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Abstract 

Global land cover maps have been widely employed as the base layer for a number of applications 
including climate change, food security, water quality, biodiversity, change detection and environmental 
planning. Due to the importance of land cover, there is a pressing need to increase the temporal and 
spatial resolution of global land cover maps. A recent advance in this direction has been the 
GlobeLand30 dataset derived from Landsat imagery, which has been developed by the National 
Geomatics Center of China (NGCC). Although overall accuracy is greater than 80%, the NGCC would like 
help in assessing the accuracy of the product in different regions of the world. To assist in this process, 
this study compares the GlobeLand30 product with existing public and online datasets, i.e. CORINE, 
Urban Atlas, OpenStreetMap and ATKIS for Germany in order to assess overall and per class agreement. 
The results of the analysis reveal high agreement of up to 92% between these datasets and GlobeLand30 
but that large disagreements for certain classes are evident, in particular wetlands. However, overall, 
GlobeLand30 is shown to be a useful product for characterizing land cover in Germany, and paves the 
way for further regional and national validation efforts.  

Keywords: Land cover/use mapping, Germany, GlobeLand30, CORINE, Global land cover maps, 
Accuracy assessment    

1 Introduction 

Over the last two centuries, humans have made considerable changes to their landscape. This includes 
unprecedented land surface changes such as increasing urbanization (Tian et al., 2011; Tayyebi et al., 
2013; Pijanowski et al., 2014) and deforestation (Mas, 2004; Pineda Jaimes et al., 2010; Tayyebi et al., 
2015). Areas of current scientific concern include understanding the global impacts of land use / land 
cover (LULC) changes on multiple ecosystem services (Meehan et al. 2013; Vaz 2016), analyzing 
landscape changes at the global scale (Tayyebi et al., 2014) and improving estimates of greenhouse gas 
emissions from the LULUCF (land use, land-use change and forestry) sectors (Schlamadinger et al. 2007). 
Information to support these analyses is extracted from LULC maps, which highlights their importance 
(Sexton et al. 2013). A number of land cover products covering different time periods and different 
spatial resolutions have been created from remote sensing, e.g. MODIS (Friedl et al. 2002), Africover and 
GLC-SHARE (Latham et al. 2014), GLC2000 (Fritz et al. 2003), IGBP (Loveland et al. 2000) and GlobCover 
(Arino et al. 2012). Many of these products are based on coarse resolution sensors, e.g. GLC2000 is at 
1km, MODIS at 500 m and GlobCover is at a 300m resolution (Grekousis et al. 2015; Congalton et al. 
2014). The spatial resolution of these products is not sufficient for detailed studies, their accuracy is not 
high enough for many applications (see e.g. Fritz et al. 2011; Batisani & Yarnal 2009), and change 
detection is not possible. For LULC change simulation and land policy resolutions (Haase & Nuissl 2007; 
Jokar Arsanjani, Helbich & Vaz 2013), more accurate, higher resolution products are needed. As noted 
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from recent land change modelling experiences, namely Tayyebi et al. (2011) and Arsanjani et al. (2014), 
while exploring the magnitude and type of land change such as expansion, shrinkage or intensification, 
the positional accuracy of temporal land cover maps cause major sensitivities across modelling 
approaches. Urbanization will see the population of many cities in the developing world grow (United 
Nations, Department of Economic and Social Affairs 2014), while shrinking cities in parts of the 
developed world are of particular economic concern, especially when changes are persistent and 
accompanied by an aging population (The Economist 2015b). For example, more than a third of German 
cities are currently shrinking and the number continues to grow (The Economist 2015a). Land cover can 
play an important role in modelling future changes as well as development of urban and regional policy. 

