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ABSTRACT 

As flood risks grow worldwide, a well-designed insurance program engaging various 

stakeholders becomes a vital instrument in flood risk management. The main challenge 

concerns the applicability of standard approaches for calculating insurance premiums of 

rare catastrophic losses. This paper focuses on the design of a flood-loss sharing 

program involving private insurance based on location-specific exposures. The analysis 

is guided by developed integrated catastrophe risk management (ICRM) model 

consisting of GIS-based flood model and a stochastic optimization procedure with 

respect to location-specific risk exposures. To achieve the stability and robustness of the 

program towards floods with various recurrences, the ICRM uses stochastic optimization 

procedure, which relies on quantile-related risk functions of a systemic insolvency 

involving overpayments and underpayments of the stakeholders. Two alternative ways 

of calculating insurance premiums are compared: the robust derived with the ICRM and 

the traditional average annual loss approach. The applicability of the proposed model is 

illustrated in a case-study of a Rotterdam area outside the main flood protection system 

in the Netherlands. Our numerical experiments demonstrate essential advantages of the 

robust premiums, namely that they: 1) guarantee program’s solvency under all relevant 

flood scenarios rather than one average event; 2) establish a tradeoff between the 

security of the program and the welfare of locations; 3) decrease the need for other risk 

transfer and risk reduction measures.  

Keywords: Flood risk, loss-sharing programs, spatial catastrophe model, quantile-related stochastic 

optimization, The Netherlands. 
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1. INTRODUCTION 

A significant part of world population lives in flood prone coastal and delta areas. About 23% of the 

world population residing coastal zone and 10 % of the population living in low-lying areas (39), are 

threatened by floods. For example, damages from coastal storms and floods in the USA in 2012 

accounted for almost $54 billion of estimated overall losses (40). Particularly, the Netherlands are 

vulnerable to a rising sea level and increasing frequency of river flooding. About 60 to 70% of the 

country’s population and economic value is concentrated in areas that are at risk of flooding from the sea 

and/or rivers. The situation may be further threatened by climate change affecting in particular the sea 

level rise. Coastal and delta areas were historically developed due to their proximity to marine and river 

transportation. Further developments are attracted to historic centers by agglomeration forces as well as 

by rich environmental amenities. As a result, exposure and vulnerability in coastal areas rapidly increase 

due to the clustering of population and growth of property values in flood-prone areas (26). As a matter of 

fact, urban developments are capital intensive and are highly path-dependent (9), which means that where 

and how much of coastal and riverfront properties get developed depends on a series of previous 

decisions, e.g. location of past developments and past flood risk management (FRM) policy.  

Worldwide governments develop FRM policies that aim to reduce flood risk. It can be reduced by 

decreasing either probabilities of the hazard, i.e. through structural engineering solutions such as dikes or 

beach nourishments, or the damages, i.e. through zoning, financial measures to distribute risk across 

stakeholders, proper land-use planning, or flood-proofing buildings.  

Flood insurance is considered to be a vital element of a FRM policy (38). A well-designed flood 

insurance program: (i) spreads risks across actors, locations and time and assures funds available for loss 

coverage (35), (ii) increases public awareness of flood risks (36), (iii) often leads to price discounts (7), (iv) 

promotes damage mitigation measures (8), and (v) improves the efficiency of use of scarce land (43). A 

multi-layer disaster insurance program (MLDIP) in a form of a public-private partnership (PPP) (5), (8), (17), 

(20), (33) may include, e.g., a layer of private insurance, a risk transfer layer through reinsurance or/and 

catastrophe bonds and credits, and a layer of government contribution. A MLDIP requires the analysis of 
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mutually dependent risk exposures of the involved stakeholders. For example, if an insurer wants to 

decrease the chances of bankruptcy, he may decrease the chances by imposing higher premiums or 

decreasing coverage, take reinsurance or buy a catastrophe bond. The burden of losses is shifted away 

from the insurer but may be unevenly redistributed among other stakeholders, i.e., individuals, 

government, reinsurance companies, and can lead to their instability or ruin. Thus, the success of a loss-

sharing program depends on the mutual (systemic) stability of the involved heterogeneous stakeholders. 

This requires the analysis of complex multivariate joint probability distributions of losses dependent on 

decisions of various agents and hazards leading to the development of region-specific catastrophe flood 

models.  

Catastrophe models comprise several modules: a hazard generator, vulnerability and financial 

modules. Catastrophe models use rich spatial data and evaluate premiums based not only on historical 

observations but also considering various socio-economic and climatic scenarios (1), (23), (25). However, in 

many of these models the pricing of catastrophe risk is based on the Average Annual Loss (AAL) without 

explicit accounting for goals and constraints of the involved stakeholders. A risk load is often expressed in 

terms of standard deviation and administrative costs load (34), or only in AAL (1). Due to the skewedness of 

catastrophe risks as well as spatial dependencies of losses on policies, this approach may appear to be 

misleading (2), (5). Mean and standard deviation alone cannot serve as appropriate indicators for 

catastrophe risk pricing. They characterize normal risks and do not capture specifics of heavy-tailed 

catastrophic loss distributions.  In contrast, quantile-based, in particular, Value-at-Risk (VaR, (42), (47)) and 

Conditional Value-at-Risk (CVaR) indicators, gain popularity in determining catastrophic insurance policies 

(2), (41). In particular, geographically-detailed ICRM1 model incorporating quantile-related risk functions and 

stochastic optimization (STO) procedures allows proper capturing of spatio-temporal profiles of 

catastrophe risks for designing robust insurance and involved stakeholders arrangements (2), (17), (18).  

