
t= fq f(h,,x
to obtain the result
3h L t(h,x) ;o [ 1 } dh (5.30)
Bxi q Bxi f(hl,xi 1

Differentiating this result leads to the following general expression for the
matrix of second partial derivatives

f
2 X X 2
32h af 1 3h 3h sh | _?1 sh o, _2 dh, (5.31)

i 1
— e — } — ——
axiaxj oh f axy axj f xXq q axiaxj f(hl,x)
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where f(h,x) is now replaced by f for brevity, and fx ’ fx denote the first

partial derivatives with respect to xj, Xj.

i
Applying these two general expressions

to our particular function f(h,x) given by (5.27), we obtain the elements of M and

hxx as glven below:

3h _t

a “al

h ¢ fh i N

ab q fihl,x) 1
~-dSyg b

sh h aue h1

dh

fj/ —
ac q [f(hl,x)}z 1

sh 3h
30 =" 575°¢3%¢

%h _t? of .
3Z Taf §h

@

)
=
et

af 3h

9a% - a (1N h+apap)

3%h_ _ t (aue9575 pb , 3f 3h
3330 = a \aue h™ + 3R 3¢
3%h 32h

3a3d - = 575 © 3330

h (1n h;)?
32h _ 3f 1 [an|?2 3h 1
7 "o T [55] t2p Inh-f fq R, M

3%h  3f 1 dh dh  aue 9575  3n

Bhf3cod ‘'~ f 3

3%h 3%h
3b3d = ~ 575 © 3pac

3%h _ af 1 [an]? Za”e-ds75h?
T TWHhT EﬁJ * T

3h h aue~95751n hl
+Inhe—-ff ——— = dh

g Fthyo]r !

h (aue'ds75h’i)2
— - 2f f —————dh

q [rn,0]® F




32h 2

302 = " 575 © 353d

af b b
where 3/ T ah™ + R f

Note that for the special case of no forc1n§ function, i e., no rain, all partial

dh 3dh 3 3“h
derivatives are zero except for 33’ 3b * Ba ' 3335 (Bbaa)’ and 357 and the

following simplifications hold

B 4l b d]- b

z b
1 [3h gh h l{h 2 2 2 2
F[E] ZE“‘Q'B[(E) Ing«g gz - Unh+p+pe)

Having first found the solution for h, the evaluation of the expressions for the

first and second partial derivatives given above is a relatively straightforward

task. Note also that numerical calculation of the five integrals is not required
for the case of no rain.

n

|
[«
=2
i
Q
ol

REAL-TIME APPLICATION

In the real-time situation when new measurements of streamflow may be received
every half hour, the error covariance P and consequently the Kalman gain will soon
become very small. Information contained in new measurements will be ignored, and
the parameter state vector x will stabilize. This may cause the filter estimates
of x and predictions of y to diverge from the reality of the present. A means is
required of limiting the memory of the filter so our model remains responsive to
the changing dynamic system.

A convenient method is the exponentially age-weighted filter of Fagin (1964), in
which observations are weighted exponentially into the past. For the extended
Kalman filter described by equations (5.13) through (5.19), the following two
modifications are required

. _ T -(t, .-t )/T
Residual variance Yk+l|k = Mk+l Pk+l|k Mk+l +e " k+l "k R (5.32)
Error covariance matrix P et k+l™ k)/T [I - K M P (5.33)
k+l|k+l = k+1 "k+1] "k+l|k :

To put greater weight on more recent observations, one simply decreases the value
of T; Pk+1|k+] increases, Yk+1|k decreases, and consequently the Kalman gain
increases. Note that by introducing a fading memory filter we have relaxed the
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assumption of parametric time-invariance made in the system formulation. By
choosing a suitable T, the model can adapt to system nonstationarity as a result of
seasonal effects on the catchment response, for example.

VALIDATION OF FILTER

A preliminary application of the model to an isolated storm on the 18.6 km? River
Ray catchment at Grendon Underwood has been encouraging. Using as initilal parameter
values those derived from a Rosenbrock optimization (1960), a 64 percent reduction
in the variance of the one-step-ahead prediction error has been obtained relative

to the fixed parameter model prediction. The residual errors were also unbiased.
However, this comparison 1s hardly a fair one since the Rosenbrock derived
parameters were not optimized to minimize the one-step-ahead predictlion error.
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6 Estimation and Identification Problems
in Wastewater Treatment

Gustaf Olsson

Concern about environmental quality has contributed to the increasing interest in
and strict regulation of wastewater treatment processes. The investment costs of
wastewater collection and treatment systems are enormous, and it is therefore
desirable to use the system efficiently. The operational costs have also risen
rapidly as a result of the increasing cost of power, chemicals, and labor.

It should be emphasized that the wastewater treatment system should be considered
as part of a larger water quality system; the sewer system is connected to the
treatment plant and further to the receiving water. There is a trade-off between
the operation of the collection system and the treatment plant.

This paper will present unsolved problems as well as some recent advances in
modeling, identification, and estimation of treatment systems. Some developments
are illustrated by case studies at a full-scale activated sludge plant.

SEWER AND PLANT INFLUENT FLOW RATE

A sewer network should be operated in such a way that flow rate and water quality
changes can be predicted and the influent flow rate to the plant controlled within
certain limits. Most of the disturbances in a wastewater treatment plant are
related to changes in the influent flow rate, composition, or concentration. The
flow rate of the feed stream can vary significantly, compared with many other
aspects of process control. In a small plant with a concentrated sewer network,
the ratio of peak to minimum flow rate can be as high as ten to one. In a larger
plant with a distributed network of sewers, this ratio is lower, but it is still
large enough to create significant flow rate disturbances in the operation. For
these reasons, linear dynamic models are seldom adequate.

Flow variations can appear on vastly different time scales. A rainstorm or melting
snow can create a shock load for a plant within hours. These disturbances must be
controlled quite differently from daily or seasonal flow variations.

Measurements

It is not a trivial task to measure flow rate with precision and reliability. In

particular, storm water flow rate measurements pose special problems. An acceptable
stormwater in-sewer flowmeter must overcome many obstacles, like high transient
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flows, large operating ranges, high levels of suspended solids, and large pleces
of debris. Better flowmeters need to be developed (see Molvar, 1975).

Some contributions from control theory can, however, improve the situation. The
possibllities of systematically using filter theory to achleve better flow rate
measurements have not been fully explored. For example, flow rates are often
measured by taking level measurements in a sewer tunnel. Since the variations in
level may be quite small, but noisy, the resulting flow rate value is unreliable
if the signals are not filtered properly.

Predictions
Flow rate prediction in a sewer network is important for two reasons:

- The flow into the sewer network must be predicted in order to make the
proper routing of flows across the network.

- The flow from the sewer network must be predicted with a lead time for
adequate control of the flow in the wastewater treatment plant.

The problem of sewer network modeling and control is similar to that of a river
system for hydroelectric power generation. A sewer network has a large number of
input flow sources and is generally distributed over a large area. The flows are
collected into a few or maybe only one large trunk sewer that enters the treatment
plant,

Rainstorms, melting snow, and infiltration can create major changes in the sewer
network flow rate. Also, in a large system the local variations in rainfall must
be taken into account. In order to predict the sewer inflow, several models have
been developed during the last few years. Most of these models are extremely
complex and mostly deterministic, for example Chen and Shubinski (1971), Papadakis
and Preul (1973), and Offner (1973). Applications are found for the cities of
Seattle (Lelser 1974) and Cleveland (Anderson and Pew 1974 and Pew et al. 1973) in
the United States.

It is not self-evident that the urban runoff or stormwater models should be as
complex as they are in the references cited above. The modeling of the stochastic
nature of the systems has not been fully explored. Still, the structure of the
deterministic part of the model has to be retained. A good example of a mixture
of deterministic and stochastic elements in such a model for a river system is
found in Lorent and Gevers (1976).

The prediction of rainfall or urban runoff into a sewer system has to be improved.
There is an Increasing interest in radar measurements to predict the direction and
the intensity of rainfall (see Chapter 16). Typically, short-term predictions

(1-2 hours) are desirable for sewer operation. Long term predictions are desirable
for operation of a treatment plant. If the influent flow could be predicted 8-10
hours ahead, then the flows could be rerouted within the plant. In an activated
sludge plant, step-feed control, discussed in a later section, could be used.

Control

Different wastewater collection systems operate differently. Most of them are not
operated or controlled at all, except at some local pump control stations.

In an advanced sewer system there are several objectives of control that are mainly
related to water flow:

- The storage capacity of trunk and interceptor lines within the network should
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be utilized so that overflows caused by storm inflow are reduced or eliminated.

- The dally flow should be regulated for the best operation of the treatment
plant.

Other objectives have to do with water quality:

- Overflow points should be selected to cause the least harm to receiving
waters, when overflows cannot be avoided.

- Early warning of changes in water quality or toxic materials should be given
to the plant operator.

The water quality aspects are further discussed in the next section.

In order to prepare a treatment plant for flow disturbances, different control
actions should be taken depending on the magnitude of the disturbance, the length
of it, and the preparation time.

If a shock load caused by a rainstorm is entering an actlvated sludge plant, three
control actions are possible. If there is an equalization tank, it should be used
even if the disturbance could be predicted several hours in advance. If there is
no equalizatlon tank (which is an expensive device), then some plants are equipped
with step-feed control facilities. This control, however, demands that the
disturbance is known well ahead (longer than the hold-up time of the process) so
that the process flows can be redirected. The step-feed control can damp both the
detrimental effects of an increasing flow rate and concentration load to the plant.
If, however, only short-term predictions of the flow rate are obtained, very little
can be done. The flow rate must be accepted and the increasing load to the sedi-
mentation tanks will create severe increases in the effluent suspended solids
concentrations.

Figure 6.1 gives an example of how the secondary clarifier effluent concentration
of a full-scale plant will change owing to disturbances in the influent water flow
rate.

PLANT INFLUENT WATER QUALITY

Wastewater 1s by no means a well-defined liquid. There are many contaminants, so
many, in fact, whose concentrations are low, that only a few substances exist at
a measurable level.

If a significant part of the influent water contains industrial effluents, then
the composition and concentration can change rapidly. Toxic substances may appear
without any warning. Many heavy metals or other toxic substances have concentra-
tions so low that it is neither technically nor economically feasible to measure
them continuously. Their effect is not observed until the water quality deterior-
ates noticeably.

It 1s not possible to measure all the different contaminants in the wastewater.
Therefore, the effect of different contaminants on the ‘treatment operation and on
the recelving water must be evaluated.

Most of the water quality measurements are performed by analytical instruments.
They can be divided into two main groups:

- In-stream sensors or electrodes
- Automated wet chemistry, in which a sample of the flow stream is taken
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Fig. 6.1 Input and output signals of a water flow experiment in a
wastewater treatment plant. The water flow rate (A) has
been manipulated, causing the effluent suspended solids
(SS) concentration to vary (B). The mixed liquor
suspended solids (MLSS) concentration (C) is also
affected by the water flow change.

It is clear that the cost of the instruments must be taken into account, and the
contaminant must be worth measuring., Moreover, particularly for autcmated wet
chemistry, each measurement will cost money. The sample is subjected to an auto-
mated laboratory procedure requiring reagents. The problem of allocating resources
for measurement and control has been considered by several authors. In most cases
it is assumed that there is no measurement time lag; see Cooper and Nahi (1971),
Kramer and Athans (1972), Aoki and L1 (1969) and Meier et al. (1967). The measure-
ment lag usually cannot be overlooked. Even if the automatic laboratory procedure
is fast, a certain amount of time will elapse before the measured value is recorded.

Olgac et al. (1976) have considered the problem of river re-aeration. Biological
oxygen demand (BOD) measurements are assumed to be costly and time consuming. The
question 1s therefore whether resources should be expended on the aerator or on
B0D measurements in order to achleve the greatest improvement of the water quality.

Early detection of toxlic materials is crucial. The most reliable detection method
is to take measurements at each potential influent point in the sewer network; see
Andrews and Olsson (1976) for more details. This 1is, however, not always
economically feasible. Because of the dilution of the contaminants in a combined
sewer tunnel, measurement 1s a great problem in itself, as mentloned before.

The sampling rate for measurement of toxic materials is particularly interesting.
There 1s always a trade-off between the measurement costs and the cost of contam-
inants in the process and ultimately in the receiving water. Problems falling in



-97-

this category have been investigated by Brewer and Moore (1974) and Pimentel (1975).
Therefore, the total performance index should take both these costs into considera-
tion. Such an analysis has been treated extensively in theory; see, e.g., Kaplan
and Haimes (1975), but hardly any of these theories have been applied to treatment
systems.

The concentration changes of contaminants in the influent stream can have quite
different time behaviors. There are rapid shock disturbances as well as daily,
weekly, and seasonal variations. In order to achieve a suitable sampling rate,

the stochastic nature of the concentration changes must be taken into consideration,
and deterministic models are by no means sufficient. Again, the necessary lead
time from the warning to the process depends upon the character of the contaminant
as well as the magnitude of the concentration.

Different control actions in a wastewater treatment plant have quite different

time responses as discussed in the next section. Depending on which control action
is necessary for a certain load disturbance (expressed in terms of influent flow
rate and concentration) different lead times are necessary. Dissolved oxygen (DO)
control needs a lead time of just a few minutes, while step-feed control needs a
lead time of several hours. To change the total mass of organisms in order to meet
higher loads takes several days.

BIOLOGICAL PROCESS MODELING

Dynamic behavior of biological sewage treatment processes is still not completely
understood. It is not unusual to find significant variations in process efficiency
in a plant or among different plants. There are of course several reasons for

this, such as insufficient knowledge of the basic phenomena, inadequate instrumenta-
tion, lack of competence of the personnel, and significant variations in the
process dynamics.

During the last few years, extensive work has been done to develop dynamic models
of biological treatment processes, in particular the activated sludge process.
This is by far the most important process for wastewater treatment in large
systems. It has several qualities that are common to all biological systems. It
is also a challenging process for control engineers.

The Activated Sludge Process

In the activated sludge process, microorganisms react with organic pollutants in
the wastewater and with oxygen dissolved in the water to produce more cell mass,
carbon dioxide, and water. The aerobic environment is achieved by the use of
diffused air, mechanical aeration, or even pure oxygen. In the last case, the
tanks are covered. The effluent of the reactor flows to a sedimentation basin,
where the activated sludge is separated from the liquid phase (Fig. 6.2). A
portion of the concentrated sludge is recycled in order to maintain the mass of
organisms in the system and a reasonable food-to-mass ratio. Part of the settled
sludge is thrown away. The process effluent consists of the clarified overflow
from the separator.

Because of the recycling of sludge, the aerator is inseparable from the separator.
The recycling both increases the concentration of microorganisms in the aerator
and maintains the organisms in a condition such that they will readily flocculate.
However, recycling also results in difficulties in understanding and modeling the
process since it is a feedback loop and results in a strong interaction between
the aerator and the separator.

Sophisticated models of the biologlcal part of the process exist. Reviews can be



-98~-

Q= !

a;Q

aerator separator

R return _sludge

Fig. 6.2 The activated sludge process.

found in Andrews (1974), Buhr et al. (1975) and Olsson (1976). The separator
models have not yet attained the same degree of sophistication and lack some
fundamental properties due to the coupling forces between the settling particles or
flocs in the thickener. Further details can be found in Keinath (1975), Fitch
(1975), and Stenstrom (1975).

Generally, the activated sludge models are very complex and describe the dynamics

in a deterministic way from basic physical laws, and essentially use mass balances
for each component. The reactor design can be a mix of several subreactors in
series, or a long channel aerator. Consequently, the hydraulics have to be modeled
to fit the aerator design. The models still have not been verified in pilot plant
or full-scale operation. At best, the available models are semi-quantitative, 1.e.,
their results have the right order of magnitude.

In a structured model it is assumed that the substrate (or pollutant) is degraded
in the following steps:

- The substrate penetrates the cell membrane by a purely physicochemical
process. The removed substrate is thus "stored" in the floc phase. This
procedure can take place in 15 to 30 min if the cells are in the right
condition.

- The pollutants stored in the sludge (cells) are metabolized by the organisms
over a period of days.

- The organisms are degraded to inert mass through endogeneous respiration and
decay. Typical duration for this process is several days.

Model Structure and Complexity

A mathematical model retains only the essential elements of a system to allow
prediction of the behavior of the system for a particular purpose. How complex a
model is depends on its purpose. Model complexity is discussed here by using the
characteristics of a model as a framework:

- State variables

- Time scale

Nonlinearitles

Spatlial distribution
- Adaptivity
State vector size. The state vector of a biological system should contain both

pollutant and organism concentrations. It is quite clear that different organisms
feed on different pollutants. Moreover, only certain parts of the substrate are
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biodegradable. The representation of the substrate must be complex enough to
reflect this fact. The living organisms must generally be represented by two or
more state variables. Sometimes there are new species, such as filamentous
organisms, dispersed bacteria, or ciliated Protozoa. All of them have different
settling properties. Even if their synthesis rates are weighted together, in a
model their relative concentrations will vary owing to the coupling between the
biological reactor and the separator.

The size of the state vector may vary with time. Organisms may be killed by toxic
pollutants or certain species or organisms may overtake other types of organisms.
This state vector change is generally extremely difficult to predict and is
intimately related to the feed water composition.

Still another problem is connected to the changes in the feed water composition.
Not only the concentration but also the physiological state of the microorganisms
in the process may be time varying. Their response to changes may reflect past
conditions as well as the present one. In other words, the state vector of the
system must include not only present organism concentrations but also variables
that represent how these concentrations have been reached - the history of the
organisms. This fact has been recognised for several years by biochemists, e.g.,
Powell (1967).

In some control schemes a detailed process description is not necessary. For DO
control or mixed liquor suspended solids control, much simpler models will suffice.
However, control of bulking or rising sludge in the separator is more complex.

When the settling rate is poor, the sludge is said to be bulking. One important
cause of bulking is a change in sludge composition, i.e., new organisms, such as
filamentous organisms, with poor settling properties may have been growing too
much. This in turn depends on the feed composition, DO concentration, and other
physical and chemical conditions.

Sludge may have good settling properties, but may occasionally rise to the surface
after a settling period. This 1s sometimes caused by denitrification, in which
nitrates and nitrites are converted into nitrogen gas. If enough gas is trapped
in the sludge mass, the sludge rises to the surface.

Nitrification in itself is a desirable process, because it reduces the nitrogen
content of the pollutant. It is made possible by the interaction of Nitrosomonas
and Nitrobacter organisms. The nitrification process occurs only for long aerator
retention times. If, however, nitrification is desirable, then the process must
be modified so that denitrification can occur without causing rising sludge.

Time response. There is an immense difference between the smallest and largest
operating times for the units of a biological system. The response times for
pumps and blower systems are less than a minute, and chemical precipitation is
also very fast. Oxygen dissolves in about 15 minutes. Typical flow response
times for an activated sludge system are several hours. The rapid absorption of
substrate by organisms takes from 15 to 30 min, but metabolism takes days.
Endogeneous respiration is even slower; anaerobic decomposition of sludge takes
almost a month. On top of this, there may be strong seasonal variations. The
organisms are temperature sensitive, and therefore the control problem in many
countries is not the same in summer and winter.

Nonlinearities. Nonlinear characteristics of the dynamics appear frequently.
Because of the magnitude of disturbances, linear models are seldom adequate. In
biological reactions, the rate coefficient is a nonlinear function of the substrate
concentration. The separator is also a typical nonlinear process. The nonlinear
behavior of the secondary clarifier is illustrated in the effluent concentration
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curve B in Fig. 6.1. Here, the effluent concentration does not decrease for the
negative step change of the flow rate, but increases significantly for the positive
step input,

Bilinear approximation of biological reactors can easily be derived. Because of
the recirculation of activated sludge the product of the return sludge flow rate
and the concentration of organisms appears in the state equation. In the DO
balance equation, the oxygen transfer mechanism also behaves bilinearly. It can

be described by

klu = u(cs—c)

where

¢ = DO concentration

Cg = saturation value of DO concentration
klu = overall oxygen transfer coefficient
u = air flow from compressors

If it is assumed, as here, that the oxygen transfer coefficient is proportional to
the air flow, then the bilinear character is obvious.

The analysis of a bilinear environmental system with respect to state observation
has been made by Williamson (1975). His approach may be relevant for a laboratory
process but is generally oversimplified for most full-scale plants.

Spatial distribution. The concentrations of substrate, sludge, and dissolved
oxygen are iIn general space dependent in the biological reactor. In an activated
sludge system with a dispersed plug flow reactor, the profile of substrate or
dissolved oxygen varies significantly along the aerator. Fig. 6.3 is a typical
example. Such a profile allows better control than conventional methods. This is
further analyzed in Olsson and Andrews (1976).
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Fig. 6.3 Typical profile of dissolved oxygen in the
activated sludge process of the Kadppala
wastewater treatment plant, Stockholm.
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Because of the spatial concentration differences, the measurement locations are
crucial. Analysis of sensor location has been made by Bar-Shalom and Cohen (1976)
for an environmental surveillance system. For an activated sludge system, some
preliminary analysis of instrument location has been made by Olsson (1975).

The concentration of sludge in the thickening part of the separator is space
dependent. It is crucial to know this spatial distribution if the buffer capacity
of the return sludge has to be calculated. This buffer capacity determines and
limits the return flow of the sludge.

Adaptivity. A biological system is generally much more complex than other physio-
chemical systems because of its adaptive properties. It can adjust to certain
disturbances, and its dynamic properties may change on the order of days. A large
amount of industrial pollutant quickly entering a plant may kill some organisms.
If the same amount of pollutant enters the plant gradually the organisms may adapt
and use the substrate for their metabolism.

IDENTIFICATION OF BIOLOGICAL WASTEWATER PROCESSES

The field of identification and parameter estimation has developed rapidly over
the past decade. Four specialized symposia have been arranged by the International
Federation of Automatic Control (IFAC) since 1967 and numerous papers on methods
and applications have been published. The review and survey paper by Astr8m and
Eykhoff (1971) and the textbook by Eykhoff (1974) give a comprehensive description
of the state of the art. The applicability of parameter identification to water
quality systems has been demonstrated in several publications. Recent reviews

and surveys are given in Beck (1975), Olsson (1976), and Sawaragi and Ikeda (1976).
Here, some general problems of identification in biological wastewater treatment
systems will be given and then some recent results of activated sludge system
identification will be presented.

Special Problems in Biological Systems

If a wastewater treatment plant is compared with other physiochemical processes
there are some major differences in the applicability of identification techniques.
In a wastewater treatment plant:

- The influent flow rate, composition, or concentration can seldom or never be
manipulated. |

- Accurate measurement is difficult.
- The underlying phenomena are not well understood.

Unfortunately, because of these restrictions, often only natural variations -
particularly of concentration or composition - can be observed. General and
artificial disturbances are most often not noticeable, This means that normal
operational records tend to exhibit just one particular mode of process behavior.
There 1s a low signal-to-noise ratio. Routine measurement sampling rates may
obscure the most important time constants for the system. It is, however, easier
to perturb a wastewater treatment system than a river system, as will be shown

in the next section.

Data collection is an awkward problem. It is labor intensive, requiring manual
or automatic sampling followed by laboratory analysis. Because of the spatial
distributions, a large amount of instrument measurement is needed to get repre-
sentative data. Still - because of poor initial knowledge of the model - the
data acquisition may be inadequate.
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DO Identification - A case study

The dynamics of DO in an activated sludge plant have been studied in a full-scale
wastewater treatment plant at K¥ppala in Stockholm, Sweden. The plant serves
300,000-400,000 people in the northern suburbs of Stockholm. It was completed in
1969. The average dry weather flow rate is about 1.3 m®/sec. The details of the
results are presented in Olsson and Hansson (1976a, 1976b).

Dissolved oxygen dynamics are interesting from an economic viewpoint and because
of the relation between DO and the biological activity of the organisms. The DO
dynamics contain four basic terms:

- The hydraulic dispersion and transportation of DO in the reactor
- The transfer mechanism by which a free gas goes into solution

- The oxygen demand of cell metabolism

- The oxygen uptake due to endogenous respiration

Three of these phenomena have been studied in the identification stage. The
hydraulic properties were identified by manipulating the influent flow stream or
the sludge recycling flow rate. The oxygen transfer could be studied by artifici-
ally disturbing the air flow from the compressors into the reactor tank. The
oxygeh demand of cell metabolism could be manipulated by dilution of the mixed
liquor. Then the suspended solids concentration and consequently the organism
concentration was disturbed. This manipulation, however, was difficult to make
and the input variation was too limited to give accurate results.

The fact that the time scales are significantly different for the different
phenomena can be systematically used in the design of the experiment. The oxygen
transfer mechanism has a response time on the order of 15 min; therefore, the
metabolism or endogeneous respiration rate can be neglected during an air flow
experiment. On the other hand, oxygen dissolves instantaneously in a flow rate
experiment.

In order to estimate the model parameters the maximum likelihood (ML) identification
technique has been used. By this technique, both deterministic and stochastic

parts of the models have been identified. This gives not only a meaningful

physical interpretation of the parameters but also a measure of the model accuracy
as well as the parameter accuracy.

In the model there are several time-varying parameters, and on-line parameter
identification gives a possibility to track them. As an example, it is crucial to
update the overall oxygen transfer coefficient - probably on a daily basis - if a
good estimate of the biological activity or the oxygen utilization rate is to be
obtained.

Due to the measurement quality and the number of sensors, the model complexity is
in general quite low. As already mentioned, it is extremely difficult to verify
highly structured models. Such verification requires a lot of data; more
characteristics have to be measured in more places. With the available low-order
models, only relatively simple control laws could be derived.

A couple of examples may illustrate the results. Figures 6.4 and 6.5 show the
results of an experiment in which the influent flow rate was manipulated according
to Fig. 6.4. The flow rate changes caused the mixed liguor suspended solids
concentration to vary (Fig. 6.4), and these together affected the DO concentration.
The identified model output (the deterministic part) is compared with the
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Fig. 6.4 Disturbance signals of a hydraulic experiment in
the Kdppala wastewater treatment plant. The
water flow rate has been manipulated, causing
the mixed liquor suspended solids concentration
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Fig. 6.5 Dissolved oxygen levels in an experiment in the

Kdppala wastewater treatment plant. The
experimental DO output is compared with a first-
order model output. The water flow rate and the

MLSS concentration (see Fig. 6.4) are the inputs.
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experimental DO in Fig. 6.5. The hydraulic dispersion in the aerator can be
determined from a series of such experiments.

The identification of secondary thickener dynamics can illustrate another
advantage of the ML identification procedures. The underflow concentration
changes may be caused by several input variables, influent flow rate, mixed liquor
suspended solids concentration of the aerator, as well as underflow rate. By
systematic tests of models of different complexity with different inputs, cause-
effect relationships can be established and verified. A systematic test of
parametric models with different inputs gives more accurate and reliable results
than simple correlation analysis. In particular, it was found in the K#ppala
experiments that the influence of the influent water flow rate on the underflow
concentration was negligible. The experimental result is illustrated by Fig. 6.6.

UNDERFLOW CONC {A) RETURN FLOW RATE (D)
500~ (g/m7) (m3/&)

250+
-0.01

--0.01
—250-]

-500 1 —_— - . . .
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Fig. 6.6 Input and output signals of a hydraulic
experiment for the thickener identification.
The return sludge flow rate (D) has been
manipulated. The underflow concentration level (A)
is compared with two model outputs: (B) flow
rate used as input; (C) flow rate and mixed
liquor suspended solids concentration as input.

MEASUREMENT AND ESTIMATION

As already mentioned, the instrumentation problems in wastewater treatment can be
formidable. Therefore, the possibilities for on-line parameter and state
estimation should be thoroughly explored in order to overcome some of the sensor
limitations. The papers by Brewer and Moore (1974) and Pimentel (1975) emphasize
this point for more general environmental systems.

No sensor can replace the judgement of a good human operator and his ability for
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pattern recognition. It would be very difficult to detect settling problems,

rising or bulking sludge, the presence of certain organism species, or certain odors
with sensors. It is probably not even desirable to replace the human operator in
all his functions. Instead, the dynamic models should be constructed in such a way
that inputs from the operator could be inserted easily in a continuous operation.

The organic activity in a biological wastewater treatment plant is crucial for the
control and operation. It is a good example to show how estimation can complement
measurements. There has been considerable work devoted to establishing measurement
techniques of ATP and DNA concentrations as measures of organic activity. There
is, however, considerable disagreement in the literature over their value as a
measure of sludge activity. But there seems to be almost universal agreement that
the specific oxygen utilization rate (SCOUR) would be an indicator of biological
activity in aerobic systems. The SCOUR parameter has been studied for use in
control operations by Andrews et al. (1974). It is intimately related to the
growth rate of the organisms. The SCOUR parameter can be related to the DO
concentration, and estimation theory allows one to get the biological activity from
the relatively easy DO measurements.

Estimation procedure can also be used in a more systematic way in toxic pollutant
warning systems. Toxic contaminants could be noticed in the early part of the
process.

For the systems analyst, another problem should be emphasized. There have been
too few sensor requirement studies in parallel with modeling, simulation, and
control system design investigations. There is too little knowledge about
instrumentation and the measurements really needed in order to control a plant.

CONCLUSIONS

Dynamic modeling, real-time prediction, estimation, and control are still fairly
new concepts for many sanitary engineers. Interest in newly available tools is,
however, rapidly increasing.

The areas of prediction and estimation are probably the most profitable areas for
the application of control theory in wastewater treatment systems. Instrumentation
1s a serious problem and will probably be for a long time. State variable and
parameter estimation can help to overcome this dilemma. The stochastic nature of
sewer network flow rates and water quality variables should complement deterministic
modeling.
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7 Application of Kalman Filtering to Groundwater
Basin Modeling and Prediction

Dennis B. McLaughlin

Statistical estimation and filtering techniques have received much attention from
water resource engineers. Interest has been especially keen among surface water
hydrologists, undoubtedly in part because Kalman filtering concepts provide an
intuitively appealing way to relate time series analysis to deterministic modeling.
The spatially distributed nature of environmental systems typically leads to large
numbers of state varliables regardless of the discretization scheme used. This
high dimensionality imposes severe computational burdens, particularly when the
system of interest is nonlinear. Another problem with environmental filtering
applications 1s the limited availability of information about the statistics of
important nolse processes (measurement and process nolse). The various adaptive
techniques that have been developed to deal with this problem usually increase the
already large computational burden, and are not always effective. Finally,
measurements of environmental processes are often very limited. It seems to be a
general rule, in fact, that in environmental applications there is never enough
data of the right kind.

Even with all these difficulties, it is becoming apparent that statistical
estimation techniques can make important contributions to environmental forecasting
if the traditional approach to filtering is appropriately modified. The modifica-
tions required are reviewed in a general way in this paper. Most of the comments
and conclusions presented can be applied as well to hydrology, water quality
managements, oceanography, and meteorology.

This paper focuses on some of the implementation problems of state estimation
techniques in hydrology - high dimensionality, uncertain statistics, and limited
data. These problems will be discussed using the results of a case study of a
groundwater forecasting problem. Some possible solutions to these problems are
summarized and a few recommendations for future research are suggested.

The research described in this paper was supported in part by funds provided by the
United States Department of Interior as authorized under the Water Resources Research
Act of 1964, Public Law 88-379, as amended.
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THE GROUNDWATER BASIN FILTERING PROBLEM

The Groundwater Flow Model

A wide variety of groundwater flow models have been proposed in the literature and
applied to problems. It is convenient to consider a relatively simple model of
unsteady saturated flow in a nonuniform, isotropic medium (the terms used here are
defined by Greenkorn and Kessler 1969). If the aquifer being modeled is confined,
but its depth is large compared with variations in the water surface elevation,
the following equations may be used to describe the flow (Eagleson 1970):

dh

Continuity -V q=53+ EQ 8(xx,) (7.1)
s

Momentum (Darcy's law) q=KVh (7.2)

where

h = hydraulic head (meters),
g = apparent fluid velocity vector (meters per second),
t = time (seconds),

S = specific storage coefficient dependent on the compressibility and
porosity of the medium and the compressibility and specific gravity
of the water (liters per meter),

K = soil permeability or conductivity coefficient (meters per second),

QSG(x-xs) = known source flow of magnitude Qs at vector position Xg e

Since the medium is nonuniform, both the specific storage and permeability
coefficient depend on position.

The continuity and momentum equations may be combined to give the usual partial
differential equation for hydraulic head:

s -2—2 =V - (KVh) + 5 0, (x-xy) (7.3)

The equation may be adapted to one-, two-, or three-dimensional flow, provided
that all boundary conditions and spatial averaging operations are properly
accounted for,

Equation (7.3) must be made discrete in both time and space in order to be solved
in most practical applications. Many different techniques have been proposed and,
to some extent, the choice of a technique depends on the nature of the problem
being considered. Some common spatial procedures (link-node, finite difference,
and finite element) are illustrated for two dimensions in Fig. 7.1. All of these
procedures transform (7.3) into a set of ordinary differential equations whose
state variables are the hydraulic heads at discrete node points. The resulting
equation set can be written in matrix form as:
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Fig. 7.1 Common spatial techniques for making
equations discrete.

A(S) g-‘té +B(K)y + Cu = 0

where

y = vector of simulated hydraulic heads at Ny node points,

c
H

vector of known source terms at Nu node points (Nu g Ny),
A(S) = Ny X Ny "mass" matrix,

B(K)

Ny X Ny "stiffness" matrix,

(7.4)
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C = Ny X Nu input matrix,
S = vector of specific storage coefficients at Ns node points (Ns £ Ny), and
K =

vector of permeability coefficients at Nk node points (Nk < Ny)'

Note that since the model coefficients and inputs vary with location they must also
be made discrete, although not necessarily as finely discrete as the hydraulic head.
In general, different levels of detall will be required for S, K, and u, as reflected
in the differing numbers of discrete nodal values used (Ng, Nk, and Ny). The
structures of the matrices A(S), B(K), and C depend on the properties of the
procedure selected.

Equation (7.4) may be solved by the usual time integration techniques (explicit,
implicit, or mixed explicit-implicit schemes, again depending on the particular
problem being considered). The resulting vector difference equation may be written
in familiar transition matrix format:

Y = 0(5, K) vy 4+ Ty (7.5)

where

$(S,K) = Ny X Ny state transition matrix related to A(S) and B(K), and

an input vector related to A(S), B(K), C and values of u(t) for t St

H

Tk-1 k*
The subscripts k-1 and k refer to discrete times. As might be expected, both
¢(S,K) and ri.) depend on the properties of the time integration procedure selected.

The groundwater simulation model given in (7.5) has some important properties that
are worth noting for future reference:

- The model 1is linear in the state variables and source terms, although the
parameters enter nonlinearly. Since the model parameters are constant, the
state transition matrix need only be computed once.

- The number of state variables included depends on the number of node points
used when the model is made spatially discrete. This implies that multi-
dimensional models possessing even a modest degree of spatial detail will
have very large state vectors (hundreds of nodes for typical groundwater
applications).

- The number of parameters incorporated in the model depends on the technique
used to make the parameters discrete. This number may become large if
nonuniformities in the medium are modeled in much detail. Obviously, the
modeler may have trouble specifying large numbers of soil parameters that are
difficult to measure or estimate.

- The transition matrix in (7.5) tends to be diagonally dominant because the
hydraulic head at any node is affected most by conditions in the immediate
vicinity of that node. Proper consideration of the diagonal nature of the
system equations can provide some guidelines for model simplification and
decomposition.



-113~-
Formulation of the Optimal Linear Filter

Many investigators, including Freeze (1975) and Mclaughlin (1975), have observed
that groundwater model predictions are affected by a number of error sources and
uncertainties. These may be conveniently grouped into three broad categories:

- Model simplification and idealizations (for example, assumptions regarding
isotropy or the validity of Darcy's law),

- Input and parameter uncertainties, and

- Computational errors caused by making the model spatially and temporally
discrete.

Statistical filtering provides a systematic means for minimizing the detrimental
effects of these error sources when hydrologic measurements are available. As
discussed in the Introduction to Part One, the Kalman filter is a particularly
useful recursive optimal linear filtering algorithm that combines information from
a deterministic model, such as (7.5) with uncertain measurements. The general form
of this algorithm is described by:

9k|k = yklj + ek (7-6)

where

?k|k = vector of updated hydraulic head estimates at time k,

?kl. = vector of predicted hydraullic head estimates at time k, based on
J measurements obtained through time j (j < k),
& = measurement residual or correction at time k.

The algorithm requires that we specify procedures for computing (1) the predicted
head estimate, and (2) the measurement correcticn. These are briefly discussed
below.

The deterministic model of (7.5) shows how head estimates should be predicted when
model uncertainties are ignored. In the presence of uncertainty, this model needs
to be modified to account for random effects. Unfortunately, a rigorous statistical
analysis of all error sources is difficult, particularly given the limited amount

of accurate experimental information usually available for this purpose. Instead,
simple statistical error models must be postulated and the error magnitudes
adjusted to roughly compensate for unmodeled sources of uncertainty. For the
groundwater example, the following additive error model 1s convenlent:

Y = 0GKIY ) * Tyt Meer (7.7)

where

LY random additive process noise.

We assume that this model 1s accurate and that the mean and covariance of wy_) are
correctly known to be gk.] and Qk-}. Note that, in general, wi_) 1s a nonstationary,
correlated random process.
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Statistical estimation theory shows that, if (7.7) applies, the best way to predict
9k|j from an earlier estimate §j|j is to use the following equation:

: k-1
_ (k=3) & (k-£-1)
Iy = BEKTTT gy y + [ oSK) (£y + qp) (7.8)

Here the effect of the process noise has been simply accounted for by the mean term
qg. We shall see that the process noise also affects the measurement correction
term through the optimal gain matrix.

Before considering the measurement correction term, we must postulate a model of
the measurement process. Again, the effect of uncertainty is most conveniently
represented by an additive error term:

z = Hk Vie t Vi (7.9)
where
zk = vector of measured hydraulic heads at Nz observation points (Nz < Ny)’
Vi = random additive measurement noise, and
Hk = Nz x N, measurement matrix that specifies which heads are measured at time

k. Normally, Hk contains only ones and zeros.

We assume that this model is accurate and that the mean and covariance of vy are
correctly known to be my and M. It is common, but not necessary, to assume that
the noise processes wg and v are each uncorrelated in time as well as uncorrelated
with one another. Correlated noise may be accounted for if the state vector is
appropriately augmented (Gelb 1974).

Statistical estimation theory shows that the measurement correction provided by the
optimal linear filter takes the following form when (7.9) applies:

Ik |k = 9k|j + G [zk - H 915 - mk] (7.10)

where
Gk = Ny x N, "gain" matrix that weights the measurement residuals computed at
time k.

The optimal Kalman gain matrix is computed from a statistical algorithm which is
summarised in the Introduction to Part One. Since the algorithm is well documented,
the details of its derivation are not considered here.

The basic principles of the optimal filter may be easily understood by considering
the Kalman gain computation for certain extreme cases. If all the nodes in the
groundwater network are measured (Nz=Ny), Hk will be equal to the identity matrix
and the equation for G will reduce to:

G = P (=) P (=) +m 17t (7.11)

Here Pk(-) is the covariance of the error associated with the model's prediction
9klj and Mk is the covariance of the measurement error. When the model is much
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better than the measurements, Pi(-) will approach zero and Gy will vanish. In this
case the measurement correction term in (7.10) is ignored and the optimal estimate
is: .

yk|k = 9k|j (good model, poor measurements) (7.12)

On the other hand, when the measurements are much better than the model, My will
approach zero and Gy will approach the identity matrix. Inspection of (7.10) shows
that, in thls case, the optimal estimate is:

-m (poor model, good measurements) (7.13)

Ykik = % " ™

For situations between the two extremes considered above, the Kalman gain matrix
will take on intermediate values that depend on the relative magnitudes of model
and measurement certainties.

Application of Optimal Linear Filtering Algorithm

The example presented here describes experiments with a é63-state Kalman filter
designed to predict hydraulic head fluctuations in the San Jacinto groundwater

basin of southern California (McLaughlin 1975). This 121-km? basin was subdivided,
for simulation purposes, into 63 model elements to represent geologic or hydrologic
nonuniformities (see Fig. 7.2). The scheme used to make the model spatially discrete

Fig. 7.2 San Jacinto groundwater basin nodal network.
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was based on the link-node approach originally proposed by Tyson and Weber (1964).
This approach solves a one-dimensional version of (7.5) along lines (links)
connecting the centroids of the elements defined in Fig. 7.2. Although the link-
node scheme was developed for two-dimensional applications, it is really based on
one-dimensional flow assumptions. This simplification reduces the number of nodes
(states) in the groundwater model, as compared with truly two-dimensional finite
difference or finite element techniques.

Average water table elevation (hydraulic head) measurements were avallable
throughout the San Jacinto basin for only 3 years out of the 10-year period being
studied, although pumping and recharge figures were available on an annual basis.
While this may appear to be a rather poor data base, it i1s not atypical of ground-
water basins in the western United States. A review of available data indicated
that the reliability of the water table elevation measurements (which were inferred
from contour maps based on scattered well observations) varied somewhat, depending
on time and location. Similar varlations were assoclated with the pumping and
recharge figures.

In the absence of detailed experimental data, rough reliability estimates had to be
used to define the dlagonal elements of the process and measurement noise covariance
matrices. Off-diagonal terms were set equal to zero since no information on

spatial correlation was avallable. The first year's measurements were used to
initialize the filter algorithm and the initial estimation error covariance was set
equal to the measurement noise covariance for that year.

Water table elevation estimates for two typical nodes in the San Jacinto basin are
shown in Fig. 7.3. Note the tendency of the measurements to '"pull" the filtered
estimates toward the observed values. The unfiltered curve is the prediction
obtained from the model alone, with all measurements ignored. Although the filter
appears to be working as desired, an examination of estimation error standard
deviations (obtained from the diagonal elements of the two estimation error
covariance matrices) shows that the filtered predictions are really not significantly
better than those of the model. The errors plotted in Fig. 7.4 decrease at the
measurement times but soon return to the steady-state levels set by the model
process noise. Clearly, measurements are not being taken often enough to provide
any permanent reduction in estimation error. The implications of this result,
together with a number of other implementation issues, are considered in the next
section.

APPLICATION PROBLEMS AND POSSIBLE SOLUTIONS

A number of significant computational problems can arise when statistical filtering
techniques are applied to environmental systems. The groundwater basin example
discussed in the previous section provides a good opportunity to review some of
these problems as well as some of the simplifying assumptions typically used in
optimal filtering applications. Our ultimate goal 1is to identify the kinds of
research needed to properly deal with environmental filtering problems and to
suggest some possible suboptimal solutions. For convenience, the main discussion
is divided into three parts corresponding to three major problem areas - high
dimensionality, uncertain statistics, and limited measurements. A short review of
suboptimal filtering and stochastic approximation 1s presented as the end of the
section.

High Dimensionality

The fundamental difficulty with environmental filtering applications is the high
dimensionality that arises whenever the underlying system model 1s spatially
distributed, i.e., represented by a partial differential equation dependent on both
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Fig. 7.3 Water table elevation estimates.

time and space. It is true that some important environmental models (in hydrology,
for example) avold this difficulty by using an aggregated input-output approach.
Unit hydrograph analyses such as that of Hino (1973) are typical examples. (This
approach 1s also discussed in Chapter 8.) But in many other applications, such as
the groundwater problem considered in this paper, the system model must be based
on fundamental equations of fluid flow that are spatially distributed.

The partial differential equations used to describe spatially distributed systems
must be made discrete in order to be solved in all but the most specialized
applications. Techniques such as those illustrated in Fig. 7.1 have been designed
to provide accurate solutions under conditions of highly variable inputs,
coefficients, and boundary conditions. Unfortunately, the most accurate finite
difference and finite element techniques require large numbers of discrete nodes
(1.e., state variables) in practical multidimensional applications. Isoparametric
finite element models could easily require 200 states for a realistic two-dimensional
saturated flow groundwater analysis. Incorporation of unsaturated flow or three-
dimensional effects could increase this number significantly. Link-node discrete-
ness does not require as many states (see the San Jacinto example of the previous
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Fig. 7.4 Standard deviations of filtered water table elevation error.

section), but it is limited to applications where the predominant direction of flow
is known.