At the European scale, extensive use of the European wide Corine Land Cover (CLC) map is made by 
landscape planners, ecologists, researchers, and policy makers (Pérez-hoyos et al. 2012; Pekkarinen et al. 
2009; Neumann et al. 2007; Grekousis et al. 2015). The CLC was produced for four years: 1990, 2000, 
2006 and more recently for 2012 but CLC2012 is still in the validation phase and therefore not yet 
available. Moreover, the product is provided at a resolution of 100 and 250 m, so there is a lack of detail, 
particularly in urban environments (Diaz-Pacheco & Gutiérrez 2013; Feranec et al. 2010). More recently, 
the National Geomatics Center of China (NGCC) released GlobeLand30 as a global land cover dataset at a 
30m resolution for 2010 (see Section 1.2.1); this was possible because of the opening up of the Landsat 
archive (Giri et al. 2013). This product may address some of the limitations of CLC products including 
improved spatial resolution and additional temporal coverage.  

The purpose of this study is to compare GlobeLand30 with existing authoritative and crowdsourced LC 
products for Germany in order to evaluate their agreement. In doing so, we will contribute to the 
validation of this new high resolution LC product and gain a better understanding of the potential 
contribution of this dataset to regional and global LC mapping. In the next section, the different LC 
products used in this study are described in more detail, after which the methodology for comparing the 
products is outlined. The results of the comparison are presented using measures of agreement and 
maps of agreement/disagreement.  

2 Current sources of land cover information for Europe 

Currently, there are several land cover inventories that cover the European continent. These products 
are generated by various institutions for specific purposes. Each of these datasets has its own strengths 
and limitations. A review of available global and regional land cover products along with their 
specifications has been provided recently by Grekousis et al. (2015).  

2.1 CORINE Land Cover 

Work on the CLC inventory began in 1985 to develop a product for 1990 as the reference year. Since 
then, several updates have been produced, for example, in 2000, 2006, and the latest 2012 update, 
which is still in the validation phase and has not yet been released. The CLC nomenclature includes 44 
land classes with a minimum mapping unit (MMU) of 0.25 km2 for areal objects and a minimum width of 
100 m for linear objects (Büttner et al. 2002). The data provider, i.e., the European Environment Agency 
(EEA), has also generated a time series of land change maps with an MMU of 0.05 km2 at a finer 
resolution than the base layers. In the production process, the EEA coordinates, integrates, and 
consolidates the national products from the National Reference Centres within EIONET (European 
Environment Information and Observation Network). At a national level, visual interpretation of high 
resolution satellite imagery was used to generate maps in the majority of countries while semi-automatic 
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approaches were used in the rest, with national in-situ data, satellite image processing, and GIS 
integration/generalization (Diaz-Pacheco & Gutiérrez 2013). This product has been extensively used for a 
wide variety of applications such as population mapping (Gallego 2010), environmental protection 
(Feranec et al. 2007), air pollution studies (Janssen et al. 2008), and spatial planning and decision support 
systems (Koschke et al. 2012). The products are generated in both vector and raster format at 
resolutions of 100m and 250m.  

2.1.2 Global Monitoring for Environment and Security Urban Atlas: GMESUA 

While CLC is widely used as a land cover dataset, GMESUA offers pan-European comparable land-use 
datasets for large urban areas above 100,000 inhabitants. To date, 305 urban regions within Europe have 
been mapped within this initiative and the classes reflect the monitoring needs of European cities. Earth 
Observation (EO) data are supported by other reference data, which are used in the classification 
process, e.g. commercial-off-the-shelf (COTS) navigation data and topographic maps. Ancillary data 
including (a) COTS navigation data such as points of interest (POIs), land use, land cover, and water 
bodies; (b) Google Earth for visual checking and interpretation; (c) local city maps for certain LULC 
classes; (d) local zoning and cadastral data; (e) on-site visits; and (f) high-resolution aerial imagery finer 
than 1 m resolution were used to verify  the locational and thematic accuracy of the classification 
(European Union 2011; Jokar Arsanjani, Helbich, Bakillah, et al. 2013). The dataset has an MMU of 
0.0025–0.01 km2, and a minimum width of linear elements of 100 m with ± 5 m positional accuracy 
(European Union 2011; Seifert 2009) For more details, see the Urban Atlas mapping guide (European 
Union 2011). 