The goal of this paper is to develop an ICRM-based approach to evaluate location specific robust 

insurance policies and compare them with traditional AAL pricing in outside dikes in the Rijnmond-

1 A general ICRM model has been developed and studies at International Institute for Applied Systems Analysis 
(IIASA). For the description see e.g. Ermolieva, T., Ermoliev, Y., Norkin, V. 1997;  Ermolieva, T., Ermoliev, Y. 2012; 
Amendola, A., Ermolieva, et al. 2012 and further references therein.  
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Drechtsteden (RiD) area around Rotterdam, the Netherlands. We design the region-specific ICRM model 

combining a HIS-SSM model (Highwater Information System – Damage and Casualties Module(31)) and a 

stochastic optimization procedure to generate flood loss scenarios and quantify robust insurance 

premiums and coverages for flood-prone locations outside main flood defense system, i.e. outside dike 

rings. Until recently insurance from river and coastal flooding did not exist in the Netherlands, leaving a 

post-disaster relief program as the only financial FRM instrument. The issue has been debatable since 

some consider it unfeasible (30), (32) while others argue it is feasible under various reinsurance schemes (1). 

Yet, the first flood insurance contracts became available at the end of 2012(3) but only for areas protected 

by dikes. Although several studies exist on how to enhance flood insurance system in the Netherlands (1), 

(27), (28), (30), (32), they primarily analyze inside-dikes flood risks. For example, Aerts and Botzen (1) apply the 

AAL principle to derive flood-related insurance premiums for large dike-ring areas in the Netherlands.  

This paper studies insurability of flood risks explicitly simulating insurance supply and demand 

balances. The robust balance substantially depends on the choice of coverages and premiums creating 

the capacity of insurance to sustain the floods and the willingness of individuals to pay the premiums. We 

use such economically-sound risk functions as overpayments by individuals and shortfalls of insurers to 

derive robust solutions.  

The paper proceeds as follows. Section 2.1 presents a simple example illustrating misleading policy 

implications resulting from using AAL for collective damages. It shows the need for quantile-based 

approaches. Section 2.2 outlines a general ICRM multi-agent spatially-explicit model that is specified in 

section 3 for the case study region. The proposed model includes non-smooth stochastic risk functions to 

achieve a robust systemic solvency in the form of a probabilistic equilibrium between the insurance supply 

and the demand of insured. In the case of a single aggregated insurer (a catastrophe fund) and an 

aggregated insured (region) this equilibrium is reduced to a VaR type quantile-based constraints. Section 

3 is also devoted to a detailed description of the case study region, including data availability and main 

ICRM modules. Numerical experiments in section 4 report on how ICRM allows designing a robust flood-

loss sharing program in the RiD region by polling risks through  a flood insurance  relying on location-

specific premiums including also potential risk transfer through a contingent credit for buffering the risk, 

and a partial government compensation. The section demonstrates that robust location-specific premiums 
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compared to AAL, increase the stability of insurance and reduce the demand for other risk transfer 

measures. Involvement of the government and introduction of a credit increases the demand for the 

insurance and helps to fulfill its liabilities while avoiding insolvency. Concluding remarks are summarized 

in section 5. 

2. INTEGRATED CATASTROPHE MANAGEMENT MODEL 

2.1 Insurability of catastrophic risks 

In the Netherlands, flood safety standards in protected areas vary between 200 and 10000 year floods 

return periods (29). Although floods may happen rarely, their abrupt occurrence in time and space comes 

as “spikes” that cannot be properly modeled “on average”, say a 100-year flood may occur any year in the 

future. For example in Dordrecht, a flood with a return period of 2000 years may cause damage of about 

1.5 billion euro. According to the AAL approach an expected damage is 0.75 million euro per year 

including damage to private (households and businesses) and governmental actors. This is a reasonable 

affordable amount except that this damage is not going to occur in small annual portions – all 1.5 billion 

will come at once. Thus, annualization of expected damages and evaluation of insurance premiums based 

on that average may be misleading and could undermine the financial stability of an insurance program 

and overall FRM.  

Catastrophic losses challenge the applicability of standard approaches using actuarially fair 

premiums (expected losses). Catastrophes occur as “spikes” in time and space. In this case, as it is well 

known, mean values and standard deviations are not robust indicators of collective interdependent losses.  

Example (Interdependent collective vs independent individual losses). Expected loss doesn’t distinguish 

the case of catastrophic collective loss. A key issue is the use of proper indicators for collective losses. In 

a sense, we often have to show that 
 100

1...11100 +++>> . Assume that each of 100 locations has an 

asset of the same type. An extreme event destroys all of them at once with probability 1/100. Consider 

also a situation without the extreme event, but with each asset still being destroyed independently with the 

same probability 1/100. From an individual point of view, these two situations are identical: an asset is 
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destroyed with probability 1/100, i.e., individual losses are the same. Collective (social, catastrophic) 

losses are much higher.  

In the first case 100 assets are destroyed with probability 1/100, whereas in the second case 100 

assets are destroyed with probability 100100− , which is practically 0. In both cases, expected losses are 

equal, while probabilities of collective interdependent losses 1/100 and independent 100-100 are strikingly 

different. Analyzing insurability of interdependent location-specific catastrophic losses requires developing 

an ICRM model and STO methods enabling to simulate collective damages to design a robust portfolio of 

coverages and premiums. This creates a systemic solvency preventing in a probabilistic sense shortfalls 

of insurers and overpayments by locations. 

2.2 Stochastic Integrated Catastrophe Risk Management Model  

This section introduces a basic geographically-explicit ICRM model(17), (19), (21) that is specified in section 3 

for a case study in the Netherlands. To account for multiple risk management stakeholders, the study 

region is subdivided into sub-regions or locations mj :1= . Locations may correspond to a collection of 

households, flood-protection zone, municipality, etc. For example in (1) the locations correspond to dike-

protected areas. We assume that for each location j  an estimation jW  of the property value or “wealth” 

of this location exists, which includes values of houses, lands, factories, etc.  