Kalman filters having hundreds of state variables pose rather serious computational
problems both in terms of storage and processing time. The covariance matrices
Pk(-), Pk(+), and Q each require Ny + IN (Ny-1) [/2 storage locations (since they
are symmetric), a number that becomes very Xarge when N, exceeds one hundred or

two hundred. Processing time requirements are also significant since the matrix
multiplications and inversions included in the filtering algorithm proceed slowly
when the matrices are very large. This becomes particularly troublesome in non-
linear problems that must be solved iteratively (Jazwinski 1970). Peripheral
devices used to deal with the matrix storage problem also increase processing time
when they are accessed frequently.

Obviously, the optimal filtering algorithm must be reformulated if it is to be
successfully applied to multidimensional water resource problems. Several possible
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applications have been suggested in the literature. Generally, these fall into the
following categories:

- Spatilal discreteness schemes that rely on special properties of the system
- Formulations of the recursive filter equations
- Multilevel decomposition of the filtering problem

A potentially useful spatial discreteness technique based on a separation-of-
variables approach was applied by Pimentel (1975) to a Kalman filtering problem.
Pimentel's application was to a diffusion model similar to the linear groundwater
model described in (7.3). The solution to the equation may be written as:

=]

y(x,t) = nil an(t) bn(x) (7.14)

where b, (x) are orthogonal eigenfunctions defined over the region of interest and
an(t) are coefficlents dependent only on time. It may be shown that once the
eigenfunctions are specified, the ap(t) may be written in the following form:

dan(t)
gt - )\nan(t) + fn(t) N =1,2y000 (7.15)
where A, 1s a constant elgenvalue coefficlent and fp(t) is a modal input related to
the source terms of (7.3). Equation (7.15) may be thought of as an infinite-

dimensional discrete groundwater model. If, however, the series of (7.1%) is
truncated at some point n=N, the model becomes finite with N states.

The usefulness of the orthogonal function discreteness scheme depends on the value
of N needed to obtain a good representation of the underlying continuous groundwater
flow model. Obviously, this depends in turn on the application as well as on the
choice of eigenfunctions. In some cases, when a few dominant exponential or
oscillatory modes can be identified, the orthogonal representation could provide a
significant reduction in the number of states required in the filter. General
assessments of its utility are, however, difficult to make.

Other investigators, including Desalu (1974), have concentrated on formulations of
the recursive filtering algorithm. Desalu's approach is based on propagation of an
incremental covariance matrix which has lower rank than the usual covariance matrix
Px(+). The low-rank incremental covariance is written as the product of a series of
factor matrices that are each smaller than Py(+). Since the Kalman gain is computed
directly from the factor matrices, the filtering algorithm 1s not needed and storage
requirements can be substantially reduced. Although the alternative algorithm
described by Desalu avoids the need to compute inverses or to store Ny X Ny matrices,
it is rather complex, and a lot of multiplications are required. Since the degree
of improvement depends on the number of inputs (N,) and number of measurements (Nz)
included in the filtering problems, the usefulness of the algorithm depends on the
application. Nevertheless, the basic concepts merit futrther investigation.

Another possible solution to the problem of filter dimensionality is decomposition
of the system into a number of smaller subsystems that are treated more or less
independently. Since computational time and storage requirements lncrease with the
square or cube of the number of states, several small subsystems are much less
demanding than one large system. Both intuition based on physical concepts and

the form of the state transition matrix suggest that matrix equations such as (7.5)
can be partitioned without a significant loss in accuracy, as long as all the
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components are properly related when they are reassembled. System decomposition
and multilevel optimization is an active area of research, and significant results
appear regularly (Ho and Mitter 1976). Applications in the water resources field
have been limited (see McLaughlin 1975, for example) although it is likely that
significant progress will be made.

Uncertain Statistics

It became apparent in the San Jacinto groundwater filtering example that the model
coefficients and statistical parameters required by the optimal filter cannot be
accurately specified in many environmental applications. Since the standard Kalman
filter formulation assumes that all parameters are perfectly known, its covariance
predictions are likely to be overly optimistic. In some cases, parameter uncertain-
ties can even lead to divergence and instability (Gelb 1974). For these reasons,

it is important to consider how uncertainties in the filter inputs can be accounted
for.

In the groundwater application, two types of input uncertainty are of particular
interest - uncertainty in the hydrologic parameters (S and K) and uncertainty in
the noise covariances (Qix and Mi). Each of these has been extensively examined in
the literature and a variety of solutions are available.

The problem of estimating uncertain hydrologic parameters from field measurements
is the well-known "inverse problem" of groundwater modeling. A number of determin-
istic solutions to this problem have been proposed and applied [see, for example,
McLaughlin (1975), Yeh (1975), and Distefano and Rath (1975)]. Unfortunately,
deterministic techniques make the unrealistic assumption that the measurements

used for parameter estimation are noise-free. 1In addition, these techniques
usually rely on iterative optimization algorithms that can be time consuming for
large problems. Statistical parameter estimation techniques that account for noisy
measurements are also available. They include the extended Kalman filter, which
treats the parameters as uncertain states (Gelb 1974), and maximum likelihood
algorithms (Schweppe 1973). Such algorithms invariably increase the computational
burden of the filtering algorithm, either by increasing the number of states or by
adding more computational operations. In general, on-line hydrologic parameter
estimation appears to be feasible only when the filtering problem can be reduced to
a manageable size (possibly through decomposition).

The problem of estimating uncertain noise covariances may be approached in a number
of ways. Mehra (1970) discusses the problem in some detail and proposes an
adaptive solution procedure based on an examination of the measurement residual.
This procedure has proved to be useful in some cases, but unreliable in others,
particularly when the system dimensionality is large (Gelb 1974). As might be
expected, adaptive covariance estimation increases the computational requirements
of the optimal filtering algorithm.

Limited Measurements

The problem of limited measurements is well illustrated by the San Jacinto éxample
in which the updated measurement error gradually returns to its old level after an
initial improvement. It is evident from Fig. 7.4 that more frequent measurements
(annual or quarterly) would have provided a significant petrmanent improvement in
accuracy. Unfortunately, expansion of field measurement programs is often expensive
or logistically difficult, particularly when more sampling sites (i.e., wells) are
required, This makes efficient monitoring design and data collection especially
important in environmental applications.

A number of studies concerned with efficient design of monitoring networks and
sampling schedules have been conducted and references are given in the literature
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review In the Introduction to Part One. We now have a better understanding of the
trade-offs involved in the monitoring problem, but not of the setting up of an
"optimal" sampling network. Several significant problems must be resolved before
optimal network design becomes a reality. These include proper specification of

all the costs involved and definition of important logistic constraints such as

site accessibility. The optimization process itself needs further investigation
since, in many applications, it involves solution of a difficult integer programming
problem.

Obviously, improvements can be made in monitoring strategies even when the optimal

strategy 1s not known. Analysis of the predicted filter covariance can be used to

compare the effectiveness of monitoring alternatives that are proposed on the basis
of good engineering judgement. Such comparative analyses will probably prove to be
very useful in applications of statistical filters.

Suboptimal Filtering and Stochastic Approximation

The basic purpose of statistical filtering 1s to improve the predictions of an
uncertain model by using field measurements that may be equally uncertain. This
is to be done with a filtering algorithm having the general form of (7.6). In the
case of linear filltering, the measurement correctlon term ¢ is given by the
following equation:

g = 6. [z - H ?kld -m] (7.16)

For the optimal filter, Gy is computed from the rather troublesome recursive Kalman
filter algorithm. For suboptimal filters, Gk is computed some other way - perhaps
from a simpler, more efficlent algorithm. As pointed out in the discussion of
optimal filtering, it is desirable for Gy to vanish when the model is much better
than the measurements and to approach the identity matrix when the measurements

are much better than the model (this applies when Ny = N;). Gains that exhibit this
behavior appear to offer some advantages, even if tKey are not optimal.

We must be very careful in specifying suboptimal gains, however, since suboptimal
filters can easily diverge - i.e., the true estimation error can grow without limit.
Gelb (1974) presents a useful discussion of the problems of divergence and suboptimal
design that emphasizes caution. Of course, it should be evident by now that even

the so-called optimal filter of the previous section is actually suboptimal since

its galns are computed from an erroneous model that ignores parameter uncertainties.
Various techniques, such as finite memory filtering (Jazwinski 1970) or the "epsilon
technique" (Schmidt 1970) have been developed to deal with the potential divergence
of suboptimal filters, although none of these can be guaranteed to work in all

cases.

The concept of computing Gk suboptimally 1s very attractive for environmental
applications, even with the potential divergence problems mentioned above, because
simple suboptimal computational algorithms could solve most of the filter implementa-
tion difficulties discussed in this paper. What is needed is a general theory that
can be used to specify stability conditions for a particular suboptimal filter in a
particular application. Although such a theory does not yet appear to be available,
there are some close parallels in the literature on stochastic approximation

(Robbins and Monroe 1951, Ho 1962, Albert and Gardner 1967).

Like Kalman filtering algorithms, stochastic approximation algorithms take the form
of (7.6) above. The correction term is, however, not selected to minimize the
estimatlion error at each time, but rather, to ensure mean square convergence
(Robbins and Monroe 1951). Several investigators, including Albert and Gardner
(1967) have derived convergence criteria for the gains of algorithms written in the
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form of (7.16) for the special case of constant states (i.e., ¢(K,S) equal to the
identity matrix). Extension of these criteria to the time-varying case requires
that we settle for '"boundedness" rather than convergence. Even then, design
criteria have only been derived for certain special cases (Gelb 1974, Deyst and
Price 1968).

We believe that the problem of finding stable and efficient algorithms for computing
suboptimal filter gains should be given a high priority in statistical estimation
research. Once this problem is solved, widespread application of filtering to
environmental prediction will be much more likely.
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8 Short-Term Forecasting of Rainfall and Runoff

Rafael L. Bras

On-line hydrologic forecasting is an estimation-identification-prediction problem.
A model is used to forecast the state of the system. The forecast is compared with
the noisy observed state to estimate the true state and to calibrate the model with
new information. The adjusted model is then used in the next forecast.

In this chapter, on-line hydrologic forecasting is applied to short-term forecast-
ing of discharges into a river basin and to rainfall over small urban areas. The
first application is relevant to flood warning methodologies such as the National
Weather Service River Forecasting System. The second application is valuable in
real-time operation of urban runoff retention facilities for the control of local
flooding and the prevention of water quality degradation in receiving water bodies.

Deterministic models of runoff and rainfall with an added stochastic component
are used. The Kalman filter will be used as a linear, time varying sequential
procedure for filtering information, estimating present state values, and
identifying necessary modifications in model parameters.

SHORT-TERM FORECASTING OF RUNOFF
We consider the lumped and distributed alternatives.

The Lumped Alternative (Hino 1973)

Runoff or discharge can be generally represented by an equation of the following
form. This is a stationary linear representation similar to the unit hydrograph
concept.
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This is the general representation of discharge Q at m (i = 1 to m) locations at
time t. It is clear that in this general formulation, discharge at a point i at
time t can be a function of j previous discharges and £ previous rainfall inputs,
i, at any of n different locations. This relation can be considerably simplified
since discharge at any location is usually assumed to be a function of previous
discharges at that location and rainfall at contributing higher locations.

Equation (8.1) can be expressed in matrix notation as
Q(t) = M(t - 1) h(t - 1) + W(t - 1) . (8.2)
Q(t), the m-dimensional vector of discharges, is
AE) = [0 4 O pr - - - om,t] (8.3)

h(t - 1) is a vector with (§ x m + £ x n) x m elements. The form of this vector
is:

1.1 1 1, 1 1 1.1 1, .11 1
h(t -1) = EHJQIZ"'alj’ a21"'a23'"allalz"’all’ a5135p0 08500 ¢
T (8.4)
2 2 2, 2 2 2 2 2, 2 2 2,
allalz"'alj’ a21"'QZJ"'allalz”'all’ 3518500085050 00 .
The elements of the vector are the coefficients of the discharge and input variables

that appear in (8.1).

M is a matrix of m rows and (j x m + £ x n) x m columns. The matrix is diagonal
with terms of the form:
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¥(t-1) is a vector of m elements equal to the white noise component W) ¢ j...Wy t.1
shown in (8.1)

Substituting a variable vector Z(t) for Q(t + 1) in (8.2) results in an equation
of the form:

Z(t) = M(t) h(t) + W(t) . (8.6)
The above can be interpreted as a measurement equation where Z(t) is the observation
of the state vector h(t).
Z(t) is the vector of observed discharges at time t. The dynamics of the state
vector h(t) are simply of the form

h(t + 1) = h(t) + ¥V (1) (8.7)

where V(t) is a white noise component that adds uncertainty to the otherwise
invariant state.
Equations (8.6) and (8.7) define a linear dynamic system that can be modeled within

the Kalman filter framework. Using a Kalman filter on the system and measurement
equations results in the following estimates:

A(t+1|t) = A(t|t)

A(t+1]t+1) = A(tlt) + K(t+1) {Z(t+1) - M(t+1) Actlt)}

K(t+1) = P(t+1]t+1) M (t+1) R7(t41)

P(t+1]t) = P(t|t) + C(t) (8.8)

P(t+1|t+1) = P(t+1]t) - P(t+l|t)M (t+1) [R(t+1) +
M(t+1) P(t+1|t)M (t+1)]‘ M(t+l) P(t+1|t)
where
R(t) = E[W(EIW(t)]T and C(t) = E[V(t)V(t)T]
Equation (8.8) gives an estimate of the runoff model parameters sequentially

utilizing information. These new parameters can then be used to forecast until a
new observation becomes available.
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The above lumped formulation is particularly attractive for use with the traditional
unit hydrograph approach; the runoff model simplifies considerably because discharge
is only a function of past inputs. Matrix M(t) represents observed rainfall, and
vector h(t) elements are the unit hydrograph ordinates.

There are several weaknesses of the lumped formulation:

- It has no explicit relation between the identified unit hydrograph and the
physical parameters of the basin,

- The interpretation of the measurement equation (8.6) eliminates the explicit
consideration of true observation errors due to instruments or techniques.

- The model uses an essentially time-invariant (see (8.7)) linear system.
Since we know that runoff is nonlinear in nature, we cannot expect to
achieve a steady-state solution for the catchment response function, h(t).

- Error terms W(t) and V(t) are hard to describe or quantify in terms of their
covariances. Particularly, the term V(t) has no obvious physical significance
which could be used in its estimation.

- The dimensions of the matrices and vectors can be unmanageable, if fine
resolution of the unit hydrograph is required, if the "memory" £ is large,
and if we consider discharge at more than one location.

The possibility of using the above approach in conjunction with some of the

exlsting nonlinear, distributed rainfall-runoff models is being studied. The
refined models can be used in determining good initial solutions.

The Distributed Alternative

Spatially distributed rainfall-runoff models are widely used in hydrology.
Advances in computer technology have permitted the numerical solution of the
continuity and momentum equations over simple models of real basins. Most of these
numerical solutions can be expressed as a nonlinear state-space difference
equation of the following form (see Bras and Rodriguez-Iturbe 1975 and Muzik
1974).
Q(t) = F(Q(t - 1)) + Bi(t - 1) + GW(t - 1) (8.9a)
where
Q(t) = vector of discharges at n different locations
i(t) = vector of effective rainfall intensities at m locations
B = (kl Yoot kM + £) x M input transformation matrix
W(t) = vector of white noise
G = noise transformation matrix

F = functional matrix operating on the previous time state vector

The system given by (8.11) can be observed by a monitoring network of the form

Z(t) = H Q(r) + V(t) (8.9b)
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where
Z(t) = k vector (k < n) of discharge observations
V(t) = k vector of white noise measurement errors
H = k x n matrix representing the discharge monitoring system

This matrix 1s sparse with only one nonzero element per row in the column correspond-
ing to the desired discharge observation (see Bras and Rodriguez-Iturbe 1975).

There are ky + kn + £ elements in this vector, where ki is the degree of discrete-
ness of the element in the finite difference solution; £ 1s the number of nodes in
the basin.

Except for the nonlinearity of (8.9a) arising from the matrix F, the system clearly
falls within the Kalman filter framework. Fortunately, the nonlinearities of
(8.9a) are small (exponents in the range 1.33 to 1.67). This permits the use of
the so-called extended Kalman filter, which 1s just a linearization of the system
around the previous estimate of the state variable (see Schweppe 1973). For the
nonlinear system of (8.9a) and (8.9b) the extended Kalman filter formulation
becomes:

Qt+l[tel) = Qt+1[t) + K(t+l) [Z(t+1) - H Q(t+1|D)]
Q(t+1t) = F(Q(t]t)) + B 1(t)

K(t+l) = P(t+1]t+1) y_T 5’1(t+1)

P(t+1[t+l) = HRL(t+1) H + P (ts1]t)"? (8.10)
1,2 L T

P(t+1|t) = F7(Q(t|t)) P(t[t) F~ (Q(t[t)) + G C(t) G

P(0j0) = ¥

dc0]0) = 0

Q(t[t) is the estimated state vector at time t given information up to time t.
F1(Q(t|t)) is the first derivative of the functional matrix F evaluated at Q(t|t).
E(t|t) 1s agaln the mean square error of the estimation matrix at time t given
information up to time t. The matrices R(t) and C(t) are the covariance matrices
of the measurement and model white noise components, respectively. All other
terms have been previously defined.

It is clear that (8.10) is an on-line estimating-forecasting procedure. As data
or observatjons of discharge and rainfall become available a new estimate of
discharge, Q(tlt), can be made. A forecast into the future, before observations
at t+l are available, 1s made by using the second equation in (8.10) or,

Q(t+1|t) = F(@(t]t)) + B i(t) (8.11)
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This forecasting procedure uses all available information to obtain an on-line
prediction one time step ahead of real-time. The time step of prediction depends
on the definition of the matrices F and B (see Bras and Rodriguez-Iturbe 1975).

The distributed alternative has several advantages. First, the model allows a
spatially varying basin representation, Second, the model is theoretically correct
and based on the equations of motion and mass conservation. Model parameters F
and B are functions of measurable basin characteristics and of the numerical
techniques used. Also, the model is nonlinear and thus realistic. The linearities
involved are trivial relative to those in the lumped alternative. Third, the model
fits perfectly and neatly into the Kalman filter framework. Finally, this model
framework explicitly takes into account discharge measurement error and could be
expanded to consider rainfall measurement errors.

Further refinement of the forecasting system of (8.10) is possible by adding a
parameter identification step that could allow adjustment of the model parameters.
The model error, W(t), and its covariance function, C(t), are parameters that are
particularly difficult to define and could be estimated using observed data. The
procedure would consist of maximizing a logarithmic likelihood function in order
to find the optimal parameters. The log likelihood function for systems like that
of (8.9) and (8.10) has been derived assuming Gaussian or near Gaussian distribu-
tions (see Schweppe 1973). This likelihood function fits into the framework of
the Kalman filter and can be obtained simultaneously with the solution to (8.10).
The maximum likelihood estimators for the parameters would then be used in the
forecasting procedure until new observations become available.

The major disadvantages of the distributed approach are:

- The identification, if desired, of model, W(t), and measurement, V(t),
error may involve considerable difficulties.

- The number of discharge locations considered will be limited by numerical
efficiency considerations.

- The forecast will be good for time intervals less than the time of
concentration. This condition allows the best application of the system to
large basins. This restriction is introduced because {8.9) expresses
discharge at time t, Q(t), as a function of rainfall at time t-1, i(t-1).
This is approximately true and the approximation will be best for time
intervals as stated above.

SHORT-TERM FORECASTING OF RAINFALL

In the previous section, a methodology for on-line runoff forecasting was presented.
It was then mentioned that the methodology is valid for forecasting in large, slow-
responding river basins. The forecast lag time cannot be more than the time of
concentration of the basin. The reason for the limitation was that no attempt was
being made to foretell the state of the rainfall input. In small urban areas,

where the hydrologist may worry about local flooding and runoff pollution loads,
the above conditions are not satisfied. We are therefore compelled to attempt
short-term forecasting of rainfall to deal with fast-responding urban areas and to
be able to make forecasts beyond the concentration time of the basin.

Jamieson and Wilkinson (1972) suggested the use of a first-order autoregressive
model as a tool for short-term forecasting. They found that such stationary

models explained only about 45% of the rainfall time series. In fact, several
other time series models could be suggested. For example, besides the autoregress-
ive model, we can possibly use stationary moving average models, mixed models, or
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Box and Jenkins (1970), nonstationary, autoregressive integrated moving average
models (ARIMA). The main limitations of the above are that they have no parameters
representing real conditions. Their parameters must be statistically determined
from data. In an on-line, real-time forecasting situation data is limited and
available piecewise. To "fit" one of the statistical models, the storm event

would have to be observed in spatial detail for extremely long times before arrival
at the location of interest. Even then, the statistical meaning of the obtained
parameters could be poor.

The above discussion obviously implies that we need some knowledge of the structure
and behavior of the rainfall process so as to minimize data requirements. At the
extreme, we would need a completely deterministic model of rainfall. Meteorologists
have only imperfect and very complex deterministic storm models based on
atmospheric conditions. They are more an exercise to study atmospheric inter-
actions of climatic variables than rainfall predictors. Their parameters and
structure would not lend themselves to efficient on-line modification resulting

from observed data.

It is clear that the short-term rainfall prediction problem is a very hard one. We
are only starting to see its possible solutions. The folllowing is an approach
that makes some reasonable assumptions to allow us to study the problem.

Bras and Rodriguez-Iturbe (1976) suggested a nonstationary, time-varying, multi-
dimensional rainfall generator that preserves first- and second-order statistics
in time and space, and assumes that storms have a basic structure. The details
of the model will not be discussed here; only a summary of important points will
be presented. The reader is referred to Bras and Rodriguez-Iturbe (1976) for the
development and some examples, as well as to Wilson (1976) for applications.

The model assumes that the interior of a storm event with a given depth and
duration can be modeled as:

i(ﬁi,t) = iu(ﬁd,t) + n(éi,t) (8.12)
where
i(éi,t) = rainfall intensity at a point with coordinate vector x; at time t.
iu<5i’t) = mean Intensity at LN and t. ‘
n(éi,t) = noisy residuals obeying a certain covariance function in time and
space.

It is assumed that each point in space will have the same average mass distribution.
This mass distribution is obtained for various types of storms Econvective, frontal)
in terms of a mass accumulation curve without dimension. Since each point in

space will, on the average, have the same accumulation history, the term i,(xjt)
will be the same everywhere in space, but will be translated by the velocigy of
the event. Assuming that the storm were moving in the x direction with velocity U
then,

100 = i 0t - ), (8.13)

a

where
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ia(t) = average precipitation at time t where t is now the time since the
beginning of rainfall at a given point; this is obtained from the
average dimensionless accumulation curve determined for various types of
storms.

The space and time correlation of the process is embodied in the covariance function
of the residuals. To define this covariance function, we assume that storms, like
other meteorological processes, obey Taylor's hypothesis of turbulence. This is
generally useful for translating processes with relatively weak time dependence
within their moving coordinate system such that time dependence in a fixed
coordinate system is dominated by the average translating motion (see Bras and
Rodriguez-Iturbe 1976). This allows us to suggest the following form for the
covariance function, assuming for simplicity that the storm is moving in the x
direction:

Efntx,t") n(ggj,t")] Olx;yt") Olxpt") Tlxg,t'5 x,t")

3

xq X,
v o_ I
ca(t' - T ) ca(t o) (8.14)

r(yi,x1 + Ut';yj,xj + ut")

where

r(+)

correlation function of process

c(ii,t) = standard deviation of rainfall intensity at point x, and time t

u = velocity in x direction

Xi9¥y = x and y coordinates of point i

Based on some available data, it is further assumed that rainfall intensities have
isotropic spatial correlation which then results in:

r(xi,t‘;xj,t") =r(v) = r(/(yj-yi)2 + ((xj + Ut'") - (xi + Ut'))2 (8.15)
Equation (8.15) still assumes that storm movement is in the x direction. Notice
that isotropy is on the variables xj = y and x3 = x + Ut,

X
The standard deviations, o(xi,t') = g,(t' - T%), are obtained from data on the

variation around the mean behavior i,(t). Again g,(t) should be typical for
certain types of storms. Storm interiors are then generated from an equation

X4 X4
_1_(51,t) = ia(t - T) + o, (t - —U—) R(ii,t) (8.16)

where R(xj,t) are mean 0, variance 1 residuals obeying the time and space correla-
tion given in (8.15). These residuals are generated using spectral representations
of the correlation function (see Bras and Rodriguez-Iturbe (1976) for details).

The characteristics of the previous model that are important for the forecasting
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exercise are: 1its "banded" structure, where the mean and standard deviations in a
band perpendicular to storm movement are homogeneous or constant, and that the
covariance in time and space has a structure given by (8.15). The function r(v)
can take different forms, for example:

Single Exponential

r(v) = e-a|v| (8.17)
Quadratic Exponential

r(v) = e'O‘ZV2
Bessel Form

r(v) = |v| bkl(|v| b)

where k; Is a first-order Bessel function of the second kind.

Therefore the covariance is explained in terms of a parameter, o, o?, or b2 and
the velocity U.

Bras and Rodriguez-Iturbe (1975) suggest that the above continuous model can be
approximated by a multivariate form:

i(t) = iu(t) + A(t - 1)(i(t - 1) - iu(t - 1)) + B(t - L)W(t - 1) (8.18)
where
i) = n x 1 vector of rainfall intensities at n locations at time t
iu(t) = n x 1 vector of mean intensities
A(t), B(t) = time-varying n x n matrices that can be estimated from the given
covariance function (see Bras and Rodriguez-Iturbe 1975)
W(t) = n x 1 vector of white noise with zero mean and unit variance
Evew’(¢)] = 1

The above approximation is particularly true for a small time correlation of
exponential decay.

We assume that there exists a fairly extensive telemetric rainfall network
surrounding an area of interest and that one of the correlation function forms
given by (8.17) is applicable. As the storm moves into the area rainfall intensity
data are recorded. After some time, before the storm arrives at the area of
interest, a "snapshot" of intensities at a given time, tj;, over the area is taken.
At a time tp > t; (At not too big), take another sampling of the intensities,
another "snapshot" of conditions in the area A at the two times.

C(a,B) = %J[ Z(x,y,tl) Z(x + a, y + B, tz)dx dy (8.19)
A

should be a maximum, if Taylor's Hypothesis holds, for a given ag and BO’ which are
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some displacements in the x and y direction. Z(x,y,t) is a functional description
of the vector Z of observed rainfall values. Z is an n x 1 vector. Z(x,y,t) could
be obtained using surface fitting techniques. The average velocity of translation
of the storm between time t; and t) can be approximated by

a 8

0 0

V = ; V = (8020)
X tz-tl y tz-tl

Now we assume that the obtained velocity and direction will prevail over the next
time step. Similarlyl taking averages over bands perpendicular to storm movement
results in estimates iy(xj,t,). Standard deviations can also be obtained over
those bands to define G(xj,t2).

Dividing by the obtained variances and subtracting the means, the normalized
intensity values could be used to fit a given spatial correlation function form.

For example, assuming a single exponential form (8.17) and using the isotropy
assumption, the parameter a could be estimated as §. Using the estimated velocities
Vx and V,, the assumed correlation form, and the estimated parameter &, we can
obtain egtimates of the matrices, A(t3 - At) and B(t3 - At) in (8.18) and express
them as A(t3 - At) and B(ty - At).

An estimate of the state vector at time t3 with information up to time t; can be:
" ~ A ~ 2l A
1(t3|t2) = A(ts-At) {Z(tz) - 1u(t2)} + 1u(x1-VxAt, yi-VyAt,tz) (8.21)

where the last term in (8.21) is the mean vector at time t, translated (rearranged)
by the estimated velocities. The vector Z(t3) is an n x 1 vector of the observed
rainfall at the n points in space. It is given by

Z(t) = H i(t) + V(L) (8.22)
where
i(t) = true vector of rainfall values
H = n x n matrix defining measurement network
V(t) = error of observation

At time t3 (8.19) can again be optimized using "snapshots" of rainfall intensities
over the area at time t) and t3. New velocity estimates, V4 and V,, can be obtained
using (8.22). Band averaging should again yield estimates at i ,(xj,t3) and
8(xj,t3). The correlation function coefficient & can be re-estimated, again using
observed intensity values at time t3. Since this parameter should in theory be
constant we suggest that some sort of filtering or estimation algorithm should be
used to avoid radically different estimates at different times. Now we can obtain
new matrices, A(ty - At), B(ty - At) using the covariance function with its
estimated parameters. A new forecast to time t4 can be obtained with an equation
similar to (8.21):

1(t4|t3) = At, - At) {1(t3|t3) - iu(t3)} + iu(xi-VxAt, yi-VyAt, t3) (8.23)
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where f(t3|t3) is a filtered estimate resulting from a weighted average of the

model prediction at time t3 and the observations at time t3, Z(t3). The filtering
could be done using the linear Kalman filter which results in:

(tylty) = Tatylty) + Kity) {Z(ty) - H Lityft,))

_ T,-1
Kitg) = P(t3|t3) H'R
P(t]t.) = P(ty]t,) - Pty|t,) H{R + H Pety|t)H L
313 3172 31t 31°2
H P(t3|t2) (8.24)
_ -~ AT A AT
P(t3|t2) = A(t,-At) P(t,t,) A (t3-0t) + Blty=At)B  (t5-At)

T
P(t,[t,) = E[i(t,) i(t,)]

= process covariance matrix given by the estimated covariance function
at time t2

E[V(t) vT(t)] = R
Forecasting for all other times would follow the same pattern.

CONCLUSIONS
These ideas are obviously rough, but they are being refined and studied.

The difference between long- and short-term forecasting are important. Long-term
forecasting is usually an off-line exercise intended to generate random events

that preserve, to a certain extent, the statistical behavior of historical data.

We are usually dealing with aggregate parameters like monthly discharges, daily
rainfalls and so forth. Short-term forecasting is done in real-time, on-line, at
the same time as the event. We are usually interested not in aggregate events but
in time histories of occurrences. We want to continuously update the forecasting
procedure by using observed occurrences. We are interested not only in statistical
behavior but in the absolute value of forecasted variables. Furthermore, we want
to forecast future behavior with some degree of accuracy. In long-term forecasting,
we usually have ample historical data from which to statistically estimate model
parameters. In short-term forecasting this is not the case. We therefore, in
order to satisfy the accuracy and prediction criteria, must use all possible prior
information about the process to be able to define the structure and parameters of
underlying behavior as much as possible. The more we define an underlying
structure, the more our statistical requirements are reduced and accuracy increases.
Nevertheless, our model structure must be flexible and simple enough to allow
continuous parameter updating as data become available.

This paper has presented possible approaches to short term forecasting of runoff
and rainfall. The mechanics and the models used, particularly the rainfall model,
may be questioned. Nevertheless, the approach and general concept we believe to
be correct.
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Kalman filtering has been used throughout owing to the linear or near-linear
behavior of the models used. It is certainly a very powerful technique that
handles the deterministic (physical) and stochastic components of the problem in a
unified way. It accounts for both model and measurement uncertainty in a stepwise,
sequential (on-line) manner. It also can handle parameter estimation problems
when they arise.
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9 A Self-Tuning Predictor Applied to River Flow Forecasting

Torkil Ganendra

INTRODUCTION

Stochastic difference equation models are ideally suited for real-time streamflow
forecasting, particularly because the autoregressive terms with updating of
information prevent cumulative forecast divergence. Furthermore, the identification
of the rainfall-runoff process can be bypassed by formulating the model as a
predictor. The predictor algorithm should have a small computational and storage
requirement to allow for minicomputer or microprocessor implementation.

The predictor that adjusts its parameters in real-time using least squares, such
that in the limit the minimum square error predictor is obtained, is referred to
as the self-tuning predictor (Wittenmark 1974). The predictor has been tested on
five sets of data; in this paper only results from the Brosna Catchment in Ireland
will be presented.

OPTIMAL PREDICTION
The assumption that must be ma&de is that the system to be modeled is linear and
time-invariant. In the predictor derivation, the deterministic input is omitted;

it can be introduced later as an auxiliary variable. Consider the simple n-th
order stochastic process,

A@~Y) y(t) = c(g™h) ect) (9.1)

where e(t) is an independent N(0,0) random variable, y(t) the measured output, and
the polynomials A(q-1l) and C(q-1) are described by

At

1 aq™"
+a; G 4 ..+ aQ
C(q'l) =1+c¢ q'l + oeees + cnq'n

q'1 being the backward-shift operator
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q—i y(t) = y(t-i)

The following notation is introduced. The k-step ahead prediction of the output
y(t+k), based on the past output measurements y(t), y(t-1), ... is denoted by
§(t + k|t) and the prediction error is given by

e{t+k) = y(t+k) - §(t + k|v) 19.2)

The minimum square error predictor, i.e., the predictor that minimizes the loss
function

V = E{e(t)?} (9.3)

can be obtained by introducing the identity (Astrdm 1970, p. 167)

1

cq = A Fighy « g% h (9.4)

where

F(q'l) =1+ f"lq'l +oevee + f"k_lq_'k+l

-n+l

-1 -1
Gl@ ") =95+ 939" + «eer +9,19

Note that q'k operates on G(q-l) in C(q'l) and that F(q'l) has k terms. Writing
(9.1) as

-1

y(tsk) = Qiﬂ:Tl e(t+k) (9.5)
A(q ™)

and replacing C(q'l) by its identity (9.4) gives

-1

y(tek) = F(a™h) eltek) + E9-L () (9.6)
Alq ™)
Eliminating e(t) in (9.6) by using (9.1) gives
-1 a(q’h
y(t+k) = F(q ) e(t+k) + —(JT y(t) (9,7)
C(q

If 9 is an arbitrary function of y(t), y(t-1), ... y(0), and e(t+l), e(t+2), ...
e(t+k) are independent of y(t), then

-1
E{[y(t+k)-912)} = E{[F(q~V)e(t+k)]2} + EL[ Qfﬂjfi y(t)-§]%}. (9.8)
C(qg

The variance of e(t) is
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E{fy () -9]%} 2 02(L + £,2 + v + f, 12) (9.9)

The predictor objective is a minimum square error and this is satisfied when ¢ is
9(t + k|t), that is,

5 a(g™h
gt + k|t) = o y(t) (9.10)
Clg ™)

Eliminating y(t) using (9.2) and C(q'l) using (9.4), the general optimal predictor
is obtained

-1
Pt + k|t) = —HL ) () (9.11)
A(Q " )F(a ")

Finally, the drawback of the predictor is that it contains k-1 more parameters
than the original system it represents.

THE SELF-TUNING PREDICTOR

If the parameters of the process were known, then the optimal predictor could be
readily calculated. For unknown processes, the parameters of the predictor can be
directly estimated without reference to the process parameters. The algorithm to
be described consists of two components, a parameter estimator, and the predictor
itself. The parameter estimator has the self-tuning property, that is, if the
parameters of the predictor converge, then the predictor obtained in the limit will
be the minimum square error predictor. Wittenmark (1974) has shown that the self-
tuning predictor is a special case of the self-tuning regulator (Astr8m and
Wittenmark 1973), an algorithm developed for controlling a system with unknown
parameters. Consequently, the results of theoretical and experimental investiga-
tions of the self-tuning regqulator are applicable to the self-tuning predictor.

Rewriting the predictor (9.11) with A(q'l)F(q-l) = l+q-l§(q-l) and G(q'l) = Q(q—l),
9t + k|t) = - Al H)P(tek-1]t-1) + C(q"Dre(t) (9.12)

By defining 9(t + k|t) as the prediction of the measured streamflow y(t+k) and by
introducing the precipitation input u(t) as an auxiliary variable, the following
predictor is obtained

9(t + k|t) = - Alq”D)9(tk-1]t-1) + B(q Du(t) + c(g™He(t) (9.13)
where
ﬁ(q—l) =0y o+ uzq_l Foaee anqn-l
g(q'l) = Bl + qu-l + eee + qum-l
-1 £-1

-1
€l ™) = v + Y, 7 + oo+ YyQ
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The parameters n, m, and £ are simply the number of terms in the respective
polynomials. These can be determined quite easily as shown in the next section.

In order to simplify the notation, let §(t + k|t) be §(t+k) and define

o(t) = [~9(t+k-1),.00 =F(tsk-n),ult),... u(t-m+l),e(t),... e(t-£+1)]

T
8 = [al, cee an, Bl, e Bm, 'Yl, see 'YZ]

so the predictor can be written

9(t+k) = $(L)® (9.1%)

The problem now is to estimate the parameter vector © at each sampling point, using
the latest data. For this purpose a recursive least-squares parameter estimator is
used (Astrdm 1974) satisfying the self-tuning requirement. Thus, the estimator is
given by the following equations which are evaluated at each time step.

e(t) = y(t) - 9(t) (9.15)
P(t) = P(t-1)-P(t-1)¢ (t-1) [L+o(t-1)P(t-1)¢' (t-1)] " LoCt-1)P(t-1)  (9.16)
8(t) = 8(t-1) + P(£)$' (t-1)e(t) (9.17)

P is the error covariance matrix of the parameter estimates normalized with respect
to the noise variance. This algorithm avoids direct matrix inversion (the inverse
term in (9.16) is a scalar) and the past data does not have to be stored for
subsequent calculations. The minimum square error prediction is then computed as
if the values of the estimated parameters were true ones. Hence, the predictor

for y(t+k) is given by (9.14).

If the handling of multiple inputs is required, the only modification that is
necessary is the extension of the 6 and ¢ vectors to include the additional
variables.

PREDICTOR CONVERGENCE

For the case where C(q'l) = 1 the least squares technique results in an unbiased
estimator; however with C(q-1) # 1 the predictor also gives good results. It can
be shown (Astrdm and Wittenmark 1973) that the self-tuning predictor that has
enough parameters converges to the optimal predictor when the covariances satisfy

y_ (1) = E{e(t)e(t+T)} = O T =K, eoo ktl-1 (9.18)

€e

E{e(t+1)P(t+k)} = 0 T =k, eos ken {9.19)

YE?(T)
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Furthermore, if the predictor contains enough parameters, €(t) should be uncorre-
lated for T > £+k. To illustrate, the relevant autocorrelation and cross-correla-
tion functions, F.(T) and ?e*(T), using a two-step-ahead predictor are shown in
Fig. 9.1. The predictor used does not have enough parameters so fse(T) # 0 for

A
Tee

1.0 ]
0.5
0 -y T T T T T T o T T T T T T — ey i o
__rd\_,j _______ e ———
—-0.56 — T
0 10 20
L
0.6 |
\‘L
R D =
-05 — — 7
0 10 20

Fig. 9.1 Two-step ahead self-tuning predictor with n = 3,
m=2, and £ = 2. The dashed lines indicate the
95% confidence interval in which the covariances
can be regarded as zero. f£.. is the autocorrela-
tion function and fe? is the cross-correlation
function.

T =4 and T = 5, although conditions (9.18) and (9.19) are satisfied. The number
of parameters was n = 3, m = 2, £ = 2; the optimal predictor requires that m = 3,
or that m = 2 when a pure time delay of one time step is applied to the input.
The above procedure provides a convenient basis for determining the number of
parameters, n,m, and {.

The mean streamflow level

q(t)

1~

al
1]
Z|=

t



~144-
is nonzero, where q(t) is the measured streamflow. This mean level sometimes
masks the information from the estimator such that (9.18) and (9.19) are not

satisfied; so the output signal y(t) should be the deviation of the streamflow
q(t) from the mean level

y(t) = q(t) - g
In real-time, an estimated mean level is assumed which is then added to the
streamflow prediction to obtain the true predicted flow.

The initial conditions for the algorithm can be taken as

P(0) = I x 10%

6(0) = ¢'(0) = 0

however for k > 1 an approximation of ¢T(O) should be made. This averts an
unstable condition during the first few iterations. In the case of the one-step-
ahead predictor, only a few time steps are required before good predictions are
obtained. It is a characteristic of the self-tuning predictor that near optimal
predictions are obtained with apparently poor parameter estimates. This situation
arises frequently during the initial stages of tuning.

Parameter convergence can be improved by preventing the elements of the P-matrix
from diminishing too quickly. This is achieved by exponentially weighting the
data so that more weight is given to recent data and less to older data with

respect to the recursive parameter estimator. By introducing an exponential
forgetting factor in (9.16), the following equation is obtained

Q(t)P(t) = P(t-1)-P(t-1)6" (t-1) [a(t)+o(t-D)P(t-1)¢  (t-1] Lo(t-1)P(t-1) (9.20)
and 0<a(t) €1

where a(t) 1s the forgetting factor. The smaller the value of a(t), the less
weight is given to past data. For no forgetting, a(t) is equal to 1. As the
parameters converge, the degree of forgetting should decrease as a(t) tends to
one; thus, greater confidence is given to the parameter estimates. a(t) is given

by

a(t) = a(t-l)ao + (l-ag) (9.21)
The parameter %g 1s chosen so that 0 << % € 1. Typically

a(0) = 0.95 - 0.98

% = 0.99 - 0.999

The effect of forgetting past data (by using (9.20) and (9.21)) on the convergence
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Fig. 9.2 Variation of tr|P| over 1,000 iterations with
P(0) = I x 10", =-=--- ag = 0.99, a(0) = 0.95;
———=0ag = 1.0, a(0) = 1.0.

of tr|P| is shown in Fig. 9.2. The case when a{(0) = ag = 1 corresponds to no
forgetting of past data; see (9.16). As expected, the forgetting of past data

prevents tr|P| from becoming too small while the parameter estimates are still
poor.

If the parameters 9 are slowly time-varying, ag in (9.21) should be taken as 1 and
the forgetting factor «(0) set accordingly to a value less than 1. However, if the
data contain a high level of noise, as is often the case with hydrological data,
then the estimator may cause the parameters to track the noise, as shown in Fig.
9.4, This can result in a poor predictor performance. Figure 9.3 shows the
parameter variation when there is no forgetting of past data.

REAL-TIME FORECASTING - THE BROSNA CATCHMENT

The Brosna Catchment covers some 1,180 km? of mostly flat grazing land in the center
of Ireland, and drains into the Shannon. Glacial movements have produced some hills,
and there are also some peatbogs and woodland areas. The geology consists of
carboniferous limestone covered by boulder clay. Rainfall is uniformly distributed
througheut the year and is of low average intensity.
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Fig. 9.4 Varlation of 6 with ag = 1.0 and a(0) = 0.98.
6 = [0 ap By B2 €].

The data have been compiled from 5 years of discharge measurements at Ferbane and
a centrally sited, continuously recording raingauge. Areal mean rainfall was
computed using 18 raingauges distributed throughout the catchment area; data were
evaluated every 3 hours with reference to the central recording gauge.

The results obtained for simulated real-time forecasts are shown in Figs. 9.5 and
9.6. The rainfall measurements shown are the average intensities over the 3-hr
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Fig. 9.5 One-step-ahead self-tuning predictor for the Brosna

Catchment with m = 2, n = 2, and %= 2.
observed; o 3-hr forecast.

sampling intervals. Fig. 9.5 shows a one-step-ahead forecast, and Fig. 9.6 shows
a two-step-ahead forecast for the same data. The solid line is the measured
streamflow and the points are the forecast streamflows.

It has been found that if the sampling rate 1s high compared to the process
dynamics, as in Fig. 9.5, then it is generally better to use the one-step ahead
predictor and sample the data at a larger time step than to use a k>l-step ahead
predictor with shorter time steps.