2.1.3 Collaborative Mapping via Citizens 

Along with the advancement of semi/fully automatic signal processing approaches using remote sensing 
data for mapping LULC (Mayaux et al. 2006; Neumann et al. 2007), citizen observatories have recently 
shown their competence in collecting LULC information (Fowler et al. 2013; Jokar Arsanjani & Vaz 2015). 
Due to the advancement of Web 2.0 technologies, citizen observations have been well organized, stored, 
and maintained through collaborative mapping projects (CMPs: (Rouse et al. 2007; Vaz & Jokar Arsanjani 
2015)), whereby these observations have been made available to the public for downloading, revising 
and for commenting upon. This approach has helped to collect citizen observations not only in a raw 
form, but also updated and corrected by other citizens, who wish to contribute to these collections 
(Jokar Arsanjani, Mooney, Helbich, et al. 2015). These platforms provide citizens with user-friendly 
functionalities so that they can a) either collect information offline by GPS-enabled devices and then 
upload them to the platform, or b) allow them to map online based on visual interpretation of very high 
resolution satellite/aerial images (i.e. 40 cm resolution) embedded in the platforms. This type of 
information is named Volunteered Geographic Information (VGI: (Goodchild 2007)) and this process is 
called crowdsourcing (Heipke 2010). Studies show that these platforms have been quite successful in 
terms of attracting a large number of active users as well as collecting trustworthy contributions. Some 
of these platforms are even GIS-friendly, which facilitates further processing and exploitation (Sester et 
al. 2014). From a remote sensing viewpoint, visual interpretation of high resolution satellite images is a 
common way to collect data. There are numerous examples including OpenStreetMap (Jokar Arsanjani, 
Zipf, Mooney, et al. 2015a), Geo-Wiki (Fritz et al. 2012), and Wikiloc (Castelein et al. 2010). Geo-Wiki, in 
particular, was designed to help improve global land cover maps through volunteer mappers (See et al. 
2015). 
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OpenStreetMap (OSM), with over 2.2 million registered users and billions of contributed node features 
(by October 2015), has strengthened its role in creating a free Wikipedia of maps (Jokar Arsanjani, Zipf, 
Mooney, et al. 2015b). Various studies (Estima & Painho 2015; Jokar Arsanjani & Vaz 2015; Jokar 
Arsanjani, Mooney, Zipf, et al. 2015; Jokar Arsanjani, Helbich, Bakillah, et al. 2013; Kalantari & La 2015) 
have demonstrated the usefulness of OSM for mapping information about land cover and land use. The 
OSM contributions are organized into several layers, such as POIs, places, roads, railways, waterways, 
buildings, and natural and land-use features, which are rendered as points, polylines, and polygons. For 
the purpose of this study, data from OSM were used because the other sources of LULC data from the 
aforementioned applications are not as complete. 

2.1.4 Authoritative repositories: case of ATKIS data 

At a local level, national public authorities are responsible for providing official geodata. Additionally, 
private sector and commercial firms provide geodata at some costs for a certain number of licenses. In 
Germany, the federal surveying and cartographic authorities of the German Federal States are 
responsible for the production of land cover maps. The landscape map of 2010 called Digitales Basis-
Landschaftsmodell (Basis-DLM) provided by the Bundesamt für Kartographie und Geodäsie (BKG; Arnold, 
2009) from the Amtliches Topographisch-Kartographisches InformationsSystem (ATKIS) is available at 
scales of 1:10,000 and 1:25,000. This product has an MMU of 0.001-0.01 km2 and geometric accuracy of 
3m. The traditional update cycle is 5 years, but objects with high relevance are updated on a 3, 6 or 12 
monthly cycle depending on the object type (Becker et al. 2010). 