Suppose that n  agents, ni :1= , (insurers, governments, re-insurers, funds) are involved in the 

loss sharing program. They may have contracts with locations to cover their losses. Each agent i  has an 

initial fund or a risk reserve 0
iR  that in general depends on magnitudes of catastrophic events. Assume 

that the planning horizon covers ...1,0=t  time intervals. The risk reserve t
iR  at each t  is calculated 

according to the following formula: 
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where t
ijq  is the coverage of a company (insurer) i  in location j  at time t , 1

1
≤∑ =

n

i
t
ijq , t

ijπ  is the 

premium of a company i  in location j  at time t , )( t
ij

t
ij qc  are transaction costs or administrative, running 

or other costs. )( t
t
jL ω  is the loss (damage) in location j  caused by a catastrophe tω  at time t . Random 

catastrophic events ,...),( 10 ωωω =  may affect a random number of different locations. In general, a 

catastrophic event at time t  is modeled by a random subset of locations j  and its magnitude in each j . 

The losses )( t
t
jL ω  depend on the event tω , mitigation measures (e.g., dikes against flooding), and 

vulnerability of property values in j .  

Decision variables t
ijq  and t

ijπ  allow to characterize the differences in risks at different locations. It 

is assumed that all agents may cover different fractions of catastrophic losses from the same location. In 

the case of a catastrophe, a location j  faces losses (damages) )( t
t
jL ω . Individuals at this location 

receive compensation t
ijt

t
j qL )(ω  from a company i  when such a loss occurs, and pay insurance 

premiums t
ijπ . If 0

jW  is the initial wealth (property value), then the location’s j  wealth at time 1+t  

equals: 

∑
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Let us note that random variables t
iR  and t

jW  implicitly depend on decision variables ),( kkk qx π= ,  

{ }mjniqq k
ij

k :1,:1  , === , { }mjnik
ij

k :1,:1  , === ππ , and random event kω , where 

1,...,1,0 −= tk . For the sake of simplicity we indicate in the following these path-dependencies of t
iR  

and t
jW  as ),( ωxRt

i  and ),( ωxW t
j . 

8 

 



The robustness of insurance program depends on whether the accumulated risk reserve ),( ωxRt
i  

at a random time )(ωτ=t  of a first catastrophic event avoids, in a probabilistic sense, the insolvency 

defined by events  

{ }0),(: )(
1 <= ωω ωτ xRE i ,  ni :1= .        (3) 

Individuals (locations) are concerned with their wealth, which depends on whether the amount of 

premiums that they pay to the insurers does not exceed the compensation of losses at time )(ωτ , i.e., 

with events 

mEEEE 222212 ...∪∪∪= ,         (4) 

where  

{ }0),(: )(
2 <= ωω ωτ xWE jj  for mj :1= , 

and 0)( =tt
jL ω , )(ωτ<t . Events (3)–(4) determine the stability (resilience) of the insurance program, 

in a sense, its systemic solvency. Therefore, a critical issue is to avoid these events as much as possible. 

For example, by minimizing the expected uncovered losses ∑ −
j jj LqE )()1( ωτ  under a probabilistic 

constraint of the type 

[ ] pEEob ≤21 ,Pr ,          (5) 

where p  is a critical probability threshold of the program’s systemic insolvency (failure, default) that may 

occur, say, only once in 100 years. The notation [ ]21 ,Pr EEob  is used to denote a probability of 

insolvency as a general function of 1E , 2E . An example of constraints (5) may be constraints 

[ ] pEorEob ≤21   Pr  or equations (10), implicitly induced by optimal solutions of STO model (8) with 

specific risk (penalty) functions. Unfortunately, the straightforward use of probabilistic constraints (5) in the 

ICRM model is practically impossible due to their often discontinuous piece-wise constant and analytically 

intractable character owed to the discrete distributions of the random vector ω . Therefore, section 3.2.5 

formulates the main ICRM model as a convex STO problem with specific non-smooth risk (penalty) 

functions enabling to derive optimal solutions implicitly inducing this type constraints (see (9), (10)). This 
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problem is effectively solved by the linear programming methods (see eqs. (11)-(14)). Proposed in section 

3 approach is central for large-scale integrated risk management problems (see e.g. [17]-[21]). Sections 

4.2.1-4.2.3 demonstrate how it is possible to achieve the required level of p . 

3. CASE STUDY AND THE REGIONAL MODEL 

3.1. Case study region 

The case-study covers the outside dike rings areas in the RiD region including Rotterdam (Figure 1). 

Though many studies exist on how to enhance flood insurance system (1), (27), (28), (30), (32) in the 

Netherlands, they analyze primarily inside-dikes flood risks and consequent insurance premiums. This 

paper focuses on flood risks in the areas outside the main protections system and analyzes an example of 

a robust flood insurance program. We show how the robust location-specific premiums and coverages 

increase the stability and the attractiveness of a flood-loss sharing arrangement and, thus, insurability of 

risks, as compared with traditional AAL approach. 

The RiD region is prone to both river and coastal flooding. The areas outside dike rings (Figure 2) 

differ from the areas inside the main protections system in terms of physical aspects of flood risk and 

responsibilities among stakeholders in a number of ways (Table I). Most important is that currently flood 

protection within the dike rings is fully the responsibility of the government, while for the outside dike ring 

areas there are no safety standards guaranteed by the government. New investments are at the risk of 

individuals, with no governmental compensation provided in the case of a hazard event. The Netherlands 

did not have insurance from river or coastal flooding until recently, which makes it difficult especially for 

the areas outside the main protections system to: (i) communicate risks, (ii) to take individual action to 

distribute losses in time, and (iii) to create stimuli for damage mitigation actions such as additional flood-

proofing of houses.  
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Table I: Physical aspects of flood risks and responsibilities among stakeholders in the areas outside dike 
rings in comparison with the protected ones. 
 