CONCLUSIONS

A minimum square error predictor is postulated as a streamflow forecasting model
because the rainfall-runoff process can be represented by a linear time-invariant
stochastic model. The parameters of this predictor can be calculated from the
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Fig. 9.6 Two-step-ahead self-tuning predictor for Brosna Catchment

withm =3, n =2, £ = 2 and input delay = 1 (3 hr).
observed; o 6-hr forecast.

parameters of the stochastic model. The self-tuning predictor however bypasses

the system identification problem because the predictor parameters are directly
estimated. Also, the recursive least squares technique used results in an algorithm
suitable for minicomputer or microprocessor implementation.

The predictor has been tested on several sets of data with good results, despite
the incorrect linearity assumption. Basically, this problem is lessened because
the on-line streamflow measurements prevent cumulative errors from building up.
Clearly, with such a simple model there is possibility for improvements; the most
obvious is to replace the total rainfall input by an adjusted rainfall input
which takes into account the soil moisture deficit and evaporation effects.
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10 Nonlinear Forecasting Models of Water Flow and
Quality by Heuristic Self-Organization Methods

Saburo Ikeda and Yoshikazu Sawaragi

Because pollution and eutrophication phenomena of surface water and groundwater
have increased in urbanized areas, much attention has been given to research
related to modeling water quality in rivers, lakes, and coastal areas, for the
purpose of prediction and simulation. There are many factors that determine water
quality; they may be socioeconomic, topographical, or hydrologic factors. For
example, the combination of low flow, high water temperature, and an increase of
pollutants results in poor water quality conditions. Needless to say, it is

a basic problem to forecast water discharges from the available data on discharge
and rainfall and to use the data in models of water quality.

Most of the dynamic models for river discharge prediction are based on hydrological
and geographical characteristics of river basins (Linsley et al. 1949, Sugawara
1961, Eagleson 1970). However, only with many assumptions and simplifications of
the real phenomena is it possible to formulate a physical or mathematical model.
Therefore, these hydrologic models based on physical considerations may be

suitable for a quantitive analysis of runoff mechanisms, but their applicability

to exact quantitative forecasting may be rather limited because of the uncertainty
of hydrologic variables such as areal precipitation, evapotranspiration, and
underground storage. The modeling of water quality is far more difficult than the |
forecast modeling of runoff, since it is harder to find practical applications of
the elaborate models. In fact, it is difficult to find the exact mass balance of
pollutants, inflows and outflows of water in agricultural irrigation, municipal
use, branchstreams, and so on. Even if these difficulties were overcome, there is
still the more essential problem of a lack of sufficient water quality data to
test the models because it is very laborious and expensive to measure and analyze
water quality.

Another approach is based on time series analysis of runoff data; that is, the
runoff model is identified from the measured flow and rainfall data by various
statistical methods such as correlation analysis, maximum likelihood techniques,
and least squares (Hino 1970, Kashyap and Rao 1973). However, the linear statisti-
cal models have some difficulties in treating the nonlinearity of runoff mechanisms,
and lack sufficient length of input-output data on water quality. One of the
general methods of identifying nonlinear systems uses the Volterra series (Eykhoff
1974). The use of the Volterra series, however, requires a large amount of data
and computation of a high-dimensional matrix to determine the structure of the
multivariable, nonlinear system.

The urgent need for water quality prediction and simulation for environmental
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management will require development of these and related techniques. Prediction
models have to have the following characteristics to be used in water resource
systems:

- Simplicity in structure (without special or sophisticated knowledge of
hydrology or geography of a basin),

- A small amount of computation time (well suited for real time forecasting),

- Applicability to the small amount of available data.

In this respect, a self-organization method for modeling or prediction of complex
nonlinear systems, the Group Method of Data Handling (GMDH), has recently been
developed by Ivakhnenko (1968, 1970, 1971). This algorithm is very useful for
modeling complex nonlinear systems that have a great number of variables and
parameters, structural uncertainties and a limited amount of collected data. We
have already proposed two heuristic forecasting algorithms for the modeling of
nonlinear complex input-output relations, which are improved versions of the
original GMDH (Ikeda et al. 1976a, 1976b).

In this paper, a summary of our work and an application of the modified method to
water quality modeling are presented in order to promote broad use of the heuristic
self-organization methods. To show the effectiveness of the proposed method,
numerical comparisons are made between the performance of the prediction models
presented here and hydrologic models often found in the literature.

HEURISTIC SELF-ORGANIZATION MODELING (GMDH)

To simplify the illustration of GMDH, we shall first consider the following fore-
casting model of water flow;

q(t) = f(r(t - h),r(t - 2h),...,r(t = mh),q(t - h),...,q(t - nh)) (10.1)

where q(t) is an averaged daily flow (m®/sec), r(t) is daily rainfall (mm/day) in
the river basin, and h is the sampling interval, assumed to be one day. The
integers m and n represent the number of days included in the prediction (10.1),
that is, the interval prior to the sample.

The problem is to determine the unknown nonlinear structure f(r{(t - h),...,q(t - h),
...) from the available past data of ralnfall and discharge. For operational use,

a kind of cybernetic method, that i1s, a heuristic self-organization technique, 1s
applied here instead of the conventional approaches.

The Basic GMDH Algorithm

Equation (10.1) can be rewritten more briefly as:

y(t) = f(xl,xz,...,xNO) y (10.2)

where y(t) = q(t) 1s an output of interest and x3 (1 = 1,...,N,) are inputs such as
x] = r(t - h), xpe1 = q(t - h), and so on. Here, let us assume that the nonlinear
input-output relation f(xj,...,xN.) 1s represented by a polynomial of a certain
order with respect to xj to formulate a universal nonlinear model.

The Kolmogorov-Gabor polynomial or the Volterra series for the stationary stochastic
process (Gabor et al. 1961),



y = ao + Z

provides a conceptual basis for (10.2).
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agxg + ) ajgXy%y * ) Ay Xy XX e
1] 15k

(10.3)

However, a dimensionality problem is

caused by the tremendous number of coefficients to be determined in (10.3). To
overcome this difficulty, Ivakhnenko used the multilayered structure shown in Fig.
10.1. This structure is similar to that of the natural selection rule of plants

or animals.

Selection by Length
of Preceding Interval

Self-selection by
Correlation Criteria

Self-selection by Mean
Square Error Criteria

4

|eswiouA|od |elliey

-—
-—

40 101BJ3U3D)
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uondiiasag a18|dwio))
sploysaiyj
10

v

Fig. 10.1 Ivakhnenko's schematic structure of the
GMDH algorithm.

The inputs from the previous layer are used for constructing all
possible combinations of two inputs like the "crossing of seed".

The better results

are chosen on a heuristic basis or by threshold criteria, and then one proceeds to

the next layer.
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To avoid overfitting of the prediction, the concept of "regularization" in numerical
analysis (Tikhonov 1963) is introduced. The available input-output data are divided
into the "training" sequence for learning the system structure and the "checking"
sequence for selecting the best results. This regularization technique is one of
the most important features in the GMDH algorithm.

The procedure of the basic GMDH algorithm originally developed by Ivakhnenko can be
summarized as follows:

Step 1: Determine the prior interval (m,n) and the corresponding input variables

Step 2: Choose N "useful" input variables xj (i = 1,2,...,N), which are highly
correlated with the output y, from among all input variables that
belong to the prior intervals. For example, if m and n are picked to
be two days, that is, m = n = 2 and h =1, then xj = r(t - 1),
x2 =r{t - 2), x3 =q(t - 1) and x4 = q(t - 2).

Step 3: Divide the original data into the training and checking sequences.
The separation rule is a heuristic one. Usually, the training and
checking sequences are taken alternately or on the basis of the
magnitude of the variance from the mean value.

Step 4: CGenerate the following partial polynomials with all possible combina-
tions of two inputs xj and Xgi

zZ =4

X, + @ X
k

+a + a, . (x )2 +a,, (x )2 + a, X, X
kO k171 k2™ § k371 k473 k571§ °?
(10.4)
1, = 1,250004Ny 1 # 335 k=1,2...,N(N=-1)/2 .

The coefficients age(% = 0,1,...,5) are determined so as to minimize
the mean square error:

e; =y - z)* (10.5)

where the bar denotes the sample mean.

Step 5: Compute the values of intermediate variables z) (for the checking data)
by (10.4) with the coefficients as determined in Step 4. Then select
M intermediate variables z;j(i = 1,...,M) which gives M smallest mean
square errors (10.5) for the checking data.

Step 6: Repeat Step 4 and Step 5 but replace x§ with z§ and x. with z; until
the mean square error, eé, of the best predictor, z,,"in the present
layer exceeds that of the best one in the previous Tayer.

In addition to the above procedure, the selection rule of the intermediate variables
and the separation rule for the training and checking sequences are changed so as to
find the optimal prediction model, as shown in Fig. 10.1.

Application of the Basic GMDH Algorithm to River Flow Prediction

In this section, the basic GMDH algorithm is applied to modeling one-day-ahead
river-flow prediction. Because it has been studied before, and for the conveni-
ence of comparisons with other models, the Karasu River basin in Japan was used



Fig. 10.2 The Karasu River basin. (Area = 156km?)
p denotes a precipitation station;
A denotes a riverflow station. Reprinted,
by permission, from Ikeda et al. (1976a).

(Tone-River-Dams Control Office 1967). The Karasu River basin is shown in Fig.
10.2. A station for the river flow data is denoted by a triangle and the precipi-
tation stations by squares. The daily river flow q(t) (m®/sec) and the daily mean
areal precipitation r(t) (mm/day) are from the Tone-River-Dams Control Office report
(1967). Figure 10.3 shows the autocorrelation function p,(t) of the river flow

q(t) and the cross-correlation function prq(t) between the river flow q(t) and the

Correlation

. o N i N
1 \4—/ \\‘ II'
- \\ )
0.3 N
T T T T -1 T T 1
0 10 20 30 40

Time Lag (days)

Fig. 10.3 The autocorrelation function p,(t) and the cross-correlation
function prq(t). ————= pq(t); —_—= prq(t). Reprinted,
by permission, from Ikeda et al. (1976a).
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areal mean precipitation r(t) calculated for the data for the period 1 May to 31
August 1964.

1 123-t
p q(t) =133 -t z q(s)q(s + t)
s=1
1 123-t
qu(t) =733 -1 521 r(s)q(s + t)

From Fig. 10.3, the length of the prior interval to be included in the model was
chosen to be 10 days. First, the original input variables were selected from data
from up to 10 days before the study:

{r(t),r(t - 1),...,r(t - 9);q(t),q(t - 1),...,q(t - 9)}

and the output variable is the one-day-ahead river flow q(t + 1). Next, with the
use of the data from 1 May to 31 August 1964, the best forecasting model was found
following the procedure from Step 3 to Step 6 in the basic GMDH algorithm.

From this, we obtained an input-output relation of a simple polynomial of second
order given by

q(t + 1) = - 0.2001 + 0.9846q(t) + 0.2245r(t) - 0.0180q%(t)
) (10.6)
+ 0.004r°(t) - 0.0048q(t)r(t) .

Using the prediction model (10.6), the one-day-ahead prediction is carried out for
the period 1 May to 30 June of the next year (1965). The tracking behavior of the
predicted values qj(t) is shown in Fig. 10.4. The root-mean-square error for

50_]
40ﬂ
30
20

10

River Flow and Predicted Value (m3/sec)

May 1965 June 1966

Fig. 10.4 The tracking behavior of predicted value qp(t)
together with the actual flow gq(t). — =
q(t); --- = q;(t). Reprinted, by permission,
from Ikeda et al. (1976a).
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that period becomes:

1 June 30 5 1/2
0= 7 1 [at) - q(v)] = 3.87 . (10.7)
t=May 1

It is surprising that the simple nonlinear prediction model (10.6) gives good
estimates. However, it underestimated some peak points from 27 May to 4 June 1965.

MODIFIED GMDH ALGORITHMS
In order to improve the prediction of high river flows, two self-organized identifi-
cation methods were used, which are modified versions of the basic GMDH algorithm as
outlined in the previous seetion. The main improvements are in the selection rule

for input variables and the generation rule for intermediate variables.

Procedure of the Modified GMDH Algorithms

Step 1: Select input variables.
Step 2: Divide the original data into training and checking data.
(These two steps are the same as those of the basic GMDH algorithm.)

Step 3: Suppose that we have the intermediate variables zi(k), (1 =1,2,...M)
for layer k. For k = 1 we set zj ) xi,(1 = 1,2,...,M). We
determine the intermediate variables for layer (k + 1) according to
procedure A or B:

(A) (i) Transform the intermediate variables zi(k) by the second-
order polynomial:

(k) _ (k) (k),2 ., _
Zi = ajq + a;124 + aiZ(Zi )<, 1 =1,2...M, (10.8)

where the coefficients aj 1y (f = 0,1,2), are determined by using
the training data so as tg minimize the mean square error

between the output y and the transformed variables ii(k). The
upper bar denotes sample mean. The transformed variables ii(k),
for checking data, should also be generated by (10.8).

(1%&)Comb1ne the transformed intermediate variables ﬁi(k) and

23 generated in (10.8) by the partial polynomial:
(k+1) _ a (k) (k) s (k)2
) = bgg + bggZy + bgpt 4 b5 (2,70
(k),2 {k)y (k)
+ bM_(Q:l Yo+ bl521 ij ,

(10.9)
1, = 1,2,000,M , 1431,

£ =1,2...,M(M - 1)/2 ,
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where the coefficients by;(j = 0,1,...5) are determined by using
training data so as to minimize the mean square error,

— T
522 =y - z, kel)ye | L= 1,2,004,M(M - 1)/2,
between the output y and the intermediate variables z (k+l). The

same transformation (10.9) should be applied to checking data.

(B) Generate the following partl?l polynomlals with all possible

combinations of zy (k) and z;

2, Lo (k) (k) (k), (k) (10.10)

+ C + C

21%1 * %% 3% %

1,5 = 1,2,000,M

L= 1,2,0..,M(M + 1)/2 .
When i = j, we use the following polynomial:

2 (k+1) _ d (k)

(k))2
2 20

+dp12y + dzz( ’ (10.11)

where the coefficients cg3, (j = 0,1,2,3) and dy5 (j = 0,1,2) are
determined by using traln{ng data so as to minlm{ze the mean
square error eg between the output y and the intermediate
variables zg(k+l). We thus have the intermediate variables
zg(k+1) for layer (k+l).

(k+l)

Select intermediate variables (say, ZZ £ =1 12y 0005My } which
give M; smallest mean square errors eg” for the checking data. In
the case of (A), we set M = Mj. In the case of B, we add M, original
input variables and set M = M} + My (See Fig. 10.1).

Replace k by k + 1 and go to Step 3. Repeat from Step 3 to Step 5
until the mean square error st of the best predictor zy in the present
layer exceeds that of the best one in the previous layer.

In addition to the above procedure, the selection rule of the intermediate
variables and the separation rule of the training and checking sequences are
changed so as to find the optimal prediction model in the same way as the basic

GMDH.

It should be noted that the resultant complete description of the input-output
relation in (A) is more complex than that of the basic GMDH for the same number of
layers; that 1s, we can obtain a higher-order polynomial with a smaller number of
layers. Meanwhile, in the case of (B), although the partial description (10.10)
or (10.11) has only the simplest nonlinear term (cross products of each variable)
we can expect to have a different type of nonlinear input-output relation, one
which contains more features of the system in the form of variables that once
might have been discarded at an earlier stage.
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Adaptive Forecasting Models of River Flow

In addition to the modifications of the GMDH algorithm, an adaptive scheme of the
forecasting model will be introduced to promote the applicability to river systems
with limited input-output data. Let the original data from only the past 30 days
be used on each day. The training data and checking data are taken alternately
from the original data sequence. Since the content of the data sequence is
renewed from day to day, the structure of model equation (10.1l) is not always the
same for each day. As a typical forecasting example, the above algorithm was
applied to the modeling of the rainy season in Japan in June. Figure 10.5 shows
the tracking behavior of the predicted values qz(t) and q3(t) of the river flow
q(t) for the period 1-30 June 1965, where

q2(t): the predicted value of the basic GMDH;

q3(t): the predicted value of the modified algorithm (A);
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Fig. 10.5 The tracking behavior of predicted values gj(t)
(i = 2,3) together with the actual flow q(t).
— =q(t); --- = qp{t); ———= q3(t).
Reprinted, by permission, from Ikeda et al.
(1976a).

In these calculations, the number of "useful" input variables and the number of
intermediate variables were optimally chosen to be ten and five for q3(t) and for
q2(t) the optimal numbers were eight and five. In the modified algorithm (A), ten
"useful” input variables were taken as

{r(t),r(t = 1),ee0,r(t - 5); q(t),q(t - 1),euu,ql(t - 3)} ,

and fixed throughout the experiment. As mentioned previously, the structure of the
forecasting model for each day can vary. An example of the structure of the fore-
casting model, the final polynomial for q3(t) on 5 June 1965, is given in Table 10.l.
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In this case, the final description (the forecasting model for 5 June 1965) has
passed only two layers, but it contains various orders of polynomials up to the
sixth order. We can easily see from Fig. 10.5 that a considerable improvement is
attained for predicting peak values by the modified algorithm A.

In fact, the root-mean-square errors

June 30 1/2

1 v 2
O; = =~ ! [q(t) -q (t)] y 1=2,3
1730 t=June 1 i
are given as follows:
0, = 3.27 , o3 = 1.86 (10.12)

For comparing the performance of our model with hydrologic models, the tracking
behavior of the predicted values q3(t), q,(t) and qg(t) of the river flow q(t) is
shown in Fig. 10.6, where:

q4(t)= the predicted value of the "tank model" of Sugawara (1961);

qs(t): the predicted value of the "storage function method" (Linsley et al.
1949).

20

River Flow and Predicted Values (m3/sec)

June 1965

Fig. 10.6 The tracking behavior of predicted values q,(t) and gg(t)
from hydrologic models together with q3(t) and the actual
flow q(t). —— = qlt); - — - = q3()5 --- = qu(t);

— -- — = qgg(t). Reprinted, by permission, from Ikeda et
al. (1976a).

Here, the predicted values q4(t) and qg(t) are taken from the Tone-River-Dams
Control Office report (1967). The root-mean-square errors of hydrologic models
are given as follows:

Oy = 2.23 , Og = 5.19 (10.13)
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We can see from (10.12) and (10.13) that the predicted values by the self-organiza-
tion methods such as the basic GMDH and the modified algorithms are as accurate, or
more accurate than those of the elaborate hydrologic models, such as the "tank
model" or "storage function method" models. The modified algorithm (A) shows the
best tracking behavior for sudden changes of the river flow.

Application to the Water Quality Forecasting Model

The modified GMDH algorithm has also been applied to forecasting models of water
quality of the Tama River basin located in the Tokyo Metropolitan area (Ichikawa
and Ikeda 1976). The river basin, shown schematically in Fig. 10.7, is about

QOguchi Dam Hamura Weir

TOKYO

Hino-
bashi
Bridge

Kawasaki

Elevation {m)

QOguchi Dam

Hamura Weir .

Hino-bashi Bridge

Chofu Point
T T T

T — T
100 80 60 40 20 0
Distance from Mouth of River (km)

Fig. 10.7 The Tama River basin (Area: 1,200 km?).

1,200km? in area and has several observation points. Water quality data used here
was gathered from the Tokyo Metropolitan Government, the Ministry of Construction,
and other organizations responsible for water quality. Therefore, it is
inevitable that the data has a lot of errors.

Since each item of water quality, such as turbidity, chemical oxygen demand (COD),
biological oxygen demand (BOD), NHgi-N, pH, and conductivity, depends on various
elements (flow rate, temperature, population, and so on) and has interrelations
with others, forecasting models of water quality must be identified with
consideration of the nonlinear interactions between the variables.

First, time series data of each item were treated by standard statistical analysis;
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that is, several statistical measures were computed (average, variance, correlation,
power spectrum, correlogram, and so on). Next, from these statistical data and
from physical considerations, we selected some useful input variables related to
the water quality item of interest. Then, one-day-ahead optimal forecasting models
were selected as multivariable nonlinear regression equations described by some

items of water quality such as NHy-N, COD, conductivity and flow rate, together
with their delayed arguments.

The design parameters (heuristics) used in this modeling are as follows:

(1) Number of input factors: 4 elements of water quality and a prior interval
of 5 days.

(2) Length of data sequence to be taken in the modeling: 30 to 50 days.

(3) Five to seven days taken in each layer.

mg/liter m3/sec
5
40 .
3"1
204 X
1 ¥ shx b
Q)
1 4
(c) Flow rate
0 0 ) T L
0 10 20 30
May 1972 May 1972
. m3/sec
mg/liter
20
8|
104
(d) Flow rate from Rainfall
ol f1COD . ’ 0 : ! .
0 10 20 30 0 10 20 30
May 1972 May 1972

Fig. 10.8 One-day-ahead forecasts of water quality by the
modified GMDH. (a) NHy-N concentration; (b) COD
concentration; (c) and (d) flow rates. e -
observed value; x - predicted value.

Figure 10.8 shows some examples of the prediction for NHy-N, COD, and flow rate.
The variables contained in these models are as follows:

(a) NHg-N: C0D, conductivity, NH,-N, flow rate at Chofu;
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(b) COD: COD, conductivity, NH4-N, flow rate at Chofu;
(c) Flow rate: Flow rates of several upper points;
(d) Flow rate: Flow rate at Chofu and rainfall (averaged).

As far as water quality data are concerned, the number of facts were limited
because of a lack of data, especially of consecutive daily data. Therefore, in
selecting input factors, it is natural to use some heuristic considerations. For
example, in Fig. 10.8c, which shows the good fit of the forecast, it is evident

that flow rates of upper streams play essential and deterministic roles. Meanwhile,
for a water quality index such as NH,-N, COD, shown in Fig. 10.8a and b, it is

very difficult to have an exact forecasting model owing to the use of daily
instantaneous sampling data, although rough daily estimations were obtained. Figure
10.8d is the forecast of the runoff at Chofu from the past rainfalls and water
levels. Better forecasts could be obtained if input factors were based on averaged
rainfall of the upper, middle, and lower stream basins and not only on the averaged
rainfall in the whole river basin.

One is able to say that the adaptive identification scheme of GMDH, described in
this section, has a soft structure which supposes forecast models of water quality
that can be adjusted to latest and limited numbers of available data. 1In
particular, since the water quality varies with the seasons, and because of changes
in artificial pollutants, this adaptive identification scheme can easily adjust

the structure to use recent observation data. However, this algorithm sometimes
has a certain kind of instability, that is, a tendency to overestimate peak points
owing to the small amount of data. This sometimes yields a high-order polynomial
which contains only a small number of variables. To handle this problem, a
sequential GMDH will be given in the next section.

SEQUENTIAL GMDH ALGORITHM

In order to stabilize the structure of the prediction model and to shorten the
computation time, a sequential formula of the GMDH was developed (Ikeda et al.
1976b). First, the optimal nonlinear structure of system (10.1) is determined by
the use of the modified GMDH algorithms for the period of interest. Next, whenever
new measurement data are obtained, the coefficients of partial descriptions (10.8)-
(10.11) are changed sequentially according to the following procedure.

Sequential Procedure

Consider the following equation for each partial description:
A X=Y , (10.14)

where A, is a p x 1 matrix, X is a q x 1 coefficient vector, and Y, is a p x 1
output vector. The integer q is equal to 3 for (10.8), 6 for (10.9?, 4 for (10.10),
and 3 for (10.11).

When Ap has a maximum rank, the least-squares solution is given by:

o - (ATAP)-IA; Y, (10.15)

)

where (A)'1 denotes the inverse of matrix A and AT denotes the transpose of matrix A.
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Now, suppose we have an additional equation:
T

B'X = Zp+l (10.16)

where B 1s a q x 1 vector obtained by a new measurement and Zp41 is the latest
output. Then, combining (10.14) and (10.16), we have

Ap+l X = Yp+l , (10.17)
where A Y
Al P Al P
Ap+l = ' Y +1 = |z *
BT P p+l
For (10.17), the least-squares solution for (10.15) becomes:
B T -1 .7
xp+l* = (A p+l Ap+l) A p+1 yp+l . (10.18)

Now, let us establish a recursive formula to simplify the computation of the
optimal solution Xp,1* with new measurement data. If we define

T, -1
P = (A pAp) , (10.19)

then

-1 T T

Pp+l = A o+l Ap+l = A o Ap o * B8 . (10.20)

A matrix inversion lemma for (10.19) and (10.20) follows Sage (1968). If matrices
Pnils Pns Hny1s and Rp,] satisfy the equation:

1 -l T -1
pn+l - Pn + H n+l Rn+1 Hn+l '

and Pn,1» Pn'l, and Rn+1'1 are nonsingular, and Hp,] 1s of maximum rank, then P, ;
is given by

-P -P H _(H .P H + R

-1
n+l n n n+l " n+l n n+l n+l)

Hn+l Pn . (10.21)

Here we set H;+l = B and Rp,) = Iq (3 q x q identity matrix), then from (10.21) we
can obtain the following equation:

T 1T
P .-P -P B(BP B+1)1aP . 10.22
pr1 = Pp - Pp BBP, B+ 1) P ( )

Substituting (10.22) into the optimal solution (10.18), we obtain the recursive
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equation:

T
Xp+l - Pp+l (A p Yp p+l

T -1 T
X% + Py BBP B+ 1)70(z - BIX %) . (10.23)

The initial values Xy and Py are given by the modified GMDH. Thus, we compute
only the inverse of a scalar (BTP B + 1), instead of computing the inverse of a
(p+1) x (p+l) matrix in (10.18). "This procedure is repeated for the partial
descriptions in each layer.

This algorithm is effective when the input-output relation of the system changes
gradually, owing to the nonstationary elements or some other unknown factors. We
change only the parameters of the obtained structure gradually, keeping a stable
skeleton of the system's nonlinear structure. Computation time is smaller in
comparison with that spent by the basic GMDH algorithm, owing to the sequential
nature of the algorithm.

A Sequential Forecasting Model of River Flow

First, as a stable structure of the initial forecasting model we employ the follow-
ing input-output relation (10.6) which was determined by using the modified GMDH
algorithm and data from 1 May to 31 August 1964:

g(t + 1) = - 0.2001 + 0.9846 q(t) + 0.2245 r(t) - 0.0180 q2(t)

+ 0.0041 r2(t) - 0.0048 q(t) r(t) . (10.6)
Next, sequential formula (10.23) is applied to the one-day-ahead prediction for
the period 1 June to 30 June 1965.

The tracking behaviors of the actual flow q(t) and the predicted values qy*(t) and
q2*(t) are shown in Fig. 10.9, where

ql*(t): the predicted value by the sequential algorithm (10.23)
qz*(t): the predicted value by model (10.6).

The root-mean-square errors, as defined in (10.7)

1 June 30 2 1/2
0.% = == (q(t) - q,*(t)) y 1 =1, 2,
17 30 _gune 1 i
are
oi* = 1.84, 02* = 2.07

CONCLUDING REMARKS

There is no methodology that covers all aspects of forecasting models in various
situations for water management systems. The GMDH algorithms have both strengths
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Fig. 10.9 Tracking behavior of predicted values q;*(t) and gp*(t)
together with actual flow q(t).

and weaknesses compared with other forecasting methods. Generally speaking, to
apply hydrologic forecasting models to actual situations, adequate data, sophisti-
cated computation, and a special knowledge of hydrology are required. On the
other hand, our heuristic self-organized model is considered to have the following
features: algorithmic simplicity (without any special knowledge of hydrology),
short computation time, and applicability to a small amount of data. It is
acknowledged that these models may not fully explain the physical characteristics
of the runoff mechanism or transformation of water quality in streams.

The GMDH algorithm has great potential for absorbing heuristics from the specialists
versed in hydrologic phenomena. It is therefore one of the strongest tools for
modeling nonlinear complex systems for both specialists in hydrology, and non-
specialists working in related areas.
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Part Two

Control of Water Resource Systems






Introduction

The development of water resource projects requires the formulation of strategies,
or operating policies, for their operation. Most operating policies are developed
using long time horizons and the expected benefits of the system are assessed over
the life of the system. Nevertheless, it is only when the project is operating on
a day-to-day basis that its benefits are realized. Essentially, the optimal
control of a water resource system implies the operation of the system so as to
optimize some performance function. This optimization problem can be divided into
the following parts:

- Definition of the performance function

- An internal description of the system and pertinent information about the
state of the system

- Determination of the best policy from (1) and (2).
An example of a control system would be a regulator for a water distribution network
that maintains water pressures within the system through the use of pumps and
supplementary reservoirs. The description of the system is provided by the physical
laws of fluid flow through pipes and the actual network configuration. The control

system would have sensors measuring water pressure at various locations in the
network. The performance function may be of the form

) - J[pow - plx,t)] 2ax

where

po(ﬁ) is the target pressure as a function of location x.

p(x,t) is the measured pressure at location x and time t.
The optimal control problem can now be stated as:
From among all the admissible control functions (or policies) ueU, find the one
that minimizes J(t), over all t, subject to the constraints of the internal dynamic
system and all initial and terminal boundary conditions that may be specified.

The definition brings forward the important concept of controllability. If the
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system is completely controllable, then there exists at least one policy, u(-),
which can guide the system from its initial state to some other desired state.
Controllability does not guarantee that a solution to the optimal control problem
exists since the required control may not exist in the admissible set U. On the
other hand, if a system is not controllable, it is not very meaningful to search
for the optimal control.

One can imagine other water resources control problems besides the above example:
the operation of a reservoir during a flood, the operation of wastewater treatment
plants, the operation of irrigation supply canals, and so forth.

OPEN-LOOP AND CLOSED-LOOP CONTROL SYSTEMS
The example presented above represents an important class of control problems
known as regulator problems. The problem is to find the appropriate control policy

u(-) so that the controlled variable, p(x,t) in the above example, tracks the
reference variable p,(x), that is,

p(x,t) = po(z_) t>t

where t is the time at which control begins.

There are two types of controllers that can be distinguished: open-loop and closed-
loop. Open-loop controllers generate control policies on the basis of past and
present values of the reference variable, as shown in Fig. 1(top). Closed-loop
controllers, shown in Fig. 1{bottom), take advantage of the measurement information

w(t) vit)

|

Controller utt) System Xt H 02 z(t)
|
rit)
wit) vit)
uft) System x{t) " » 2(t)
ult) Controller .

rit)

Fig. 1 (top) The open-loop control system. (bottom) The
closed-loop control system.
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provided by the sensors about the state of the system. The control policy becomes
a function of both the reference variable and the measurements on the system. In
Fig. 1, w(t) and v(t) are system disturbances and measurement error, x(t) is the
state vector, H is a measurement system, z(t) are the measurements of the state
variables, and r(t) is the reference variable for the controller. The system
dynamics are assumed to be known,

Closed-loop controllers are much more powerful than open-loop controllers because
they can accumulate information about the system during operation that will assist
in developing an operating policy that compensates for disturbances.

Open-loop controllers do not have access to such information, so models in which
they are used have to represent very accurately the causal links in the system to
prevent it from wandering away from the desired targets.

STOCHASTIC CONTROL

In the real-time operation of hydrologic systems, it is unreasonable to assume
that future states of the system are known. The control policy must be determined
in the presence of unpredictable dynamics and state measurements. This is the
stochastic control problem and it has not been widely applied to water resource
systems.

To return to the water distribution example, a stochastic control problem would
exist if the pipe friction was not perfectly known; if there were large and unex-
pected withdrawals, for example, for fire-fighting, at some location; or if the
sensors measuring the pressure were inaccurate or incorrectly located.

The optimal, stochastic control problem is to determine the operating policy that
optimizes the expected value of the performance function. The performance function
is a random variable because the state of the system is uncertain.

Sorrenson (1976) points out that for stochastic systems, only closed-loop policies
can give meaningful results. The performance of the open-loop control will be
sensitive to the disturbances, but the control policy cannot be adjusted to
compensate for them. Furthermore, this lack of causality really precludes the use
of statistical black-box forecasting models for open-loop control.

In the closed-loop control situation, the control policy, u(t), is a function of
the state. For linear systems with a quadratic performance function, the optimal
policy u(t) is a linear feedback law, u(t) = -K-x(t). Part One of this volume
considered the forecasting of states, x(t), when both the system equation and the
measurements were subject to noise. The question now arises as to what will be the
optimal control? It turns out that for linear systems corrupted by Gaussian noises
and a quadratic performance function, the problem can be divided into two sub-
problems: find the optimal state estimator (in a least-squares sense) using, for
example, a Kalman filter; and compute the control policy u(t), as if the state
estimate K(t) were the true value x(t), within a deterministic controller. This is
the well-known separation theorem (Astrdm 1970, Bryson and Ho 1975, and Casti 1977
all give good accounts of the theorem). A box diagram of the separation principle
is given in Fig. 2 for closed-loop control.

Because of the importance of closed-loop control systems, the separation theorem

is an important result for those situations where the assumptions hold. The theorem
also points out the important relationship between the forecasting and control
problems.
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Fig. 2 Optimal closed-loop control showing the
separation principle.

ADAPTIVE CONTROL

Up until now in the stochastic control problem, we have assumed that the system
dynamics, the relationship between x and v,w, were known. There are many situations
in which these dynamics are not known and, in Part One, adaptive identification
procedures were discussed for simultaneously forecasting parameters and states.

An analogous situation exists in the control problem - the adaptive, stochastic
controller, Here the problem is to develop the control policy u(t) and learn about
the system (that is, identify the system) simultaneously. This problem is discussed
in more detail by Sz8118si-Nagy and Wood in Chapter 12.

ON-LINE VERSUS OFF-LINE CONTROL

Much of control theory is concerned with computing the control strategy during
normal system operation. With closed-loop control, this would also entail the
monitoring and processing of measurement data and the determination of the controls.
Such a mode of operation is called on-line or real-time control.

Another mode of operation, often called off-line control, would record the measure-
ment data for later analysis. The computation of the control policy and its
implication are separated in space and time. In many practical situations, off-line
control can provide adequate results. If the time constants of the system are very
long (that is, the response of the system to a control u(t) is on the order of days)
as is often the case for certain water resource problems, then off-line control may
be adequate. Off-line control avoids the problem of having extensive on-line
computer facilities with the capability to process measurement data and determine
controls very quickly. In many situations, it is just not required. Nevertheless,
one still utilizes the results from the optimal stochastic control problem. One
must determine the speed at which the new control for the time t+At needs to be
computed and ready for implementation, that is, the magnitude of At.

In the water distribution example presented earlier, one could imagine the need for
on-line control because of the need to respond quickly to pressure fluctuations

and because of the nature of the measurement system. For control of reservoir
systems, off-line control may be suitable. For the problem of maintaining minimum
flows for navigation or water quality maintenance, it may be adequate to have the
states of the system (downstream stages, tributary discharges, reservoir levels,
and so forth) measured once a day, have the data collected, analyzed, and the new
control, u(t+At), determined away from the controller. The new control setting
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would then be implemented. The cost of such off-line control would be less than
for on-line, automatic control.

LITERATURE REVIEW

There are a number of good, basic books on control theory. Good accounts of the
deterministic control problem can be found in Kirk (1970), Brogan (1974), and
Bryson and Ho (1975), and for stochastic control in Aoki (1967), Sage (1968),
Astrdm (1970) and Fleming and Rishel (1975). Survey papers on the concepts and
techniques of stochastic control theory have been written by Wittenmark (1975),
Bar-Shalom and Tse (1976), and Sorrenson (1976).

The use of modern control theory for water resource systems has had only limited
applications. Most of the work in reservoir operation has assumed a deterministic
system and has concentrated on the long-term control policy, that is, a long-term
strategy, often monthly, based on capacity, average demands, and prediction of
monthly inflow from historical records. The problem is usually structured as an
open-loop, deterministic control problem. Work representative of this approach
includes Schweig and Cole (1968); Revelle et al. (1969), Gundelach and Revelle
(1975); Leclerc and Marks (1973); Becker and Yeh (1974), Wilkinson (1972), Askew
(1974) and Cole (1974). The problem of adjusting these controls in light of
actual demands and inflows has not been fully considered, even though Mejia et al.
(1974) compares the improved benefits from such policies over the "fixed" policy
analysis. Jamieson and Wilkinson (1972) considered short-term reservoir control
but assumed that the states and the system dynamics were known.

For deterministic control theory applied to water resource systems in general,
there are papers by Buras (1967), Larson and Keckler (1969), and Jamshidi and
Heidari (1975).

Some work has appeared applying stochastic control theory to water resource
systems: Bather (1962), Levin (1969), Croley (1974), Takeuchi and Moreau (1974),
and Strupczewski et al. (1975).

In the areas of water quality and wastewater treatment, more work has appeared in
applying the concepts of modern control theory; see Dysart and Hines (1970), Winn
and Moore (1973), Tamura (1974), Koivo and Phillips (1975), Gourishankar and

Lawson (1975), Lin (1975), Powers and Canale (1975), Singh (1975), Young and Beck
(1974), Huck and Farquhar (1974), Penumalli et al. (1976), and Williams and Hinwood
(1976). For distributed parameter systems, which are much more difficult to handle,
there has been some work by Tarassov et al. (1969), Davidson and Bradshaw (1970),
Hullett (1974), and ﬁzgdren et al. (1975). In control for waste treatment plants,
there has been work by Berthoeux et al. (1975), Fan et al. (1973), and Andrews
(1974) as well as others. The more extensive use of modern control theory in

water quality may be due to the fact that the systems can be described by a set of
differential equations, upon which the state-space techniques are based. Surveys
of recent work in water quality and wastewater treatment are given by Olsson

(1977) and in Chapters 6 (by Olsson) and 11 (by Beck).

There are four papers in this part of the volume. Beck (Chapter 11) develops the
concepts for forecasting and control of water quality around three case studies:
in-stream quality control, state reconstruction in a wastewater treatment plant,
and prediction for urban sewer flows. Chapter 12, by Sz8118si-Nagy and Wood,
develops the concepts of adaptive feedback control, beyond what has been given in
this introduction, using a Bayesian approach. The final two papers present
applications. Maidment (Chapter 13) applies the state-space approach to reservoir
control. This paper shows that one need not develop an automatic control but
rather could have manual or off-line control based on state forecasts. This may be
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more practical in real-world applications. In Chapter 14, Stehfest looks at the
problem of real-time control of dissolved oxygen in rivers.
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11 Forecasting and Control of Water Quality

M.B. Beck

Seven or eight years ago the idea that principles of control engineering should be
applied to water resources management had barely germinated in the minds of the
control engineering fraternity. Equally, the idea of automation in the water
industry was, with few exceptions, alien to the practising profession of water and
wastewater engineering. It seemed then that the word control as used in control
theory had a very different meaning from the word control in water quality control;
water quality control was interpreted as meaning control by legislation and control
by the more effective design of treatment plants (be they plants for water purifica-
tion or for sewage treatment). Most significantly, it was not apparent to the
control engineer that water quality control was being interpreted, at that time, as
the more effective operation of a treatment plant.

A number of articles drawn from the recent control-oriented literature (Gourishankar
and Lawson 1975, Lin 1975, Ozgoren et al. 1975, Powers and Canale 1975) and the
environmental engineering journals (Berthoeux et al. 1975, Huck and Farquhar 1975,
Penumalli et al. 1976, Williams and Hinwood 1976) show that the situation is now
changing rapidly. Even so, the practice of automated water quality maintenance is
in its infancy; the time is still ripe for carefully considered discussion of
simple, basic concepts and problems before further exploration of the possibilities
for sophisticated solutions. This paper attempts, therefore, to take a comprehensive
look at the dynamic aspects of water quality modeling and control; it introduces
some of the fundamental techniques and principles of control theory and indicates
how they might be put to good use in the organization and operation of systems for
water quality management. The discussion is set primarily against the background

of several previous reviews of the state of the art in water quality management
(Andrews 1974, Buhr et al. 1974, Olsson 1977, Beck 1976a).

ASPECTS OF WATER QUALITY IN WATER RESOURCE SYSTEMS

Real-time forecasting and control of water quality has received relatively little
attention in comparison with analogous problems of river-flow prediction and
regulation probably because flood damage prevention and drought alleviation are
more obvious targets for problem solving and capital investment, the benefits of
"cleaner" rivers are largely intangible, and the instrumentation available for
water quality forecasting and control is at present very limited. Certainly, from
the point of view of economics, it has generally been assumed that running costs of
the water and wastewater industries are small, if not negligible, when compared
with their capital costs. This assumption provides no incentive to develop
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innovative techniques of forecasting and control and has led to a preoccupation in
water quality modeling studies with steady-state analyses of long-term investment
plans.

In a country such as the U.K. where water resources are used intensively, the
management of river water quality, in real-time, is becoming increasingly important.
Thus, as a possible motivation for studying this subject we might resolve the
conflict of alternatives between the qualitative and quantitative aspects of water
resources into the grossly simplified situation of Fig. 1l.1. The alternative of

RESERVOIR (CAPACITY C) RIVER

FLOW
URBAN/ INDUSTRIAL
COMMUNITY

O«

S POTABLE WATER SUPPLY

E  EFFLUENT DISCHARGE

A ABSTRACTION FROM RIVER

() CURRENT SITUATION

Cl(Cl>C°)

() "QUALITY" RESOURCES (c) "QUANTITY” RESOURCES

Fig. 11.1 Qualitative and quantitative alternatives for water
resources management: (A) current situation; (B)
future policy alternative exploiting use and reuse
of river water by management of river water quality;
(C) future policy alternative based on increased
exploitation of clean water sources. Notational

relationships: Si>51; Sé>52; Ei>El; Eé>E2.

constructing more or larger reservoirs or both (Fig. 11.1C) simply to satisfy the
increased demands in the adjacent urban/industrial centers can largely be discounted.
The other alternative (Fig. 11.1B) of river regulation as an integral component of
river basin management (e.g., Water Resources Board 1974) implies, among other
factors of real-time hydrological operations, a growing emphasis on knowledge and
control of river water quality.
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If we look more closely at the urban/industrial community of Fig. 11.1B (the
dashed-line box) the fundamental component features of water quality may be
conveniently summarized by the water quality system of Fig. 11.2 (Beck 1976a). To
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Fig. 11.2 The water quality system; the fluxes of material v
are vectors comprising volumetric flow rate and a
number of water quality characteristics (from Beck
1976a).

see how the four subsystem blocks of Fig. 11.2 represent all the essential
modifications, disturbances, and interactions of water quality, an analytical
picture of a hypothetical river system can be constructed as in Fig. 11.3. This
particular rearrangement of the subsystem blocks enables us to formulate two basic
control problems of water quality. Fig. 11.4 shows thus the input/output relation-
ship between waste discharges from urban/industrial center U) and the potable supply
to the next downstream community U,. First, consider the control of the treated
discharge v3; to the river given the input disturbances v.,. Here the control
objectives are to minimize the deviation of the (intermeafate) output v34 about

some desirable time-invariant set-point on the output, i.e., the requlator problem,
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Fig. 11.3 Analytical picture of a hypothetical water resource

system. Uj and Uy represent urban/industrial
centers; the block numbers refer to the subsystems
defined in Fig. 11.2.
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Fig. 11.4 Basic input/output flowchart for U; and Up in Fig. 11.3.

Fig. 11.5 (top).

The dashed lines indicate the division of the flowchart
for consideration of the control problems in Fig. 11.5.

variations imposed on the river's quality resources by land runoff and upstream

disturbances,
For a process

%04. The other control problem is illustrated by Figure 11.5 (bottom).

subsystem) that receives a steady load input vg; (i.e., constant

In fact, the controller should also attempt to "eliminate" load
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¥34 AND Yyo
TIME ¢ TIME +
INTERMEDIATE INPUT OUTPUT v, (FLOW COMPONENT)
¥o1
TIME < ' TIME «

Fig. 11.5 Control problems in the water quality system: (top) in
the regulator problem the controller attempts to provide
a constant output given a time-varying input load;
(bottom) in the servomechanism problem the controller
forces the output to follow some specified time-varying
performance while the input load is constant. (The
dashed lines denote that conditions in the upstream
reach of river and desirable conditions in the down-
stream reach of river may not necessarily be time-
invariant; this will impose variations (of quality) on
V34 and vgy.)
abstraction rate), the control objective may be to minimize the deviation of the
output vic from a prespecified, time-varying, output demand function (or supply
curve); this problem is commonly referred to as the servomechanism problem.