2.1.5 Globeland30 

The NGCC under the “Global Land Cover Mapping at Finer Resolution” project has recently generated a 
global land cover map named GlobeLand30. The dataset covers two timestamps of 2000 and 2010 
through the collection and classification of more than 10,000 scenes, primarily acquired from Landsat 
Thematic Mapper (TM) and Enhanced TM plus (ETM+) sensors, which were then coupled/checked with 
some local products. A pixel-object-knowledge-based (POK-based) classification approach was used to 
produce GlobeLand30 (Han et al., 2014; Chen et al. 2014). The overall accuracy of this product is 
reported to be above 80% as outlined by Chen et al. (2015). To the best of our knowledge, there have 
been few studies that have analyzed the usefulness of this dataset. Exceptions include the study by 
Brovelli et al. (2015), who concluded that this product compared well with national authoritative 
datasets in Italy, and the research by Ban et al. (2015), who demonstrated the high accuracy of the water 
class for Scandinavian countries, in particular Sweden. Thus there is a great deal of scope for comparing 
GlobeLand30 with existing LULC products in other regions of the world.  

2.1.6 Technical comparisons between the existing datasets  

In this section, a summary of the five datasets used in this study is provided in Table 1. To be more 
specific, a comparison between them in terms of MMU, linear width, nomenclature richness (i.e., 
number of classes), temporal coverage and update period, spatial coverage (globally and in Germany), 
and positional accuracy is detailed. From an MMU viewpoint, ATKIS and CORINE account for the best and 
worst examples for capturing MMU and positional accuracy; however, OSM also provides very fine 
geometric information as outlined in Touya & Reimer (2015). GlobeLand30 is potentially a better data 
source of land cover information than CORINE in terms of MMU and positional accuracy. However, from 
a temporal coverage perspective, a wider range of time is covered by CORINE, while GlobeLand30 covers 
only two timestamps of 2000 and 2010 so far. In terms of nomenclature, ATKIS and OSM offer a wider 
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range of land classes (>62 classes), while GlobeLand30 lacks diversity in land classes. This factor limits the 
use of GlobeLand30 for detailed land cover characterization but makes it suitable for applications that 
require only ten broad land cover classes. However, GlobeLand30 spatially covers the whole Earth, which 
is a great data source for land cover assessment at a global scale. Similarly, OSM covers the whole globe 
although the contributions across space vary significantly. Therefore, GlobeLand30 and OSM seem to be 
good datasets for monitoring global landscapes at a better spatial resolution than other current global 
land cover maps although further assessments of GlobeLand30 regionally and nationally are still required 
(Chen et al. 2015; Jokar Arsanjani & Vaz 2015).  

Table 1: A technical comparison between several land cover datasets 

 MMU (km2) Linear width Nomenclature 
richness 

Temporal coverage 
and update period 

Spatial 
coverage  

Positional 
accuracy 

Spatial coverage in 
Germany 

CORINE 0.25 100m 44 classes  1990, 2000, 2006, 
2012 

Europe 100 m Complete 

GlobeLand30 0.008-0.09  90m 10 classes   2000, 2010 Global ±75 m Complete 

Urban Atlas 0.0025–0.01 10m 44 classes  2006, 2012* Europe 
(partially) 

5m Major urban areas 
with a population 
> 100K 

ATKIS 0.001-0.01 undefined >62 classes Regular updates (latest 
2012) 

National 
(Germany) 

±3 m Complete (0.5% in 
our study) 

OpenStreetMap undefined undefined 63 classes (+ user 
defined) 

Heterogeneous ** Global  25.6% 

* Version 2012 of this product is scheduled for release in 2015. 
** OSM gets updated continuously, and by looking at the history of each feature, its temporal coverage can be identified. 