Areas outside the main protections system Protected areas within a dike-ring 

Flood and damage characteristics 
Government does not guarantee any safety 
standards. Actual return periods vary between 1:5, 
1:10 years to  1:100, 1:1000 years or less frequent 
(e.g. 1:10000 for new harbor areas) 

Safety standards assigned by law:  
1:200 to 1:1250 years – river floods 
1:2000 and 1:4000 for the estuary (tidal 
rivers) 
1:4000- to 1:10000 years – coastal floods. 

Probability of flood is location-specific and may be 
much higher than the official safety standard in the 
neighboring protected areas. 

One homogeneous safety standard for the 
whole dike-ring. 

Properties are elevated above sea level, i.e. on 
dunes, man-made high elevation grounds, etc. 

Many developments inside dike rings are 
below sea level (up to -6 meters). 

Flood water comes with low velocity and goes away 
quickly. 

Flood water comes with high velocity and 
stays for a long period. 

Flood protection and roles of different parties 
Developments are at the risk on individuals 
(households or firms). Municipalities may prohibit 
some socially-vital activities in these areas, e.g. 
hospitals. 

Government is responsible to assure safety 
standards prescribed by law. 

Individuals are responsible for their own protection 
and damage in the case of flooding. 

Government refund any possible damage 
from a flood event. 

Flood insurance does not exist but is argued to be 
financially feasible (44). 

Until recently flood insurance did not exist. 
First contracts to insure flood risks became 
available in 2013 (3). The issue is debatable 
since some consider it unfeasible (30), (32) 
while others think it is feasible under 
various reinsurance schemes (1). 

 

 

 
 
Figure 1: Case-study region (this paper considers only the areas outside the primary embankments, see 

figure 2). 
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Figure 2: Land use in the Rijnmond-Drecthsteden region (the colored area is the area outside the main 

protection system). Source: (11). 

3.2. Modules and data 

This section describes main modules of the ICRM used for the analysis of optimal flood loss-sharing 

program in the case study area. In particular, the hazard, exposure and vulnerability modules (I, II and III, 

Figure 3) provide data inputs to estimate potential losses, i.e. damages in each location (Figure 3, IV). 

Based on the estimated damages, the ICRM model runs quantile-based stochastic optimization under a 

range of safety constrains across stakeholders (insurance companies, households and firms, government) 

to produce optimal risk-based location-specific insurance premiums and coverage (Figure 3, V). We 

describe each module separately when discussing the data inputs into the ICRM model. 
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Figure 3: Scheme of modules and data flows.  

 

3.2.1 Hazard module (I) 

The geo-referenced estimates of water depth in the areas outside the main protection systems in RiD for 

various return periods floods were calculated. The LiDAR2  elevation data on a 5mx5m cell was corrected 

to include local small embankments and structures (11). The resulting 5mx5m water depths are used in the 

Deltaprogramme3 and were reviewed by the Rotterdam Harbour Authority. In this paper we consider 

spatio-temporal damage patterns for “current climate” scenario and three flood scenarios (10-, 100-, and 

1000- year floods). 

3.2.2 Exposure data (II) 

Exposure data (II) includes geographically explicit information on different land-uses in the case study 

region including geographically-referenced data on economy, transportation networks, buildings, 

population. For the case study region, these data have been compiled within HIS-SSM (Highwater 

Information System – Damage and Casualties Module (31)). HIS-SSM is often used to support FRM policy 

decisions for inside-dike areas in the Netherlands. Exposure data include assumptions about economic 

2Light Detection and Ranging, a remote sensing method, e.g., http//oceanservice.noaa.gov/facts/lidar.html 
3Dutch climate adaptation program, http://www.deltacommissaris.nl/english/topics/ 
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growth and infrastructure expansion in the case study region. The data on land use, roads, railroads and 

houses has been updated compared to earlier HIS-SSM versions (31). The new data on houses provides 

detailed information on the location of each individual building and its attributes (number of houses, 

elevation etc.) (11).  

3.2.3 Vulnerability module (III) 

Vulnerability curves reflecting damage for a particular land use at a particular water level and flood wave 

speed are the part of the HIS-SSM model. Originally designed for the inside-dikes areas, which are 

relatively homogeneous with respect to elevation, HIS-SSM operates at a scale of 100mx100m. Since 

buildings in the outside dikes areas are often elevated on an individual basis and vary greatly across 

locations, water-levels, and consequently damage, are highly location-specific. To be applicable to model 

damages in the outside-dikes areas the resolution of the HIS-SSM model has been reduced from 100m to 

5m cell to capture all the obstructions, small levees and location-specific elevation in the water depth and 

vulnerability maps. 

3.2.4 Loss estimates (IV) 

Location specific damages (losses) for each of the 10-, 100-, 1000- year floods accounting for 

infrastructure developments in 2000, 2050, and 2100 years were estimated by HIS-SSM combining the 

data from the “Hazard”, “Exposure”, and “Vulnerability” modules. The damage estimation in HIS-SSM was 

adjusted to account for the features of the outside-dikes areas. Specifically, the damage functions and 

categories for residential buildings have been improved, categories and damage figures of agriculture, 

natural areas and the data on the presence of houses has been taken from another more detailed source 

and damage functions have been adapted (11). To capture the situation in the areas outside main 

protection system, damage figures to agricultural and natural areas were set to zero. This was done since 

the high values for those categories are based on the presence of machinery, stables and high yield 

varieties, which is realistic only in areas with very low flood probabilities. The agricultural areas outside the 

primary defenses are situated along the rivers and are used for cattle breeding in summer. Cattle is 

removed in winter when peak flows occur, which makes damage negligible.  The large natural areas 
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outside the primary defenses become flooded deeply twice a day (every high tide) and their ecosystems 

benefit from those floodings.  