The application of effective control to a process requires sufficient flexibility
in the process behavior to make the necessary control maneuvers. In other words,
in the familiar setting of the flood regulation problem, a reservoir of relatively
small storage capacity would be of little use as a control mechanism. It is
precisely this lack of visible flexibility, or storage capacity, which makes the
system of Fig. 11.4 a difficult process to control. In the following, then, our
ultimate objectives are to investigate how best to utilize real-time forecasting
and the control of existing ambient storage (in the sewer network and wastewater
treatment plant) for the management of river water quality.

Most studies of control system design assume that a model of process dynamic
behavior is available. Unfortunately this is rarely the case for the unit processes
shown in Fig. 11.2; again, perhaps this is another factor contributing to the
overall lack of control and forecasting applications in water quality systems.
Although we shall not deal with the subject here, the analytical step entitled
"Identification and Estimation" in Fig. 11.6A is an important prerequisite for
control system synthesis. Notice also in Fig. 11.6A that instrumentation is both a
barrier in undertaking experimental studies of process behavior for system
identification and parameter estimation and a fundamental problem for control
implementation. That is to say, process behavior can be controlled no more
accurately than it can be observed. Detailed discussions of modeling and system
identification can be found in the general texts by Astrdm and Eykhoff (1971) and
Eykhoff (1974); more specific comments on the identification of biological process
models in wastewater treatment and river water quality are presented elsewhere
(Beck 1976éb, Beck 1977b).

Figure 11.6B summarizes the various types of problem that one may wish to solve for
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Fig. 11.6 Modeling and control: (A) the iterative nature of
experiment, analysis, synthesis, and implementation
in practice and thelr relationship with process
instrumentation; (B) problem definitions.

forecasting and control purposes. With respect to Case Study 3 below it can

be seen that a simultaneous solution of the "simulation" and "analysis" problems
leads to the idea of an adaptive, self-tuning prediction scheme. Similarly,
algorithms combining the tasks of learning (modeling, analysis) and control are
known collectively as adaptive controllers.

CONTROLLERS AND CONTROL SYSTEM DESIGN

In a controlled process the functionof the controller can be defined as follows:
a controller collects all available information (measurements) from the system
being controlled and uses it to manipulate some of the system inputs, u in Fig.
11.68, in order to bring about some desired process performance, as gauged by the
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behavior of the output y in Fig. 11.6B. The controller design is usually based
on two general principles, the feedforward principle and the feedback principle.
See MacFarlane (1976) for a discussion of the feedback principle.

Let d(t) be a measurable disturbance variable, y(t) a control (manipulable) input
variable, and y(t) the controlled output variable, where t is the independent
variable of time. In order to illustrate the principles of feedforward and feed-
back controllers we shall transfer the analysis from the time domain to the
frequency domain by introducing the Laplace transforms D(s), U(s), and Y(s) of
the variables d(t), u(t), and y(t). Many standard texts on control system design
are developed around an analysis of process dynamics in the frequency domain; see,
e.g., Coughanowr and Koppel (1965) and Dorf (1973). The feedforward principle 1is
concerned with the rejection of measurable disturbances. Fig. 11.7 illustrates

Us) Y(s)

D(s)

!
!
L F(s)
i
i

CONTROLLER :

Fig. 11.7 The feedforward controller principle.

this principle, where G(s), E(s), and F(s) are transfer function relationships
between the variables U(s) and Y(s), D(s) and Y(s), and D(s) and U(s), respectively.
We have then,

Y(s) = E(s) D(s) + G(s) U(s) = (E(s) + G(s) F(s))D(s) (11.1)
and if the controller f(s) is designed so that
F(s) = -E(s)/G(s) (11.2)

we see that the effects of the disturbances D(s) on the output Y(s) are canceled.
Unfortunately, the feedforward controller suffers from three major disadvantages:

- It requires accurate measurement of the disturbances for the signal fed into
the controller.

- It requires an accurate model of the process dynamics, i.e., G(s) and E(S)
in (11.2).

- It does not utilize a measurement of the output Y(s) and therefore cannot
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take account of any inevitable misalignment of desired and actual performance
of the process.

In view of the disadvantages of feedforward control - and these would appear to be
especially severe with respect to the water quality system where there are poor
models and poor measurement facilities - it is perhaps a little surprising to see
this concept being promoted in some of the recent literature (Buhr et al. 1974,
Institution of Chemical Engineers 1974).

} PROCESS :
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Fig. 11.8 The feedback controller principle.

The feedback controller is concerned with the rejection of unmeasurable disturbances,
N(s), for example, as shown in Fig. 11.8. In this case,

Y(s) = G(s)U(s) + H(s)N(s) (11.3)

and
U(s), = K(R(s) - Y(s)) (11.%)

where R(s) is a variable expressing the desired performance of the ouput Y(s).
Hence, on substituting (11.%) into (11.3),

Y(s) = KG(s)R(s) - KG(s)Y(s) + H(s)N(s) (11.5)
or

(1+KG(s))Y(s) = KG(s)R(s)+H(5)N(s) (11.6)

It is at this point that the idea of frequency response analysis becomes particularly
useful in considering the properties of feedback control. If we substitute for

the complex variable s = o + jw its purely imaginary component s = jw, then the
frequency response of any process with transfer function T(s), say, can be deter-
mined from T(jw). By frequency response we mean that the amplitude ratio and
relative phase shift between a sinusoidal input disturbance to the process and the
corresponding output sinusoidal response are given by |T(jw)| and ¥T(jw); w can

thus be interpreted as the frequency of the input sinusoidal signal. Hence from
(11.6),
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Y(jw) = (KG(jwR(jw) + H(JwIN(jw))/(1+KGC(jw)) (11.7)

where by choosing K (a simple proportional gain controller) such that K|G(jw)|>>1,
i.e., the controller has a high gain, we obtain,

Y(jw) = R(jw)+H{JwIN(jw)/(1+KGC(jw)) (11.8)

And if by this choice, in particular, K|G(jw)|>>|H(jw)|, then (11.8) can be further
approximated to,

Y(jw) * R{jw) (11.9)

indicating that the controller brings the actual process performance to the desired
performance in spite of the unmeasurable disturbances.

The advantage of the feedback controller is that it can be designed so that its
operation is relatively insensitive to any errors in the model G(s) and H(s) of

the true process dynamics that are used for synthesis purposes. There is, of
course, still a requirement for accurate measurement of the output variable since
the control action is based on the difference (error), z(s) = R(s)-Y(s), between
desired and actual performance. We have already mentioned this point and we shall
return to it later. The major theoretical limitation on the feedback controller is
the overriding desire to maintain system stability: as K is chosen so that K|G(jw)]|
becomes larger and larger we find that the system, under closed-loop control, may
well become unstable.

Two other features of process control might usefully be introduced here - again,
the reader is referred elsewhere for a more complete discussion of these topics,
e.g., Coughanowr and Koppel (1965). The simple proportional gain representation
of the controller in the preceding analysis of the feedback principle can be
extended to include control actions of a derivative and integral nature. In other
words, in the time domain, the control variable u(t) is given as a function of the
error in performance, z(t) = r(t)-y(t), by the relationship,

t
u(t) = Kc(l+8I g g(t)dt + BDdcét)) (11.10)

where 81 and Bp are constants relating respectively to the integral and derivative
components of the controller, and K¢ is the constant previously referred to as the
proportional gain. Taking Laplace transforms, such a three-term proportional,
integral, derivative action (PID) controller has the following (ideal) transfer
function in the frequency domain,

K(s) = U(s) = K (L+B;/s + Bps) (11.11)
z(s)

And since the controller now contains dynamic elements, its properties influence

not only the gain characteristics but also the phase shift characteristics of the
closed-loop system frequency response. For this case, a high-gain controller may
not be of paramount importance or even desirable; to control process behavior, it
may be more important to know whether the disturbances D(jw) and N{jw) are composed
primarily of low-frequency (e.g., diurnal variations) or high-frequency (e.g.,
random noise) oscillations. The choice of the three parameters K., By, and Bp of
the controller will thus depend upon several interacting factors and it is difficult
to make further generalizations on solutions to any given control system design
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problem. The three-term controller, with its foundations in the '"classical”
stages of control theory development, has found and continues to find wide applica-
tion in the process industries.

Case Study 1 - Control of River Dissolved Oxygen Concentration

This example deals with the control of the dissolved oxygen (DO) concentration in

a river by manipulation of the rate at which an effluent is discharged to the
river. Hence, the biochemical oxygen demand (BOD) load of the effluent is
regulated by changing the discharge rate of the effluent instead of by manipulating
its BOD concentration. The system is defined according to Fig. 11.9. Treated

INFLUENT SEWAGE

.

WASTEWATER
TREATMENT PLANT

TREATED
SEWAGE

DETENTION
LAGOON

REGLILATED

""" ONTROLLER [*~
DISCHARGE 1D0 PROBE
Ngr Dy ' .!x.l . Xy
— VOLUMETRIC HOLDUP v —

1 |
] 1

FLOW Q

Fig. 11.9 A schematic diagram for in-stream DO control by
flow detention of treated effluent; all variables
are as defined for Egs. (11.12) and (11.13).

effluent is assumed to enter and leave the detention lagoon with its DO and BOD
constituents behaving as noninteracting conservative substances; the lagoon has
the idealized behavior of a continuously stirred tank reactor.

The dynamic model for DO-BOD interaction in the reach of river is given by the
following differential equation form (Beck and Young 1975)
DO: X, (t) = =(ap+[Q(t)+u(t)]/V)x) (£)=0,%, () +(u(t)/VIn] (£)+(Q(t)/V)n, (t)

(11.12)
+ alcs(t)+sll(t)+s12
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BOD: iz(t) = —(a2+a3+ﬂl(t)+u(t)]/V)xz(t)+(u(t)/V)né(t)+(Q(t)/V)n2(t)

where
xp (£),%,(t)
nl(t)’nz(t)

nj(£),n3(t)

u(t)
Q(t)
v

cy(t)

n

12

(t)

(11.13)

S5 (t) + 55,

downstream concentrations of DO and BOD, respectively (gm=3);
upstream concentrations of DO and BOD, respectively (gm™3);

concentration of DO and BOD, respectively, in the effluent
discharge ‘(gm-?)

reqgulated outflow from the detention lagoon (m3day~1);
upstream discharge of the river (m®day~!);

(constant) mean volumetric hold-up of water in reach of river

(m?);
saturation concentration of DO (gm");

term representing the net production of DO by the photosynthetic/
respiratory activity of algae (gm~ day' )

rate of DO removal from river water by decomposition in bottom
mud deposits (gm™ day B H

term representing the net addition of a BOD load by redissolution
of decomposing dead algal matter (gm~3day~!);

rate of BOD addition to reach of river in local surface runoff
(gm~3day-!);

reaeration rate constant for DO (day'l);
BOD decay rate constant (day~!);

rate ?onstant for sedimentation of particulate BOD material
(day™*).

Further details of the model, in particular the form of the terms sjj(t) and s)(t),
are given in the source reference and also in Beck (1975).

For the design of a feedback controller we first need to determine the transfer
function relationship G(s) between the control variable u(t), and the output y(t),
where y(t) is the downstream DO concentration, i.e.

y(t) = xl(t) (11.14)

Equations (11.12) and (11.13) can be rearranged to give, in vector-matrix form,

x(t) = A(t)x(t) + B(t)u(t) + n(t) (11.15)
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where
T
x (t) = [x;(t), xz(t)];
Alt) = ’.(al + [Qe)+u(e)]/v) - o, i B(t) = [nj(t)/V
'(t)/V
I 0 - (0L2+0L3+[Q(t)+u(t)]/V) ny(t)/
and
n(t) = [(Q(E)/VIn ()40 C (t)+s ; (t)+s,,
L(Q(t)/V)nz(t)+521(t)+s22

Here the notation n(t) is used deliberately, although now in vector form, in order
to preserve the analogy with the preceding discussion of the feedback controller
principle. Thus if we rewrite (11l.14) as,

y(t) = [1 0]x(t) = Cx(t) (11.16
in order to define C, then the required transfer function G(s) can be derived as,

G(s) = Y(s) = C[s1-A] B (11.17)

s

c
~—~—

Equation (11.17) is obtained simply by taking Laplace transforms of (11.15) and
(11.16), with n(t) = 0, and then substituting for X(s). And similarly, to complete
the problem formulation, the transfer function vector between the disturbance
vector n(t) and the output y(t) can be obtained as

H(s) = C[sI-A]"! (11.18)

In both (11.17) and (11.18) I is the identity matrix.

On the basis of our knowledge of G(s) and H(s) a number of different controllers
can be designed using a variety of synthesis techniques, e.g., Young and Beck
(1974), Gourishankar and Ramar (1977), and Koivo (1977). Chapter 14 also contains
a discussion about controllers. Among the simplest of these, however, is the
three-term controller already introduced above. Hence, for example, by choosing a
proportional + integral action controller of the form,

K(s) = (2.8x10%)(1+1/s) (11.19)

typical simulation results for DO control are obtained as in Fig. 11.10. For this
particular example, the control signal u(t) is generated as a combination of a
mean, average "command" signal u, and the appropriate manipulation of the error
signal between actual and desired performance,
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u(t) = u_ + K (g(t) + gt;(t)dt) (11.20)

By analogy, Ko in (11.19) is (2.8x10%)(m3day~')/(gm=3D0); in the context of the
foregoing analysis of the feedback controller principle this is not necessarily
a high gain but is a result of the respective units of u(t) and z(t). Other
relevant details of the numerical values used for control system design and
simulation are given in Table 11.1. These parameter values and the time-series

Table 11.1. Parameter values for control system design and simulation

Parameter Value Remarks
%y 0.17 day‘l
-1
% 0.32 day
g 0.18 day'1
v 15.1 x 10% m3
Q 8.4x10% m3day-1 Average value assumed for
control system design.
u, 2.8x10% m3day'l Also substituted for u in

control system design.

0.5 gm‘3day'l

12
-3dav-1
S5, 0 gm~“day
ni 2.0 gm'3
Constant average values
Cs 10.0 gm"3 assumed for simulation
purposes.
n, 1.0 gm'3

data for Q(t), n;(t), the volume of treated sewage, and the BOD concentration in
that sewage as it enters the hypothetical lagoon are all taken from an experimental
study of the River Cam in eastern England (Beck and Young 1975). The variables
s11(t) and s33(t) in the disturbance vector n(t) in (11.15) are generated in a
deterministic fashion from a model for algal population dynamics described in

Beck (1975); the peak downstream DO and BOD responses of Fig. 11.10(C) and 11.10(D)
are in fact a replication of the observed effects of an algal bloom.

The major points to notice about the controller and its performance are as follows.

- The basis of the model for design purposes is the A matrix of (11.15) which
determines the characteristic polynomial (see, e.g., Coughanowr and Koppel
1965) of the process dynamics; this matrix embodies nothing more complex
than the classical Streeter-Phelps (1925) assumptions about D0-BOD inter-
action.

- Even though the controller is designed from such a simple model, its
performance is still adequate. Notice that the A matrix, in particular, is
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actually time varying and includes coefficients that change according to
the current value of the control variable u(t). For design purposes, there-
fore, certain average values have to be assumed for u(t) and Q(t) as
indicated in Table 11.1. The performance of the controller appears to be
relatively insensitive to such parameter variations, although better designs
have been demonstrated elsewhere (Young and Beck 1974).

The analysis and simulation do not, however, include consideration of the
significant diurnal variations that would result in practice from the photo-
synthetic/respiratory activity of plants and algae.

The controller has been designed to deal with a regulator problem, i.e., we
wish to cancel out the tendency for excessive BOD loads, as after the decay
of the algal bloom, to depress the stream DO concentration below its

desired set-point, namely 5.5 gm~? here. When the river can receive a
greater BOD level, for instance over the initial period, the controller acts
s0 as to empty the lagoon (not exceeding a maximum discharge rate of

5.6x10* m®day-') but leaves a small residual volume in the lagoon when no
control action 1s required.

The controller is, of course, a feedback controller and requires only a
measurement of the downstream DO concentration.

Finally, in line with the analysis of (11.8), we might have chosen K(s) on
the basis of making |K(jw)G(jw)|>>|H(jw)|at those frequencies w of which

the disturbances N(jw) are primarily composed. In fact, since in the real
world it might be expected that the DO dynamics and measurements are subject
to substantial high-frequency stochastic disturbances and errors, the absence

(A) REGULATED EFFLUENT DISCHARGE U(10%3/pay)
54

20 (8) VULUMETRIC HOLDUP IN LAGOON (104w%)
30
204

101
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(c) DOWNSTREAM DO CONCENTRATION (GM~3)

——CONTROLLED RESPONSE
10 — -~ —UNCONTROLLED RESPONSE
—.—.-DESIRED VALUE

(D) DOWNSTREAM BOD CONCENTRATION (GM~3)
——CONTROLLED RESPONSE

10 ] — — —UNCONTROLLED RESPONSE

L
0 10 20 30 40 50 60 70 80
TIME (DAYS)

Fig. 11.10 Simulation results for in-stream DO control with a
proportional and integral (PI) controller design:
(A) the control variable, u, regulated effluent
discharge (maday'l); (B) volumetric hold-up in
detention lagoon (m®); (C) downstream DO concentra-
tion, xj (gm-3) - the dashed line is the simulated
uncontrolled response; (D) downstream BOD concen-
tration, xz(gm'a) - the dashed line is the simulated
uncontrolled response.

of derivative action in the controller is quite reasonable. While it can
partially compensate for both the sluggish response of a PI controller and
the "destabilizing" influence of integral action, derivative action has the
drawback of amplifying high-frequency error signals fed to the controller
which lead to excessive and undesirable fluctuations in the control variable
U(jw).

Although we have not discussed feedforward control at all in this example, the
reader is referred to a parallel study by Whitehead (1976) for a discussion of
feedforward-feedback control as it might be applied to artificial in-stream
aeration. (An example of feedforward control is given in a later section entitled
"Real-Time Forecasting.")
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STATE ESTIMATION

A generalization of the single variable control problem to the multivariable case
with several outputs y(t) leads to considerable potential complications in the
synthesis of a controller. One of these additional complications is the identifi-
cation of the system inputs u(t), d(t), or n(t) that dominate the behavior of y(t).
It must also be decided if the control action taken to bring about the desired
performance in one output is likely to degrade (to an unacceptable degree) the
process performance as measured by another output variable. Such problems will
not be dealt with here. Instead, this section tackles the obvious difficulties

in coping with system and measurement error noise, to which we have alluded
earlier, under the broad title of state estimation.

The principal components of state estimation are shown in Fig. 11.11. The concept

n(t)
w(t)

PROCESS |

d(t)

1 E(t)

Fig. 11.11 The principal components of process state estimation
and filtering; n(t) and w(t) are, respectively,
system noise and random measurement errors.

of state has already been introduced implicitly in (11.15) where the state of
river water quality is defined by its DO and BOD concentrations. State variable
concepts are discussed fully in, for example, DeRusso et al. (1965) and Dorf
(1965). Let us assume that the state of the system can only be measured in the
presence of random measurement errors w(t). The filtering mechanism, which
provides an estimate R(t) of the state, combines two functions: (a) the filter
model M gives a simulated (predicted) response to the process input u(t); and (b)
the corrective mechanism F, manipulates the error between R(t) and y(t), the
actual observation, to provide on-line updating corrections v(t) to R(t).
Precisely how the function F, is designed and how the corrections v(t) are presented
to the model M is not of concern to us in the following. It is sufficient merely
to say that F, embodies measures of the statistical properties of n(t) and w(t)
and the uncertainty in the accuracy of M as a model of P. Many other examples of
filtering applications are described elsewhere, e.g., Todini and Bouillot (1976),
and in Part One of this volume.

For control purposes the filter estimate R(t) would replace the function of y(t)
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in the control law. Alternatively, the filter could facilitate short-term fore-
casts of the state of a process for the day-to-day supervisory management of, say,
river basin water quality. The concept of filtering, in fact, generalizes to the
idea of simultaneous state and parameter estimation, as in dynamic model structure
identification (Beck and Young 1976, Beck 1979) or adaptive control schemes, and
to the idea of state reconstruction.

Case Study 2 - State Reconstruction in the Activated Sludge Process of Wastewater
Treatment

The activated sludge process is a biological process of wastewater treatment. The
treatment is effected by a heterogeneous mixture of microorganism species that
metabolize the complex organic waste substrates and decompose them into simple
end-products such as carbon dioxide and water. Of considerable importance for
process operation is a measure either of the biological activity of the organisms
(see Olsson 1977 and Andrews et al. 1974) or of the magnitudes themselves of the
various organism populations.

Consider, for example, the process of nitrification for the removal of ammonia
from the influent sewage, whereby ammonia is oxidized in two stages to nitrate,

Nitrasomonas Nitrobacter

L » Nitrate (11.21)

The two mediating species of bacteria, Nitrosomonas and Nitrobacter, operate in an
aerobic environment provided by the aerator portion of the activated sludge unit
(Fig. 11.12). The problem of state reconstruction, to which the filter will be

Ammoniq —————————  Nitrite

AERATOR DO PROFILE 8
) - A
A PN - A4
\ - N EFFLUENT
Qi ‘\ I | 7 / 2 \
INFLUENT ~_ .’ ———/// \\\ ’/’
i ‘ ‘ CLARIFIER
Qg i 1 — I
AR
RECYCLE SLUDGE | WASTE -—Qy
SLUDGE

Fig. 11.12 A schematic diagram of the activated sludge process;
zone 1 in the aerator is potentially an anaerobic
environment; zone 2 is a predominantly aerobic
environment.

applied, is as follows: given (noisy) measurements of the aerator influent/
effluent substrate (ammonia, nitrite) and metabolic products (nitrite, nitrate),
estimate the concentrations of Nitrosomonas and Nitrobacter in the aerator. In
other words, state reconstruction is the on-line estimation of process states
that are not directly measurable by instrumentation or rapid laboratory analysis.
The outstanding example of such a variable that one might wish to estimate is the
BOD concentration.

Taking component mass balances across the aerator gives a nonlinear dynamic model
of nitrification (Poduska and Andrews 1975) with the general state-space form,
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4(t) = £{x(t), u(t)} + n(t) (11.22)

and with noisy observations y(tk) being available at sampling instant ty,

y(t) = 0] 01[5'“(tk)]+ wit,) (11.23)

Here f{:} is a nonlinear vector function, n(t) and w(t,) are, respectively, system
disturbance and measurement noise terms; x, is that component of the state

vector for which measurements are available (ammonia, nitrite, nitrate) and x;
comprises those state variables that are not measurable, 1.e., the Nitrosomonas
and Nitrobacter population concentrations. Nonlinearities are present in the
system dynamics because of the inclusion of a Monod (1942) characterization for
bacterial growth kinetics. Nevertheless, it is possible to provide an approximate
linear filter formulation for the nonlinear estimation problem of (11.22) and
(11.23) such as an extended Kalman filter (EKF) (Jazwinski 1970). For this example
the filtering algorithms differ slightly from those used by Moore and Welss in
Chapter 5 in two respects: the nonlinearities occur in the system dynamics and
not in the observations equation, and a continuous-discrete version of the filter
is used, 1l.e., continuous-time system dynamics with discrete-time observations.
Illustrative results based on time-series data from the Norwich Sewage Works in
England are reported in Beck (1977b).

REAL-TIME FORECASTING

It has already been mentioned that the concept of Kalman filtering generalizes to
the notion of combined state and parameter estimation, such that, if so desired,

a filter might be employed in an adaptive control and forecasting situation.

Todini (1978) derived an adaptive forecasting algorithm that utilizes a linear
Kalman filter in combination with a recursive instrumental variable parameter
estimator (see, e.g., Young 1974). For discrete-time input/output model realizations
a rather compact forecasting algorithm, termed an adaptive predictor, and otherwise
known as a self-tuning predictor (Wittenmark 1974), can be implemented. This same
algorithm 1s also applied to the river-flow forecasting problem in Chapter 9 by
Ganendra. An analogous problem, as it were, in the field of water quality control
is that of sewer flow prediction, for which we shall present the adaptive predictor.

Case Study 3 - Adaptive Prediction of Urban Sewer Flows

The input raw materlial to a wastewater treatment plant, the vector vp3 in Fig. 11.2,
exhibits large and generally poorly quantified variations with time (see Chapter

6 by Olsson). For proper operational control of the treatment plant, and hence,

for control of the quality of the receiving river's water (Fig. 11.4), it would be
extremely useful to have advance (short-term) predictions of the effluent flow from
the sewer network, i.e., the influent flow to the plant. A particular feature of
sewer-flow prediction that makes this problem somewhat different from that of river-
flow prediction is the pronounced periodic nature of the sewage flow (see also

Fig. 11.5 (top)). Thus, suppose that the relationship between these periodic
patterns, vj(tk), and the influent flow to the plant, y(tk), may be represented as,

-1 m -1 -1
A(q )y(tk) = J_ElBj(q )vj(tk) + C(q e(t,) (11.24)
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in which q'l denotes the backward shift operator,
-1
q {y(t )} = y(tk_l) etc.

and e(ty) is a sequence of independent, Gaussian {0,A2) random variables. (As so
often happens, notational conventions tend to conflict; the polynomial symbols here
are not to be confused with the notation for certain matrices used earlier in this
text.) A(g-1), Bj(q-l), J=1,2,...,m, and C(q-1) are the polynomials,

=1 -1 -n
A(g ™) =1+ alq teaot anq
B,(q™}) = b, + b,q Meeat b, @ 5§ = 1,2,00.,m (11.25)
i 3O J1 see in H 1Cy ’
A1, -1 -n
Cg~) =1+ €1q ~ +..et C/Q
Using the identity,
ca™h = a@hF@™ + a7 %6q™h (11.26)
where
-1, -1 -1+l
Flg ™) =1+ flq +...+fT_1q
(11.27)
-1, _ -1 -n+l
Gq ") = 9o * 99 *eeet 9, _1Q

enbables a T-step-ahead prediction, §(ti,r|ty) of y(tyi,r) to be made, following
Astrdm (1970),

-1 5 -1
9(tk+T|tk) = G(a7)y(t) + F(q7) = Bj(q )vj(tk+T) (11.28)
c(q™h c(q7l) 3=t

such that the variance of the prediction error,

ety ) = ylt -9 lt) (11.29)

k+T

is minimized. The identity, (11.26), is a device for separating out the effects of
(unknown) future realizations of e(+), namely e(tkit)s--..s € (ty 1), from the
effects of current and past, and therefore known, realizations of e(:) on the
future output behavior y(tg,r). Equation (11.28) can be rearranged to give (at
time ty),

y(t) = 6@ Myt ) - (C@hH-Dgce, e, )
. (11.30)
+Fah jlej(q-l)vj(tk) v elty)
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which is more easily recognizable as a standard (predictor) model characterization
suitable for, say, a recursive least-squares parameter estimation routine. The
adaptive property of the self-tuning predictor is incorporated by the use of
exponential weighting of past data (Wittenmark 1974), although other forms of time-
varying parameter estimation (e.g., Young 1974) may indeed be more appropriate in
sewer-flow prediction (Beck 1977a).

As an example of an adaptive predictor, it is found that for the Kagpala sewer
system in Stockholm (Beck 1977a) the orders of the polynomials A(q-1), Bj (g-1), and
C(q-1l) are given by n = 1 for a one-step-ahead predictor (t = 1). Hence, (11.30)
reduces explicitly to,

Yte) = gyt 1) = et [ty ) + brgvy(y) + byyvy ()
+ bygva(ty) + byyvs(t, 1) + e(ty) . (11.31)

where v1(+) and v,(-) are auxiliary variables drawn from two precomputed time
series, of respectively, average weekly and daily dry-weather flow patterns. With
their current estimates substituted for the parameters of (11.31), a one-step-ahead
prediction can be made on the basis of (11.28), i.e.,

Ft, 1160 = 8y (5 )-89t [t )ebygv (t )eb) v (5)

) + b (t ) (11.32)

20 2 a1v2

Typical results of the predictor are shown in Fig. 11.13.

If such predictions are to be of real benefit, we might consider the feasibility

of somewhat longer-term forecasts and the use of rainfall measurements to improve
prediction accuracy. The measurements of rainfall would be included in the
predictor, (11.31) and (11.32), as a term(s) v3(tk) etc. Without rainfall measure-
ments, a four-hour-ahead predictor is found to be inadequate in its forecasts of
the all-important high flows resulting from storm runoff (Beck 1977a). However,
since the rainfall/influent flow dynamics of the Kippdla system exhibit a dead-time
(transportation delay) of about three hours, the incorporation of rainfall
measurements may well improve on such poor performance by exploiting this property
of the sewer network. If there were sufficient confidence in the forecast, then it
could easily be employed in a real-time control situation, although, as noted by
Olsson (1977), a forecasting period of the order of eight to ten hours would
ideally be required for treatment plant operations (i.e., routing and storage of
flows) to be rearranged accordingly.

Nevertheless, we might generalize from our specific example in order to indicate
briefly how flow forecasting can be combined with a feedforward controller. Suppose
in (11.1) that the transfer functions E(s) and G(s) are given by,

E(s) = yv;/(s+1) = Y(s)/D(s)

(11.33)
G(s)

Y,exp(-Ts)/(s+1) = Y(s)/U(s)
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(A) OBSERVED INFLUENT FLOW, v(m3s™D)
1,5]

1.2
0.9

0.6

(8) PREDICTED INFLUENT FLOW, $(m>s™D)
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Fig. 11.13 The results of the one-step-ahead predictor for data
for the month of October 1973 from the KdppHdla sewer
system in Stockholm: (A) observed influent flow
y(m3sec~!); (B) predicted influent flow §(m3sec-');
(C) prediction error e(m3®sec~!).

a physical interpretation of which is that the dynamic relationship between
controlled output y(t) and control input u(t) contains a lead-time of magnitude T.
In other words, the disturbance d(t) effects a response in the output much more
quickly than does the control action taken to cancel out the disturbance. Thus,
from (11.2), the feedforward controller is specified by

F(s) = -E(8)/G(s) = -(Yl/yz)exp(rs) = U(s)/D(s) (11.34)

so that upon inverting the transforms,
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u(t) = -(Yllyz)d(t+r) (11.35)

or, more realistically, if d(t) is not a known, deterministic function of time,
u(t) = =(y /v, (et ) (11.36)

in which d{(t+1|t) is a (continuous-time) prediction of d(t+T) given all measurements
up to and including the current time t. This kind of control problem arises
naturally in potable water distribution networks (subsystem (1) in Fig. 11.2) where
the pumping to and from service reservoirs, which may be situated a large distance
from the location of demand, are scheduled 1n accordance with a prediction of

future demand for supply (see, e.g., Fallside et al. 1975).

CONCLUSTIONS

Real-time forecasting and control of river water quality is in its early stages of
development. Primarily because of instrumentation problems, it is difficult to
envisage a rapid translation of such techniques into the practice of river basin
management. Yet the lack of instrumentation is a factor which should lend
considerable impetus to the further exploration of estimation and forecasting as a
means of supplementing routine operating information.

In contrast to flood prevention and drought alleviation, the management of river
water quality suffers from a lack of clearly defined objectives. It is therefore,
perhaps, these kinds of problems that should be solved before real-time forecasting
applications can become of widespread value. Although considerable attention has
been given here to the analysis, design, and 1llustration of automatic controllers,
this is not necessarily how river water quality "control" should be interpreted

for the immediate future. Rather, effective control may be carried out by a
combination of well-presented routine operational data (including forecasts) and
regulatory actions determined by agency managers on the basis of these data.
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12 Bayesian Strategies for Controlling
Dynamic Water Resources

A. 5z8118si-Nagy and E.F. Wood

In most real-time application studies one of the main problems is to find an optimal
control policy when there is little or unreliable knowledge about system structure
or parameters. The system should be able to adapt to variations in structure or
parameters and we wish to construct control policies that take these changes

into account. A policy that considers these uncertainties will be defined as a
Bayesian control policy. Loosely speaking, the Bayesian approach to the optimal
control problems requires the assumption of an a priori probability distribution
function for the unknown parameters. These distribution functions are updated by
Bayes rule, given current information on the system's behavior.

This paper surveys some techniques which seem to be applicable to the adaptive real-
time control of water resources systems. First, the basis of adaptive estimation
and control for nonlinear dynamics systems is described. Weighting coefficients
for the nonlinear case are derived in which the learning nature of the algorithms
is described through a recursive Bayesian relation. Adaptive estimation and control
for linear systems is discussed, and weighting coefficients for this case are
derived.

ADAPTIVE ESTIMATION AND CONTROL FOR NONLINEAR DYNAMIC SYSTEMS

Assume that we are given a discrete nonlinear stochastic dynamic system described by
x(t+l) = f(x(t), ul(t), w(t)), t=0,1, ...,N-1

where x(+} is a vector of state variables, u(-) is a vector of control variables
and w(*) is a zero-mean, Gaussian white noise (GWN) sequence, known as systems
noise, with covariance

T
E[w(t)-w (1)] = Q(t)6tT

The corresponding measurement (or output) equation is
z(t) = h(x(t), v(t))
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where v(*) 1s a zero-mean GWN sequence known as the measurement error with
covariance

Ev(tv (D] = R(E)8,

Moreover, the noise processes are assumed to be independent of each other.

In filtering problems (see Chapter 2 and the Introduction to Part One), we saw
that the optimal filtered estimate of the state is given by

Rtlt) = Ex(t)z,] » (12.1)

the conditional expectation of the state given the measurement sequence Zy. In
other words

R(tft) = J x(typ(x(t) |2 )dx(t) , (12.2)
X

where X is the finite-dimensional state space and p(x(t)|Z) is the conditional
pdf of the states. There are several, in most cases approximate, ways to evaluate
(12.2) for nonlinear systems: extended Kalman filtering (Jazwinski 1966), Gaussian
sum approximations (Aslpach and Sorrenson 1972) or using spline functions
(Lainiotis 1974).

We assume that the system is characterized by a vector of unknown but constant
discrete parameters 8 belonging to a finite dimensional parameter space O. [The
case of a continuous parameter space is treated by Lainiotis (1974)]. The
estimated states depend on this parameter vector. Equation (12.2) can be written
as

R(t|t) = S x(t) S px(t), 8]z,)do dx(t)
X 0
(12.3)

S x(t) Jop(x()]e, Z)p(e|z,)de dx(t)
X C]

Interchanging the order of integration, which is permissible as long as the inte-
grand is absolutely integrable, and defining the O-conditional estimate,

R(t[t,8) 2 Efx(t)[8, Z,]

(12.4)
= J x(t) p (x(t)]9, Zt)Q§(t)
X
the optimal adaptive estimate is given by Magill (1965) as
R(t[t) = S R(t[t,0) p (8]Z,)d8 (12.5)
C]

i.e., it is formed by taking the complete set of 6-conditional estimates, weighting
each with the conditional probability of the appropriate parameter vector, given
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the measurement sequence Zi, and integrating over the space of all possible
parameter values. It is assumed that © has an a priori probability density
function p(8), i.e., the weighting coefficient p(8|Zy) is the a posteriori pdf
of the parameter vector given the measurement sequence Zy. The concept is
illustrated in Fig. 12.1 for discrete parameters. In this case, the parameter

0, =
I
|t
o
[}
Q
5] =
MEASUREMENT) 1 < | OPTIMAL
SEQUENCE | HE 2 festimate
1 ' H E
! ' z
L B 9
z
ELEMENTAL
ESTIMATORS

Fig. 12.1 Discrete parameter adaptive estimation.

space is spanned by M discrete values, 6;,...,0y, and the integration in (12.5) is
replaced by a sum over the space. The a priori discrete pdf p(8) for 6 is an M-
vector with the components

0 < py(8) = Prob[6=6,] <1, 1=1,...,M

satisfying
M
z pi(e) =1 (12.6)
i=1
The optimal estimate is given now by
R(t|t) = I R(t|t,00)p;(8]Z,) (12.7)
i=1

Equation (12.5) immediately follows from the smoothing property of conditional
expectations (Doob 1953):

E(x|z] = E[E(x]2)Z] (12.8)

By similar arguments, one can easily define the adaptive control, which is
essentially a feedback type of control (Sworder 1966), for equivalent systems,
as follows

u(t) = S u(t|e) p(olz,)de , (12.9)
e
where the O-conditional control is given by

u(t]8) = L[R(t[t)7e] (12.10)




=206~

In order to determine the optimal adaptive estimate/control, one needs to know the
welghting coefficients, and, for control, the solutlon of the corresponding
stochastic control problems. Therefore, the problems of obtaining optimal control
policies are generally much harder for adaptive systems than for purely stochastic
systems.

DERIVATION OF THE WEIGHTING COEFFICIENTS FOR THE NONLINEAR CASE

The conditional pdf of the parameter vector 8, given the measurement sequence Zy,
is defined by

p(8,Z,)
Pelze) = Sy

(8,7, p,2()
T oplZ ’Ezt” ’

t-

or, according to the chain rule of conditional probabilities, as

p(z(t) (8,2, _,)p(8lZ, _))e(Z, )

p(8lz,) = P(Z, 1, Z(Op(z(t]) (12.11)
Since
P(Zyy12(0) = I p(8,Z, ,|z(t))d8
and
P(8Z,_;,2(t))
P2, 12 = ey —
we get for the marginal distribution
N 1
p(Z,_y1z(t)) = FZ(E)) ef p(8,Z, ;,2(t))d8
Substituting this into the denominator of (12.11) and considering that
P(8,Z,_1,2(t)) = p(z(t)[8,Z, _1)P(8]Z, ))P(Z, ))
we have
p(g|zt) = (12.12)

J PEmez, ez, e

which is in fact a recursive Bayesian algorithm for the calculation of the weighting
coefficlents with the initial condition p(6|Zy) = p(8).
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For the case when the parameter space O is discrete and consists of M elements,
the a priori pdf is

M

P() = I p(6,)8(8 - 6.)
1=1 i i

and the a posteriori pdf is given by

M
p8lz,) = = p(eilzt)s(e - 8;)
i=1

The recursive algorithm becomes
At]e;)
p(61|Zt) = p(eilzt-l) (12.13)

£ At[0.)p(8,[Z, ;)
j=l J j t-1

where the likelihood function A(t|6j) stands for p(z(t)[8;,Z, ;).
Remark

If the assumption of time-invariant parameters is relaxed, i.e., when
8(t) = g(8(t-1)) , va(t) € ©

the parameters are related by a nonsingular, nonlinear mapping g(+), then we can
proceed along the same lines as outlined above. This means that the recursive
functional relation for the a posteriori pdf is

p(z(t)]8(t),Z, )

PEMWI2ZY) = o ae),Z,_pp() Z,_pasce P12
G}

though we need additional steps to make the projection p(g(t-l)flt_l) - p(g(t)[Zt_l).
This projection is given by

p(g(t)|zt_l) = ef p(g(t-l)|zt_l)p(g(t)|g(t-1),zt_l)d§(t-1),

where the conditional pdf p(g(t)lg(t-l),lt_l) must be evaluated. This evaluation
is given by

p(8(t),8(t-1)]Z, )
p(a(t)[8(t-1),2, ) = p(8(t-1)]Z, )

where the denominator is computed as in (12.13). From the theory of derived
distributions
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p(8(t),8(t-1)[Z, ) = p(8(t),g ™ (e (t)) |z, )3 ,

where

aq L(8(t))
=3

is the Jacobian. The evaluation of p(8(t), g-1(8(t))|Z¢_1) can be accomplished
analytically by knowing g(+). That is, we can construct a recursive Bayesian
algorithm even when the parameters are time varying. For the case when one knows
that the parameters have changed but does not know about the direction of this
change in the parameter space, that is, g(8(t-1)) cannot be formulated, Peterka
(1976a) has derived a recursive algorithm.

ADAPTIVE ESTIMATION AND CONTROL FOR LINEAR DYNAMIC SYSTEMS

Consider now the stochastic LQP-control problem when the parameters in the linear
system model are unknown; the state and measurement equations become

x(t+1)

O(t+1,t;8)x(t) + T(t,0)u(t) + w(t) (12.14)

z(t)

H(t,8)x(t) + v(t) , (12.15)

where 6 is a g-vector of unknown parameters in ¢, T, H, Q, R, x(0) belonging to a
finite-dimensional parameter space ©. It is assumed that § i1s time invariant and
has an a priori pdf p(§). Of course, when the model parameters are exactly known,
the problem is that of linear stochastic optimal control and can be solved by
taking advantage of the separation theorem discussed in the Introduction to Part
Two. For uncertain parameters, however, the problem becomes much more complicated
since the joint estimation of the uncertain states or parameters becomes nonlinear
even in the case of linear system dynamics. This means that the linear adaptive
control problem, in fact, is a nonlinear stochastic control problem. Therefore,
one cannot expect that the separation property discussed in the Introduction to
Part Two will apply here. Nevertheless, it will be shown that a kind of separation
property can be found even in this case which makes the implementation of a feed-
back scheme relatively easy.

Again, we are seeking a feedback control policy such that for each t=0,1,...,N-1,
the sequence {u(t), ...,u(N-1)} will minimize the performance measure

-1
L) = min EQxN 12+ = [l[x@][2
U(t)yer, u(N-1) [ Aot B(t)
. ||g(r)||g(t)]|zt] (12.16)

i.e., J(t) is the optimal expected cost-to-go, conditioned by Zy. Using the
smoothing property of conditional expectations (12.8), we have



=209~

N~
) = min E[EC]xN) ][5 + =
T=

2
Hx(o]
ult),eee,u(N-1) [ B(t)

1
t
+ e )] 182012,] (12.17)

If we could find a closed-form solution for u(t), then we would have the optimal
feedback solutions; but as Deshpande et al. (1973) pointed out, this is not feasible.
Assuming, however, that the minimization and the first expected value operation can
be interchanged [for the conditions of the interchange see Meier et al. (1971)] we
can arrive at a solution. We have

- = 2
() = E min ECIx0][2 + £ [][x(D]]
u(t)yees,u(N-1) - Al e T B(t)
2
+ HE(T)llc(t)] | 8 Zt)lztjl (12.18)

which is the weighted average of the optimal expected cost-to-go, (12.16); the
weights are the a posteriori pdf of §. For each 6 € © we perform the minimization
in (12.18) subject to (12.14) and (12.15); the minimization is, in fact, a
stochastic LQP-control problem. For each 6 € © we obtain a corresponding optimal

control u*(t|8), which is a @-conditional control
u*(t]9) = -L(t,0)R(t|t,0) , (12.19)

where the conditional feedback control gain matrix L(t,8) is computed as in the
deterministic control problem and R(t|t,8) is computed via the Kalman filter; of
course the ¢, I', H, Q,R matrices are §-dependent in this case.

The optimal adaptive control is then generated using (12.9), as long as the a
posteriori pdf is known.

DERIVATION OF THE WEIGHTING COEFFICIENTS FOR THE LINEAR CASE

The weighting coefficients, i.e., the a posteriori pdf for the parameter vectors,
for the linear case may be obtained from the general Bayesian recursive algorithm
(12.12). Owing to the special linear structure, however, we can express the likeli-
hood function p(z(t)|8,Z¢_1) in terms of the corresponding innovation sequences v.
It is known from the innovation theory (Kailath 1968) that if we are given a
stochastic process {z(t) : t ¢ T} as a GWN process, z(*) can be calculated from
v(*) by a causal (i.e., non-anticipative) and causally invertible transformation.
The point is that v(*) and z(*) contain the same '"statistical information" since
we can go back and forth in real-time from one process to the other, but, of
course, v(+) will generally be a much simpler process than z(:). Moreover, since
the values of v(-) at different time instants are statistically independent of
each other, each observation v(t) brings '"new information" only, unlike the
observation z(t) which is, in general, statistically related to past values of
z(*). V(<) is thus called "new information" or the "innovation" process of z(-).