 

3 Materials and methods 
 

3.1 Study site and data 

The area selected for study is the country of Germany due to availability of different data sources for 
comparison as well as the diversity of its urban and rural landscapes. Germany covers an area of over 
357,000 km2 with a population of greater than 80 million (The Federal Statistical Office 2011). The five 
data sources used in this study are shown in Figure 1, which are GMESUA, GlobeLand30, CORINE, OSM 
and ATKIS as described in the previous section. While GlobeLand30 and CORINE cover the whole country, 
OSM, ATKIS, and UA have only partial coverage as document in Table 1. The OSM dataset was 
downloaded on February 5, 2014. Features tagged with “Land-use” and “Natural” represent LULC 
information. 
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Figure 1: Different input datasets for Germany, including the Urban Atlas, GlobeLand30, CORINE, 
OpenStreetMap and ATKIS 

3.2 Methods 
 

3.2.1 Pre-processing of the input data  

Figure 2 highlights the main tasks applied within this study. Prior to conducting the comparison between 
map products, they were first pre-processed, i.e. merged, mosaicked and harmonized due to 
heterogeneities in data formats, nomenclatures and projection systems. The GlobeLand30 image tiles 
were downloaded from www.globallandcover.com and mosaicked together. The vector data from the 
UA, OSM, and ATKIS were collected from their respective providers and merged separately. These five 
datasets were then resampled to match the 30m resolution of GlobeLand30, and the classes from each 
product were subsequently mapped onto CORINE level 1 nomenclature in order to facilitate the 

http://www.globallandcover.com/
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comparison between products. These include five main land cover types: artificial surfaces, agricultural 
areas, forests and semi natural areas, wetlands, and water bodies. The reason for choosing this 
nomenclature is that it is widely used at a regional level, i.e., European, and the use of these generic high 
level classes meant that harmonization was more straightforward. Finally, the harmonized land cover 
maps were compared against one another as outlined in section 3.2.2 below.   

 

Figure 2: Flowchart of the workflow for map comparisons 

3.2.2 Calculation of agreement 

Once the pre-processing of the target datasets was carried out, they were imported into quality checking 
midware, which calculates a confusion matrix, overall agreement, user’s and producer’s accuracy, and 
Kappa coefficient measures. Maps that represent agreement and disagreement between each pair of 
datasets were then generated. Finally, based on the computed indicators as well as the 
agreement/disagreement maps, recommendations were drawn regarding the suitability of GlobeLand30 
for Germany. Although the UA and ATKIS datasets only cover part of the country, comparison was made 
on the overlapping areas. 
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4 Results and discussion  

This section presents the results of the comparison between the GlobeLand30 dataset and the other 
available European land cover datasets for Germany.  

4.1 GlobeLand30 compared with CORINE  

One of the key differences between the two datasets is in their nomenclatures. While CORINE has 44, 15, 
and 5 different land cover classes at the third, second, and first levels of classification, respectively, 
GlobeLand30 has only 10 major land cover classes with no further hierarchy. Therefore, CORINE is much 
more thematically detailed than GlobeLand30. In contrast, the MMU of GlobeLand30 is 0.0009 km2, 
which is finer than the 0.01 km2 MMU of CORINE and may therefore pick up finer resolution features 
than CORINE. Table 2 provides the calculated confusion matrix as well as the measures of agreement 
between the two products where CORINE is used as the reference. The overall agreement is high at 
92.5% with a Kappa index of 87.7%. Looking at the user’s accuracies for each land cover type, all are 
above 80% except for wetlands, which shows a poor correspondence between the wetland class in 
GlobeLand30 and CORINE at 27.6%. The producer’s accuracies are similarly high although wetland is 
once again lower at 70%.  

Table 2: Confusion matrix and agreement values for CORINE (as reference) and GlobeLand30 (as source) 

C
O

R
IN

E 

GlobeLand30 (1000 m2) 

  Artificial surfaces 
Agricultural 

areas 
Forests and semi-

natural areas 
Wetlands Water bodies Total 

Producer's 
accuracy 

Artificial surfaces 21,441,078,675 4,254,484,942 793,657,354 6,171,169 73,045,450 26,568,437,589 80.70 

Agricultural areas 3,716,604,868 180,639,404,283 7,043,498,184 259,278,878 409,603,827 192,068,390,039 94.05 

Forests and semi-
natural areas 

1,189,987,853 4,731,908,701 101,427,709,247 229,566,613 353,471,973 107,932,644,387 93.97 

Wetlands 19,480,538 265,227,684 94,844,910 1,091,298,028 87,228,386 1,558,079,545 70.04 