These improvements in loss estimation resulted in a 60% damage reduction compared to the 

damage figures assessed in 2011 (11). In 2013 further improvements were carried out mainly on damage 

figures, functions and data for companies and industries. Yet, these figures should be considered with 

care as several adjustments, especially to 10- year flood damage estimations, are likely to come in the 

next few years. Damage figures used in the current paper should be treated as illustrative to show the 

applicability of the ICRM model, its potential practical use, and new problems which can be addressed.  

Damages for the areas outside the main protection system were calculated for the three return 

periods (Table II). These figures are current best estimates for all damage categories including direct and 

indirect damages across 27 land use types. Thus, the figures are much higher than for example in our 

previous study (44), which estimated damage to houses and house content only. The annual damage per 

residential house excluding any damage to firms and infrastructure in the areas outside the main 

protections system varies from 4-5 euro in Rotterdam and Dordrecht and up to 225-613 euro in 

Bergambacht and Nederlek for the current climate (44).  

Table II: Losses from floods in the RiD area 
 
  Damage, in 2012 Euro Expected damage across 3 flood 

scenarios 
Flood 1:10 Flood 1:100 Flood 1:1000  in 2012 Euro in %  

Infrastructure 45,195,972 62,531,184 96,080,670 5,117,549 35 
Households 20,248,656 54,404,334 96,487,015 2,577,560 18 
Businesses 51,452,184 154,445,118 309,459,919 6,752,502 47 
Total damage 
(direct and 
indirect) 

116,896,812 271,380,636 502,027,604 14,447,611 100 

Number of 
affected citizens 

1,804 7,354 11,585 --- --- 

 

Figures 4 and 5 display patterns of flood damages in the outside-dikes areas generated by adjusted HIS-

SSM for the current climate.  
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Figure 4: Losses, 10-yr. flood Figure 5: Losses, 1000-yr. flood 

 

3.2.5 Regional Stochastic Integrated Catastrophe Risk Management Model (V) 

For the case study, the general approach outlined in section 2 is specified to capture the specifics of 

available data, in particular, simulated by modules described in sections 3.2.1-3.2.4 scenarios of the flood 

and damages in the RiD region. The main goal of the case study is to compare impacts of location-

specific premiums derived by using regional ICRM model vs traditional AAL premiums. In the case study 

we assume that only one “aggregate” insurer or a catastrophe fund operates in the region. We ignore 

costs )( jij qc  and we also assume that )()( ωτππ ωτ
jj = , i.e., the accumulated premiums before the 

occurrence of a first flood are proportional to the arrival time )(ωτ . 

The main concern regarding systemic insolvency of the flood insurance program is to avoid in a 

probabilistic sense events (6), (7) as much as possible: 

}0))()((:{ )(
1 <−= ∑

j
jjj LqE ωωτπω ωτ ,       (6) 

mEEEE 222212 ...∪∪∪= ,         (7) 

{ }0)()(: )(
2 <−= ωτπωω ωτ

jjjj LqE  for mj :1= , 

where jq  is insurance coverage to locations j , jπ  is the level of premiums paid by locations, )()( ωωτ
jL  

are stochastic losses to locations induced by arriving at )(ωτ=t  random floods ω , Ω∈ω . In this 
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section, relying on general structure of our model outlined in section 2.2, we formulate its convex 

stochastic penalty function optimization version. The problem may be formulated as the minimization of 

function 

,)}()(,0max{

}))()((,0max{)()1()(

)(

)()(

∑

∑∑
−+

−+−=

j
jjjj

j
jjjjj

j

LqE

LqELqExF

ωωτπβ

ωτπωαω

ωτ

ωτωτ

   
  (8)

 

which represents random events (6), (7) by expected imbalances defined by non-smooth convex risk 

functions }))()((,0max{ )(∑ −
j

jjj LqE ωτπωωτ  and  )}()(,0max{ )( ωωτπ ωτ
jjj LqE − , where vector 

x   denotes all decision variables jq , ijπ , and parameters 0≥α , 0≥jβ , mj ,1= . Introducing 

constraints (6), (7) into the optimization model (8) via risk functions generates forces reducing 

discrepancies in inequalities (6), (7) towards 0 and even equal 0 (see e.g. section 4, Figure 10a). The first 

term in (8) stands for expected uncovered losses, the second is responsible for minimization of the 

expected shortfall (insolvency) of the insurance program whereas the third term represents expected 

overpayments by the insured. In this non-smooth stochastic model an aggregate insurance system or a 

catastrophe fund minimizes adjusted by the risk-functions total uncovered losses. However, this also 

implies more natural from the economic point of view profit maximization assumption. The lack of 

overpayments by insured and shortfalls of insurers increases demand for insurance, its coverages, hence, 

profits and compensations of insured, i.e., the welfare of all participating agents.  