Therefore, the ©-conditional innovation is defined as
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v(t,8) = 2(t) - 2(t|t - 1,8)

z(t) - E{H(E,0)x(t) + v(t)|Z ;)

z(t) - H(t,0)R(t[t - 1,8)

since it is part of the measured output that contains some information not
previously available. So, we can replace z(-) by v(+) and according to the theory
of derived distributions, we have

P(8,z(t)[Z, 1) = p(&(,)|Z )T,

where due to the linearity, the Jacobian is equal to

3(2(t) - H(t,@)x(t]t - 1,8))
I = 3Z(T) =1

the identity matrix. Since the innovation process is a GWN process and is independ-
ent of the previous measurements Zy_j, we have on the one hand

p(8,z(t)[Z, 1) = p(B|Z,_))p(v(t,8))

and on the other

P,z T, ;) = p(z(t),8]Z, )

p(z(t)]8,2,_)p(8]Z, ;)
Combining the above two expressions, we get for the likelihood function
p(z() 8,2, ) = p(v(t,8)) = p (z(t) - H(t,8)x(t|t - 1,8))

It is easy to see that the innovatlons form a zero-mean GWN process with covariance
Py(t,8), v(t,8) v N(O,Py(t,6)). The covariance matrix can be readily determined
from an equivalent representation of

\’(tyg) = - H(t,g);(tlt - l;g) + X(t) ’
where

x(tlt - 1,8) = x(t) - X(t|t - 1,8)

1s the one-step-ahead prediction error since
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P,(£,8) = cov[V(t,8),v(t,8)] = E{u(t,0)v' (t,8)}

E{[- H(t,®)X(t]t - 1,8) + v(©)] [-]T}

E{H(t,8)X(t]t - 1,0)X (t|t - 1,0)H(¢,0)}

E{l(t)xT(t)}

+

H(E,@)P(E[t - 1,001 (£,8) + R (t,0)
where
P(t]t - 1,8) = E[X(t|t - 1,0)X (t|t - 1,8)]

is the 6-conditional error covariance matrix.

Summing up, we have the following recursive relation for calculating the weighting
coefficients

V2exp[-172] vit,0) 1%, (1,001 pe00 2, )

Yeexpl-1/2] [v(t,0) | 1%p] (t,8)]p(0] 2, )de

[P, (£:8) ]

p(8lzy) =
MR LRCN T,
6

where

P(£,8) = H(t,0)P(t|t - 1,0)H'(t,8) + R (t,0)

v(t,0) = z(t) - H(t,8)R(t|t - 1,8)

and the initial conditions are
p(Q!Zo) = p(8) , for the a posteriori pdf, and
A(0}8) = 1 , for the likelihood function
Remark
The state estimation error covariance matrix P(tlt), which is useful for the on-line
evaluation of the estimation performance, is given by Lainiotis (1974) as

P(t|t) = J {P(t]|t,8) + [R(t]t,8) - R(t|t)][R(t]t,8)
0

- X(tlt)]T} - p(8lz,)de
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The block diagram of the optimal adaptive estimation algorithm is depicted in Fig.
12.2.

R I N R R T T T R R T T R T PP
.
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Fig. 12.2 Block diagram of the nonlinear adaptive sequential
estimation algorithm for a discrete linear
stochastic system with discrete parameters.

The adaptive control can be obtained by utilizing the above equations and is non-
linear. Since for each 6§ € 0 we have to solve a O-conditional stochastic LQP problem
and then synthesize the optimal adaptive control, there must be a kind of separation
even in this case. The algorithm divides the adaptive control into a linear non-
adaptive part, i.e., the set of §-conditional linear controls, and a nonlinear part,
i.e., the a posteriori pdfs that incorporate the learning nature of the adaptive
control. We mention here that for nonlinear system dynamics Lainiotis's (1974)

partition theorem can be applied.

Remark

The notation of structural adaptation can also be imbedded into the above algorithms.
We need only fix an upper_bound n of the system dimensionality and augment the
parameter vector 8 up to n. Then the adaptive algorithms automatically give an

estimate for the (changing) system order. In other words, it gives zero elements
for the "superfluous" parameter values.

DISCUSSION AND SUMMARY

There are several pertinent questions related to the use of the Bayesian approach:
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- How do we choose the a_priori pdf p(§) for the uncertain parameters §?

- Under what conditions does the sequence of a posteriori pdf p(gllt) computed
by Bayes rule converge to the true distribution as t + «?

Do the different choices of a priori pdf converge eventually to the same
distribution?

- What is the effect of a particular choice of an a priori pdf on the perform-
ance measure of the system?

The first question has been a source of various criticisms of the Bayesian approach.
So far, no rational procedure has been proposed to choose the a priori pdf, although
it is advocated that pdfs of self-reproducing type, or in other words, conjugate
distributions, should be chosen mainly for algorithmic reasons (Peterka 197éb). The
second question is intimately related to the third and, apparently, both of them

can be answered satisfactorily by utilizing some martingale convergence theorems
(Doob 1953). To answer the fourth question, Aoki (1967) derived lower bounds and
Hawkes and Moore (1976) derived upper bounds to show the effect of the controller's
ignorance on the performance measure.

As far as the numerical calculation of the a posteriori pdfs is concerned, one can
use the iterative algorithm developed by Sengbush and Lainiotis (1969) based on the

quantization of the parameter space. If the parameter space is of high dimension,
a Monte Carlo technique might be appropriate to evaluate the weighting coefficients.
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13 Stochastic State Space Approach to Reservoir Control

David R. Maidment

The development of reservoirs has a substantial impact on the natural environment.
Unique ecological sites, fertile agricultural land, and human communities are

often irretrievably altered or destroyed in the process. As a result, the need

for these developments is being increasingly questioned in many countries. Critical
decisions must be made concerning the nature and extent of such developments in the
future.

Central to these decisions is the question of the forecasting and control, or
operation, of the reservoirs, since it is only when the project is operating on a
day-to-day or real-time basis that its objectives can be realized. The importance
of this question can be seen in emergency situations, such as floods, as well as in
operation under normal conditions where hydroelectric power, irrigation, water
supply, and recreation are provided.

In practice, the development of strategies for reservoir operation is a very complex
procedure because of the long time horizon involved, the large number of variables
to be considered, and the many uncertainties affecting the inputs and outputs of

the reservoirs.

Reservoir control policies have been developed for time scales ranging from minutes
to years (Erschler et al. 1974, Fiering and Jackson 1971). Shorter time scales
are appropriate for specialized studies of the real-time operation of the system
where the sizes of the components are fixed. Longer time scales are appropriate
for assessing the expected long-term benefits of the system, considering the size
of the components as variables whose optimal value is to be found. On all except
perhaps the shortest time scales, the magnitude of the future inflows to the
reservoirs must be considered as unknown. Although these inflows may be forecast,
in reality there is always some uncertainty about these forecasts, and the degree
of uncertainty increases with the length of time over which the inflows are fore-
cast.

The development of reservoir control policies based on monthly time periods has
often been found to be appropriate (Schweig and Cole 1968, Askew et al. 1971,
Butcher 1971, Torabi and Mobasheri 1973, Croley 1974, Mawer and Thorn 1974, Su and
Deininger 1974, Takeuchi and Moreau 1974, McKerchar 1975, Loucks and Dorfman 1975,
Colorni and Fronza 1976). From such a time scale it is possible to assess the
long-term benefits of the system. Operating policies defined in terms of the
average rate of release over a month are actually used for very large reservoirs,
such as the Great Lakes of North America; for smaller reservoirs monthly release
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policies may form the framework within which the policies for daily operation can
be determined, as, for example, in the California Central Valley Project (Becker
and Yeh 1974).

Most reservoirs are operated for a number of purposes - for hydroelectric power,
irrigation, municipal water supply, and recreation; and this operation may be
directed towards several objectives such as .national economic development,
environmental quality, and social welfare. The risk of emptying the reservoir or
of failing to meet goals specified about the releases must be considered, as must
the nonlinear relationships inherent in most reservoir systems, particularly in
hydroelectric power systems.

Since the problems are so complex, it is not surprising that the use of mathematical
programming to optimize the operating policies is really in its infancy as far as
its application by the authorities involved in reservoir operation. Current
policies have been developed mostly by simulation (U.S. Army Corps of Engineers
1971, Beard 1973, Singh et al. 1975). However, the number of variables which may

be optimized in a simulation study is very limited. There is, therefore, a definite
need to develop new methodologies based on mathematical programming for reservoir
operation, which can account for the complexities inherent in actual systems, and

in which a larger number of variables can be optimized.

The problem addressed by the proposed methodology is the optimization of the
operating policy for a reservoir for monthly time periods over a year, the operating
policy being specified as an average rate of release of water from the reservoir

in each month. This rate of release of water is expressed as a function of the
storage in the reservoir at the beginning of the month, and it can also be expressed
as a function of the inflow into the reservoir in the previous month if the

monthly inflows are highly correlated.

The inflows to the system in each month are considered as stochastic variables,
i.e., they may be described by probability distributions whose parameters change
with time; the sequence of values of average monthly storage volumes also consti-
tutes a stochastic process. When the monthly inflows are considered to be independ-
ently distributed from month to month, the sequence of values of storage is a
univariate Markov process, which means that the value of storage in the current
month is related only to the value of storage which occurred in the immediately
preceding month, and not to storage values further back in time. In the case
where the inflows in adjacent months are assumed to be jointly distributed, the
sequence of storage values and the sequence of inflow values form a bivariate
Markov process. Since the statistical parameters of the inflows' probability
distributions vary from month to month but not from year to year, these Markov
processes are periodic, with a period of one year.

The determination of the operating policy for the reservoir is a Markov decision
process that is solved using a successive approximations algorithm of dynamic
programming (Howard 1960, White 1963, Su and Deininger 1972). Two policies are
developed, one considering independent inflows and one considering serially
correlated inflows.

FORMULATION OF MATHEMATICAL MODELS

The variables involved in the formulation of the mathematical model of the system
are shown in Fig. 13.1. The time horizon is divided into K stages, k = 1,2,...,K.
The volume of storage at the beginning of stage k is denoted by x(k). During
stage k, the volumes of inflow and release are denoted by q(k) and u(k),
respectively. Using the principle of conservation of mass:
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(l—al)x(k)

|

Fig. 13.1 A storage reservoir system.

x(k+l) = alx(k) - u(k) + q(k) (13.1)

where a) is a coefficient dependent on x(k), which accounts for seepage, evapora-
tion, and spillway losses. By assuming that q(k) is an independently distributed
random variable with known mean u(k) and variance o(k), and introducing a random
variable w(k), which has the same distribution but with zero mean and unit standard
deviation, we may rewrite (13.1) as follows:

x(k+l) = alx(k) - u(k) + p(k) + o(k)w(k) . (13.2)

Within the dynamic programming procedure, x(k) 1s the state variable, and u(k) is
the decision variable at each stage. Equation (13.2) is the state transformation
equation needed for the dynamic programming when the inflows are independently
distributed.

Alternatively, q(k) can be assumed to be correlated with the inflow in the previous
month, q(k-1). If the inflows follow a normal distribution, the relation between
g(k) and q(k-1), and their respective parameters, can be formulated as:

1
WD M) oy [alkeL)zwlel)] L i (0] w) (13.3)

in which p(k) 1s the correlation coefficient between q(k) and q(k-1), and w(k) 1is
a normally distributed random variable with zero mean and unit standard deviation.
By defining xj(k+1) as the normalized flow in month k, [q(k) - u(k)]/o(k), and
x1(k) as the corresponding normalized flow in the previous month, (13.3) can be
rewritten as:

x)(ke1) = p(x (k) + (1 - p2(0)]F wik) (13.4)

In the dynamic programming procedure, two state variables are now needed, xj(k),
and the volume of storage at the beginning of stage k, which is denoted by x3(k)
in this case to avoid confusion with the independent model. It may be shown, by
combining (13.1), (13.3), and (13.4), that the state transformation equation for
the dynamic programming with serially correlated inflows can be written in a
vector-matrix format as:
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Sk 1 - p2(k)]*

wik) . (13.5)

It may be noted that (12.2) and (13.5) are special cases of the state-space Gauss-
Markov sequence model formulated by Meditch (1969) for the theory of stochastic
optimal control. Although the sequel of the present discussion does not rely
heavily on the results of this theory, which has been developed for rather special-
ized systems, the conceptual approach has some similarities. Most notable among
these is the concept of the spreading, or propagation, of the probability distribu-
tion of the flows as time passes within each stage. In (13.4), the inflow for the
current month, xj(k+l), is the parameter being forecast, and the growth in the
variance of the forecast as time passes is a central theme of stochastic estimation
and control theory.

OPTIMIZATION BY STOCHASTIC DYNAMIC PROGRAMMING

The optimization algorithm employs the usual method of dynamic programming. The
time horizon of K stages is analyzed stage by stage, and each stage uses the results
of the analysis of the immediately preceding stage. To illustrate the procedure,
consider the optimization for the independent inflow model. At each stage, the
feasible range of the input state variable, x(k), which is Xmin(k) to Xxpax(k), is
divided into Qi discrete intervals, xj(k), i = 1,2,...,QK, of size Ax(k); and like-
wise the feasible range of x(k+l1), xmln(k+l) to xmax(k+l), is divided into Qy,]
intervals, xj (k+l), J = 1,2,0004Q),1 of size Ax(k+l). The objective of the
optimlzation is to choose the best value for u(k), the release volume in stage k,
for each of the discrete intervals of x(k), in each of the K stages.

From a given x;(k), the "stochastic transformation" of the system over the stage
resulting from a release u(k), is described by (13.2), and is shown in Fig. (13.2).
In this figure, the "expected transformation" is that which would occur if the mean
inflow, u(k), occurred, and the output state probability distribution shown in this
figure results from the random nature of q(k). From (13.2) it may be seen that the
mean and standard deviations of this probability distribution are ajx(k) - u(k) +
u(k), and o(k), respectively., The probabilities of occurrence, Pj:(k), of the
output state intervals, xj(k+1), can then be found from the appropriate probability
distribution function.

It is apparent that there may be stochastic transformations whose resulting output
state probability distribution lies partially outside the admissible range of
x(k+l). This undesirable behavior can be limited only on a probabilistic or "chance
constraint" basis. For each stochastic transformation, the probability that x(k+l)
< Xpin{k+l), and the probability that x(k+l) > xpax(k+l) can be found. If upper
bounds are assigned to these probabilities then the alternative under consideration
is rejected if either of the probabilities is above its upper bounds.

If the alternative, u(k), under consideration from input state interval xj(k),
satisfies these chance constraints, its value is then estimated. To do this, a
function Fic.) [X3(k+1)], § = 1,2,...,Q),; 1s needed to specify the expected net
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Fig. 13.2 Stochastic transformation.

benefits of future operation of the system for the remaining stages, k+l,k+2,...,K,
beginning from the state interval ki;(k+l). If we assume that such a function is
available from the optimization thag has already been carried out for those stages,
the value Fk[xl(k)] of an analogous function for input state interval xj(k) in
stage k can be found as an expectation over the values of all probable state
transformations to the output state intervals x;(k+l), which could occur from xj (k)
with decision u(k). The value of each transformation is computed as the sum of
the value of_operation over the stage, Rk xi(k), X5 (k+1),u(k)|, and the value of
Fk+1[x (k+l)] The function of Ri[: xl(k),xJ%k+l) U(k)] is typically the net
beneflg expressed in monetary terms of the irrigation water, hydroelectric power,
etc. which are supplied during the stage. Mathematically, this computation for
Fk[xl(k)] can be formulated as

Qk+l
Felx00] = 2 py 00 TR, [x; (),

4 (keD)yu)] + F o [x (ke D] (13.6)

hj

Equation (13.6) is the basic recursive equation for the dynamic programming. The
aim of the optimization is to find the optimal value of Fk[xi(k) by varying u(k)
within 1ts feasible range. The optlmizatlon of this recursive equation is carried
out for all input state intervals, xy(k), i = 1,2,...,Q. This procedure is
summarized in Fig. (13.3).

The analysis of one year of operation by monthly stages constitutes an iteration of
the optimization procedure. The stages are treated in reverse order beginning with
the last stage K. For the first iteration, the value function for the output state
intervals, Fk+1[ﬁ(K+l)], must be arbitrarily assumed. Since these output state

intervals are the input state intervals for stage 1, the expected value, or "gain,"
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Fig. 13.3 Flowchart of recursive equation optimization.

gjs of a year's operation, beginning and ending in the same state, can be calculated
by

g; = FlgM] - F I eD)] 5 1= 1,2,0.0,0) (13.7)

For subsequent iterations, the value function, FK+1[5(K+1)], can be reinitialized
by subtracting the value of the lowest storage state, Fj[x3(1)]:

Fror g &eD] = Fi [ (D] - Fi (] 5 1= 1,2,..0,0; (13.8)
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After three or four iterations, the values of the individual state gains, gj,
converge to a single value, g, called the gain of the system, which represents the
expected annual benefits from the system if it is operated using the optimal policy.
The "relative" value function found using (13.8) also stabilizes; the stable
function represents the present worth over the long term of beginning operation in
a specified storage relative to beginning operation in the lowest storage state
interval. A general flowchart of the algorithm is shown in Fig. (13.4).

Start

Initialize FK+1[5(K+1)], and

u(k),k=1,2,...,K. Stage = K+l

Reduce stage number by 1.
Optimize recursive equation
for all states at this stage

No.4 All stages analyzed?

Yes

|

Calculate gain. Has
convergence occurred?

Yes

Fig. 13.4 General flowchart of the algorithm for computation
of the gain of the system.

——No

In principle, the optimization procedure for the serially correlated inflow model

is similar to that described for the independent inflow model. In practice,
however, it is more complex. That the random variables xj(k+1) and xp(k+l) are
linearly dependent can be demonstrated from (13.5). The linear independence of

the random variables means that the computation of the recursive equation equivalent
to (13.6) involves a line integration of the probability and value functions in

two dimensions. Since both functions are defined using a discrete grid of the
variables x)(k+1) and xp(k+l), and the line of integration is at an angle to this
grid, the resultant numerical method for the line integration is somewhat compli-
cated.

The computer time requirements for dynamic programming algorithms can be formulated
using the method proposed by Chow et al. (1975). In this method, the sequence

of steps within the outer loop of the flowchart in Fig. (13.3) has been termed a
"unit operation," and the computer time requirement, To, can be estimated as the
time for one such unit operation, Ty, multiplied by the number of unit operations
performed in the optimization:
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K n p
T,=TM I (0Q T P ) (13.9)
e k=l =1 17Kjop JoK

in which M is the number of iterations involved in optimization, K is the number of
stages, and Qi k and P ,k are the number of feasible values that state variable

i, i=1 2,...,n, and &ecision variable, j,j = 1,2,...,p, can take at stage k in
each iteration or in the optimization procedure. The value of T, depends on the
type of computer, the method of coding, the kind of compiler, the nature of the
constraints, and other factors and so must be empirically determined.

AN APPLICATION

Description of the Physical System

The methodology 1s applied to the Watasheamu dam and reservoir which have been
proposed for construction by the U.S. Bureau of Reclamation in Nevada. The
objective of the analysis is to derive, for this reservoir, an operating policy
that specifies the volume of water to be released from the reservoir in each month
of the year. Two policies are developed: the first, using the independent inflow
model, specifies the release as a function of the storage avallable at the beginning
of the month; and the second, coming from the serially correlated inflow model,
considers in addition to the available storage, the average rate of inflow that
occurred in the previous month. This particular system was chosen because it is
relatively simple (it has only one reservoir) and also because the required data
are readily available (Butcher and Fordham 1970).

The region is arid. The average rainfall at Reno, Nevada is 9 in. (230 mm); in the
watershed of the Watasheamu reservoir, the average annual rainfall is about 30 in.
(760 mm). Much of this precipitation falls as snow. In the warmer months, from
June to October, the streamflow is supplied by snowmelt and the average monthly
streamflows in this period are highly correlated. In the other months of the year,
this is not so. A stream gauging station is located near the site of the proposed
dam and 28 yrs of streamflow records are available. The statistical parameters

of these data are summarized in Table 13.1 and the data are assumed to be normally
distributed. The watershed area is approximately 280 square miles (725 km ) and
the Watasheamu river has an average annual flow rate of 357 ft3/sec (10 m®/sec or
259 KAF per year; 1 KAF = 1,000 acre-feet = 1. 23x10% m?).

The physical features of the proposed Watasheamu dam are shown in Fig. (13.5). The
dam will be of earth and rock-fill construction and will be approximately 300 ft
(90 m) high. There are three ways by which water will be released from the dam.
Two of these are controlled outlet works that draw water from the reservoir through
the intake structures shown in the figure. The main outlet works at elevation
5,075 ft (1547 m) release water through the powerhouse up to the capacity of the
power generation equipment, which is consldered as 50 MW. When the level of the
water in the reservoir falls below 5,188 ft (1,582 m), power will no longer be
generated and water released through the main outlet works will bypass the power-
house, as will any flow beyond the capacity of the generation facilities.

Water may also be released through auxiliary outlet works whose intake is at
elevation 5,060 ft (1,543 m). Such releases cannot be used to produce power,
however. The 30 KAF (3.7x10” m3) storage below elevation 5,159 ft (1573 m) in the
reservoir has been identified as "“inactive" storage by the U.S. Bureau of
Reclamation. It is considered undesirable that the reservoir fall below this
level. The cap301ty of the reservoir at the splllway crest elevation will be 160
<AF (1. 97x10 m¥), so that the net active storage capacity will be 130 KAF
(1.60x10° m?).
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Table 13.1. Statistical parameters of streamflow data for the

Watasheamu Reservoir watershed

Jan Feb Mar Apr May June
Mean 9.948 10.908 14.630 35.420 67.79%  58.406
Standard deviation 6.865 7.553 5.909 13.120 23.760 27.720
Serial correlation 0.754 0.452 0.237 0.355 0.500 0.729

July Aug Sept Oct Nov Dec
Mean 23.086 8.251 5.205 4.858 8.078 12.365
Standard deviation 16.670 4.511 2.336 1.534 11.460 16.090
Serial correlation 0.934 0.920 0.955 0.802 0.211 0.669

Note: The mean and standard deviation data are in KAF/month. The serial
correlation coefficient is that between the month shown and the

previous month.
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Fig. 13.5 VWatasheamu dam.

The Mathematical Model

In the mathematical models formulated as (13.2) and (13.5), the loss coefficient

of the storage, a], must be determined. To account for evaporation,

which is the

major cause of loss of water from the reservoir, the depth of evaporation from a

water surface in each month is multiplied by the water surface area.

The resulting

data for a; are fitted with a polynomial function in each month using storage

volume as the dependent variable.
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In the dynamic programming, the storage state variable is divided into discrete
intervals of the size of 1 unit of normalized flow. In general, the intervals
should be no larger than two standard deviations of the probability distribution
that is applied to them in the computation of the recursive equation.

The reservoir will be operated for hydroelectric power, the supply of irrigation
water, and flood control. Flood control is allowed for by reserving storage at
the top of the reservoir in the appropriate months. The other two purposes are
incorporated into the objective function, Rk[xi(k),xj(k+1),u(k)], which may be
expressed in dollars in a simplified form as follows:

Rk[xi(k),x (k+1),u(k)] = 5.453x10"u(k)h + 2.5min{u(k);u . (k)} (13.10)

hj

in which u(k) is the rate of release in acre-feet per month, h is the average
elevation of the reservoir in the month, and upj(k) is the maximum volume of
irrigation water needed in month k. The first term of (13.10), 5.453x10-’u(k)R,
is the value of power generation assuming all power can be sold at a price of 0.71
cents per kW-hour, and a power conversion efficiency of 0.75. The second term of
this equation is the value of water for irrigation if irrigation water can be sold
for $2.50 per acre-foot up to a maximum volume umi(k). The values of umi(k) in
KAF per month are as follows: May, 25; June, 30; July to September, 45; October,
20; and zero in the remaining months. The power function is actually more complex
than that expressed in (13.10) because there is no power generated if h is less
than a specified minimum level, and the maximum rate of generation is limited by
the capacity of the generating equipment. Therefore, the objective function is
nonlinear, discontinuous, and changes from stage to stage.

The gain, g, which is to be maximized is the expected annual benefits from the
system:

12
g= E {I Rk[xi(k),x (k+1),u(k)] (13.11)
x, (k) k=1 J
i = 1,2,-..,Qk
k= 1,2,...,12

The months or stages are numbered, as are the calendar months; stage 1 is January,
etc.

Results of Optimization

The results of optimization include the policy for operation of the reservoir,
together with the average annual net benefits and expected response of the reservoir
with this policy. Two computer programs were written in FORTRAN, one program for
the independent inflow model, and the other for the serially correlated inflow
model. Maidment (1976) describes these programs and gives their computer code.

The results presented here are primarily obtained using the independent inflow
model, although a number of comparisons are made between these results and those
obtained from the serially correlated inflow model.

The optimal policy for operation using the independent inflow model is shown in
Table 13.2, from which several observations about the form of the policy can be
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made. As is to be expected, the optimal release in each month increases with the
volume of available storage. The major releases are made in the irrigation season,
from May to October, and these releases are controlled by the irrigation require-
ments, since, over a wide range of available storage, the optimal release is equal
to the maximum volume required for irrigation, upji(k), specified in the previous
section. By comparing the mean inflows, given by Table 13.1, with the optimal
policy, it can be seen that large releases are made in months of high inflow,
particularly in May and June. In October and November large releases are also
made because then the reservoir must be drawn down for flood control.

The optimal policy for the serially correlated inflow model comprises tables similar
to Table 13.2 for each month of the year, in which the optimal release is specified
as a function of available storage and as a function of the inflow in the previous
month. These tables are presented in Maidment (1976) and some general comments

are made here. The form of the policy is similar to that described previously for
the independent inflow model. The optimal release increases with available

storage, and also with the rate of inflow in the previous month.

If the optimal releases of the two policies for any specified available storage
are compared, it appears that the release from the independent inflow model is
approximately the average of the optimal releases for the various flow states in
the serially correlated inflow model. When a low inflow has occurred, the
serially correlated release is low; conversely, this release is higher than the
average when a high inflow has occurred; over the middle of the flow range, the
releases are similar,

The gain, or average annual benefits, from the operation converges after three or
four iterations of optimization. Under the same constraint conditions, the value
of the gain for the independent inflow model is $773,560,000 and for the serially
correlated model $777,506,000, a difference of about 0.5%.

The serial correlation coefficients of the inflows are high during the irrigation
season, and because of this it might have been expected that the gain of the
serially correlated model would be significantly greater than that of the
independent model. The fact that they turn out to be similar might be explained
in several ways. One explanation might be that since the independent model's
release policy does not usually differ greatly from the serially correlated
model's policy over the range of inflows most likely to occur, the independent
policy probably realizes most of the available benefits from the operation,
particularly those in the irrigation season. Alternatively, it could be postulated
that the objective function is not sufficiently complex to properly evaluate the
benefits from the system and, therefore, to properly discriminate between the two
models. For practical purposes, however, it appears that the independent model is
to be recommended over the serially correlated inflow model because it is much
simpler to use, and in this example, little benefit from operation seems to be
sacrificed in doing so.

The computer execution times for the two programs are approximately 30 sec for the
independent inflow model, and 105 sec for the serially correlated inflow model.
The corresponding values of T, found using (13.9), are 3.54x10-% sec, and
5.77x10"? sec. Thus, about half of the increase in computer time incurred by
using the serially correlated inflow model is due to the increased complexity of
evaluating a single decision, and the other half of this increase is due to the
larger number of decisions examined since there are two state variables involved
instead of just one.

These computer time requirements may be compared with those involved in applying
dynamic programming to the same problem using sets of deterministic inflow
sequences. From the data presented by Chow et al. (1975), it is estimated that an
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equivalent deterministic analysis would require a Ty of about 3x10~" sec. There-
fore, the computer time required for the independent inflow model is about the

same as that for the analysis of 10 deterministic sequences. This is a favorable
comparison for the present methodology because the number of deterministic sequences
required to obtain meaningful results is usually considerably more than 10.

CONCLUSIONS

The principal advantage of the stochastic state variable dynamic programming is
that the stochastic nature of the water resource system inputs is embedded directly
within the optimization procedure without requiring computationally expensive
system simulations or discrete probability distributions. The policy found from
the optimization allows for the feedback of changing conditions in the system,

since it is a function of the state variables and the stage, instead of being a
function of just the stage alone. There is no restriction on the form of the
objective function, as is required by some optimization procedures. There are few
difficulties with the imposition of constraints on the state and decision variables,
whether they are deterministic or probabilistic constraints.

A disadvantage of the proposed methodology is the large amount of computer time

and memory requirements. Although these requirements are not excessive when
compared with those for comparable analyses by other methods, they probably restrict
the application of the methodology to systems involving, at most, four state
variables at the current level of computer technology.

Although the procedure of application of the serially correlated inflow model is
more complex than that of the independent inflow model, the average annual benefit
found from the optimization using the serially correlated inflow model is only
slightly greater than the average annual benefit found using the independent
inflow model. For practical purposes, therefore, it is recommended that the
independent inflow model be adopted.

To develop real-time operating policies where the releases must usually be made on

a daily or even hourly basis, a suballocation methodology would have to be formulated
for each month to disaggregate the average monthly release determined from the
present methodology into the releases required at the shorter time intervals. The
development of such a suballocation methodology is a challenging area for further
research.
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14 Some Remarks on Real-Time Control of
Dissolved Oxygen in Rivers

H. Stehfest

The goal of this contribution is to show approaches to the problem of real-time
control of river quality on three levels of sophistication. The control problem
consists of operating certain river quality control facilities in such a way that
desirable water quality is maintained. We will confine our considerations here to
oxygen concentration in the river as an indicator of water quality. Application of
the described methodology to other river quality aspects is straightforward. Other
assumptions made for the sake of simplicity are: steady-state hydrology and
temperature, the use of artificial aerators and wastewater treatment plants as the
only control facilities, and the very simple Streeter-Phelps model to describe the
water quality dynamics.

The Streeter-Phelps model has the following form

3b b 32b
ﬁ*van'ow:'klb“ﬁa
) (14.1)
3c o] 3°c
wtVagc- D g;; = - klb + kz(cs -c) + u,

where
t = time,
% = distance along the river,
v(2) = stream velocity,
D(2) = diffusion coefficient,
b(2,t) = blological oxygen demand (BQD),
c(%,t) = dissolved oxygen (DO),
kl(l) = BOD degradation coefficient,

kz(l) = reaeration coefficient,
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cg = Oxygen saturation concentration,

ub(Q,t) = BOD input,
uc(z,t) = DO input.

Hence, the system to be controlled is a linear, distributed parameter system for
which many inputs have to be adjusted simultaneously so that the outputs behave in
a desirable way.

An optimal control problem for such a system is hard to solve, so the problem is
usually simplified in some way. To begin with, one can neglect longitudinal
dispersion. This implies that the system can be transformed into a lumped parameter
system with flow time T as the independent variable. An optimal control problem
becomes, through this transformation,

T
min J = J g{x{(t), u{t)) dt
uel 0

subject to (14.1), which can be rewritten as

dx

d—T. = Fx + Gu
with K 0 1 0
T T 1
x =(b, cg - c) ,u= (ub,uc) , F = , G = .
"1l -k2 0 1

U is the set of admissible controls and T the flow time of the river section
considered. Even this simplified optimal control problem can only be solved easily
in particular cases. One such case is for a quadratic performance index, i.e.,

T
J=1r (xT uT)A (xT uT)T dt .
0

The simplicity of the linear-quadratic optimal control problem has enticed many
authors into using a quadratic performance index even in cases such as design
studies, where its justification may be questioned. For example, in papers on
installment of artificial aerators, a performance index of the form

T
J= IO {alc - cd)2 + Buz) dt

has been used, where cy is the desired DO level and a and B are weighting factors.
The first term is to account for the environmental damage, and the second one
stands for the costs associated with the artificial aeration. This index is not
very realistic because exceeding the desired oxygen concentration ought to be
considered beneficial, and the aeration required for a certain oxygenation rate
should depend on the oxygen concentration.
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If the design problem has been solved with a realistic performance index, the
problem of maintaining the nominal oxygen concentration despite various disturbances
is a so-called second variation problem, which has exactly the desirable linear-
quadratic structure just described (Bryson and Ho 1975). The problem consists in
minimizing the second variation of the performance index (the first one vanishes
anyway), which can be written as

T H H
T T XX Xu
8§23 =S (8x 6u')

0

(<SxT 6uT)T dt
ux o uu

where H is the Hamiltonian:
H=g+ A(Fx + Gu) ,

whose second derivatives are identical to the second derivatives of the cost
function g. The variations 8x and du obey the equation

déx _
? = Féx + Géu,

where 8x(0) is specified.

The solution of this problem can be written in the form
Su(T) = K(1) éx(1)
where the gain matrix K(t) is
K(t) = - g;i (P + gxu) y

where P is the solution of a Riccati equation and the derivatives of g are evaluated
along the nominal direction of motion. The expression for Su has the form of a
continuous feedback law, and it is obviously optimal if a deviation from the nominal
direction of motion occurs later than at 1=0.

If we go back to the original coordinates t and %, we see that the feedback control

law is time invariant and that no exchange of information between different points
along the river is necessary (local control):

Su(L,t) = k() 8x(L,t) .

The implementation of this control, which requires discreteness in space, is shown
in Fig. 14.1 for one reach.

In the case of artificial aeration, we have uy as the only controllable input, and
the control law is .
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su_(2,t) = (k' (£)k"(£))(8b(£,t) sc(2,t))

where k' and k" are computed by solving a 2 x 2 matrix differential equation, a
Riccati equation.

DISTURBANCE

(i — it *(i)®
— »
W0 REACH
iy + i
+
5um(t)
K

Fig. 14.1 Structure of the local feedback control scheme
resulting from the second variation problem
(from Rinaldi et al. 1978).

A possibility for refining the plug flow model which led to the simple lumped
parameter, second variation problem, is to divide the river into reaches that are
considered to be continuously stirred (completely mixed) tank reactors (CSTR

model; Young and Beck 1974). This model, which is similar to the Nash model of
hydrology, can be derived as a low-frequency approximation to the exact distributed-
parameter system, The low-frequency approximation to the transfer function of a
series of n river reaches for BOD is

M(s) = (m(s)"

where

m(0)
L/n
2k.0 °
vi{l+ > )

m(s) =
1+

v

is the transfer function of a single reach and L is the total length of the river
section considered. (The oxygen concentration needs a slightly different treat-

ment, since it is coupled with the BOD, but it is not necessary to go into these

details in order to explain the idea behind the CSTR model.) On the other hand,

the transfer function of a series of n connected, completely mixed tanks in which
the BOD reaction goes on is

M'(s) = (m'(s)"

where

m'(0)
L/n ‘

m'(s) =



-235-

L/(nv) is the residence time of the water in the reaches. Comparison of the two-
reach transfer functions shows that they become identical if the reach length L/n
is chosen such that L/n = 2D/v (in this case the gains are identical). Since
2D/v, too, is usually small and the number of reaches not very large, the time
constant of the serially connected tanks is smaller than the time constant of the
low-frequency dispersion model. If this is the case, in order to have identical
wave propagation velocities, an additional time delay As has to be introduced.
The reach transfer function becomes

m'(0) o8
1+ —L/n s

L/n
V(l+kl _V—)

mll(s) -

If we use a CSTR model with a suitable reach length, the quality control problem is
still of the same degree of complexity as the general problem made discrete in
space. As suggested by the structure of the solution of the second variation
problem, we can try to control the system locally such that the nominal water
quality is maintained. This would correspond to the most traditional approach of
process control engineering for multivariable systems, namely, to associate each
output with one and only one control variable through a feedback controller (Fig.
14.2). The most critical problem with this approach is the input-output assignment.

uq Y1

CONTROLLER
1

MULTIVARIABLE
SYSTEM H

c ese

CONTROLLER P
R

Fig. 14.2 The classical multivariable control system (from
Rinaldi et al. 1978).

This is often solved in a heuristic way by associating with each input variable
that control variable which has the strongest influence on it. This approach
would satisfy the condition of local control if the reaches are sufficiently long.
If the reaches are too short, input-output connections that overlap one or several
reaches are preferable (Fig. 14.3).

Assuming that we have solved the assignment problem in the form of local feedbacks,
we have to design the appropriate local controllers. The most simple approach to
this problem is to solve a control problem for each reach under the assumption

that all other reaches are at their nominal quality. In principle, such an
approach can lead to very undesirable behavior of the whole system, but if the
input-output assignment is reasonable, satisfactory results can be expected. In
particular, we can be sure that the total system is stable if each feedback system
is stable, because the subsystems are in a cascade. If we adopt this decomposition
into individual feedback control problems, we find that the design procedure is
remarkably different from that of the second variation problem previously discussed.
Here we have to solve several simple feedback control problems which are completely
independent of each other, while in the second variation problem, the control laws
were coupled through the Riccati equation.
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Fig. 14.3 Overlapping control structure along a river (from
Rinaldi et al. 1978).

The criterion for the local control problems could again be the minimization of
some performance index. Another, more pragmatic criterion is stability, which
means that we try to design the controller such that the resulting system enjoys

a satisfactory dynamic behavior (without being optimal). In the case of the river
reaches, the desired change of the dynamic behavior is, of course, the speeding

up of the naturally quite slow disappearance of disturbances. With linear systems,
this problem is equivalent to designing the controller such that the closed-loop
system has a prescribed set of eigenvalues; this problem is called pole assignment.

If we consider a linear feedback state controller, i.e., a feedback of the type
Su(t) = Kéx(t) ,
the dynamics of the closed-Ioop system are governed by

ddx
F: (F ~ GK)6X y

and the problem of pole assignment consists of determining K such that the
equation

det(F - GK - AI) = 0

has prescribed solutions. It can be shown that this can be done for any set of
poles if and only if the original system is completely controllable, i.e., if the
controllability matrix

C=(FG...FM g

is of rank n. Hence, inspection of the controllability properties of the system
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yields information about the possibility of pole assignment. If the poles cannot
be fixed arbitrarily, a change in the proposed input-output assignment may provide
the solution.

The calculation of the matrix K is quite complex for multi-input systems, but for
single-1nput systems the solution can often be obtained by hand. If the control
1s achieved by varying the efficiency of a treatment plant on the reach, the
dynamics of a reach are described in the CSTR model by

dsb _ v

CARRRS RV
déc _ v
d_t = - kléb - (kz + -—L/n)Gc y

and the controllability matrix 1s consequently

)

1 -(k1 *T/n

which is obviously of rank 2. The row vector K, which represents the control law
as a functlon of the prescribed poles X\ and X5, reads

v v
-(k1+m+k2+m+kl+kz)

1 v v
~q(k2+m+xl)(k2+m+kz) .

The implementation of the control law 1s somewhat problematic because the BOD
measurements are avallable only at a time lag of 2 or more days. The solution
suggested by linear system theory 1s to use a linear state reconstructor in series
with the controller. The poles of this enlarged system can be fixed arbitrarily
if and only if the original system is completely controllable and completely
observable. Another way to solve the problem of BOD measurement delay 1s to
measure a varlable which 1s strongly correlated with the BOD. Such substitute
measures could be total organic carbon (TOC) or chemical oxygen demand (COD).

Instead of using a proportional feedback we could also use a dynamic feedback
containing, for example, an integrator for the deviation of oxygen concentration
from the reference value. This would require that the system be at the reference
value under steady-state conditions, no matter what the uncontrollable input is.
Looking at the integral of the oxygen deviations as a state variable of the open-
loop system, one can again make use of the relationship between controllability

and pole assignability. Because of the troubles with BOD measurements, one can

also use a single industrial proportional and integral (PI) regulator working on the
oxygen deviation (see Young and Beck 1974). Of course, with a single PI regulator
the poles of the closed-loop system cannot be fixed at will because one has fewer
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parameters to adjust than poles.

For very large disturbances, like acclidental releases of huge amounts of pollutants,
the control schemes discussed so far are not sufficient. As far as the model is
concerned, diffusion is not considered adequately. Technical constraints for
control actions have to be observed, and coordinated action of the control
facilities 1s necessary. We briefly discuss, in conclusion, an approach to the
optimal control of an emergency situation caused by an accidental release of
pollutants (Tamura 1974). The computational effort will be much bigger in this
case than for the control schemes discussed so far.

The model to be used is the so-called distributed-lag model. It is a generalization
of the CSTR model, which can be explained best in the frequency domain. Instead

of introducing a pure additional time delay As between two adjacent reaches, we

can introduce a more general function ®(s) in order to describe the behavior of

the river better:

m(Q) &(s)

m(s) =

If the CSTR river model is interpreted as a sequence of channels and pools, where
the channels act as pure time delays, then in the distributed-lag model the
channels are allowed to have a more general transfer function. The value of the
delay As in the CSTR model could be deduced from the diffusion coefficient, flow
velocity, and reach length, but the function ®(s) (or the corresponding impulse
response function) can be estimated only from actual process observations.

The problem is made discrete in time, as well as space, whereby the distributed-
parameter optimal control problem is transformed into a mathematical programming
problem. The performance index chosen is, in discrete form,

T-1 n
I = XO I (ag(by(tel) - bD)? + B (e  (t41) = e)? + y (e (t) - €2)?).
t=0 i=1

The superscript © indicates steady-state conditions. As in the index for, the
aerator allocation given on p. 232, the first two terms describe losses due to
quality deterioration, and the third one reflects the costs of treatment as a
function of treatment efficiency ej. The use of this quadratic performance index
1s justified here, because deviations from the nominal values in this emergency
situation can be expected to be in one direction only, and because the costs
assoclated with a certain treatment efficiency are independent of the river state.

The constraints are the equations of the distributed-lag model and the inequality
constraints for the efficiencies of the treatment plants. The model equations are
of the form

o , 8
by (t + 1) = ajb (t) + ==L jZO b5 (Dby_g (€ = 1)+ (1 - g (0D,

Vi

and there is an analogous equation for c;j(t + 1). The initial conditions are the
nominal conditions everywhere except in the reach in which the accidental release
occurred. W; is the waste water production in reach i and Q; is the volume of river
flow.
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Fig. 14.4 Optimal emergency control. (a) BOD, (b) DO,
(c) treatment efficiency and BOD discharge
(from Rinaldi et al. 1978).
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The summation in the equation can be looked upon as the discrete form of the
convolution of bj_j(t) with the impulse response of the above-mentioned channels.
The constraints for the efficiency are of the type

0 <et) <€

The resulting mathematical programming problem is convex and has a separable
objection function and linear constraints. Various techniques could be used for
its solution. For the example given, a particularly efficient method based on
Lagrange duality was applied which makes use of the special structure of the
problem (Tamura 1974).

The results of an optimal emergency control along 4 reaches of the river Cam in
England are shown in Fig. 14.4. One sees that in the fourth reach almost nothing
is felt of the accident in the first reach. The solution shows clearly the
anticipatory action in the downstream reaches: the efficiency of the treatment
plants is increased before the water quality in the receiving reach deteriorates.
This kind of control could not have occurred with the previously discussed local
feedback schemes. On the other hand, it is an indication that the performance
index chosen may not be as reasonable as originally thought: the optimal control
may create positive deviations from the nominal water quality just before the
pollutant peak arrives, and these deviations ought to be considered beneficial in
the performance index. But the algorithm applied could also be used for a problem
with a more realistic performance index, since any reasonable index will be convex.
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Part Three

Operational Experience






Introduction

In Parts One and Two of this volume, the focus of the material has been on recent
developments in state-space modeling, either in the forecasting or the control
domain. During the workshop, an important consideration was the relevance of the
proposed techniques to operational experiences in the field. In almost every paper,
case studies were presented to illustrate the proposed techniques, but the step from
illustrative examples to operation situations is formidable.