Water bodies 205,020,610 366,558,979 288,493,270 2,367,104,343 26,428,518,469 29,655,695,672 89.12 

Total 26,572,172,545 190,257,584,588 109,648,202,965 3,953,419,031 27,351,868,103 357,783,247,232 - 

User's accuracy 80.69 94.94 92.50 27.60 96.62 -   

Overall accuracy 92.52 
      

Kappa index (%) 87.74 
      

 

Figure 3 presents a comparison of the areas for the different LC classes in CORINE and GlobeLand30. 
Most areas were similar in size when compared although the difference for wetlands is comparatively 
higher, which confirms the accuracy findings above for this class.   
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Figure 3: Area comparison across different land types between CORINE and GlobeLand30 

Figure 4 displays the spatial distribution of agreement/disagreement in three areas of Germany. While 
there are very minor disagreements that are speckled across the country, three detailed views are 
provided to examine different types of mismatches. Case 1 shows a region close to the border with the 
Czech Republic on the eastern side of the country. Shown in transparent orange is an area that 
GlobeLand30 reports as wetlands, while CORINE reports these same areas as a mixture of agricultural 
areas and water bodies.  

Case 2 shows an area on the western side of the country, where a mineral extraction site began 
development before 2006 (the time of the CORINE dataset) and was then further developed in 2010 (the 
date of GlobeLand30). While this area in CORINE is marked as artificial surfaces, it is mapped as forests 
and semi-natural areas in GlobeLand30. By looking at Google Earth historical images, the CORINE 
classification can be confirmed. Case 3 shows a delta in the north-west coast of Germany, which is 
classified as wetlands in CORINE and water bodies in GlobeLand30. Determining which one is correct is 
difficult to judge from the imagery alone.  Looking at photographs from Panoramio, a water body can be 
seen, partly mixed with areas of clay and sand while from the satellite image it looks like land. Using the 
photographs as verification, it is most likely a water body. 

Both cases 1 and 3 show examples of wetland disagreement, which is the one class that was poorly 
classified. Thus the disagreements could be the result of land change due to the time difference between 
CORINE and GlobeLand30, misclassification or disagreements on the edge of land polygons/pixels as 
outlined by Diaz-Pacheco and Gutiérrez (2013). 
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Figure 4: The spatial distribution of disagreement between GlobeLand30 and CORINE in three different 
places across Germany. 

4.2 GlobeLand30 compared with Urban Atlas  

In this section, we compare the UA with the GlobeLand30 product where the UA has the same 
nomenclature as CORINE so any issues related to harmonization may also apply here. Unlike CORINE, the 
MMU of the UA (0.0025-0.01 km2) is higher than GlobeLand30, which is 0.008-0.09 km2. Table 3 provides 
the measures of agreement. The overall agreement is still high at 85.4% with a Kappa index of 75.0% but 
considerably lower than CORINE. User’s accuracies are high for all land cover classes except for wetlands 
as in the previous comparison.   

Table 3: Agreement derived from the confusion matrix between the Urban Atlas (as reference) and 
GlobeLand30 (as source) 
Land Type Producer’s  

accuracy % 
User’s  

accuracy % 
Overall  

agreement % 
Kappa index% 

Artificial surfaces 63.13 87.03 

85.43 75.02 

Agricultural areas 94.15 84.74 

Forests and semi-natural areas 82.98 87.15 

Wetlands 0.00 0.00 

Water bodies 71.28 88.21 
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A visual examination with Google Earth imagery is used to better understand the issues related to the 
wetland class. Figure 5 (left) displays a snapshot from Google_Earth (year 2011), 6 geotagged 
photographs from Panoramio, which represent the reality from an oblique view angle, and the disputed 
area for this case (Figure 5 right). From our viewpoint, this disagreement is caused by different 
interpretations of the wetland class. While this area in UA is mapped as agricultural areas with some 
water bodies inside them, GlobeLand30 maps it as a wetland. This is a protected area in the north-west 
of Germany called Rehdener Geestmoor. 