Formally, minimizing function )(xF  is equivalent to maximizing function )(xF− , i.e., the function  

,)}()(,0max{

}))()((,0max{)()(

)(

)()(

∑

∑∑
−−

−−=

j
jjjj

j
jjj

j
jj

LqE

LqELqExG

ωωτπβ

ωτπωαω

ωτ

ωτωτ

 

because the term ∑
j

jLE )()( ωωτ  of the function )(xF−  does not depend on decision variables x . The 

first term of the function )(xG  forces to increase the profit of insurers, therefore maximizing )(xG  with 

respect to decision variables ),( πqx =  can be viewed as maximizing the risk-adjusted regional welfare 

by a paternalistic government designing a flood-loss sharing program.  
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Coefficients α  and jβ   regulate a tradeoff between the level of premiums and the total 

coverages. Coefficient α  may also be defined as the price of a credit which the program (fund) will buy if 

his reserve drops below critical level. If one considers a multilayer insurance program, then the choice of 

α  determines the governmental involvement in the PPP, i.e., the amount government would need to 

contribute in this PPP insurance scheme. Coefficient jβ  ensures the desirable level of non-overpayments 

on the demand side of this insurance program. 
 Minimization of function (8) allows achieving a robust probabilistic supply-demand insurance 

equilibrium characterized by quantile-based systemic insolvency constraints of type (5). Let us illustrate 

this critically important fact assuming that a convex function )(xF  in (8) has continuous derivatives (say, 

underlying probability distribution has a continuous density function), what allows to avoid otherwise 

complicated non-smooth analysis. The optimality test ( 0)(grad =xF ) with respect to positive 

components of risk premiums )(qjπ  solving the stochastic model (8) for a given vector of coverages 

}{ jqq =  have (assuming 0)( >ωτ ) the following form(16) of systemic risk equilibrium: 

0]0)()([Pr}]0))()(([Pr )()( =≥−+≥−−= ∑ ωωτπβωτπωα ωτωτ
π jjjj

j
jjj LqobLqobF

j
. (9) 

The following example clarifies the role of parameters α  and jβ .  

Example (aggregate region). Let us simplify the model assuming that there is only one region, i.e., 

decision variables q  and π  are independent of j , }0)()(:{ )(
1 <−= ωωπτω ωτ

jqLE  and 

}0)()(:{ )(
2 <−= ωπτωω ωτ

jqLE . It is clear that 1)  (Pr 21 =EorEob , i.e. the constraint 

pEorEob ≤)  (Pr 21  is not applicable because it is satisfied only in the trivial case 1=p . As reviewer of 

the manuscript pointed out, the same holds also for events (6) and (7).  

Equations (9) define equilibrium prices )(qπ  for a given coverage q . Because 

}0)()({Pr1}0)()({Pr )()( ≥−−=≥− ωωπτωπτω ωτωτ qLobqLob , then from eqs. (9) the following 

insolvency equations are derived: 

j

jqLob
βα

β
ωωπτ ωτ

+
=≤ )}()({Pr )( .        (10) 

We can see that parameters α , jβ , and coverages q  affect this probability. Deeper analytical analysis 

of these interdependencies for general model (8) is beyond the scope of this paper. In the following we 

investigate the role of α , jβ ,  reformulating the unconstrained STO model (8) with non-smooth risk 

(penalty) functions into the constrained linear programming model (11)-(14) in a larger space of decision 
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variables ),,,( ss
jjj q εςπ . New decision variables s

jς  and sε  represent ex-post decisions, e.g., credits, 

governmental assistance, which are made after observation of stochastic losses )( s
jL ωτ . These variables 

allow to eliminate underpayments and overpayments of insurer and insured in order to secure systemic 

solvency of the flood program.  

In numerical calculations we assume that catastrophes, i.e., floods, are represented by scenarios 

Ss :1= , which induce random scenarios of losses )( s
t
j

s
j LL ω=  for )( st ωτ=  in locations mj :1= , 

with  probabilities sp , Ss :1= , 1=∑s sp . Using S  scenarios, the model defined by equation (8) is 

equivalently replaced by the model: minimize 

∑∑ ∑∑ ∑
===

++−=
S

s

s
s

S

s j

s
js

S

s j

s
jjs ppLqpxF

111
)1()( εβζα      (11) 

under constraints 

0≥s
jζ , 0≥sε , Ss :1=          (12) 

s

j

s
j

s
jj Lq ετπ ≥−∑ )(

 
,         (13)  

s
j

s
jj

s
j Lq ζτπ ≥− .           (14)  

The model (11)-(14) includes new ex-post adaptive decision variables s
jζ  and sε  to adjust strategic 

decisions ),( πqx =  for all scenarios of flood events Ss :1=  in all locations j , mj :1= . This 

approach converts non-smooth stochastic optimization model (8) into a linear optimization problem (11)-

(14) that is solved very fast by the linear programming methods.  

4. NUMERICAL RESULTS 

4.1 Spatial patterns of the robust model-derived premiums 

The main purpose of these experiments is to compare two alternative ways of calculating insurance 

premiums: the traditional annualization (AAL) approach and the robust derived with the regional ICRM 

model. Therefore, in the following we assume that 1)( =ωτ , i.e., catastrophic floods may occur within a 
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one year time interval with probabilities 1/10, 1/100, and 1/1000 corresponding to 10-, 100-, 1000- year 

floods, respectively. This is, in a sense, a worst-case situation for the robust premiums because the 

accumulation of premiums is not accounted for. Yet, losses occur as “spikes” in the region, and premiums 

have to be calculated properly based on location-specific risk exposures. In the RiD case study region, the 

robust quantile-based premiums derived according to (11)-(14) are computed at the resolution of 

100mx100m, which approximately corresponds to a block of 16- 25 residential houses. The resolution 

may be refined to represent specifics of some areas, e.g., a residential house, a shopping mall, 

concentrated infrastructure, intensive transportation node. Figure 6 shows spatial distribution of premiums 

aggregated to a neighborhood (local community) level and Figure 7 displays premiums as percent of the 

100-year flood losses.  

 

 
Figure 6: Robust annual premiums at neighborhood level.  
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Figure 7: Premiums as percent of the 100-year flood damages at neighborhood level. 