It appears that there is a movement within the operational hydrology community to
develop real-time forecasting models based on state estimation procedures. It is
also important to recognize that the hydrologic forecasts are often a hierarchy of
forecasts culminating with a river forecast. It is reasonable to construct extended
forecasts of main river flows based on forecasts of tributary flows. These fore-
casts utilize subcatchment overland flow forecasts and forecasts of point and

areal precipitation. By forecasting precipitation (either by radar, satellite, or
subjective probability assessments), the operational forecast length can often be
significantly extended.

The United States National Weather Service has been making subjective probability
assessments of precipitation for a number of years and is considering conducting
experimental studies into subjective quantitative precipitation forecasting. The
paper by Murphy (Chapter 15) is an important contribution to the evaluation of
this technique. Murphy links the subjective assessments with quantitative
hydrologic forecasting models, which represents an important area for future
development.

River basin development is becoming ever more complex because the demand on basin
yields is increasing. In many river basins, the easily accessible or easily
constructed reservoirs have been built and new reservoir sites are not available or
their use restricted for environmental reasons. Since demands on existing water
resources are increasing and since increased yield may not be obtained by expansion,
improved operation is required if the increased demands are to be met. The
improvement of operation was the focus of the workshop.

Collinge et al. (1967) reported that waste due to inefficient reservoir operation
could account for up to 22 percent of the reservoir storage capacity. Waste
included unnecessary releases due to the inability to forecast tributary inflow
downstream of the reservoir, as well as excess releases in anticipation of floods.
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The majority of the work reported in this volume has focused on forecasting
techniques since it is well known that forecasting is a prerequisite for optimal
control. Better forecasting of flood situations has the most dramatic impact on
operational management systems. In the papers by Cole (Chapter 16), Bobinski

et al. (Chapter 17) and Curtis and Smith (Chapter 18), flood forecasting was a
prime operational consideration, as it was with many of the techniques described
earlier. Although these papers do not utilize state estimation models, it is
important for researchers to appreciate the procedures being used and the field
operation methodology.

The United States National Weather Service (NWS) probably has the most extensive
operational river forecast system in the world. As described in Chapter 18,

through eleven regional forecast centers in the continental United States, they
regularly issue river forecasts and flood warnings for 2,500 communities, and make
seasonal water forecasts. The NWS system has followed the trend in deterministic
hydrology by moving from index-based catchment models to conceptual catchment models.
Currently, the Office of Hydrology of the NWS is conducting research on the
application of state estimation models, of the type discussed earlier in this
volume, to their forecasting.

As in the United States NWS, the forecasting techniques in Poland, described in
Chapter 17 by Bobinski et al., and the models used on the River Dee, described by
Cole in Chapter 16, are based on deterministic, conceptual hydrologic models. The
operational procedures tend to have heuristic methods to tune the models during
operations. One problem with these procedures is that they do not efficlently
utilize the real-time information. The structure of the conceptual models is for
long-term simulation, whereas the Kalman filter approach focuses on the forecasting/
updating formulation. Other operational models could be cited, but Chapters 16,

17, and 18, describing techniques in the United States, Poland, and the United
Kingdom, are typical of the operational state-of-the-art forecasting procedures.

None of the proposed state estimation models requires a large use of the computer.
All of the models have been developed around recursive algorithms which avoid the
storage of past histories of rainfall and streamflows. Furthermore, most of the
models have a simple structure and require only small computers. The implication
for operational forecasting is the possibility of a system using many local fore-
cast centers, each with a minicomputer, as opposed to the regional center with a
much larger computer system.

In the United States, an increasingly large percentage of flood damage is occurring
on small tributaries rather than on main rivers, implying that it may be desirable
to have local forecasting centers for many tributaries. How small a computer is
needed for the state estimation models? At the workshop, E. Todini made forecasts
for the Ombrone River 1n Italy using an IBM-5100 desk-top calculator. This machine
can also be used as a remote terminal to receive data (precipitation and stream-
flow) from remote gauging stations and can send forecasts to a regional computer
center.

FUTURE DIRECTIONS IN OPERATION FORECASTING/CONTROL

There is a growing awareness that river basin management may be improved 1if some
of the techniques proposed in this volume are indeed applied. One result of the
ITASA workshop was an attempt by Cole to apply the state estimation models to
forecasting and control of the River Dee. The results (Institute of Hydrology,
forthcoming) indicate that the models may be very well suited for operational
procedures, Further work on this case study is being done as well as work in
applying these models and other real-time control models to parts of the Thames
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River basin in the United Kingdom. As stated earlier, the U.S., National Weather
Service is supporting research in the application of state estimation techniques
to operational forecasting and it is hoped that the results can be compared with
the results obtained from their current methods.

Plans for applying real-time control (which will also utilize real-time forecasts)
have been discussed for the Zagyva/Tarna Rivers 1n Hungary (Salamin and Beck 1976),
the Ohre River in Czechoslovakia, and parts of the River Thames in the United
Kingdom (Institute of Hydrology, forthcoming). Furthermore, the proposed Hydro-
logical Operational Multipurpose System (HOMS) of the World Meteorological
Organization (WMO 1977), includes a real-time forecasting system and has identified
six river basins where feasibility studies that include hydrologic forecasting may
be carried out.
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15 Subjective Quantification of Uncertainty in Real-Time
Weather Forecasts in the United States

Allan H. Murphy

The real-time weather forecasts that are currently issued to the public and to
specific users by the National Weather Service (NWS) in the U.S. are subjective
forecasts. The process of formulating these forecasts is a judgmental process that
involves the intuitive assimilation of information from a variety of sources by NWS
forecasters. It should be noted that two sources of "objective" information play
important roles in the formulation of these forecasts: the basic output (e.qg.,
analyses, predictions) associated with numerical weather prediction (NWP) models,
and the guidance forecasts produced by model output statistics (MOS) procedures.
MOS procedures and forecasts are described in some detail by Klein and Glahn (1974)
and Glahn and Klein (1975). Thus, while public weather forecasts are subjective
forecasts, they are based in part upon objective analyses and forecasts.

It is generally agreed that weather forecasts expressed in probabilistic terms

offer at least two important advantages over traditional categorical or deterministic
forecasts. First, a probabilistic mode of expression provides forecasters with a
means of quantitatively describing the uncertainty inherent in their forecasts.
Second, probabilistic forecasts provide potential users of forecasts with informa-
tion needed to make rational decisions in uncertain situations. Since real-time
weather forecasts are subjective forecasts, it is important to determine whether
forecasters can subjectively quantify their uncertainty in a reliable and skillful
manner. MOS guidance forecasts for certain variables are also expressed in
probabilistic terms (Klein and Glahn 1974, Glahn and Klein 1975).

The purpose of this paper is to summarize some of the results of operational and
experimental programs in the U.S. in which NWS forecasters have formulated
subjective probability forecasts. We briefly describe the NWS operational (point)
precipitation probability forecasting program and present some representative
results of this program. Some of the results of two recent experiments in which
point and area precipitation probability forecasts were formulated by NWS
forecasters are described and compared, and we summarize the results of two
experiments in which NWS forecasters expressed the uncertainty in temperature
forecasts in terms of credible intervals. A recent experiment involving the
quantification of uncertainty in tornado forecasts is also briefly described.

After several years of experimentation, the NWS initiated a nationwide probability
of precipitation (PoP) forecasting program in 1965. Under the PoP program,
precipitation probabilities are routinely appended to public weather forecasts,
which are generally issued 4 times a day by NWS forecasters. These probabilities
are valid for either 3 consecutive 12-hour periods (e.g., "today", "tonight," and
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"tomorrow") or a 6-hour period followed by two 12-hour periods (e.g., "this
afternoon," "tonight," and "tomorrow"). A typical PoP forecast might state that
"the precipitation probabilities for Denver (Colorado) today, tonight, and tomorrow
are 30 percent, 20 percent, and 40 percent, respectively”.

PoP forecasts are subjective forecasts. Specifically, a PoP forecast expresses the
forecaster's "degree of belief" that a measurable amount of precipitation (i.e.,

> 0.01 in.) will occur during a specified six-hour or twelve-hour period at a
particular point in the forecast area (generally the official raingauge). It is
generally assumed that the probability of precipitation is the same at every point
in the area. 1In this case, a PoP forecast also represents an average point
probability forecast. Forecasters assimilate information from a variety of sources
in the process of formulating these (and other) forecasts. In this regard, a
recent survey of NWS forecasters (Murphy and Winkler 1973; see also Murphy and
Winkler 1974h) provides some information concerning the process used by the fore-
casters in formulating PoP forecasts. The results of this survey indicate that,
while the relative importance and order of examination of various information
sources differ from forecaster to forecaster and even from occasion to occasion for
a particular forecaster, the output of numerical models plays an important role in
the formulation of these forecasts - directly in the form of numerical prognoses
and other NWP products and indirectly in the form of objective precipitation
probability forecasts produced by an MOS procedure.

During the 10 years since the initiation of the PoP program, several million
precipitation probability forecasts have been formulated and issued to the public
in the U.S. These forecasts have been subjected to rather extensive and detailed
evaluations, both on a national basis (e.g., see Sadowski and Cobb 1974) and on a
regional basis (e.g., see Cummings 1974; Hughes 1976). 1In this paper we shall
briefly examine the reliability and skill of a representative sample of PoP
forecasts. Rellability refers to the degree of correspondence between forecast
probabilities and observed relative frequencies over a collection of forecasts.
Skill, on the other hand, refers to the "accuracy" of the forecasts relative to
some standard of comparison such as climatology, where accuracy is defined as the
average degree of correspondence between individual forecasts and observations over
a collection of forecasts.

First we examine the 12 hour PoP forecasts formulated by forecasters in the Southern
Region of the NWS during the period from April 1973 through March 1974 (see
Cummings 1974). The Southern Region comprises most of the eastern two-thirds of
the southern half of the U.S. (ten states). The reliability of these forecasts is
depicted in Fig. 15.1, in which the forecast probabilities are plotted against the
observed relative frequencies for (a) the first period (0-12 hours), (b) the second
period (12-24 hours), and (c¢) the third period (24-36 hours). Each reliability
diagram is based on approximately 38,650 forecasts. In formulating these forecasts,
the forecasters were permitted to assign the probabilities O percent, 2 percent,

5 percent, 20 percent, ..., 90 percent, and >95 percent to the occurrence of
measurable precipitation. The plotted points, then, indicate the observed relative
frequencies of precipitation when these probability values were used. For example,
the relative frequency of occurrence of precipitation on those occasions on which
the forecasters assessed a probability of 40 percent for the first period was 39.6
percent (see Fig. 15.1a). We have also entered the number of forecasts next to
each point on three diagrams; thus, forecasts of 40 percent for the first period
were issued on 2,001 occasions, and precipitation actually occurred on 792 (39.6
percent). The diagonal 45°-line in each diagram represents perfect reliability,

in the sense that the relative frequencies exactly equal the probabilities.

Examination of Fig. 15.1 reveals that these forecasts were quite reliable - the
observed relative frequencies corresponded quite closely to the forecast
probabilities - for all three periods or lead times. The first-period forecasts,
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Fig. 15.1 The forecast probabilities versus the observed relative
frequencies for the precipitation probability forecasts
issued by NWS forecasters in the Southern Region during
the period from April 1973 through March 1974 (see
Cummings 1974). (a) First-period (0-12 hr) forecasts.
(b) Second-period (12-24 hr) forecasts. (c¢) Third-
period (24-36 hr) forecasts.

in particular, were very reliable. A tendency did exist for the forecasters to
overforecast at the upper end of the probability scale, and this tendency increased
as lead time increased. That is, the probability values were greater than the
relative frequencies for the 80 percent, 90 percent, and >95 percent forecasts in
the first period, and the tendency to overforecast appeared to extend down to the
70 percent and 50 percent forecasts in the second and third periods, respectively.
In addition, it should be noted that the frequency of use of probability values at
the upper end of the scale is considerably less than that at the lower end of the
scale, and this difference also increased as lead time increased. These results,
of course, simply reflect the current state of the art in precipitation forecasting
and are due, at least in part, to the fact that it is not possible for forecasters
to assign high probabilities frequently and in a completely reliable manner to an
event that has an average (regionwide) climatological point probability of
occurrence of approximately 0.17. Nevertheless, the reliability of these subject-
ive precipitation probability forecasts is excellent for the first-period forecasts,
and it is still very gcod for the second-period and third-period forecasts except
for those forecasts associated with the highest probability values. Clearly, the
forecasters were able to distinguish between those occasions on which, for example,
probabilities of 30 percent and 40 percent should have been assigned to the
occurrence of precipitation (for all three periods).

While reliability is an important attribute of precipitation probability forecasts,
1t is not the only or necessarily even the most important attribute. After all,
forecasts based solely upon the long-term climatological probability of precipita-
tion would also be quite reliable. Such forecasts would not, however, be very
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accurate. The Brier score (Brier 1950) is an evaluation measure widely used in
meteorology to assess the accuracy of probabilistic forecasts. This score is
simply the mean square error of the (probabilistic) forecasts, in which an
individual observation assumes a value of one if precipitation occurs and zero
otherwise. The skill of the forecasts can then be determined by computing the
percent improvement of the Brier score for the forecasts over the Brier score for
the relevant climatological probabilities. The results of such a computation for
the Southern Region PoP forecasts indicate that these forecasts represented a
27.5 percent, 16.9 percent, and 8.3 percent improvement over climatology for the
first, second, and third periods, respectively (see Cummings 1974). As expected,
skill decreased as lead time increased. Nevertheless, these results indicate
that the PoP forecasts were both reliable and skillful.

Space limitations preclude a more detailed examination of these (and other)
operational precipitation probability forecasts. For a recent evaluation of
another set of subjective PoP forecasts, including a discussion of the forecasts
formulated by individual forecasters, see Murphy and Winkler (1977a). A paper
containing a comprehensive review of the PoP forecasting program is in preparation.

PRECIPITATION PROBABILITIES: EXPERIMENTAL POINT AND AREA FORECASTS

The Experiments

The purposes of these experiments, which were conducted in the NWS Forecast Office
(WSFO) in St. Louis, Missouri, and in the NWS Office (WSO) in Rapid City, South
Dakota, were to investigate the ability of forecasters to differentiate among
different points in a forecast area with regard to the likelihood of occurrence

of measurable precipitation, and the relative ability of forecasters to make point
and area (including areal coverage) precipitation probability forecasts.

Precipitation probabilities have been included in weather forecasts in the U.S. on
a regular basis for more than 10 years, and the evidence available suggests that
these probabilities are considered to be an important and integral part of the
NWS's public weather forecasting program. However, many aspects of precipitation
probabitity forecasting are in need of further detailed investigation. For
example, many users are interested in the occurrence of (measurable) precipitation
at points in the forecast area for which the probability of precipitation may be
quite different from what it is at the official raingauge. The present practice
of issuing a single point probability forecast for an entire area clearly does not
satisfy the requirements of such users, unless the point probability is indeed

the same at every point in the area.

If the forecast area of concern is defined in terms of a finite set of K points,
then the average point probability is § = Zpj/K, where pj represents the point
probability of precipitation at point i. In the special case in which the point
probability is uniform over the forecast area, p is equal to the common value of
the point probabilities. However, since p is a summary measure, it does not, in
general, contain all of the information provided by the set of individual point
probabilities. When we are concerned with the forecast area as a whole rather
than with the individual points making up the area, then an area probability,
which is defined as the probability that precipitation will occur somewhere in the
forecast area, may be of interest. The area probability, a, and §i, an indicator
variable equal to 1 if precipitation occurs at point 1 and 0 otherwise, have the
following relation: a = P(E§; > 0). Since the occurrence of precipitation at a
point implies the occurrence of precipitation in the area, the area probability
must be at least as large as each point probability, which implies that a 2 max pj.
Another measure relating to the entire area is the expected areal coverage, e,

and this measure can be defined either conditionally or unconditionally. The
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unconditional expected areal coverage, e,, is the expected proportion of the fore-
cast area over which precipitation will occur. Thus, ey = E(Z81/K) = ZE(S81)/K =
Ipi/K = p. The conditional expected areal coverage, on the other hand, 1s the
expected proportion of the forecast area over which precipitation will occur given
that precipitation occurs at one or more points in the area. This measure, which
we shall denote by e,, is necessarily gqreater than or equal to e, (and, as a result,
e.,2p). For further discussion of these (and other) relationships, see Epstein
(1966), Curtiss (1968), Winkler and Murphy (1976), and Murphy and Winkler (1977b).

The subjects in the experiments were 14 forecasters in the St. Louls WSFO and 9
forecasters in the Rapid City WSO. Each time they were on forecasting duty during
the periods of the experiments (November 1972 - March 1973 in St. Louls and June -
September 1974 in Rapid City), the forecasters made point and area precipitation
probability forecasts for the St. Louis and Rapid City areas. In particular, the
forecasters were asked for an average point probability of measurable precipitation
for the entire forecast area; point probabilitiés of measurable precipitation at
specific points in the forecast area (5 points in the St. Louls area and 4 in the
Rapid City area); an area probability of measurable precipitation for the forecast
area; and the unconditional (conditional) expected areal coverage of the forecast
area by measurable precipitation (unconditional for St. Louis and conditional for
Rapid City). The forecast areas were defined by 20 and 10 points (i.e., raingauges),
respectively, in the St. Louls and Rapid City experiments. In St. Louls, the
forecasts were made for 3 different 12-hour periods (on the day shift, for "tonight,"
“"tomorrow," and "tomorrow night"; on the midnight shift, for "today," "tonight,"

and "tomorrow"), while at Rapid City the forecasts were made for only one 12-hour
period (on the day shift, for "tonight"; on the midnight shift, for "today"). In
total, 771 and 222 sets of forecasts were made in the St. Louls and Rapid City
experiments, respectively,

Some Results

A brief summary and comparison of part of the results from the St. Louis and Rapid
City experiments is presented here. For a more detalled description, see Winkler
and Murphy (1976) and Murphy and Winkler (1977b), respectively.

Point probability forecasts for specific points. The averages of the probability
forecasts, and certain functions of the forecasts, for both the St. Louils and Rapid
City experiments are presented in Table 15.1. With regard to the individual point
probabilities, the average values of the point probabilities are very close for the
5 polnts at St. Louls and not so close for the 4 points at Rapid City. The points
which, on the average, were assigned higher probabilities at Rapid City are

located in portions of the forecast area 1n which topographic features would be
expected, a priori, to increase the frequency of occurrence of measurable
precipitation. A sample s2 (see definition in Table 15.1) was computed for each
set of point probabilities in the experiments. The average values of sp indicate
that differences among the five point probabilities in the St. Louls experiment
were infrequent in the individual sets of forecasts (as well as on the average),
while such differences were considerably more frequent among the four points in

the Rapid City experiment. In this regard, a closer examination of the forecasts
in the St. Louls experiment reveals that for 619 (80.3 percent) of the 771 forecasts,
P1=P2=P3=py=ps. On the other hand, pi=p2=p3=py in the Rapid City experiment for
only 38 (1#.1 percent) of the 222 forecasts.

The relative frequencies of measurable precipitation at the points, or raingauges,
defining the forecast areas in the experiments are presented in Table 15.2. The
first entries in each list are the relative frequencles at the raingauges for which
point forecasts were made in the experiments. These values ranged from 0.200 to
0.257 (0.223 to 0.257 for the five point-forecast gauges) in the St. Louis experiment
and from 0.045 to 0.171 (0.104 to 0.167 for the four point-forecast gauges) in the
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Table 15.1. Averages and selected function of the point
probability forecasts

Probabilities and St. Louis Rapid City
functions of experiment experiment
probabilities (n=771) (n=222)

Py 0.226 0.083
P, 0.227 0.123
P3 0.233 0.205
Py 0.222 0.172
Ps 0.231

ﬁf 0.229 0.119
m 0.244 0.213
ss 0.001 0.007
a 0.240 0.356
e 0.229 0.274

NOTE: pj,...sp5 are the point probabilities, ps
is the forecast average point probability,
m = max{p;} is the largest point probabillty,
= I (p1 pc) /4 (St. Louis) or Lj(pj- pc) /3
(d%pld City) is the sample variance of the point
probabllltles, -a is the area probablllty, e
is the expected areal coverage, and p. is
the sample mean of the point probabilities.
e = ¢, for the St. Louis experiment and
e = e (n=90) for the Rapid City experiment.

Rapid City experiment. Thus, some variation among the points in terms of relative
frequency of precipitation existed in the St. Louis experiment, but the amount of
variation was not great. This result suggests that the lack of variation among
the forecasters' point probability forecasts was justified, to a considerable
degree, by the "weather situations" that occurred during the period of the
experiment. In the Rapid City experiment, on the other hand, the variation among
the relative frequencies was similar in magnitude to the variation among the
forecasters' average point probabilities. Moreover, a modest degree of correspond-
ence appears to exist between the (average) point probabilities and the relative
frequencies in this experiment. The gauge-to-gauge variation can also be
investigated, and these data indicate that the observations were the same at all
20 (10) points for 77.7 percent (60.0 percent) of the periods at St. Louis (Rapid
City); as expected, more variation among points was observed at Rapid City than at
St. Louis.
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Table 15.2. Relative frequency of occurrence of measurable
precipitation at the rain gauges defining the
forecast areas

Rain-gauge St. Louis Rapid City

number experiment experiment
(n=771) (n=222)
1/11 0.226/0.238 0.117
2/12 0.223/0.226 0.126
3/13 0.242/0.234 0.167
L/14 0.257/0.234 0.104
5/15 0.238/0.208 0.167
6/16 0.249/0.238 0.153
7/17 0.200/0.211 0.045
8/18 0.208/0.223 0.171
9/19 0.230/0.223 0.045
10/20 0.226/0.215 0.113
Average 0.227 0.122

An evaluation of the forecasts in light of the observations can provide information
concerning the extent to which the forecasters were successful in differentiating
among the raingauges for which individual point probabilities were assigned. Since
the forecasters at St. Louls were not able to make such distinctions very often,
owing in large measure to the lack of variation among the observations, their
success in differentiating among the 5 points was at best very limited. At Rapid
City, on the other hand, a higher average value of the point probability
corresponded to a higher relative frequency at three of the four raingauges. More-
over, an examination of the average probabilities as a function of the observations
revealed that the average probability assigned to gauges recelving rain was more
than three times as large as the average probability assigned to gauges not
receiving rain (see Murphy and Winkler, 1977b). Thus, at Rapid City (but not at
St. Louis), the forecasters were able to differentiate with considerable success
among different points in the forecast area in terms of the probability of
precipitation.

The reliability of the point probability forecasts can be examined by plotting the
forecast probabilities versus the observed relative frequencies, and a reliability
curve for the entire sample of point probability forecasts in each experiment is
presented in Fig. 15.2. At both St. Louls and Rapid City, the point probabilities
tended to be slightly too high for low probability values (i.e., the forecasters
tended to overforecast). For higher probabilities, the St. Louis forecasts tended
to be slightly too low, while the subsamples of forecasts at Rapid City for these
higher values were too small to reach a definite conclusion concerning overfore-
casting. Overall, the reliability of the individual point probability forecasts
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Fig. 15.2 The reliability diagram for the individual point
probability forecasts formulated by NWS forecasters
during the St. Louis and Rapid City experiments.

was quite good, particularly when the relatively small sample sizes are taken into
consideration.

Average point probability forecasts. A comparison of the average point probabili-
ties with the average relative frequencies of precipitation indicates that, on the
average, these quantities corresponded quite closely in both experiments (cf.

Tables 15.1 and 15.2). The average point probabilities are plotted against the
average relative frequencies in Fig. 15.3. This figure provides further evidence
that the average point probabilities in both experiments were very reliable;

except for high probabilities involving very few forecasts, the reliability curves
for St. Louis and Rapid City lie quite close to the 459 line (a tendency did

exist for the average probability at St. Louis to be too high for higher probability
values).

Area probability forecasts. From Table 15.1, the average area probability forecast
for St. Louis (Rapid City) was 0.240 (0.356), while the relative frequency of
precipitation "somewhere in the area" was 0.332 (0.405). On the average, then,
the area probability was too low in both experiments; the underestimation at St.
Louis was almost twice as great as that at Rapid City. The reliability of the
area probability forecasts is indicated in Fig. 15.4. This figure reveals that
the area probability tended to be less than the relative frequency throughout the
range of probability values at St. Louis and for probability values less than or
equal to 30 percent at Rapid City. Clearly, the forecasters underforecast at St.
Louis, while the overall agreement with the 459 line was quite good at Rapid City,
especially when the small number of observations for each probability value is
taken into consideration.

The consistency of the point and area probabilities is also of concern. From
Table 15.1, the average value of the area probability, a, was -0.004 (0.143) larger
than the average value of m, the largest of the point probabilities. Thus, on the
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Fig. 15.3 The reliability diagram for the average point
probability forecasts formulated by NWS
forecasters during the St. Louis and Rapid
City experiments.
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average, the area probability at St. Louis violated the relationship that the area
probability must be at least as large as the largest point probability. In terms

of individual forecasts, a < m on 7.6 percent (2.3 percent), a = m on 89.4 percent
(23.4 percent), and a > m on 3.0 percent (74.3 percent) of the forecasting occasions
at St. Louls (Rapid City). Theoretically, only under the condition that if
precipitation occurs anywhere in the area, it must occur at the point corresponding
to the largest point probability, can a equal m. Thus, the point and area probabili-
ties at St. Louis (Rapid City) were inconsistent or only marginally consistent on
97.0 percent (25.7 percent) of the occasions. When these results are considered

in coniunction with the results related to the reliability of the point and area
forecasts (see Figs. 15.2 and 15.4), it seems reasonable to conclude that the area
probabilities at St. Louis were inconsistent because they were too low. At Rapid
City, on the other hand, the point and area probability forecasts appear to be

quite reliable and consistent.

Expected areal coverage forecasts. The final forecast made on each occasion was an
expected areal coverage forecast, an unconditional forecast (ey) at St. Louis and a
conditional forecast (es) at Rapid City. The average value of e, (es) was 0.229
(0.274) (see Table 15.1) and the average observed unconditional (conditional) areal
coverage was 0.227 (0.301). Thus, the overall correspondence between average
forecast and average observation was quite close in both experiments. Moreover, it
should be noted that the observed unconditional areal coverage in the Rapid City
experiment was only 0.122, which suggests that the forecasters considered the full
impact of the conditional nature of the expected areal coverage forecasts appropri-
ately in this experiment.

As previously indicated, the unconditional (conditional) expected areal coverage
should be equal to (greater than) the average point probability, pg. Note that,

on the average, e-p = 0.000 in the St. Louis experiment and es-pf = 0.055 (n = 90
for ec and pe) in the Rapid City experiment (see Table 15.1). Thus, the expected
areal coverage forecasts in both experiments were consistent with the average point
probability forecasts.

EXPERIMENTAL CREDIBLE INTERVAL TEMPERATURE FORECASTS

The Experiments

The purposes of these experiments, which were conducted in the WSFOs in Denver,
Colorado, and Milwaukee, Wisconsin, were to investigate the ability of forecasters
to express the uncertainty in their temperature forecasts in probabilistic terms

and to compare two approaches (variable-width intervals and fixed-width intervals)
to credible interval temperature forecasting. A credible interval represents an
interval of potential values of the variable of concern together with a probability
(expressing the forecaster's degree of belief) that the actual value of the variable
will fall in the interval. These intervals appear to provide a promising format

for probability forecasts of continuous variables such as temperature (see Peterson
et al. 1972).

Two forecasters at Denver and 3 forecasters at Milwaukee worked within the framework
of variable-width, fixed-probability forecasts, using 50 percent and 75 percent
central credible intervals. To obtain these intervals, each forecaster was asked

to make a total of five "indifference judgments" at equal odds. The first
indifference judgment determines the median of the forecaster's probability
distribution, while the remaining judgments determine the 25th, 12-1/2th, 75th,

and 87-1/2th percentiles of the forecaster's distribution. Once these five
indifference judgments are made, the 50 percent central credible interval 1is the
interval from the 25th percentile to the 75th percentile, and the 75 percent central
credible interval is the interval from the 12-1/2th percentile to the 87-1/2th
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percentile. The other two forecasters in each experiment worked within the frame-
work of fixed-width, variable-probability forecasts, using intervals of width 59F

and 99F. First, the median of the forecaster's distribution was determined, just

as in the case of the variable-width forecasts. Then, the forecaster was asked to
determine probabilities for intervals of width 59F and 99F centered at the median.
All intervals were assumed to include their end points, and all temperatures were

recorded to the nearest degree.

As indicated above, the subjects in the experiments were 4 forecasters in the
Denver WSFO and 5 forecasters in the Milwaukee WSFO. During the respective periods
of the experiments (August 1972 - March 1973 in Denver and September 1574 - July
1975 in Milwaukee), the forecasters made credible interval temperature forecasts

of maximum (high) and minimum (low) temperatures. In the Denver experiment, the
forecasts were for "tonight's low" and "tomorrow's high" on the day shift and for
"today's high" and "tonight's low" on the midnight shift; in the Milwaukee
experiment, the forecasts were for "tonight's low," "tomorrow's high," and "tomorrow
night's low" on the day shift and for "today's high," "tonight's low," and
"tomorrow's high" on the midnight shift. Thus, the Denver experiment involved 12-
hour and 24-hour forecasts, while the Milwaukee experiment involved 12-hour, 24-
hour, and 36-hour forecasts. Overall, 127 and 233 sets of forecasts were made in
the Denver and Milwaukee experiments, respectively.

Some Results

Some of the results of the experiments are summarized and compared here. The
results of the Denver experiment are described in detail by Murphy and Winkler
(1974a) and of the Milwaukee experiment by Winkler and Murphy (1977).

The first task on each forecasting occasion for all of the participants in both
experiments was to determine a median. A comparison of the median temperatures
(MTs) with the corresponding observed temperatures (0Ts) is presented in Table
15.3a. The MTs would be completely reliable if the percentage of the time that

MT > OT equaled the percentage of the time that MT < OT. The percentages presented
in Table 15.3a indicate that a tendency existed for the MTs to underestimate the
0Ts, and this tendency was slightly greater in the Milwaukee experiment than in
the Denver experiment. These results are further supported by the average
differences between MT and 0T, which are negative for both experiments, with the
difference at Milwaukee slightly exceeding that at Denver. On the other hand, the
average absolute differences between MT and OT are essentially equal in the two
experiments. For comparative purposes, the official temperature forecast (FT)
issued to the public was recorded on each occasion, and the average absolute
differences between FT and OT presented in Table 15.3a indicate that the medians
determined by the forecasters for the purposes of the experiments were, on the
average, comparable to the official forecasts as point forecasts of high and low
temperatures.

Climatological median temperatures (CTs) provide a convenient standard with which
to compare MT as a point forecast. The climatological forecasts considered here
are median high and low temperatures based upon historical data for the 5-yr periods
immediately preceding the respective experiments, and they were computed on a
monthly basis. These forecasts were analyzed in the same manner as the forecasters'
assessed medians, and the results are presented in Table 15.3b. As in the case of
MT, CT exhibited a slight tendency to underestimate OT (CT < OT more often than

CT > 0T). Thus, the forecasters' tendency to underestimate may be due in part to
above normal temperatures during the experimental periods. 1In any event, these
tendencies are not strong, and the MTs appear to be quite reliable point forecasts.
It is also of interest to note that the average value of |CT - 0T| is approximately
twice as large as the average value of |MT - 0T| in both experiments.
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Table 15.3. Forecasters' medians and climatological medians

{(a) Forecasters' medians

Experiment  Number of Percentages Average (°F)
forecasts MI>0T  MI=0T MT<OT MT-OT _ |[MT-OT FT-0T

Denver 254 39.4 12.6 48.0 -0.5 3.8 3.9

Milwaukee 699 37.2 9.4 53.4 -0.8 3.7 3.7

(b) Climatological medians

Experiment Number of Percentages Average (°F)
forecasts CT>0T CI1=0T CT<0T (CT-OT [CT-OT|

Denver 254 39.4 3.1 57.5 0.6 8.9

Milwaukee 699 40.6 4.6 54.8 -1.3 7.1

NOTE: MT stands for median temperature, OT for observed temperature, FT
for forecast temperature, and cT for climatological temperature.

The results presented in Table 15.4a indicate that the variable-width forecasts
were quite reliable, in the sense that the observed relative frequencies below, in,
and above the variable-width intervals are close to the probabilities of the inter-
vals (0.25, 0.50, and 0.25, respectively, for the 50 percent intervals; 0.125,
0.750, and 0.125, respectively, for the 75 percent intervals). Note that the
relative frequencies in the intervals were slightly too low in the Denver experiment,
while these frequencies were slightly too high in the Milwaukee experiment. The
fact that the relative frequencies above the intervals were greater than the
relative frequencies below the intervals in both experiments lends further support
to the above-mentioned result that the MTs tended to underestimate the OTs. Table
15.4a also indicates that the widths of the 50 percent and 75 percent intervals
were slightly narrower, on the average, in the Milwaukee experiment than in the
Denver experiment.

Climatology can also be used as a standard of comparison for interval forecasts, and
climatological variable-width interval forecasts were generated by determining the
appropriate percentiles from the 5 years of historical data on a monthly basis. The
performance of these climatological forecasts is summarized in Table 15.4b. An
examination of the percentages of observations below, in, and above the intervals
indicates that the climatological intervals were not quite as reliable as the
intervals determined by the forecasters. Moreover, the average width of the
climatological intervals is more than twice as great as the average width of the
forecasters' intervals (cf. Table 15.4). Thus, the forecasters' variable-width
intervals were more reliable and much more precise than intervals based on
climatological data.

The results for the forecasters' fixed-width intervals and the corresponding
climatological intervals are presented in Table 15.5. The average probabilities
assigned by the forecasters to the 59F and 9°F fixed-width intervals in the Denver
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Table 15.5. Average probability assigned to intervals and observed
relative frequency of observations in intervals for
fixed-width forecasts and climatological forecasts
corresponding to fixed-width forecasts

Average Probabilities Relative Frequencies

Number of SOF 90F SOF 90F
Experiment forecasts Intervals Intervals Intervals Intervals

(a) Fixed-width forecasts
Denver 122 0.60 0.80 0.46 0.66
Milwaukee 267 0.47 0.72 0.40 0.66

(b) Climatological forecasts
Denver 122 0.23 0.37 0.19 0.43
Milwaukee 267 0.22 0.37 0.19 0.36

experiment differed considerably from the relative frequencies with which the 0T
fell in these intervals (see Table 15.5a). For both the 59F and 99F intervals, the
average probability was 0.14 higher than the relative frequency. In the Milwaukee
experiment, the differences between the average probabilities and the relative
frequencies were considerably smaller; namely, 0.07 and 0.06 for the 5°F and 99F
intervals, respectively. Note, however, that the probabilities assigned to the
intervals were, on the average, larger than the observations indicate that they
should have been in all four "situations." 1In this regard, it is interesting to
observe that in the Denver (Milwaukee) experiment the average width of the 50
percent variable-width intervals was 6.2°F (5.99F), whereas the S°F fixed-width
intervals were assigned an average probability of 0.60 (0.47); the 75 percent
variable-width intervals averaged 11.79F (10.1°F) in width, whereas the 9°F fixed-
width intervals averaged 0.80 (0.72) in probability, On the average, then, the
fixed-width intervals have higher probabilities for narrower intervals when compared
with the variable-width intervals in the Denver experiment {(but not in the Milwaukee
experiment). Narrower intervals are desirable provided that they are reliable,

but the fixed-width intervals in the Denver experiment were not very reliable
because they were too narrow. Moreover, the climatological fixed-width intervals
were more reliable than the forecasters' intervals at both Denver and Milwaukee

(cf. Tables 15.5a and 15.5b).

The results of the Denver and Milwaukee experiments provide strong support for the
tentative conclusion reached by Peterson et al. (1972, p.969) that "weather
forecasters can use credible intervals to describe the uncertainty inherent 1in
their temperature forecasts." These results are particularly encouraging in view
of the fact that the forecasters had no experience and very little training in
making such forecasts. For a more detailed evaluation of the results of these
experiments, including an examination of the forecasts formulated by individual
forecasters, refer to Murphy and Winkler (1974a, 1977c¢) and Winkler and Murphy
(1977).
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TORNADO PROBABILITIES: EXPERIMENTAL FORECASTS

The Experiment

Forecasts of severe weather in the U.S. are formulated by NWS forecasters at the
National Severe Storms Forecast Center (NSSFC) in Kansas City, Missouri. NSSFC
issues two types of severe weather forecasts - severe weather outlooks and severe
thunderstorm and tornado watches. In this context, severe weather is defined as
the occurrence of one or more tornadoes and/or the occurrence of thunderstorms
accompanied by hail greater than ¢ in. in diameter, by damaging winds, or by wind
gusts exceeding 50 knots. An outlook is issued each day in the early morning
hours (approximately 0900 GMT) and identifies those areas in the U.S. (if any)
that are expected to experience severe weather during the subsequent 24 hours
(1200-1200 GMT). A watch, on the other hand, can be issued at any time that one
of the following events is expected to occur: one or more tornadoes - a tornado
watch - and one or more severe thunderstorms (as defined above) - a severe
thunderstorm watch. The watches are generally defined over a rectangular "box"
approximately 25,000 square miles in area and are usually valid for a period of

4 to 6 hours. Most of the severe thunderstorm and tornado watches are issued
during the period from February through June, although severe weather can occur in
any month of the year.

Severe weather forecasts are generally expressed in categorical terms. However, an
experiment was recently undertaken at NSSFC to determine whether NWS forecasters
could subjectively quantify the uncertainty inherent in these forecasts in a
reliable and skillful manner. Two groups of forecasters participated in the
experiment - one group was concerned with the severe weather outlooks and the other
group was concerned with severe thunderstorm and tornado watches. The forecasters
who regularly formulate outlooks were asked to assign probabilities to the following
events on an experimental basis: one or more tornadoes will occur in any of the
severe weather areas identified in the outlook of the “day" in question (01 fore-
cast), and 10 or more tornadoes will occur anywhere in the U.S. on that day (02
forecast). The forecasters who formulate watches were asked to assign probabilities
to the following events: one or more tornadoes will occur within the watch (W1
forecast); three or more tornadoes will occur within the watch (W2 forecast); and
at least one tornado occurring within the watch will attain an F rating of two or
more on the FPP scale (W3 forecast). The FPP scale is a composite measure of
tornado intensity, involving maximum wind speed, path length, and path width (see
Fujita, 1973). An F rating of two refers to tornadoes with maximum wind speeds in
the range from 113 to 157 miles/hr. Probabilities were assigned to these three
events in connection with both severe thunderstorm and tornado watches. The

period of the experiment was February through June 1976. 1In total, 92 Ol and 02
forecasts, 241 W1 and W2 forecasts, and 223 W3 forecasts were made during this 5
month period.

Some Results

We consider only the reliability of these experimental forecasts. The preliminary
results of this experiment are described in greater detail by Murphy and Winkler
(1977d).

The reliability of the 01 and 02 forecasts is indicated in Fig. 15.5, in which the
observed relative frequency is plotted against the forecast probability. Examina-
tion of the curve for the 01 forecasts reveals that the forecasters tended to
overforecast for this event. Nevertheless, these results are encouraging in that
the relative frequency is a monotonically increasing function of the probability
over the range of probability values from 40 percent to 100 percent (this range
includes 77 of the 92 forecasts). Thus, the forecasters were able to "order" most
of the forecasting occasions according to the relative likelihood of occurrence of
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Fig. 15.5 The reliability diagram for the experimental outlook
forecasts formulated by NWS forecasters during the
NSSFC experiment.

the event of concern, even though their forecasts were not particularly reliable
in terms of the difference between the probabilities and the relative frequencies.

Figure 15.5 reveals that the 02 forecasts were not very reliable. In this case, the
forecasters exhibited a tendency to underforecast - the forecast probabilities

are less than the relative frequencies for most of the probability values involving
a significant number of forecasts. It should be noted that the large departures
from the 45° line, which are primarily associated with the higher probability
values, involve very few forecasts.

The reliability diagram for the experimental watch forecasts is presented in Fig.
15.6. Examination of the curve for the W1 forecasts (one or more tornadoes in the
watch area) indicates that the forecasters tended to overforecast for this event,
and this tendency was most pronounced for probability values greater than or equal
to 40 percent. However, the reliability of these forecasts is actually quite good,
particularly when the forecasters' lack of experience in probabilistic forecasting
and the relatively small sample size are taken into account. Moreover, with the
exception of the 10 forecasts associated with a probability value of 90 percent,
relative frequency is a monotonically increasing function of probability over the
entire range of probability values used for these forecasts.

The reliability of the W2 forecasts (three or more tornadoes in the watch area)

and the W3 forecasts (one or more F2 or stronger tornadoes in the watch area) is

not as good as that of the Wl forecasts. The W2 forecasts exhibit only a slight
tendency toward overforecasting, but no monotonically increasing relationship exists
between observed relative frequencies and forecast probabilities for these forecasts.
The curve for the W3 forecasts reveals a consistent and relatively strong tendency
to underforecast for all probability values. However, it 1s encouraging to note



-264~

100 T 7 T T

80 : -

OBSERVED RELATIVE FREQUENCY (%)

\
01’(3‘-“@ 1 ! 1

o ! 20 40 60 80 100
FORECAST PROBABILITY (%)

Fig. 15.6 The reliability diagram for the experimental watch
forecasts formulated by NWS forecasters during the
NSSFC experiment.

that the relative frequency is a monotonically increasing function of the
probability for probability values greater than or equal to 5 percent for these
forecasts.

SUMMARY AND CONCLUSION

The results of the area probability and point probability precipitation experiments
have important implications for operational forecasting practices, particularly in
locations in which a considerable amount of variation exists among points within
the forecast area in terms of precipitation occurrence. The positive results
concerning area probability forecasts at Rapid City provide encouraging evidence
that forecasters can successfully make this different type of forecast.

The results of the temperature forecast experiments indicate that weather forecasters
can formulate both reliable and skillful credible interval temperature forecasts,

in the sense that the forecasters' intervals were more reliable and much more

precise (i.e., narrower) than the corresponding climatological intervals at both
Denver and Milwaukee. These results, which are particularly encouraging in view

of the fact that the forecasters had no experience and little training in making

such forecasts, also have important implications for the practice of temperature
forecasting.

The preliminary results of the NSSFC tornado and thunderstorm forecasting experi-
ments are also encouraging, particularly when the forecasters' lack of probability
forecasting experience and the small sample sizes are taken into account.

The results of these operational and experimental programs provide convincing
evidence that the output of numerical models, together with the knowledge and
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experience of NWS forecasters, represents a sound basis for the formulation of
subjective probability forecasts. In particular, these results indicate that NWS
forecasters can subjectively quantify the uncertainty in real-time forecasts of a
variety of weather variables in a reliable and skillful manner. In view of the
fact that the value of probabilistic forecasts, in general, exceeds the value of
either climatological or categorical forecasts (see Murphy 1977), the results of
these programs appear to have important implications for operational forecasting
_ practices.

In addition to the nationwide PoP program of the NWS and the experiments described
in this paper, several other experimental and operational programs in subjective
probability forecasting in meteorology have been undertaken in recent years. In
this regard, an experiment involving probabilistic forecasts of minimum temperatures
has been conducted during April and May in Albuquerque, New Mexico, since 1971

(see Gregg 1977), and these forecasts are now routinely disseminated to orchardists
in New Mexico during the spring season. Moreover, subjective probability forecasts
of various precipitation and temperature events are routinely formulated on an
experimental basis in conjunction with the wide-ranging laboratory activities at
several universities (e.g., Sanders 1973, Bosart 1975). For recent references
concerned with various aspects of probability forecasting in meteorology, see

Murphy (1976a). A comprehensive list of references related to subjective probability
forecasting programs will be found in Murphy (197éb).