 

 

Figure 5: A snapshot of an area of disagreement from different sources and comparison with very high 
resolution satellite imagery (bottom and zoomed in at the top) 
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4.3 GlobeLand30 versus OSM  

OSM features cover around 56% of the country with both urban and rural landscapes. As a dataset, OSM 
has a number of advantages including: a) a large range of land types, b) free form tagging, allowing users 
to add “user-defined” classes, and c) a high MMU although there are no official figures. Disadvantages 
include a) the need to manually translate features to global nomenclatures, which is difficult as no 
universal documentation is provided and b) in some places there are geometrical inconsistencies that 
need to be handled. 

 The quality analysis (Table 4) reveals an overall agreement of 74.2% and a Kappa index of 51.7%, which 
are lower values than the previous comparisons but still show substantial agreement (Landis & Koch 
1977). However, the analysis at the class level exposes large disagreements except for agricultural areas 
and artificial surfaces with good to high producer’s and user’s accuracies.   

Table 4: Accuracy values derived from confusion matrix between OpenStreetMap (as reference) and 
GlobeLand30 (as source) 

Land Type Producer’s  
accuracy % 

User’s  
accuracy % 

Overall  
accuracy % 

Kappa index% 

Artificial surfaces 94.12 63.53 

74.24 51.70 

Agricultural areas 72.63 96.62 

Forests and semi-natural areas 23.65 10.14 

Wetlands 0.00 0.00 

Water bodies 14.27 41.80 
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Figure 6: A visual comparison of GlobeLand30 and OSM 
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Figure 6 shows the agreement and disagreement between these two datasets in the top left hand 
corner. One polygon was then selected to illustrate the disagreement and is displayed in the bottom half 
of the figure, with a very high resolution satellite image for reference in the top right hand side. While 
OSM reports this polygon as the class artificial surfaces, GlobeLand30 reports it as forest and semi-
natural areas with some agricultural areas. By looking at very high resolution satellite imagery on Google 
Earth and Panoramio photos, we found that this area is a military training base in which a forest area 
with a massive unpaved road network can be detected. This serves to illustrate the disagreement that 
arises from a mixture between LU and LC concepts. From a LC perspective, this area is a forest but when 
LU is considered, i.e. a military base, then artificial surfaces are more appropriate.  

4.4 GlobeLand30 versus ATKIS  

In this section, ATKIS, as the ultimate gold standard dataset, is used to evaluate the accuracy of 
GlobeLand30. The analysis was carried out only for the Rhine-Neckar region for which ATKIS data were 
available. In terms of nomenclature, ATKIS includes a wide variety of more than 35 land types, which is 
far more detailed than GlobeLand30. Furthermore, the MMU of ATKIS is 0.001-0.01 km2, which is finer 
than GlobeLand30 and therefore allows smaller objects to be captured.  

Overall accuracy and Kappa index between the two datasets are 85.2% and 76.8%, respectively (Table 5). 
While classes like artificial surfaces, agricultural areas, and forests and semi-natural areas show good 
agreement, water bodies show lower agreement. Once again the wetlands class is problematic and there 
is no agreement between the two datasets, similar to what occurred in the comparison with the UA.  

Table 5: Agreement derived from the confusion matrix between ATKIS (as reference) and GlobeLand30 
(as source) 

Land Type Producer’s  
accuracy % 

User’s  
accuracy % 

Overall  
accuracy % 

Kappa index% 

Artificial surfaces 71.93 83.81 

85.23 76.82 

Agricultural areas 92.32 81.30 

Forests and semi-natural areas 84.63 92.28 

Wetlands 0.00 0.00 

Water bodies 64.57 68.42 

 