 

While the area is relatively small, robust premiums show big spatial variability reflecting heterogeneity of 

location-specific risk exposures. The spatial heterogeneity of the robust premiums guarantees the stability 

of the insurance program. It also highlights the importance of spatially resolved policies. In the majority of 

neighborhoods, annual insurance premiums do not exceed 5000 euro for infrastructure, businesses and 

households. Few neighborhoods, where insurance premiums reach 50000-100000 euro per location and 

year, are characterized by high concentration of infrastructure and businesses. Businesses may suffer 

much larger damages compared to households since in addition to the direct property damage they also 

incur indirect damage from business interruption.  

In the following we discuss in detail the advantages of robust premiums, compared to the AAL, for the 

design of flood-loss sharing program.  
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Figure 8.a:  Figure 8.b: 
Total flood damages for 3 return periods: D10, D100, D1000  correspond to 10-, 100-, and 1000- year 
floods, respectively, in 2000, 2050, 2100 years; and total AAL and Robust premiums (per year). 

 

In Figures 8.a and 8.b on the horizontal axis D10, D100, and D100 correspond to total flood damages for 

10-, 100-, 1000- year floods, and total robust and AAL premiums, in 2000, 2050, 2100 years 

corresponding to different infrastructure developments in the region. Figures indicate that total robust 

premiums are lower than AAL premiums. Thus, besides guaranteeing a financial stability of the flood loss-

sharing program, the robust premiums reduce insurance prices. In turn, this increases attractiveness of 

the program for economic agents, which may increase demand for insurance and its take up rates. 

  

Figure 9: Spatial differences between two representative locations within the same neighborhood in the 

case study region: D10, D100, D1000 - flood damages for 10, 100, 1000-year floods, respectively, in 

2000, 2050, 2100 years; AAL and Robust premiums.  
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Figure 9 shows that there may be a large differentiation of risks and premiums between locations 

(100mx100m grids) within the same neighborhood. The location to the right exhibits a gradual increase in 

damages and insurance premiums, while the location to the left is characterized by abrupt jumps in 

damages and corresponding premiums, both robust and AAL, in 2000, 2050, 2100 years. In the right 

location, AAL is closer to the robust premium than in the left. 

4.2 Analysis of optimal insurance program per stakeholder 

4.2.1 Analysis of the insurance program financial stability on the side of the insurer 

By varying coefficients α and β  in (11) it is possible to derive robust premiums ensuring required 

solvency for the insurer and desired level of non-overpayments for individuals. Figures 10.a and 10.b 

present histograms of an indicator )(1
,

s
jjjssj LqpI −= π  estimating the balance between premiums 

paid into and compensations paid out of the insurance fund, for robust and AAL premiums, respectively. 

Negative values on the horizontal axis identify when compensations exceed premiums, and the vertical 

axis shows the number of locations. In AAL case (Figure 10.b), compensations are higher than premiums 

in many locations. In Figure 10.a, for robust premiums, the balance is achieved in about 3500 locations (0 

on the horizontal axis), while for AAL in Figure 10.b, only about 2000 locations are in balance.  
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Figure 10.a: Non-overcompensations by insurance 
companies under Robust premiums 

Figure 10.b: Non- overcompensations by 
insurance companies under AAL premiums. 

1=α , 1=β . 
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By increasing coefficient α  from 1=α  in Figure 10.a to 10=α  in Figure 10.c, and 100=α  in Figure 

10.d, it is possible to improve the business of insurer completely eliminating the insolvency by increasing 

premiums. In this case Figures 10.c and 10.d indicate that higher premiums result in overpayments by 

individuals, i.e., positive values on the horizontal axis. Adjusting coefficient β  in (11), the distribution of 

overpayments can be reshaped as it is discussed in section 4.2.2.  
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Figure 10.c: Non-overcompensations by insurance 
companies under Robust premiums 

Figure 10.d: Non-overcompensations by insurance 
companies under Robust premiums 

10=α , 1=β  100=α , 1=β  

Overcompensations increase financial risk to the insurer. Figure 11.a displays a histogram of an 

indicator ∑ −= j
s
jj

s
jss LqpI )(2 τπ , estimating the total insurer’s balance between paid in premiums 

and paid out coverages, with 1=α  and 1=β , for scenarios 3,2,1=s  (i.e., 10-, 100-, and 1000-year 

floods), respectively. Positive values on the vertical axis mean shortage of capital. With robust premiums, 

the insurer has no problems compensating 10- and 100- year flood damages, and he experiences only 

small expected capital deficit in the case of 1000-year flood, the expected imbalance between premiums 

and coverages is about 0.4 mln euro. In contrast, the AAL premiums bring the financial stability of the 

insurance under question. As demonstrated in Figure 11, the expected deficit with AAL premiums is the 

biggest for 10-year event. For 100-year event, the capital deficit of the insurer is around 2.8 mln, and the 

insurer’s expected shortfall is equal to 0.5 mln in the case of 1000- year flood scenario.  

In model (11)-(14), premiums underpayments may be avoided by adjusting the insurer’s risk 

coefficient α . For example, Figure 11.b shows the financial situation of the insurer if α  is changed from 1 
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to 10. With robust premiums in the case of 10-year flood, the insurer’s expected capital surplus of about 2 

mln euro indicated by the negative value in Figure 11.b (marked with “10-yr” on the horizontal axis). The 

insurer’s reserve is still positive in the case of 100-year event, and only 1000- year flood causes about 0.1 

mln euro capital deficit.  
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Figure 11: Insurer’s balance between premiums and coverages: for Robust and AAL premiums,  

11.a: 1=α , 1=β     11.b: 10=α , 1=β  

4.2.2 Analysis of the insurance program financial stability on the side of a households and firms 

Changing α  from 1 to 100 increases premiums and reshapes the profile of the indicator 1
,sjI as it is 

shown in Figures 10.a, 10.c, and 10.d. In particular, increasing robust premiums by setting 10=α  

(Figure 10.c) improves the insurer’s business, but also leads to overpayments by individuals. Further 

increase of α  ensures complete safety of the insurer (Figure 10.d), i.e., no capital deficit, however this is 

for much higher premiums which may reduce insurance demand.  
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Figure 12: Non-overpayments by economic agents (firms and households) 

12.a: robust premiums, 10=α , 10=β .                                           12.b: robust premiums, 10=α , 100=β . 