Finally, it should be mentioned that subjective probability forecasts, or assess-
ments, are now being made in many different fields, including medical diagnosis,
military intelligence, educational testing, and business, as well as in meteorology.
Moreover, psychologists and others have conducted numerous experiments in laboratory
settings involving quantification of judgements and decision making under uncertainty.
For recent review papers concerned with subjective probability assessments in these
areas, see Hogarth (1975), Lichtenstein et al. (1977), and Slovic et al. (1977).
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16 On-Line Forecasting for a Regulated River using
Weather Data from Radar

J.A. Cole

This paper describes the design and operation of an on-line forecasting system on
the River Dee, which rises in North Wales and enters the Irish Sea through a broad
estuary near Chester (Fig. 16.1). The construction and use of reservoirs in the
upper Dee to augment river flows downstream were originally described by Crann
(1968) and Blezard et al., (1970).

The Dee reservoir system has been the subject of a general study from the control
rule aspect; the research was supported by the former Water Resources Board. Much
of this work was pursued at the University of Lancaster and has been reported by
Wilkinson (1972), Jamieson and Wilkinson (1972) and Jamieson et al. (1976).

The water authority concerned (now the Welsh National Water Development Authority)
has had to work to fulfill complex objectives, which are quoted here from Lambert
and Cameron (1975):

Llyn Tegid (Bala Lake): releases controlled by slulce gate.
- Short-term retention of flood runoff, for subsequent controlled releases.

- Intensive amenity use, with higher than minimum lake levels in the period
April 1 to September 30.

- Reservolr balancing from which closely controlled adjustments of day-to-day
releases are made using telemetry data sent to the control center at Bala
Area Office.

Llyn Celyn: up to 12 m®/sec controlled release, spillage over a bell-mouth overflow
weir.

- Principal reservoir utilization is for low-flow regulation of the Dee, with
storage reserved to be released for fishery, water quality, or emergency
purposes. Good natural refill characteristics because of reservoir size in
relation to catchment area and rainfall. The water released passes into
Llyn Tegid.

- Short- to medium-term retention of flood runoff, with a variable upper

retention level depending on time of year; the flood runoff 1is released to
the Dee via Bala Lake as soon as practicable after heavy rainfall ceases.

~269-
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- Generation of hydroelectric power for the national grid. This use is not
given priority over either flood control or low-flow regulation; it is to be
regarded as a useful byproduct when available.

Llyn Brenig: controlled release; spillage by overflow weir.

- Utilization of the reserve storage for assisting in low-flow regulation of
the Dee, but only in very dry years; some storage of flushwater reserved for
fishery, water quality, or emergency purposes. Poor natural refill character-
istics are due to immense reservoir size in relation to catchment area and
rainfall.

- Recreational use (boating, fishing, etec.).

- No significant flood regulation function.

The manner in which these objectives have been met has, of course, varied with the
development of water storage in the Dee basin, as tabulated below, after Cole et
al. (1975).

Table 16.1. Reservoirs on the Dee catchment

Date Catchment
commencing Volume area Principal
Reservoir operation  (10% x m®) (km?) uses Secondary uses
Alwen c.1920 14.5 25.5 Water supply
(direct)
Llyn Tegid 1955 6.4 266.8 Flood control; Recreation
(Bala Lake) river
regulation
Llyn Celyn 1964 80.8 60.7 River Flood control;
regulation hydroelectric
power
Llyn Brenig c.1980 60.0 20.2 River
(1st stage) regulation

TELEMETRY SCHEME INCORPORATING WEATHER DATA FROM RADAR

For details of the design of the telemetry scheme in the Dee, see Rowse and Roberts
(1975). As seen in Fig. 16.1, the hydrometric stations connect, by landline or UHF
radio link, to a control center at Bala where there is a PDP 11/40 computer to
handle data. The system is an extension of the one operated by the Water Authority
since 1970 using a PDP 8 computer.

Interrogation of the rain-gauge and level measuring stations is performed automatic-
ally every half hour and the data are displayed on a mimic panel, a chart recorder,
or are printed out by teletype.

The inclusion of weather radar data is one of the most significant recent develop-
ments in the telemetry scheme: the Llandegla radar has been in use for research
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purposes since 1973 as part of a study on the accuracy of $ and C band radars for
the quantitative measurement of rainfall intensity; see Harrold and Austin (1974),
Water Resources Board (1973), and Collier (1975).

The radar's own processor converts the areal pattern of microwave reflectivity into
a rainfall intensity map expressed as a half-hourly rainfall on a 2 km x 2 km grid.
Corrections are made for permanent echo of the signal because of the terrain, as
well as for attenuation effects in the rainfall field itself. The measurements

are best made with on-line calibration using telemetering rain gauges. The "rain
gauge clusters" in Fig. 16.1 fulfill this purpose; their measurements are relayed
on-line to Llandegla.

The rainfall data on the 2 km x 2 km grid are transmitted directly to Bala for
display on a color television and are also delivered as subcatchment rainfalls for
use in the hydrological model. The interactive software for transmitting the
radar's rainfall data has been rather troublesome, partly because transmissions
from Llandegla had to be given priority and this caused interruptions to the normal
station calling sequence.

The televised rainfall maps are general guldes to current weather, which are
converted into a digital version from which subcatchment rainfalls are derived
every quarter hour and relayed separately to the Bala computer.

As Taylor and Browning (1974) have emphasized, the radar measurements have wider
implications, namely:

- Identification and tracking of weather hazards.

- Measurements of precipitation in river catchments which provide timely input
data into objective forecast models of river flow.

- Assistance in the general analysis of the current weather situation by
identifying mesoscale patterns of organization which otherwise would escape
detection.

- Enabling, as a direct consequence of the third implication, more accurate
short-term forecasts of precipitation intensity and other related phenomena
such as lightning risk and wind shifts.

THE FLOW FORECASTING MODEL FOR THE DEE

The flow forecasting model has been described by Lowing et al. (1975) and will be
presented here in summary form from Cole et al. (1975). There are three aspects
of the model:

- Rainfall forecasting; it has not been implemented quantitatively, but much
reliance is placed on the radar television picture of rainfall.

- Transformation of measured and forecast rainfall to a runoff hydrograph on a
subcatchment basis.

- Tributary and main channel routing of subcatchment flows down to the regulating
point.

The World Meteorological Organization (1975) has compared a variety of models
suitable for on-line flow forecasting. The study has shown that in many river
control systems the channel routing aspect is of paramount importance and the Dee
appears to be no exception in this respect. Thus, it is highly desirable to have
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good quantitative rainfall forecasts and a relatively simple tributary catchment
model.

Rainfall Forecasting

Rainfall forecasts are needed to achieve efficient use of tributary flows far down-
stream of the regulating reservoirs. Currently, the only detailed rainfall fore-
casts available come from an assessment of the isohyetal maps from radar, as
telemetered to Bala from Llandegla. These maps, in conjunction with synoptic
weather situations obtained from regional branches of the British Meteorological
Office, provide some deterministic rainfall forecasting. Research on storm cell
growth, decay, and movement is currently underway within the British Meteorological
O0ffice, and improved estimates are expected within the next year or two. (See
Harrold 1975.)

Rainfall-Runoff Model

There is an embarrassingly large choice of conceptual models of catchment response,
even given the need to work at the half-hour time increments used in the Dee basin.

For real-time control purposes, a simple model has been adopted which has been
shown to work well on the Dee catchment (Lambert and Cameron 1975). In this model
there is a single storage state whose contents Sy at time T determine the outflow
rate q, at time 0 (i.e., now), T being a measure of catchment lag. Thus,

S;: =k 1In q, *+ €3

T

k and ¢ are parameters of the catchment. This gives rise to the following sequential
expressions for runoff with or without antecedent rainfall, PL:

-p -P Tq
- L ~L]. -t
Q.7 = qt/l;xp (—F_) + (1 - exp ) . ) J for Py £0
or

q + T = a, (1 + th/k) for PL =0

Future storage states (and hence outflow) are predicted by a simple water balance;
rainfall adds to storage and outflow depletes it. Apart from its simplicity, this
model has the major attribute that the current value of outflow (telemetered) may
be used to update the catchment storage so that forecasts are continually being
brought into line with the most recent data.

The calibration of the subcatchment model has been described by McKerchar (1975) who
employs the criterion of least squares fit of observed and calculated hourly flows
over a whole month of winter data. The values arrived at for lag time T and

storage time constant k are tabulated in Table 16.2.

McKerchar recognized that k was not a constant parameter for a given subcatchment,
but varied according to season, presumably reflecting a soil moisture state. Since
summer recessions of storm runoff are particularly rapid, it is considered useful to
retain the flexibility of the Lambert storage/lag model and only adjust k, which was
made a function of antecedent rainfall and seasonal evaporation rate.
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Table 16.2. Subcatchment model parameters

Winter

(Nov-Apr) Summer {May-Oct)

T T
Catchment  (hrs) k (hrs) k or k;  Threshold g ko
Ceiriog 1.5 20.4 1.0 60.4 0.08 17.9
Alwen 1.0 8.6 1.0 23.6 0.10 9.1
Celyn 0.5 6.9 0.5 24.2 0.10 6.8
Hirnant 0.5 11.7 0.0 15.9 - -
Upper Dee 1.0 4,9 1.0 7.9 - -

River Flow Routing

To forecast flows at a downstream point requires a model that will account for
translation and attenuation effects as water moves down the river channel. For the
River Dee it was proposed to use Cunge's (1969) modification of the Muskingum
methods. This assumes channel storage S is a linear function of inflow, Qj, and
outflow, Qg, such that:

5 = K [in P (- x)]Qo

where K and x are fitted parameters of the reach. However, this model implies a
wave celerity independent of discharge and in the upper Dee such an assumption
proves untenable., The variable parameter diffusion (VPD) method developed by Price
(1973) was used instead.

Price (1973) calculated the nonlinear variation of wave celerity ¢ and attenuation
La as a function of discharge Q for the two main segments of the upper Dee, where

c and a are discharge-dependent terms in the VPD equation for the transient flow
propagation:

2% + ¢(Q) a9 Q g% {LE(Q) %% q + negligible

d 9x higher terms
where
q = the lateral inflow at head of river reach,
t = time,
x = the downstream distance,
L = the length of the river reach, and

Q = discharge.
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Combination of Lateral and Subcatchment Flows

Figure 16.2 shows the nine subcatchments, shown as circles, feeding the upper River
Dee and its major tributary the River Alwen. The two large areas of lateral inflow
are each regarded as lumped subcatchments with regard to their rainfall runoff
behavior, but their runoff is evenly distributed down the channel reaches. Most
tributary flows are ungauged (or if gauged, not telemetered) which means that their
flow and catchment storage forecasts are not amenable to continual updating. Thus,
the updating procedure is applied for the data as a whole, either in proportion to
the difference in forecast and gauged flows on the Hirnant catchment (for upper
tributaries) or on the Ceiriog (for lower ones). The catchments are shown in Fig.
16.3.

Chester

D
D

el

Llandegla radar

Catchments for which radar-based
rainfalls are telemetered to Bala

A = Alwen Cd= Ceidiog
Cr = Ceiriog D = Dyfrdwy
C = Celyn H = Hirnant

Fig. 16.3 Dee subcatchments (from Water Research Centre,
Medmenham, England).

It will be seen from Fig. 16.3 that there are considerable areas for which no
rainfall-runoff model has been established: in such cases there is a choice between
adopting model parameters on some topographical basis or simply accepting inter-
polation of flows estimated in adjacent subcatchments.

Routing the Manley Hall Forecast Hydrograph to Farndon

Farndon is the effective control point for withdrawals from the river at Eccleston,
near Chester. The Manley Hall - Farndon reach is modeled as two quasi-linear
channels and two linear reservoirs in series. The main reason for using two
reservoirs is to allow forecast spillage onto the flood plain between the two
reservolrs at Worthenbury Brook confluence (WBC). Thus, between Manley Hall and
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WBC there is assumed to be a linear channel with delay T hours and a linear
reservoir with storage constant k hours; between WBC and Farndon an identical
combination is assumed.

Values of T and k have evolved by trial and error. This has been more acceptable
than optimization using "sum of squares" error minimization. The aim in finding
suitable T and k values was to match observed attenuation and travel times while
making allowance for the varying and unknown inflow below Manley Hall. The storage
constant k was set for each reservoir at 3 hours. T is allowed to vary for each
channel by the expression

140

T = 375 Frow

where FLOW is the average of all Manley Hall flows from the flow measurement 5
hours before the event up to those flows forecast 24 hours ahead. This explains
what is meant by quasi-linear channel. The lag and route procedure is linear.

The lag does not change within the routing regardless of the variation in flow,
but the lag may change before the next routing in an attempt to match the observed
variation in pure translation time with discharge.

An estimate is needed of the future inflow from the main tributary catchments
entering between Manley Hall and Eccleston (totaling 655 km?). The assumption is
made that this tributary inflow will recede at 3 percent/day from its current
value; the current value is assumed to be the difference between the Manley Hall
flow routed to Farndon and the gauged Eccleston flow.

This sequence of differences, which would seem to represent a lower Dee inflow
hydrograph, usually requires smoothing and is accomplished by running a 12-hour
moving average which is currently updated and is considered to apply to a time 6
hours before. The exponential decay is projected from this earlier time to produce
the forecast hydrograph of lower Dee inflow up to 48 hours ahead. When added to
the routed Manley Hall hydrograph, the 2-day forecast for Eccleston is thus
obtained.

The lower Dee model is not very helpful for floods since the inflow predictions
ignore any rainfall that may be observed or forecast in the lower Dee catchment.

It is thought, however, that the assumptions, although crude, are satisfactory in
the light of operational requirements. Despite this lack of emphasis on accurate
high flow modeling, there is a requirement for flood warning in the lower Dee and
this means the ability to forecast when and for how long overtopping of banks is
likely to take place.

HYDROLOGICAL FORECASTS AND RIVER REGULATION

It is useful to depart momentarily from the Dee system and to consider, in principle,
how a flow forecast is used for river regulation. For the system shown in Fig.

16.4, the river is regulated by the release of water at point Z to meet a

prescribed flow at point X. The river 1s divided by broken lines representing
isochrons of travel time; lag differences within'each segment are ignored.

Our objective is to achieve the prescribed flow at X without wasteful surplus or
harmful deficit. This calls for good forecasting of flows down the river, taking
all tributary flows into account, T hours ahead. The cumulative amounts of absolute
surplus or deficit will be an error which one should seek to minimize.
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Fig. 16.4 Sketch of river receiving regulated releases at Z
with time segments of travel to control point X
(from Water Research Centre, Medmenham, England).

How the Flow at X is Predicted

Controlled releases at Z at time t = R(t)
Unregulated releases at Z (e.g., spillage)

at time t = U(t)
Local inflow to segment j at time t = Qj(t)

In the Dee project, the Qj(t) are primarily derived from a rainfall storage-runoff
model, but may be derived from tributary flow gaugings.

If for the moment we neglect hydrograph diffusion and attenuation, so that segment
contributions simply add as plug flows (separate tributary contributions) with
appropriate lag times, we compute the contributions to flow at X from the tributar-
ies as shown in Table 16.3, where the circumflex (") denotes an estimate.

The table below is purely qualitative in that it gives each Q "based on" a
derived earlier. For a well-studied river system, such as the Qee, recession
behavior of tributary catchments will be known and a realistic Q will be obtained
under conditions of low rainfall, such that catchment storages are not replenished.
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Table 16.3. Contributions to flow at X from the Dee tributaries

Contribution to Flow at X Contribution to
Segment at Time (to + 1) Variance of Total
1 R(to) + U(to) Negligible
2 Qz(to + 1) based on Qz(to) Xy times a small error
h) aj(to + j) based on Qj(to) xj times an intermediate error
T QT(to + T) based on QT(tO) X1 times a large error

It 1s recognized that the contributions from each segment do not go by pure
translation as plug flow to X, but diffuse into one another. This effect is of
minor importance for the lowest segments (or reaches) which are most prone to the
errors of rainfall forecasting. The effect becomes of prime importance when
examining controlled releases from Z, which will appear as sketched in Fig. 16.5

How the Releases at ty ty ty t4 ...
Discharge Arrive at X To Give
at
X
. — Regulated Discharge
Discharge to be
Maintained TN
ty,
ras D’Sch
e 17
T {Lag Time for the Reach} yd’OQ,aph
Releases
fy/ \\
—_
o 4
T T T T ! T T 1
Day 0 1 2 3 4 5 6 7 8
Time
Fig. 16.5 How successive releases of water at Z arrive at X

on arrival at X.

(from Water Research Centre, Medmenham, England).

A further aspect is the flow-dependence of T itself; this cannot

be ignored (as it varies at least twofold in the Dee between high and low flows)
and is implicitly considered.
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Error Terms

It is to be expected that errors in predicted flow will increase with the time
required for the transfer of water from Z to X. It is quite likely that the error
spread will increase exponentially with T.

With an unbiased estimator, the spread will be symmetrical about the time axis,

but bias is likely to appear from a great many causes. The pure recession
assumption may show a positive bias (observed flows greater than predicted flows)
because of continuation of rainfall beyond time t, when none was assumed within the
range of the forecast.

In order to arrive at a satisfactory predictive model, we should test various
assumptions concerning the rainfall prediction adopted with the forecast range t,
up to (to + T). Criteria of success will be the absence of bias anrd any reduction
in variance achievable. The total flow at X is the prime basis of such assessments,
but tZere will also be opportunities to examine separate segments whose flows are
gauged.

Controlling the River Dee

Referring again to Fig. 16.1, the Bala sluices at the outfall of Llyn Tegid may be
considered as the regulation release point equivalent to Z in Fig. 1l6.4. Llyn
Celyn works as the major backup storage, according to a seasonal control rule
supplying enough for the Llyn Tegid releases in dry weather. Llyn Celyn releases
are withheld in wet weather conditions when Llyn Tegid discharge can meet the
regulation flows out of its own catchment and storage. Flood alleviation measures
are possible by advance or delayed release from Llyn Tegid; see Wilkinson (1972).
For a description of flood alleviation strategies in more complex configurations
see Schultz and Plate (1976).

FORECAST ACCURACY

We have noted that the forecast accuracy at the control point is very much dependent
on tributary flows whose influence has to be judged to a large extent from rainfall
forecasts. An illustration of this fact is given in Fig. 16.6 which contrasts
hydrographs at Corwen and Manley Halls on February 12, 1976, with a sequence of
forecasts based on different rainfall predictions provided at the time by the
regional Meteorological Office Forecasting Center; though expressed quantitatively,
they were of a "broad brush" nature.

The sensitivity of flow forecasts to recent rain data is greatest in the headwaters.
This will be seen from Figs. 16.8, 16.9, and 16.10, which relate to three points
down the River Dee, for rainfall on September 11 and 12, 1976 (Fig. 16.7). The
River Alwen is gauged close to its confluence with the Dee, just above Corwen.

The three forecasting points are:

Corwen 22 km

Manley Hall 65 km ;iindggczzfeam of the Bala sluices on the
Farndon 102 km

The river response at Corwen is predicted:
- From the releases anticipated at Bala and routed down the Bala-Corwen reach.

- By adding in the Alwen flows at the confluence immediately upstream of Corwen.

- By addition and routing of lateral inflows.
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rain forecasts (from Water Research Centre, Medmenham,
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Fig. 16.8 Specimen of hydrograph and forecasts of the Dee at
Corwen for September 10 to 13, 1976 (from the Dee
Weather Radar and Real-Time Hydrological Forecasting

Project Report 1977).
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Fig. 16.9 Specimen hydrograph and forecasts of the Dee at
Manley Hall for September 10 to 13, 1976 (from
the Dee Weather Radar and Real-Time Hydrological
Forecasting Project Report 1977).

Of these components, the first and the third contribute only slight errors to the
forecast, but the second is heavily dependent on rainfall expectations, as the
contribution from Alwen has a lag time of approximately 1 hour. The 24-hour flow
forecast for 1800 hours on September 11, 1976, in Fig. 16.8 exhibits this fact;
the runoff peak was underestimated by some 40 percent and the forecast assumed no
future rainfall.

Figure 16.9 continues this story. The 12-hour forecast made at 2400 hours on
September 11, 1976, for Manley Hall, gives a markedly better peak prediction than
did the comparable 1Z-hour ahead forecast made at Corwen at 1800 hours on September
11.

With progressive movement of the flow peak downstream, the forecasting ability on
the Dee improves, as Fig. 16.10 shows. Even though all the flow forecasts assumed
no future rainfall, much of the forecast at Farndon 1is based on flow routing of
water already on the ground or in the river's main channel. Thus, the assumption
does not significantly add to the forecasting error.

From the experience with the Dee, the conflicting factors governing forecast error
may be summarized thus: with progression downstream, factors improving the flow
forecast are the gathering-in of more flow to the channel, the attenuation properties
of the channel, which reduce hydrograph peaks, and long lag times of tributaries;
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Fig. 16.10 Specimen hydrograph and forecasts of the Dee at
Farndon for September 10 to 13, 1976 (from the
Dee Weather Radar and Real-Time Hydrological
Forecasting Project Report 1977).

factors worsening the flow forecast are the confluence of a major tributary
(ungauged ones cause a more severe error than those which are gauged), the lack of
rain forecasts for such tributaries and short lag times of tributaries.

The forecast accuracy in a particular case depends strongly on the network of
rivers concerned: the confluence of a major tributary will probably cause a
sawtooth function to be superimposed on any diminution of errors caused by the
gathering-in of flow and attenuation properties of the channel as flows move
downstream.
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17 Real-Time Hydrological Forecasting
Systems in Poland

Eryk Bobinski
Teofil Piwecki
Janusz Zelanzinski

River hydrograph forecasts for flood protection and reservoir operation for
several rivers in the mountainous region of Poland are urgently needed. The
catchment areas, upstream of reservoirs, vary from several hundred to a few
thousand square kilometers; the surface runoff travel time is from é to 24 hours.
River forecast information based on conventional methods like API, regional runoff
ratios, and so on was considered inadequate. For this reason, a new system

using a computer simulation model was implemented in 1973 for the Sola River and in
1974 for the Dunajec River.

A related problem is the forecasting of the river stage hydrograph for specific
reaches of the two main rivers in Poland, the Vistula and the Oder. The forecast
is for inland river navigation; a system providing river stage hydrograph forecasts
for two cross sections of the lower Vistula that have unsteady flow conditions is
being implemented.

FLOW FORECAST SYSTEM FOR THE SOLA RIVER SYSTEM

The Sola River is a mountain tributary of the Vistula with a catchment area at the
gauging station Zywiec of 780 km?. The altitude of the catchment is between 340
and 1,500 m above sea level. About one half of the catchment area is forested.
The lag time after a heavy rain is about é hours and the maximum rainfall is about
100 mm in 24 hours.

The observational network incorporated into the system consists of 11 recording
rain gauges, 1 climatological post, 1 actinometric post, and the river stage
recording gauge at the Zywiec cross section.

Data from the posts are reported to the collecting station Zywiec by radio and from
Zywiec the input data message (named HYDRA) is transmitted by teletype to the
computer at the Institute for Meteorology and Water Management in Warsaw.

The HYDRA message, after reception in Warsaw, is checked by hand - the checking
includes a formal control of the message headline, the group and station numbers,
and the total message layout. Then, to the real-time data, are added the values of
forecasted meteorological variables: precipitation, wind speed, air humidity
deficit, and total radiation for the coming 48 hours, divided into two intervals of
24 hours each. This augmented input message, after completion, is punched on cards

=287~



-288-

and fed into an ODRA 1305 computer (a machine compatible with the ICL 1900 computer).
The flow forecast is computed using a model (MONIKA) based on the concepts of the
SSARR catchment model with several modifications introduced. A description of the
MONIKA model was presented at the WMO-UNESCO Symposium in Bratislava (Bobinski et

al. 1975). The system is operated for a summer period from May 1 until October 31
when the precipitation is mostly rain and the rain recording gauges can work

without interruption caused by snow.

Computation

A flow chart of the forecasting model is shown in Fig. 17.1. The time step for
the input data is 3 hours and for the computation and output 1 hour. However, the
output message (called HYFQOR) is transmitted to the collecting station by teletype
and gives the forecasted flow values in 3-hour intervals.

Usually when the model is operated under real-time conditions, part of the input
data (usually precipitation) is missing or contains errors different in type and
magnitude. For this reason, the pre-processing of the input data, i.e., error
checking, estimation of missing data, estimation of the actual evapotranspiration,
computation of mean areal precipitation etc., is required and constitutes the large
portion of the program. Quite often a few rain recording gauges are out of order.
In such cases estimation of missing data uses the 12-hour and 24-hour total
precipitation from the standard raingauges and the rainfall time distribution
pattern available from the working recording gauges.

Evapotranspiration estimation. Evapotranspiration estimation is done for both the
last 24-hour period and the forecasted 48-hours using observed values and forecasted
data from the HYDRA input message. Potential evapotranspiration is estimated by

use of the St. Bac (Poland) formula:

0.

E, = 0.001 (100 « d - v > 4 o4T) (17.1)

where

M
1]

potential evapotranspiration (mm/day);

a
n

air humidity deficit (mbar);
v = wind speed (m/s);

T

total radiation (cal/cm?).

The 24-hour value of E, is divided into 3-hour intervals after a statistical
analysis of data for the summer season. These computed 3-hour values are then
reduced, taking into account actual soil moisture and precipitation conditions, to
obtain actual evapotranspiration data, which are deducted from the interception or
soil moisture storage.

Interception storage. It is assumed that rainfall excess begins only after filling
the total interception storage, which is set equal to 3.5 mm for this catchment.
When the precipitation is less than interception storage, then intercepted water
can only evaporate.

Updating of the parameters. Two model parameters, the soil moisture index WN and
the base flow infiltration index B, represent the current conditions of the model.
Updating is done in relation to these two parameters. Beginning with the initial
values of WN and B given in the program, the values are then changed to obtain a
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and Dunajec Rivers. See the text for explanations
of P; and INT,.
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minimum of the criterion function

n o (D) - 0 W\
F = Z —_ (17.2)
=1\ o )
where
Qo(i) = the flow at the gauging station recorded at hour i;
Qs(i) = the flow at the same hour simulated in the model for the recorded

precipitation (see Fig. 17.2);

n = the number of hours for which the updating is done.

+24 tp+48 Time (hr)
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s |
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Fig. 17.2 The diagram of the forecasting model principles.
tp, = the initial moment of the forecast period;
tp+48 = the end of the hydrograph forecast period;
Tfor = the forecast period; Qg = simulated
hydrograph; Qo = recorded hydrograph; a, b, ¢, =
three variations of the hydrograph forecast
corresponding to three precipitation forecasts.

At the beginning of the forecasts, when the model is started for the first time,

n = 3 or a multiple of 3. After two days of operation n is 48. The updated values
of the parameters WN and B are stored in the memory and serve as initial values for
the computation in the following cycle.

The updating procedure is executed only when the following condition is fulfilled:
48

L Py - INT >5.0mm (17.3)
i=25
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where

the precipitation amount observed for the last 24 hours preceding
i=25 the forecast time tp (see Fig. 17.2);

INT = total interception storage.

If this condition is not fulfilled, then the WN and B parameters are not updated
and the values obtained at the end of the last computation run serve as the initial
values for the actual run.

Such an updating procedure does not exist in the original SSARR model. Instead,
following Rockwood et al. (1972), the watershed initial conditions are adjusted in
some other way to the observed discharges. If the computed discharge at a point
in time does not match the observed discharge within a tolerance of error, an
adjustment factor is applied to change the rain quantities, and the simulation is
run again. Both approaches, either applied in the original SSARR or in the MONIKA
model, may be questioned and the problem seems open to discussion.

Baseflow switching. When both surface and subsurface flow components are present,
the baseflow component is computed using "Baseflow 1" parameters. When the baseflow
dominates, then the parameters of "Baseflow 2" are applied. The difference is

that the time of storage parameter Tsp, is equal to 120 hrs for Baseflow 1, and
1,200 hrs for Baseflow 2. The following conditions should be satisfied for

Baseflow 2:

48
I P, <5mm (17.4)
i=25 -
8Q < 5 m*/sec (17.5)
and
%% < 0.5 m*/sec per hr (17.6)
where
B = Opay - Qg OF Qg - Qpss (17.7)
Q25 = the flow rate at the beginning of the last 24-hr period;
048 = the flow rate at the end of the period;
Q = the maximum flow during the last 24 hrs.

All the above conditions must be satisfied. If not, Baseflow 1 is used. Equations
(17.4), (17.5), and (17.6) are, of course, a rough estimation of the surface and
subsurface flow components. For this model, these criteria, together with the base-
flow switching operation, give fairly accurate results.

The time distribution of the forecasted rainfall. The distribution of rainfall is
done in 3-hr intervals using a distribution function depending on the precipitation
pattern: (a) convective, (b) frontal, (¢) uniform, or (d) random. The distribution
patterns of types a and b were identified with a statistical analysis of the
precipitation data of the river catchment in question. The distribution is chosen
by the meteorologist-forecaster on duty, and appropriate numbers are input into the
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HYDRA message.

The flow hydrograph forecast. Hydrograph forecasts are presented for variations
depending on the forecasted precipitation (see Fig. 17.2). These variations are:

- The total precipitation over the period Tg,p is equal to zero; it gives
forecast Q-

- The total precipitation within the Tggop will amount to the forecasted values
Py and P;. The values Py and P, are given separately for the first and
second 24-hr forecast period by a synoptic meteorologist on duty and result
in the forecasted outflow Q5.

- The maximum precipitation Py of the 24-hr total of 100 mm will occur in the
time Tgor resulting in the forecasted outflow Q3.

These assumptions are made because quantitative precipitation forecasting methods

are not reliable enough, especially for small mountain catchments. With these
assumptions, three forecasted hydrographs are obtained instead of one. Variation

(a) determines the lower limit, (c) the upper limit and (b) gives an intermediate
hydrograph related to the precipitation forecast. In flood conditions, when the
simulation is repeated every 3 hrs, such an approach makes it possible to correct

the forecast according to the actual development, and a choice can be made between
02 and Q3. In normal conditions the choice is made between Q1 and Q) by the fore-
cast hydrologist on duty who is responsible for the forecast transmitted to the user.

The output HYFOR message is printed by the line printer, punched on a paper tape
that is fed to the teletype, and transmitted directly to the data station Zywiec
where the forecast hydrologist on duty chooses the proper flow forecast and
transmits it to users.

All output and input data, together with the parameter values representing the
actual state of the model, are stored on magnetic tape and used as data files.
About once a month, the recorded and forecasted hydrographs and hyetographs are
plotted to help estimate model performance. An example of the plot for the Dunajec
river at Kowaniec, for July 1976, is presented in Figs. 17.3 and 17.4.

System Operation

The forecast system 1s operated under two conditions: normal flows and flood
conditions. Under normal flows a forecast is computed once a day in the morning
hours and under flood conditions the computing runs are repeated every 3 hrs,
that is, after each observation cycle.

During normal operations, the full cycle of the system starting from the observa-
tion time until the release of the output forecast (HYFOR) takes about 3 hrs, of
which the machine time for the analysis and the forecast computation (the operations
shown in Fig. 17.1) takes only 3 minutes. Under flood conditions the cycle

duration is about 2 hrs.

Figure 17.5 presents a diagram of the length of specific operations. It shows
that after the reception of the HYDRA input message in the computer center, about
1 hr is needed to complete the meteorological forecast data. This delay results
from the present arrangement of the meteorological forecast system. After some
rearrangement, the time for the system operation will be about 2 hrs., In any
case, there is a remarkable inconsistency between the machine time and time spent
on all other operations, most of which are done by hand. One may wonder whether
this is a "real-time" system; it is the best to be done with the present techno-
logical options available in the Polish hydro-meteorological service. In the
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Fig. 17.5 A diagram of data collection, transmission, processing,
and dissemination for the Sola and Dunajec River
forecasting systems. HYDRA is the input data message;

HYFOR is the output data message. QPF stands for
quantitative precipitation forecasts.

future, a step-by-step automation of all operations which are now done by hand is
expected; but even after automation of all the operations a meteorologist will still
be in command of the system operation as an integral "on-line" part of the total,

a man-machine system.

THE DUNAJEC RIVER SYSTEM

The Dunajec, a mountain tributary of the Vistula, rises from the Tatra mountains.
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The flow forecast is computed for two cross sections: Kowaniec with a catchment
area of 680 km? and an altitude between 250 and 580 m above sea level, and
Kroscienko with a catchment area of 1,579 km® and an altitude between 250 and 420
m above sea level. About 30 percent of the catchment is forested.

The travel time of the water after a heavy rain is a few hours for the Kowaniec
sub-basin and about 12 hours for the Kroscienko. An observation network
incorporated into the system consists of 17 recording rain gauges, of which 11
belong to the Kowaniec catchment, two river stage recording gauges, at Kowaniec
and Kroscienko, and one synoptic meteorological station equipped with actinometric
instruments. This station at Zakopane collects information from the network for
the system operation, and transmits the input message by teletype to the computer
center.

The flow forecast for the two stations is computed using a catchment model with a
structure similar to that of the MONIKA model applied for the Sola River. The
difference between the two models lies in the values of the constant parameters.
The output forecast messages for the Dunajec stations have a format identical to
that used for the Sola River. The processing time for the forecast, under normal
conditions, is the same as for the Sola River, about 3 hrs (see Fig. 17.5), and
in flood conditions it is about 2 hrs.

EVOLUTION OF THE SYSTEM

The system was put into service in 1973 on the Sola River, in 1974 on the Dunajec
River for the Kowaniec station, and in 1975 for the Kroscienko. Every year, after
an evaluation of the system performance in the preceding period, some improvements
are introduced. This is a cyclic process of continuous system modification and
improvement. The main modifications up to date are as follows:

Reporting network. The number of reporting posts incorporated in the system has
been increased. In the Sola catchment area there were, in the beginning, 9 rain
gauges and 1 river stage gauge. Now the network consists of 11 rain gauges, a
climatological post, an actinometric post and the river stage gauge. In the
Dunajec catchment area in the beginning there were 11 rain gauges and 1 river stage
gauge (Kowaniec). It too has been substantially enlarged. In 1973 and 1974 only
rain and river stage gauges were working in the system. Since 1975 the climato-
logical posts, a meteorological synoptic station, and an actinometric post were
incorporated into the system reporting network for evapotranspiration estimation.

Telecommunication network. Since 1973 the reliability of the telecommunication
system has been improved. Most of the posts are equipped with two types of
communication: telephone and radio operating in the 34-MHz frequency band. In
addition, the collecting stations are equipped with teletypes. All telecommunica-
tion facilities are operated by people rather than machines.

Data processing facilities. 1In 1973 and 1974 the forecast computation was performed
on an ODRA-1204 computer and since 1975 by the larger ODRA-1305. This hardware
improvement created the possibility to improve the forecasting model and to speed

up computation time.

Precipitation data processing. The rain recording gauges are quite often out of
order. In these cases, the 24-hr total precipitation from the standard rain
gauge is the only available information. In order to provide additional informa-
tion for such circumstances, 12-hr precipitation totals from the standard rain
gauges were introduced into the HYDRA input message in 1975.

Initially, the time distribution of the forecasted rainfall was simulated by a
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random number generator giving a random time distribution of the forecasted 24-hr
total. In 1974, this was replaced by the 4 distribution functions related to
storm patterns that were described above. This produced better model performance.

Evapotranspiration estimation. Initially, evapotranspiration was estimated by
using average dailly climatological values for the river catchments under study.
The daily values have been uniformly divided into 3-hr intervals. In 1975,
estimation of the actual evapotranspiration as described above was introduced and
resulted in the improvement of hydrograph forecasting.

Meteorological forecast data. Initially, only quantitative precipitation fore-
casts (QPF) 24 hrs ahead were given. In 1974, the time distribution of the fore-
casted rainfall and the initial hour of the forecasted rainfall were added. In
the 1973 and 1974 model versions, the QPF were given for the first 24 hrs of the
48-hr forecast period and the forecasted rainfall amount for the second day was
assumed to be equal to zero. Since 1975, QPF are given separately for the first
and second day of the forecast period (see Fig. 17.2). In 1975, a quantitative
forecast of the meteorological and radiation variables needed for evapotranspira-
tion estimation was also introduced. These were estimated separately for each
day of the forecast period,

Interception storage. This variable was absent in the 1973 and 1974 model versions.
At that time, the simulated hydrograph was rising much faster than the observed
hydrograph when light rain occurred after a dry period. This meant that the model
did not take into account the initial losses due to the interception and the
surface detention storage. In 1975, interception storage, as described above,

was introduced.

Baseflow procedure. The model was calibrated on a set of flood events which
resulted in a fairly good fit between simulated and observed hydrographs. However,
when the model was operated on a day-to-day basis during low flow periods, the
computed hydrographs dropped faster than the observed ones.

As a result, the two separate baseflow procedures, as described earlier, were
introduced in 1976. Those two procedures represent two distinct flow regimes;
Baseflow 1 reflects the surface and the subsurface flow components and Baseflow 2
reflects the prevailing groundwater components of the river channel flow. This
model modification has improved flow forecasts.

SYSTEM PERFORMANCE

The quality of the forecasts by the system in 1973 and 1974 was not completely
satisfactory. While the system improvements described above have eliminated
several deficiencies, the goodness-of-fit of the computed hydrograph still depends
upon the QPF. However, the relation between QPF and the flow forecast error
depends on the initial conditions.

The last model version was implemented on July 7 1976. This version gives fairly
good results as can be seen from Figs. 17.3 and 17.4 and Table 17.1.

Note that the model sensitivity to the QPF errors depends on the soil moisture
conditions. For instance, on July 22 a considerable amount of precipitation was
observed (see Fig. 17.3) which was underestimated by the QPF as seen in Table
17.1. This big QPF error however did not produce a flow volume forecast error of
the same magnitude because the rainfall occurred after 10 (essentially) rainless
days when the soil moisture deficit was high. On the other hand, after two rainy
days, the forecasts for July 23, 24, and 25 produced large overestimates of QPF
resulting in large flow volumes (see Table 17.1).
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Table 17.1. Forecast errors for the Dunajec River, cross section
Kowaniec for the period July 21-26, 1976

Precipitation, P Flow Volume, V(10°m®/24 hr)

(m/24 hr)

Q Variation Q, Variation
Date Observed Forecast AP Observed Forecast AVl Forecast AV2
July 21 5.9 10 +4.1 0.63 0.63 0 0.72 +0.09
July 22 50.1 15 -34.1 1.07 0.68 -0.39 0.98 -0.09
July 23 11.2 40 +28.8 3.53 5.70 +2.17 19.60 +16.07
July 24 3.7 30 +26.3 2.98 1.90 -1.08 12.20 +9.22
July 25 0 40 +40 2.39 2.86 +0.47 15.80 +13.41
July 26 3.81 5.0 +1.19 1.85 1.80 -0.05 2.04 +0.19

NOTE: All forecast values, FOR, are for the first day of the forecast period.

During periods with little or no rain, when the 24-hr precipitation totals were
below 10 mm and the QPF or the QPF errors were of the same order of magnitude, then
the flow forecasts were fairly good (see Figs. 17.6 to 17.9), especially the Q)
forecasts. This means that when the Carpathians had little or no rain, Q; (QPF
equal to zero) provides the most probable forecast. For the days with considerable
precipitation, a good QPF is very important, especially for heavy, flood-producing
rainfall. However, obtaining accurate QPF with a sufficient lead time (i.e., 24
hrs) seems at present to be unlikely, especially for small mountain basins.

Figures 17.6 to 17.9 present model performance as related to the forecasts for the
first day of the 48-hr forecast period. The corresponding figures for the second
day were worse, though the scatter diagram of precipitation was very similar to
Fig. 17.8. Similar results were obtained for August 1976, but they are not
presented here.

In comparing the scatter diagrams of Figs. 17.8 and 17.9, one can note that the
model is filtering the QPF errors, and that the scatter diagram of flow volumes is
better than that of precipitation. This is further evidence of fairly good model
performance.

Forecast errors estimation. The hydrograph forecast errors are random variables
resulting from a nonstationary stochastic process. Its nonstationarity depends

on the nonstationarity of the runoff process and its related factors, including

the length of the forecast period. That is, with increasing length of the forecast
period the standard deviation of the forecast variable increases. For this reason,
all statistical estimates of the forecast errors may be applied for the given
forecast time only (i.e., 24 hrs) and for a relatively short period (i.e., 1 month)
during which the runoff process is supposed to be stationary.

Many statistical estimates of the forecast errors have been proposed in the
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Fig, 17.6 Scatter diagram of forecasted versus observed 24-hr flow
volumes using variant Qj. (Dunajec River, cross section
Kowaniec, 1-31 July 1976).

literature. The choice of the proper one is not an easy task. There are some
estimates accepted by international organizations that allow intercomparison of a
specific class of models. In order to obtain comparable results, we have adopted
as a standard the following criteria used during the WMO Intercomparison of
Conceptual Models Project (WMO 1975).

Coefficient of variation of residual of errors:

[mc _ yo)z] 1/2

n
Y — 17.8
Yy ( )

Ratio of relative error to the mean:

Z(yc - yo)

R = (17.9)

nyo
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Fig. 17.7 A double mass plot of forecasted versus observed
monthly flow volumes. (Dunajec River, cross
section Kowaniec, 1-31 July 1976).

Ratio of absolute error to the mean:
A=-C_"90 (17.10)

where

Yo = observed discharge, y, = computed discharge, n = total number of

observations and

-
Yo = T
The above criteria are useful for a long series of observations and are sensitive
to large errors like those presented in Fig. 17.4 for July 23, 24, and 25. When
such errors occur in one month, all the statistics for this month are sharply
increased by one order of magnitude. So, for short periods these criteria are not
representative. The latest model version will be checked using these criteria
on the historical data series produced by the previous model versions and, of
course, on the new data series in the coming months.

THE RIVER STAGE HYDROGRAPH FORECAST SYSTEM FOR THE LOWER VISTULA RIVER

Downstream of the Wloclawek dam and hydropower station, the daily river flows vary
from 350 m®/sec up to about 2,000 m®/sec; the latter figure corresponds to the peak
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power generation of the station. Usually there are at least two peaks daily. The
range of river stages directly downstream of the dam is about 1.5 m.

Such unsteady flow conditions create certain difficulties for navigation along the
100-km reach downstream of Wloclawek. In order to facilitate navigation, a river
stage hydrograph forecast is needed to provide a critical depth hydrograph forecast
at the specific river cross sections where the shallows exist. The shallows are
moving downstream, so the model has to provide a hydrograph forecast for any chosen
cross section. This problem cannot be solved using conventional methods such as
river stage relationships.

The travel time along the river reach under discussion is about 24 hrs, the same

as the hydrograph period. Input data for the system is as follows: the hydrograph
of discharge from the power station during the last 24 hrs, the forecasted discharge
hydrograph for the next day and the river stage hydrographs from the three

recording gauges located at the top, middle, and lower end of the river reach for
the last 24 hrs. The upper gauge records stages with 15-minute intervals, the
middle and the lower gauges with 1l-hr intervals. The output from the system is the
river stage hydrograph for the middle and the lower gauges and a critical depth
hydrograph for specific cross sections.

The river reach is modeled in two segments. For the upper segment, the model is
structured as a cascade of linear storages and linear channels, whereas for the
lower reach the model is based on kinematic wave equations. The latter model was
calibrated using results of continuous discharge measurements at the lower two
gauges over a week. The linear cascade model was calibrated using optimization
methods. The system is now being implemented and further system developments will
be performed after an evaluation.

CONCLUSIONS

After several years of development and modification, a daily flow forecasting
system is providing valuable information for users and performs fairly well. The
amount of information is greater and the quality higher in comparison with
conventional methods. The time for data collection, transmission, and processing
has been shortened, although further reductions are needed.

Under flood conditions, the system produces forecasts every 3 hrs, which provide
valuable information for the forecaster-hydrologist working under considerable
stress.

The system collects input and output data files on magnetic tapes; the input data
are checked, so the data files are of higher quality than those stored by
conventional methods, and the files are readily accessible for any kind of
processing. The system development has lead to improvements in both the reporting
network and telecommunication facilities and also in the standard of the staff.
One of the main achievements has been the establishment of a.system development
team which has gathered considerable experience and is a basic requirement in
obtaining satisfactory results.