The disagreement map shown in Figure 7 demonstrates that although disagreement areas are spread 
over the entire region, they are mostly concentrated along the roads and water bodies. This is due to the 
different MMUs of the two datasets. In Heidelberg, water bodies are not correctly reflected in 
GlobeLand30, which is due to the coarser spatial resolution of 30 m from Landsat images so is limited in 
delineating water bodies with smaller areas. Furthermore, some scattered artificial surfaces around the 
city are not reflected in GlobeLand30. The bottom three images in Figure 7 are from an area on the east 
side of Mannheim, which shows the same patterns of disagreement between the two sources. 
Furthermore, while a spot in the west side of the map shows forest and semi-natural areas, this area is, 
in reality, an artificial surface. A double check with the very high resolution image in the third column of 
Figure 7 confirms this. 
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 Figure 7: A comparison of GlobeLand30 and ATKIS, with more detailed examples for Mannheim (bottom) 
and Heidelberg (top) 

5 Conclusions 

GlobeLand30 is a recently produced global LC map at a resolution of 30m. Although the map has been 
validated by the NGCC as part of the map production process, independent validation against other 
regional and national sources of LULC has not yet been undertaken to any considerable extent. Thus, this 
study was an attempt to compare GlobeLand30 with existing datasets in Germany (i.e., CORINE, Urban 
Atlas, OpenStreetMap, and ATKIS).  

In general, the reported overall agreements confirm good correspondence between the different 
datasets and GlobeLand30, ranging from 74% for OSM to 92% for CORINE. Among these datasets, ATKIS 
and UA, which have the highest MMU and positional accuracy and are the best reference sources to 
confirm the quality of GlobeLand30, had agreements >85%. Therefore, GlobeLand30 is a potentially 
useful product for capturing LC in Germany. The visualization of areas of agreement/disagreement 
reveals that the disagreements are spread across the entire region and are not concentrated around 
specific areas. This highlights the importance of looking at per class accuracies, i.e., user’s accuracies. The 
per class analysis shows considerable disagreements for the wetlands class in all cases. Furthermore, 
agreement for the water bodies class is lower at 68%, which falls into “substantial” agreement according 
to Landis & Koch (1977). While water bodies are relatively simpler objects to map, differentiating 
between water bodies and wetland areas has resulted in areas of disagreement. The comparison 
between GlobeLand30 and OSM reports that only agricultural areas match perfectly, while the other 
classes do not show high agreement apart from a slightly better value for the class artificial surfaces. 
Although OSM is a unique dataset and using it as a reference dataset can be problematic, it would be 
interesting to better understand why these disagreements are occurring. To be more specific, are the 



 

16 
 

disagreements a) a result of recent land changes, which are not recorded in our databases, because OSM 
updating is continuous, or b) due to incorrect OSM contributions, or c) due to misinterpretation of land 
types by GlobeLand30, e.g. see Figure 6, or d) due to wrong translations of land types into the CLC 
nomenclature, since this step is fraught with difficulties. These issues need to be further explored within 
future studies as it is not the intention of this study to explore these here.  

As mentioned earlier, the quality of each dataset can be externally explored by addressing the fitness of 
each product for a specific usage. Based on our findings for Germany, GlobeLand30 represents artificial 
surfaces, farming areas, forest and semi-natural areas, and water bodies well. Therefore, this product 
can be recommended for applications that require characterization of land cover and land cover analyses 
such as calculation of landscape metrics. Several issues might have contributed to the disagreements as 
follows: a) it can likely be due to the time differences between the datasets, b) it can be due to the 
different LC nomenclatures and problematic understanding/interpretation of them, c) uncertainty within 
each dataset, d) it can be caused by different data characteristics e.g., MMU, scale, resolution, and e) it 
could be due to data conversion as described earlier and also outlined by Brovelli et al. (2015). Each of 
these issues plays some role in data uncertainty.  

Our conclusions draw attention to the value of GlobeLand30 as a useful product for comparison with 
other global LC maps, e.g. to highlight areas of disagreement and for integration into hybrid products, 
e.g. to continue improving global cropland maps (Fritz et al. 2015). This encouraging result paves the way 
for exploring the competence of this product in other continents. Once verified across multiple areas and 
climatic zones, it may be possible to use GlobeLand30 with confidence, particularly in developing 
countries where good land cover maps are difficult to find.  
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