Other key conditions for successful system development are close cooperation with

an existing network, the good telecommunication and data processing facilities of
the meteorological service, and easy access to meteorological output such as weather
analyses, quantitative precipitation forecasts and other variables. From this

point of view, a combined meteorological and hydrological service has a distinct
advantage over separate services.

The first forecasting models were calibrated on historical data that were incomplete
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and of poor quality. As a result, the outputs from these models were not very
good. After this initial operation, the input and output data files were improved
and the model was recalibrated (with some modifications). This process of model
development presented here represents the way the forecasting system in Poland is
developing. It seems that such an approach can be applied in many situations.

It appears that the lack of adequate data for model calibration and testing is a
common situation. For thils reason, it is important to start operation as soon as
possible in order to gather data, even if the model forecasts in the beginning are
not very good. In operational real-time forecasting systems, greater effort should
be devoted to data collection, transmission, and processing subsystems, including
data checking and estimation of missing data, in order to obtain the best possible
hydrological analysis. The sophistication of the forecasting model, which transforms
the runoff volume into a flow hydrograph, is not so important in the initial stage

of model development in comparison with the data processing procedures. Improving
the model seems to be the next step after gathering the proper data.

For mountainous catchments with a lag time of a few hours, the model performance

is highly dependent on the accuracy of the quantitative meteorological forecasts,
especially those of precipitation during floods. Since the accuracy of QPF is not
reliable, it seems reasonable to issue flow forecasts for a few precipitation
conditions. When QPF are not available, an alternative approach would be to issue
the flow forecasts, assuming no future precipitation, frequently and to shorten the
whole operational cycle. Thus, the forecast after each cycle will be adapted to

the observation. Such an approach would enable the user to make frequent adjustments
to hls operation and shorten the time that the model runs on inaccurate data. This
could be helpful during the flood period.

The development of on-line automated systems incorporating radar for the aerial
precipitation estimation is the way to improve the system. These systems however
should have a person as an integral "on-line" part of the operation.
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18 The United States Weather Service River Forecast System

David C. Curtis and George F. Smith

The primary purpose of the United States National Weather Service (NWS) hydrology
program is to provide accurate and timely hydrologic information to the general
public. While flood forecasts and warnings are the most widely known hydrology
products, NWS river forecasts are also used for water supply, navigation, irriga-
tion, power, reservoir operation, recreation, and water quality interests. These
forecasts are an effective tool in the development and management of water resources.

The River Forecast Center (RFC) is the focal point of the river forecast network
(Fig. 18.1). It is staffed by professional hydrologists who receive hydrometeoro-
logic data, prepare forecasts, and transmit forecasts to other Weather Service
Forecast Offices (WSFOs) for dissemination. Accurate and timely forecasts can
minimize loss of life and property due to extreme river flows or related events.

Twelve RFCs prepare river forecasts and warnings for approximately 2,500 communities.
Approximately 97 percent of the United States (including Alaska) is covered by this
service. The area of responsibility of each RFC includes at least one major river
system (Fig. 18.2).

Forecasts of seasonal snowmelt or yearly water runoff are prepared by five RFCs in the
Western United States. Two additional RFCs in the Northeast prepare seasonal

snowmelt and monthly runoff forecasts, Water supply forecasts for 600 points

where snow is the principal source of stream flow are distributed to water users
monthly by local WSFOs.

RIVER FORECASTING TECHNIQUES

In the late 1960s a commitment was made by the NWS to move from an index-type
catchment response function to continuous conceptual hydrologic models for use in
river forecasting. Conceptual models with a strong physical basis have several
distinct advantages over index-type relationships, as follows:

- Accurate mathematical representation of a catchment enhances the probability
of adequately predicting future events, especially events of a magnitude
unexperienced in the past.

- Parameters based on conceptual considerations can sometimes be subjectively

altered to reflect changes made or to be made to the physical characteristics
of the catchment.
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- A conceptual model can be extended to problems other than simulating catchment
streamflows. For example, algorithms could be added to simulate the movement
of pollutants through the soil matrix.

- A model that is physically based is an effective tool for future research and
modification.

Studies were undertaken by the NWS Hydrologic Research Laboratory (HRL) to determine
which of the hydrologic models available at the time were best suited for river
forecasting. Based on these studies, a modified version of the Stanford watershed
model (3) was included in the initial version of the National Weather Service River
Forecast System (NWSRFS) (4). Since 1971, several important modifications to the
NWSRFS have been made.

- The Stanford soil moisture accounting routine has been replaced by a model
developed by the NWS RFC at Sacramento, California (5).

A snow accumulation and ablation model has been added (6).

- A dynamic river routing model has been added (7).

The data management capabilities have been greately expanded and changed from
a data storage system oriented to magnetic tape to a direct access disk
storage system.

This paper summarizes the various elements and experiences of the NWSRFS to date.
The NWSRFS is the set of techniques and computer programs used to produce river
forecasts. Included are programs to manage the large volumes of data associated
with a national forecasting system and programs to perform the hydrologic and
hydraulic computations necessary to forecast river system response.

The basic elements of the NWSRFS are:

- Data management. Routines that store, retrieve, and manipulate data from the
appropriate direct access disk files.

- So0il moisture accounting. Routines that simulate the movement of water
through the soil profile.

- Snow accumulation and ablation. Routines describing the growth and subsequent
melting of a snow cover.

- Channel routing. Hydrologic and hydraulic techniques to route flows through
natural channels.

- Mean areal precipitation. Routines converting point precipitation values to
areal means.

- Mean areal evapotranspiration. Routines to compute mean areal evapotranspira-
tion.

- Mean areal temperature. Routines to convert point temperature values to areal
means.
CALIBRATION DATA MANAGEMENT

Vast amounts of data are required to implement the NWSRFS throughout the United
States. One component of the NWSRFS is designed to manage and prepare data for use
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in hydrologic calibration models. Except for units conversion, the data management
portion of the NWSRFS does not transform the data. It is a system that selects
appropriate time series from a magnetic tape or card source and transcribes them
into a format more efficiently managed and used by the hydrologist.

The data management system consists of three parts (Fig. 18.3). Each of these

INVENTORY
DATA
TAPES
EXTRACT
DATA FROM
TAPES
TAPE TAPE
DIS K DISK
OPTIMIZE
BASIN ‘
PARAMETERS \
> MANAGE AND
DATA FILES ANALYZE DATA
/ € in DATA FILES
CALIBRATE / A
BASIN

 J

COMPUTE
MEAN AREAL
PRECIPITATION

COMPUTE
MEAN AREAL
TEMPERATURE

COMPUTE
MEAN AREAL

POTENTIAL ET

Fig. 18.3 Calibration data management system., ET stands for

evapotranspiration.

parts performs a function necessary in reducing the available data into an efficient
format for use by the hydrologic programs. The three parts are:

- Inventory of data on National Climatic Center (NCC) or U.S. Geological Survey
(USGS) magnetic tapes.
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- Copying of selected data from the tape of direct access data files.

- Management of data in data files.

The four types of data stored on magnetic tape are hourly precipitation, daily
climatological observations, synoptic meteorological observations, and daily
stream-flow data. For each data type, programs are available to inventory a tape,
extract and label selected data (time series), and place them into data files, on
a direct access disk. Once the various data are in data files, a package of sub-
routines can be used to manage and analyze these data. This package of subroutines
is called the data file utility system and can perform such tasks as listing which
files are available for data storage or the contents of a particular file, copying
all or part of a file from one location to another, editing data within a file,
removing unwanted data from a file, and plotting one or more time series as a
function of either time or another time series.

A key component of the file utility system is the labeling of each time series to
allow rapid data access and retrieval. This label, or time series header, contains
unique identifiers, as well as information about the locations, length, and type

of data in the time series. Identifiers contained in the time series header

enable the direct access device to move to the exact location of the requested

data residing in a disk file. This shortens computer access time by eliminating
sequential searches of entire data files to find the desired time series.

SOIL MOISTURE ACCOUNTING

The version of the Sacramento soil moisture accounting model (Fig. 18.4) included
in the NWSRFS is a deterministic model with a limited distributed parameter
capability. Soil moisture accounting is accomplished for a particular soil
moisture accounting area. Within a soil moisture accounting area, precipitation
inputs are evenly distributed and soil conditions are assumed uniform. Thus,
with respect to a soil moisture accounting area, the model is a lumped input and
lumped parameter type. However, it is not necessary for the boundaries of a soil
moisture accounting area and the natural catchment to coincide. This feature
allows the catchment to be described by more than one soil moisture accounting
area. If the inputs and parameters differ between soil moisture accounting areas,
the model is "distributed" with respect to the inputs and parameters for the
catchment.

On a vertical plane, the model defines two soil moisture accounting zones. An
upper zone represents the upper soil layer and interception storage, and a lower
zone generally accounts for most of the soil moisture and the groundwater storage.

Moisture storage

Both the upper and the lower zones store "tension" and "free" water. Tension water
storage represents water closely held by soil particles. Free water storage
represents water that is available for drainage, either horizontally or vertically.
In the upper zone, tension water requirements must be met before water is transferred
to upper zone free water storage. The stipulation that tension water requirements
be met before substantial drainage begins represents the movement of a wetting
front through the soil mantle. In the lower zone a fraction of the incoming water
can be directly transmitted to free water storage even if the lower zone tension
storage is not full. The capacity to "short circuit" tension water requirements
in the lower zone aids the simulation of catchments where significant lower zone
drainage is evident, even though area-wide lower zone tension water requirements
have not been fulfilled.

Free water can move vertically through percolation or horizontally as interflow;
it can be depleted by evapotranspiration, or it can replenish tension water



-311-

*SapTS
ay3 ybnoayjz uswyoleo 2yl SSARIT 3T 9SNPOSQ wealls dyj3 ul dn moys jou sdsop 3eY3 Id3empunoab 03 sI9)aa IGIS
*I513BMpuUnodf Se JuaWyoleo Syl SSARST 3eY) Idjempunolb syjz 03 weadls ayj woay UOTARIFTTJUT dyj BuTjeTNOTERD I04
JUSTOT 44900~ N0SS ‘oberI01S SUOZ I5MOT WOIy MOTJ 9seq Tejuawarddns ouoz IamoT 9yl HuTleTNOTED JI0) JUATOT )09
-%671 ‘Tauueyd dyy woay uoTieardsueajodeAs 931eTNOTED 01 PISN QUITOTJJS00-YAUYS ‘SuUoz pajeaniesun ayj

uT MOTJ JO junowe ayj HBUTIPTNOTED J0J I93BM 931y duoz aaddn ayjy Jo asuodsad ayj Jo JUITOTJJR00-YZN ‘SMOT 43N0
swWr3-snsaaa -abaeydsTp 03uT punoab snotazadwr 9yl uo uorqeaTdrosad syl wIojsuedy IPY] SIUSTOT JJ300-dWIQY

pue WI1dd ‘smoTy aseq AJewtad 03 I93eM paleTooaad 951y JO 9suodsal J0) JUSTOTJS900-Yd77] ‘aaiem pajeroodad
9914 10y 96eI03S 9AIISSI-AYISY ‘9OrI01S 131PM 991) U0z J9MOT -GS477 ‘sbeaoas Jejem-g ‘uoryerooaad 991y Suoz
JIOMOT -d4Z7 ‘I91em po3eT0033d -4 ‘I93BM UOTSUS] SUOZ JBIMOT-M1Z1 ‘a91em 991y oy3 Jo uorjeroorad Burrernofed
J0J JUSTOTIJ900-J3Y4d ¢ (J91Bm 3314 03 dXJH PUP I91PM UOTSUI] 03 S$I9JOI JYIdZ) SUO0Z ISMOT SYy3 03 suoz addn
ay3 woay uoTleT10o1ad ay3 ButjyeTnbad SIUSTOTYI000-dX3Y PuUB JYIdZ ‘I91eM 991) suoz 1addn -piz7n “a91BM UOTSUD)]
auoz aaddn-p17n ‘moT4uTr uoTielTdTo9ad -Xd ‘uorieardsueajodeas-13 - Topow HBuTIUNOOOP SaNISTOW TTOS OjudWeRIORS H°QT °*OT4

FNHVHOSID | aais | #OU a'l_ MO VI AvWad _
Ivisnsens
I_ sve
1101
ﬂ : sl ._.m
MOY 35vE i @ivm NOISNIL
TVINEWT NS [al H
1noss
!
INO JIMOT
- 33ud _ FTd -1 _
MOHNI “
MO13 NOILONN 13
] Fe—] v re
WYLS NOILILSIa WioL
 EEEEEE—— 13 T
=
MOHEIN I Mazn -
LTV A+ T g
\\\ Mz 13 —
\\\\ ¥ILVM  NOISNIL
4ONNY P
YNNS §530%3 Y
SNOIASIAWI _ YAV SNOIANId 13
HONW LOTMQ L _ » _ » _ V34V SNOAIdH!

xd

1NN NOILYLIIDIYd

[ []

¥

} 4




-312-

requirements. Tension water storages can only be depleted by the evapotranspiration
process.

Percolation

Movement of water from the upper zone to the lower zone is controlled by a percola-
tion algorithm that relates the contents and capacities of upper zone storages as
well as drainage parameters for the respective free water storage. The formula
controls the movement of water in all portions of the soil profile, both above and
below the percolation interface, and is itself controlled by the current state of
the soil molsture storage system.

Evapotranspiration

In most rural catchments, evapotranspiration is a dominant hydrologic process; thus,
accurate contlnuous hydrograph simulation is heavily dependent upon successful
description of evapotranspiration. Two types of evapotranspiration information

can be input to the Sacramento soil moisture accounting model: a seasonal evapo-
transpiration demand curve or potential evaporation data with an adjustment curve
to account for the effect of the current state of the vegetation cover on the
actual evapotranspiration.

Variable Impervious Area

A fraction of the precipitation falling on a particular catchment is assumed to be
deposited on impervious area directly connected to or adjacent to the channel
system. This fraction contributes directly to channel flow and does not enter the
s0il matrix. In the Sacramento soll moisture accounting model a minimum and
maximum percentage impervious area 1s specified on the theory that as a given soil
moisture storage becomes satisfied, an increasing amount of pervious area begins to
behave as impervious area. An algorithm evaluates the current state of the soil
moisture storage system and adjusts the total percentage of impervious area
accordingly.

Flow components

The model recognizes and generates five components of channel flow:

- Direct runoff, resulting from moisture applied to the variable impervious
area.

- Surface runoff, resulting from moisture applied at a rate faster than upper
zone intake.

- Interflow, 1.e., lateral drainage from upper zone free water storage.

- Supplementary base flow, l.e., dralnage from lower zone supplementary
storage.

- Primary base flow, l.e., drainage from lower zone primary storage.

Computational Technique

Movement of water through a soill matrix 1s a continuous process. The rate of
movement at a particular point 1s a function of the current state of the molsture
supply and soil moisture storage system. A quasi-linear, open form computation

is used to model soil moisture movement. Use of this technique assumes that move-
ment of soil moisture during a time step 1s defined by conditions existing at the
beginning of each time step. To use thls assumption effectively, a short time step
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must be selected. The basic computational interval of the NWSRFS is é hrs.
However, in the soil moisture accounting model, time steps are set such that no
more than 5 mm of water is involved in a single execution of the computational
loop. This rather arbitrary limit has been set large enough to logically fulfill
its function but not so small as to cause unwarranted execution times. The state
of the soil moisture storage system can be output at the end of each é-hr period.

SNOW ACCUMULATION AND ABLATION MODEL

The snow accumulation and ablation model is a conceptual model that describes the
important physical processes taking place during the accumulation and ablation of
a snow cover (Fig. 18.5). Although written for NWSRFS, the model can be used in
conjunction with almost any soil moisture accounting and channel routing routine.
Output from the snow model serves as input to the soil moisture accounting
procedure. The output from the snow model is snow cover outflow (snowmelt water
and rain water leaving the snow cover) plus rain that fell on bare ground.

The snow model uses air temperature as the only index of energy exchange across
the snow-air interface. Two basic reasons exist for using air temperature as the
sole index of energy exchange.

- Air temperature data are readily available throughout the United States on
a real-time operational basis.

- Comparison tests conducted by the NWS HRL, though limited to two experimental
watersheds, have indicated that at least in these two cases the hydrograph
simulations produced by using air temperature as the sole index of snow
cover energy exchange are comparable to those produced using an energy
balance snow cover model.

Obviously, under certain meteorological and physiographic conditions, an energy
balance model will provide more accurate estimates of snow cover energy exchange
if the necessary data are available. Extensive research on snow cover energy
exchange is being conducted by the HRL (8,9). It is planned to include an areal
energy balance snow cover model in the NWSRFS within the next few years for use
in areas where the necessary data are available and a meaningful increase in
accuracy can be attained.

Model Components

Accumulation of the snow cover. The model first determines the form of precipita-
tion input by using a reference air temperature. Precipitation falling when air
temperature is greater than the reference value is assumed to be rain, and snowfall
is assumed when air temperature is below the reference value. GCenerally, the
reference temperature is set at about 1°C.

Accurate precipitation data are important if snow cover accumulation is to be
simulated satisfactorily. Considerable variation can exist between actual and
measured snowfall during a particular event resulting from inaccurate catch caused
by the aerodynamic inadequacies of the precipitation gauge (10). Therefore a
constant multiplier, called the snow correction factor, can be used to adjust
recorded precipitation amounts to more adequately describe the actual snowfall.

Heat exchange at the snow-air interface. Heat exchange at the snow-air interface
is the most critical factor in controlling the ablation of the snow cover. When
air temperature is used as the only index to heat exchange, two basic situations
arise for which heat exchange must be estimated: the ambient air is warm enough to
cause melting at the snow surface, and the ambient air is too cold for melting to
occur.
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Fig. 18.5 Snow accumulation and ablation model.

The model assumes that melting can occur at the snow surface when air temperature is
above a base temperature (usually 0°C). To calculate the melting rate, the model
distinguishes between rain and nonrain periods.

Development of the energy balance equation to compute the snowmelt rate during
rain is based on several assumptions: solar radiation is zero, incoming long-wave
radiation equals the blackbody radiation at the ambilent alr temperature, snow
surface temperature is 0°C, the relative humidity is 90 percent, and temperature
of the rainwater is equal to the ambient air temperature. The energy balance of a
melting snow cover is then expressed as the sum of the net radiation heat transfer,
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latent heat transfer, sensible heat transfer, and the heat transfer by rainwater.

During nonrain periods, melt at the snow surface is assumed to be proportional to
the difference between air temperature and the base temperature. A constant of
proportionality referred to as the melt factor is used to linearly relate the
temperature difference with snowmelt. To account for seasonal variation in various
meteorological factors that affect melt, the melt factor is allowed to vary from a
minimum on December 21 to a maximum on June 21. A sine curve is used to interpolate
melt factors for other dates. The use of a sine curve to describe the seasonal
variation in the melt factor has proved to be adequate throughout the conterminous
United States. However, a different curve, which produces a more delayed increase
in the melt factor, 1s provided for use in Alaska.

If the ambient air temperature is below 0°C, the model assumes that snowmelt does
not occur. In this situation, the snow cover is either gaining or losing heat.

The direction of the heat flow is dependent upon the relative temperatures of the
snow surface (assumed equal to air temperature) and the temperature at some depth
below the snow surface. Heat conduction T® or from a snow cover is not only a
function of the temperature gradient but also of the snow density. The model
indirectly accounts for the effect of snow density on the rate of melt by seasonally
varying the potential rate of heat transfer into or out of the snow cover.

Areal extent of snow cover. To estimate the total amount of melt generated over a
given area, the portion of the total area covered by snow must be known. If rain
is falling, the areal extent of snow cover must also be known to determine how
much rain is falling on bare ground and how much rain is falling on the snow.

Since the snow accumulation pattern for a given area is reasonably similar from year
to year, a unique curve can be drawn that relates the extent of snow cover to the
current state of the snow cover in terms of water equivalent. Thus, once the

water equivalent of the snow has been computed, the areal extent of the snow cover
can be determined from the areal depletion curve.

Snow cover heat storage. The snow model keeps a continuous accounting of heat
storage in the snow cover. Maximum heat storage occurs when the snow cover is
isothermal at 0°C. When air temperatures are lower than the snow cover temperature,
heat is transferred from the snow to the air, creating a heat deficit or negative
heat storage in the snow cover. The model accounts for negative heat storage; and
as air temperatures rise, sufficient heat must be transferred to the snow cover to
eliminate existing heat deficlits before melt can occur.

Liguid-water retention and transmission. Snow crystals form a porous medium similar
to soll particles that retains and transmits water. The amount of liquid water

that can be retained by the snow cover is assumed to be a constant percentage of

the ice content.

Equations for the transmission of excess liquid-water through the snow cover are
used to lag and attenuate the flow of liquid water to account for the time delay
and storage characteristics of the snow cover.

Ground melt. Heat exchange at the soil-snow interface is usually negligible when
compared with the heat exchange at the air-snow interface. However, in some
catchments, sufficient melting takes place continuously at the bottom of the snow
cover to maintain a significant base flow. Therefore, the model allows a constant
amount of melting to take place at the soil-snow interface.
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CHANNEL ROUTING

The soll moisture accounting model generates a volume of runoff available for
channel inflow per é-hr period. Initially, this volume of available water is
assumed to be distributed uniformly over a soil moisture accounting area. To
account for the temporal distribution of runoff volume reaching the catchment
outfall, a time delay histogram and linear reservoir are used.

When runoff reaches the channel, the water is transmitted downstream in the form of

a flood wave. As the flood wave moves downstream storage characteristics of the
channel and fluid flow dynamics cause the shape of the flood wave to change.
Normally, the flow exhibits a time lag between points in the channel due to finite
wave speeds. Also, the flood wave 1s attenuated owing to the storage characteristics
of the channel and, to a lesser extent, the inertial properties of the wave.

In rivers where the flow dynamics (i.e., backwater and/or flood wave inertial
effects) are not important in describing the movement of a flood wave, a simple
hydrologic (storage) routing procedure can be used. If the flow dynamics are
important, a more complex hydraulic routing technique may be required.

Currently, the NWSRFS uses a simple storage routing technique known as lag and K in
situations where flow dynamics are relatively unimportant (11). Experience has
shown that the lag and K technique (both variable and constant with respect to
flow) is very useful in describing flood flows in uncontrolled rivers where the
effects of backwater and in-bank storage are negligible.

In rivers, reservoirs, and tidal reaches, where backwater conditions occur or where
hydrologic techniques cannot achieve the desired degree of accuracy, a dynamic

wave model (7) based on the following one-dimensional equations of unsteady flow is
used:

30 , 3A _ . _
"~ t3c - 9= 0 (18.1)
3Q | 3[wQ?/A] dh - _
T x + gA < " S¢ qv, + WB =0 (18.2)
where
x = distance along the channel axis, positive in downstream direction;
t = time;
A = cross-sectional area of flow;
Q = average discharge across a section;
B = width of cross section at the water surface;
h = water surface elevation;

g = lateral flow per unit length along the channel; positive in inflow and
negative in outflow;

v, = velocity of lateral flow in the direction of the channel flow;

o = velocity distribution coefficient;
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= resistance slope given by the Manning equation for uniform turbulent flow;

-
1

= energy loss due to wind per unit width of channel; and

iy
|

g = acceleration due to gravity.

These equations can be used to predict stages and discharges. The first equation
conserves the volume of water in the system and the second conserves the momentum.

Applications of these equations to a river system requires some idealization of
channel geometry. Channel cross sections are specified at points along the river
where significant changes occur. Typically, for large rivers with slowly varying
transients, 15 to 25 km between cross sections will be sufficient. Observed
stages and discharges can be used to determine channel roughness coefficlents.
With this information and the upstream discharge or stage hydrograph(s), flow can
be routed through the river system.

The unsteady flow equations are solved by the "four-point implicit method," a
finite difference technique. This solution technique allows unequal distance
intervals between cross sections. Also, the numerical stability properties of the
implicit method do not restrict the size of the computational time step (12). The
desired accuracy can be the sole criterion in choosing the time step; and for non-
tidal situations, time steps on the order of several hours can be used.

MEAN AREAL PRECIPITATION

A component of the NWSRFS, called the mean areal precipitation (MAP) program (4),
objectively transforms hourly and daily point precipitation measurements into an
areal mean. In addition, MAP estimates missing data based on nearby precipitation
records and time distributes daily data based on hourly patterns over time.

Three weighting techniques are available for distributing precipitation gauge
information throughout an area. The relative importance of each precipitation
gauge in an area can be determined as the sum of 1/d?, where d is the distance

from each point in the area to the gauge. Normalizing the sums of all precipitation
gauges yields the proportion (or weight) of the MAP contributed by each gauge. In
certain locations (especially in mountainous regions), the distribution of
precipitation gauges throughout an area may not accurately reflect the actual
pattern of precipitation., Under these circumstances, MAP can accept predetermined
weighting factors to distribute the point measurements. Use of predetermined
welghts allows the modeler to analyze any circumstances peculiar to an area and
adjust the precipitation gauge weights accordingly. A third technique of
determining the distribution of precipitation is by Thiessen weight factors. In
this method, the area is divided such that each precipitation gauge is centered

in a region containing all points closer to it than to any other gauge. The
proportion of the total area contained in each region specifies the weight assigned
to the associated precipitation records.

The point precipitation weightings described above all rely on complete precipita-
tion gauge records to successfully compute the MAP. To utilize information available
in partial records, a technique for estimating missing data has been developed.

The crux of this method relies upon determining the importance of nearby precipita-
tion gauge measurements for the estimation of data for the incomplete station

record. The importance of nearby stations is computed as 1/D?, where D is the
distance from the station with incomplete records. With this information, available
precipitation measurements can be distributed to complete partial records.

The precipitation patterns exhibited at hourly recording stations are used to
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distribute the depths of precipitation at daily stations. Again, a 1/D? weighting
factor is used to determine the relative effects of nearby hourly stations on the
daily record.

However, this technique will not result in estimations greater than the largest
known value or less than the smallest. In mountainous regions, it may be desired
to alter the estimated value at a station because of known orographic effects.
The MAP program accounts for such modifications when completing a precipitation
gauge record by applying “characteristic station adjustments." A ratio of the
characteristics of the estimating and estimated stations relates the known depths
of precipitation to the depth at the incomplete station. For example, setting
the characteristic of the station being estimated equal to two doubles the depth
of precipitation recorded at an estimating station that will be used by the MAP
program to estimate the unknown value. If no specification is made, the character-
istics of all stations are assumed equal.

The MAP program produces an estimate of the depth of water falling on an area,
which is used as input to the snow accumulation and ablation model and the soil
moisture accounting program.

MEAN AREAL TEMPERATURE

The snow accumulation and ablation model uses air temperature as an index to heat
exchange processes. The air temperature used in the model is the mean temperature
over the area being simulated. Since air temperatures are measured at discrete
points, it is desirable to transform point temperature data to mean areal values
before the data are used by the snow model. Also, the mean areal temperatures (MAT)
must conform to the computational interval used by NWSRFS. The NWSRFS MAT (6)
transforms observed minimum and maximum daily temperatures into 6-hr mean areal
temperatures.

The computation of MAT involves inferences regarding the temperature at all points
within the area. Available observed temperature records at points within and
surrounding the area are used to compute the MAT. When portions of the observed
records are missing (because of equipment malfunction, missed observations and so
on), the MAT program estimates missing data using records available at surrounding
points. This avoids discarding observed records that are not continuous and
losing the information contained in the partial record.

Two separate estimation algorithms are used. One procedure is used in non-mountain-
ous areas, where temperature can be assumed to vary linearly with distance. The
estimated temperature is a weighted average (1/D) of surrounding temperatures.

The second procedure is used in mountainous areas, where temperature variation
between points generally does not vary linearly with distance, but where tempera-
ture variation is primarily influenced by elevation differences. A quasi-objective
technique is used that employs a weighting procedure of distance and elevation to
estimate the unknown temperatures.

Once all maximum and minimum daily temperature time series have been completed, the
6-hr MAT can be computed. The first step is to convert the point minimum and
maximum temperatures to point é-hr temperatures. Four equations, one for each

6-hr period of the day, are used to convert the minimum and maximum temperatures

to 6-hr temperatures. The 6-hr MAT is then calculated as the weighted average of
the point 6-hr temperatures.
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EVAPOTRANSPIRATION

The determination of the volume of water removed from a basin through evaporation
and transpiration is important in accurately predicting the amount of water
available for runoff. The mean areal potential evapotranspiration (MAPE) program
computes areal values of potential evapotranspiration. As with the MAT program,
the weighted average of a number of point measurements are computed over an area.
The technique for distributing point potential evaporation values throughout an
area is analogous to that for distributing point temperature values in nonmountain-
ous areas. This technique gives a MAPE value for the total area.

However, evapotranspiration does not occur at the potential (maximum) level at all
times. An adjustment must be made to reduce the potential evaporation value to
potential basin evapotranspiration. This reduction accounts for such factors as
watershed albedo and vegetative cover. The MAPE program uses a set of 12 values
corresponding to the area-wide potential evapotranspiration demand for day 16 of
each month. A linear interpolation between these 12 values yields an adjustment
for each day of the year.

MODEL CALIBRATION

To use the soil moisture accounting, snow accumulation and ablation, and channel
routing models for river forecasting, model parameters for each river basin must
be estimated. Both trial-and-error methods and automatic methods are in use.
Trial-and-error methods involve subjective adjustments to parameters, based on
specific characteristics of previous model output. Automatic techniques involve
the use of direct-search optimization algorithms for the catchment model and an
interactive gradient adjustment procedure for the dynamic routing model.

Catchment Calibration

To achieve efficiently a satisfactory set of model parameters by trial and error
calibration, two elements are required from the hydrologist: he must understand the
physical processes taking place in the catchment and the mathematical modeling of
the catchment. The hydrologist compares simulated and observed hydrographs and
manually adjusts model parameters based on knowledge of the model mathematics and
the physical processes of the natural catchment. However, even an experienced
modeler may find the trial-and-error method time consuming. To shorten calibration
time, an automatic calibration technique is available.

Experience has shown that calibration efficiency is enhanced considerably by
accurate initial estimates of model parameters. Much effort has been directed
toward identifying ways to determine initial parameter estimates from an observed
hydrologic and geologic data base (5,13). Physically realistic parameter values
will improve the representation of catchment response.

The automatic catchment model calibration technique is a direct-search optimization
technique known as "pattern search" (1l4). The concept of this strategy is to
increase the size of parameter adjustments at each stage of optimization if a
persistent direction (pattern) of adjustments has been established. The success

of improving model performance by parameter adjustment is measured by the sum of
the squared differences (errors) between the simulated and observed daily flow.

The recommended calibration procedure includes three stages. The initial stage
incorporates the experience of the hydrologist with trial-and-error calibration
to test initial parameter estimates and to reveal any gross errors in the data.
After reasonable parameter estimates have been obtained, intermediate calibration
can proceed using pattern-search optimization to further refine parameter values.
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In the final stage of calibration, the hydrologist reviews observed and simulated
hydrographs for the entire period of record. If bias is absent at low, medium,
and high flows, the calibration is considered complete. If, however, bias is
present, additional parameter adjustment is necessary.

Dynamic Routing Calibration

The calibration of the dynamic routing model is accomplished primarily through
adjustment of the channel roughness coefficients. Channel roughness is assumed
constant throughout specified river reaches; however, it is allowed to vary with
discharge.

Manual Calibration

The manual calibration technique uses observed stages and discharge throughout
the river system as a measure of the model's accuracy. Boundary conditions
(upstream and downstream discharge and stage hydrographs) are input to the
model, and computed stages and discharges at internal (test) points are
compared with observed values. Roughness coefficients are adjusted and the
simulation is repeated.

Altering a roughness coefficient affects stages and discharges throughout the river
system, but the greatest effect is immediately upstream of the altered reach (7).
The manual calibration technique begins with the upstream reach and adjusts the
roughness to match computed and observed stages at the upstream test station. The
calibration proceeds downstream, matching computed and observed values at each test
station in a sequential manner. 1In general, the reaches with constant roughness
are established so that one test point falls within each reach. The manual
calibration method requires numerous submissions of the routing system, and only a
few adjustments are made each time.

Automatic Calibration

The automatic calibration procedure computes a set of roughness coefficients by
calibrating the river system one reach at a time. With this technique, roughness
reaches are established so that test stations are at both ends of the reach.
Discharge is input at the upstream boundary, while stage is specified downstream.
Observed stages at the upstream boundary are tested against computed stages at that
point. Statistics are computed for several ranges of discharge so that the roughness
coefficient can be calibrated as a function of discharge. For each range of
discharge, the adjustment procedure uses the root-mean-square (RMS) error to
determine whether the required change should be positive or negative. Adjustments
are automatically made to the roughness coefficients for the reach and the one-
reach system is rerun. The cycle is repeated until a minimum RMS error for the
reach is found. The discharge computed at the downstream boundary using the
coefficients associated with the minimum RMS error are input as upstream boundary
conditions for the next reach. A compatible set of roughness coefficients which
minimize RMS errors throughout the river system is determined by rationally
proceeding through the river system one reach at a time. The automatic calibration
procedure makes efficient use of time of both man and machine.

OPERATIONAL FORECAST PROGRAMS

Catchment Model

Once a catchment is calibrated, the conceptual models mathematically represent the
important hydrologic processes of the catchment. The hydrologic parameters derived
in the calibration phase are transferred to the operational forecast programs. In
terms of hydrologic computation, there are no differences between calibration and
operational programs. The only differences lie in the timeframe of catchment



=321~

simulation and in the number of catchments simulated per computer run. In calibra-
tion, interest is in the reproduction of a long series (5-15 yrs) of historical
data; however, operationally the timespan is reduced to forecasting catchment
response a few days or weeks into the future. During calibration, no more than
three adjacent catchments are simulated during one computer run. However, the
operational programs are designed to interact with an operational direct access
disk file system to retrieve and store information necessary to simulate entire
river systems (which may include as many as 600 local catchments) on a continuing
real-time basis.

The operational forecast programs in the NWSRFS have been organized into the three
modules shown in Fig. 18.6: a data management module, a pre-processor module, and a
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Fig. 18.6 Operational catchment response model. PE stands for
potential evapotranspiration, STA for station, and Q
for discharge.
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forecast module. The data management module is the only interface between the user
and the forecast system. The data management module allows the user to enter time
series data (i.e., precipitation, temperature, stage/discharge, and potential
evaporation data values); enter model parameter data; and display/print time series
data, parameters, and forecast output. The pre-processor module uses the time
series data and corresponding model parameters to compute mean areal precipitation,
potential evapotranspiration, stream flows, and mean areal temperatures. The
forecast module uses the values from the pre-processor module along the model state
variables carried over from previous computational periods to compute conditions

at specified forecast points.

Dynamic Wave Model

The core of the operational dynamic routing program is the dynamic routing basic
element described above. The modifications to that basic element of the NWSRFS
consist primarily of an expanded data management package (Fig. 18.7). A large
portion of the information required to simulate a river system does not change
daily. The cross-sectional data, roughness coefficients, and information

®CROSS-SECTION DATA

® CHANNEL ROUGHNESS HYDROGRAPH
COEFFICIENTS

®OTHER STATIONARY DATA

DATA

CURRENT
DATA

DATA MANAGEMENT

MODULE
CALIBRATION
DATA
DYNAMIC ROUTING OPERATIONAL FORECAST
BASIC ELEMENT MODULE

FORECAST

GUIDANCE

Fig. 18.7 Operational dynamic routing model.
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specifying the routing configuration will remain constant for long periods of time.
It is only the hydrographs that must be updated for daily operational use. To
manage these data requirements efficiently, a package of subroutines to store and
retrieve the unchanging portion of the input data from disks and to update the
hydrographs has been developed.

By specifying which river system is to be simulated and the period of simulation,
the data are automatically prepared for use by the dynamic routing basic element.
A minimum of data handling is required, as only the latest values needed to update
the hydrographs must be prepared.

A feature included in the operational dynamic routing program, which will improve
forecasts, is the ability to bring the entire system (all computed stages and
discharges) up to date with the most recent observed stages before proceeding into
the future. Since all the information available about the conditions in the river
is contained in the stages and discharges, by updating the entire system to present
observed stages, the startup errors in a forecast of any given length can be
minimized.

Extended Streamflow Prediction

Water supply forecasting is another function performed by the NWSRFS. An
operational element capable of extended stream-flow prediction (ESP) provides the
forecast.

The ESP program makes multiple simulations with the catchment model using the
current hydrologic conditions and precipitation and temperature data representing
periods from numerous years. The stream flows obtained from these simulations are
analyzed to provide a frequency distribution (and thereby a probability distribution)
of any flow level. The probability distribution relates any flow to a specified
chance of occurrence. The time span to which a probability distribution applies,

as well as the date at which the span begins, can be input into the ESP program.

With this information, the expected flow at any selected probability level can be
obtained for the time period chosen. Forecast information for peak, low, and
mean flow levels, as well as volume of flow, is available.

COMPUTER FACILITIES

The computational elements of the NWSRFS are being implemented on a computer
facility at Suitland, Maryland. The operating system consists of three IBM 360/195
computers with a capacity of 64 disk drives. (Trade names are included for
identification purposes only. No endorsement by the U.S. Department of Commerce,
the National Oceanic and Atmospheric Administration, or the National Weather
Service is implied.)

Each RFC will access the computing system through remote terminals with batch
processing capabilities. Input/output can be accomplished by means of punched

card, paper tape, printer or magnetic tape mass storage. Limited off-line processing
capabilities will also be available. The remote terminal serving the HRL will
perform batch processing, as well as allow interactive access with the operating
system.

EXPERIENCE WITH THE NATIONAL WEATHER SERVICE RIVER FORECAST SYSTEM

Since 1971, the Lower Mississippi RFC at Slidell, Louisiana, has been using the
initial version of NWSRFS for operational river forecasting. This RFC has forecast
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responsibilities for the lower portion of the Mississippi River system (see Fig.
18.2) and some adjacent systems draining to the Gulf of Mexico. Nearly 200 catch-
ments have been calibrated by the Lower Mississippi RFC and most are forecast on a
daily basis.

The use of the NWSRFS at Slidell has proved to be especially effective in forecasting
extreme hydrologic events. For example, in March 1973, a major flood on the Amite
River at Denham Springs, Louisiana, crested at an elevation of 9.93 m (flood of
record is 10.8 m). NWSRFS was used to forecast a flood crest elevation of 9.90 m,
Prior to the storm, the Amite River was flowing at an elevation of 3.05 m. The

time to peak of the flood hydrograph was 72 hrs and the NWSRFS crest forecast was
released approximately 30 hrs before the crest occurred.

There was a similar situation on the Leaf River at Hattiesburg, Mississippi, in
December 1973. A total 2-day rainfall in excess of 150 mm produced a major flood
on the Leaf River. In 48 hrs, the river rose from an initial elevation of 2.13 m
to the crest elevation of 8.25 m. Nearly 36 hrs before the crest was observed at
Hattiesburg, a crest forecast of 8.07 m was generated by the NWSRFS. These two
examples are a good indication of the potential of a conceptual model with a
strong physical base to simulate catchment response.

The experiments with the NWSRFS by the Lower Mississippi RFS have been instrumental
in making many of the operational modifications and improvements that are included
in the current version of NWSRFS. As remote job processing terminals connected to
the IBM 360/195 in Suitland, Maryland, are installed, the remaining RFCs will have
the computing capacity to implement NWSRFS. It is expected that in the next 5 to
10 yrs the NWSRFS will be implemented nationwide.

In addition to the operational application of NWSRFS by the Lower Mississippi RFC,
several other RFCs, as well as the HRL, have calibrated a wide variety of catch-
ments. These catchments represent most of the hydrologic conditions found in the
United States.
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Activated sludge process, 97-100, 195
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Controllability matrix, 236
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Dimensionality, 116
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Estimation
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Kalman filter, adaptive)
Linear, 208
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Extended streamflow prediction, 323

Filtering, 3
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Multiplicative, 77
Second order, 87, 88
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Forecasting, 2, 3, 16
Areal precipitation, 255, 317, 318
Areal temperature, 318

Groundwater, 112, 115, 116
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154-157, 166, 273, 280-284, 292
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Tornado, 262-264
Urban sewer flows, 93, 94, 196-200
Water quality, 57-61, 104, 105,
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Fractional noise models, 26
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Groundvater equations, 110-114 Rainfall-runoff models, 125-130

Forecasting (see forecasting, Conceptual, 71, 83-85, 272-275,
groundwater) 288-291, 296, 297
Group method of data handling (GMDH), Distributed parameter, 128, 129
26, 152-154 Lumped parameter, 125-128

Algorithm, 152 U.S. Weather Service, 310-319
Modified GMDH, 157 (see also self-tuning predictor)
Sequential GMDH, 164 Regulator control problem, 181

River forecasting centers (US), 307

Identification, 5, 8, 26, 37-39, 82

(see also model building) San Jacinto aquifer, 115

Dissolved oxygen (D) models, 102 Self-tuning predictor, 141, 184, 198

Wastewater systems, 101-104, 183 Separation theorem, 173
Identifiability, 22 Servomechanism problem, 183
Instrumental variables, 20 Smoothing, 3

Snov modelling, 313~315
Sola River, 289

Kalman filter, 16, 40-43 State
Adaptive, 17 Definition, 2, 9-11, 30
Algorithm, 42 Estimation, 2, 3, 194, 195
Extended, 86-88 Identification, 9, 21-24
For multiplicative systems, 77-79 Reconstruction, 195, 196
Sensitivity, 18 Stationarity, 14, 15

Kappala sewverage system, 100, 102-104, Statistical uncertainty, 120

198 Stochastic approximation, 121
Karasu River, 63, 69, 154 Streeter-Phelps, 47, 231

Subjective forecasts, 247, 265

Least squares, 20, 141, 198

Likelihood function, 67, 207 Tama River, 162
Telemetry, 271
Time series, 7-9, 12-16

Model building, 8, 21 ARMA representation, 13-15, 65, 66
Model order Multiplicative form, 66, 67
(see Akaiki Information Criteria) Time varying models, 26

Model validation, 24, 319, 320

Vistula, 300
Noise estimation, 17, 18, 120, 280, 298
Correlation, 114
Water quality
Control (see control of)
Optimal predictor, 139 Models, 48-51, 162, 188-190, 231, 238
Systems, 179-183
Stirred tank, 234

Parameter estimation, 16, 19, 20, 142 Wastevater systems, 93, 95-97
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67-69
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Whan water regsurce syetems are not under contral, the conseguences ean be devastating.
In the United States alone, flood damage costs approximately $1.5 billion annually. Thess
losses can be svolkded by building more reservoirs to hold the flood waters, but such con-
struction |8 very expansive, sspecially because resarvodrs have already been built on the
beit sites. A better and less expensive alternative s the development of more effective
management methods for existing water resource sydtams, which commonly waite
approximately 20 percent of their capacities through mismanagement.

This book containg selected papers from & workshop devoted to the consolidation of
international research on statistecally estimated models for real-tima foracasting and con-
trol of water resounce systems, The workshop wes spongored by the International Insti-
tute for Applied Systers Analysis and contributed to the research on the methodology
of real-time forecasting and control of watér résource systems being carried on in the
Water Project of the Institute,

Statistical models first appeared in hydrology ot the beginning of the 19704, Hydrologists
began to wse the technigues of time series analysis and system identification in their
rmodels, which seemed to give better results than the earlier, deterministic simulation
madels, In additien, real-time control of water resources was being developed at the
practical level and on-line measurements of rainfall and runoff from a catchment wene
becaming available. The conceptual models then in use could not 1ake advantage of meas
surements from the catchment, but online messwraments now allew an operator 1o
anticipate flood waters upstream oF & water shortage downstream,

The book is divided into three parts, The first part presents several methods of forecasting
for water resounce systems: distributed lag models, maxirmum lkelihood identification,
nonlfinear catchmaent models, Ealman filtering, and sell-tuning predictors. The papers in
the second part present methads for controlling stream quality and stream flow, and the
third part describes forecasting in the United States, the United Kingdom, and Poland,
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