 
Overpayment can be reshaped by altering coefficient β . For example, compared to Figure 10.c, changing 

from 1=β  to 10=β  results in almost symmetrical distribution in Figure 12.a. Figure 12.b shows that 

100=β  further reduces the overpayments. When reshaping the distributions in Figures 10 and 12, the 

first term in formula (8) plays an essential role. The minimization of this term ensures insurer’s presence in 

the region. Otherwise, altering coefficients  α  and β , in particular, increasing β  may result in reducing 

or even quitting insurance activities in some locations.   

 

4.2.3 Insurer’s demand for financial instruments 

The analysis of imbalances between premiums and claims characterized by variables  s
jζ  and sε  

enables to derive a conclusion about adequate initial capital reserve required by the insurer, as well as his 

demand for reinsurance or financial instruments, e.g. contingent credit, to maintain desirable solvency. As 

discussed in sections 4.2.1 and 4.2.2, premiums derived with 10=α  and 10=β  are “fair” in the sense 

of indicator )(1
,

s
jjjssj LqpI −= π , i.e., balancing out premiums and claims on the side of the insurer 

and insured. Further increase of α  in (11) may derive premiums that would completely avoid capital 

deficit for the insurer, however the premiums may no longer be attractive for the insured regarding 

“nonoverpayments” indicator. In this situation, the distribution of indicator ∑ −=
j

s
jjjss LqpI )(2 π  allows 
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to tune the insurer’s decision as to what layer of the risk defined by 2
sI  he will cover by reinsurance or/and 

transfer to the capital market.  

5. Concluding remarks 

This paper analyses the importance of properly designed integrated spatially explicit financial 

arrangements for sharing flood losses by comparing insurance premiums estimated based on average 

annual damage vs quantile-based premiums. We present an illustrative example of a robust insurance 

program for a case study region around Rotterdam in the Netherlands. The discussed loss-sharing 

program is based on pooling flood risks through private flood insurance, and a contingent credit to the 

insurance for “buffering” the risk. The success of this program depends on the mutual stability of the 

involved stakeholders. For the analysis of the stability, we use the ICRM model allowing to derive robust 

insurance policies, e.g., premiums and coverage of the insurer, involvement of individuals, accounting for 

complex interplay between multivariate spatially and temporally explicit probability distribution of flood 

losses and risk exposures of the stakeholders. Robust policies satisfy two goals: (i) to fulfill goals and 

constraints of the involved stakeholders, and (ii) to guarantee program’s solvency under potential flood 

scenarios rather than one average event in the case study region. The ICRM is comprised of the 

geographically-detailed updated HIS-SSM model and of spatially-explicit quantile-based multi-agent multi-

criteria stochastic optimization procedure integrated as follows: 1) water depth levels are processed in 

HIS-SSM to calculate flood damages for 10-, 100-, and 1000- year floods; 2) stochastic optimization 

estimates robust policies fulfilling the spatially explicit interdependent safety requirements of the program.  

Numerical experiments compare two alternative ways of calculating insurance premiums: the 

robust derived with ICRM and the AAL approaches. In the case of catastrophic flood losses, which occur 

as “spikes” in time and space, the AAL approach does not guarantee a proper balance between premiums 

and claims, and the insurer may experience a deficit in capital to cover all losses. Robust premiums 

calculated according to (11)-(14) make the insurer better-off. As known, in the Netherlands, most of the 

flood losses in “inside-dike” areas are covered by the government, private flood insurance is very limited. 

In “outside-dike” areas, neither private nor public insurance is available. Therefore, the aim of the 
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numerical experiments in sections 4.2.1, 4.2.2 was to demonstrate the approach which improves 

attractiveness and stability of private insurance and therefore may increase insurability of flood risks in 

flood-exposed areas. Robust policies of the private insurance can be integrated with governmental 

support. The government may provide only limited compensation. The level of compensation substantially 

depends on the governmental budget, opinions of various stakeholders, involvement of private insurance. 

Determining optimal share of governmental compensation requires modification of the model (11)-(14) 

and is a topic of the next paper. 

We argue that because of significant interdependencies among catastrophic losses across different 

locations, the demand for a particular financial instrument cannot be separated from the demand for other 

risk transfer and risk reduction measures. In particular, our numerical experiments show that robust 

premiums of insurance decrease the demand for contingent credit, as discussed in section 4.2.3. Sections 

4.2.1 and 4.2.2 explain how ICRM allows tuning robust premiums towards the required trade-off between 

the level of insurer’s solvency and the overpayments by the individuals, thus increasing demand for the 

insurance and its take up rates. One of the future directions for the ICRM approach would be to consider a 

coupled choice of financial loss sharing measures among stakeholders and structural flood mitigation 

measures, such as zoning of certain land use functions, elevation of an area or particular buildings, and 

wet and dry flood-proofing (12). We plan to better address the outlined stopping time concept and the 

spatio-temporal interdependencies among losses and robust policies.  

ACKNOWLEDGEMENTS 

The authors are thankful for the financial support from the Deltares Strategic Research program ‘Climate 

adaptation, water and area development’, and from the NWO VENI grant 451-11-033. We acknowledge 

also the support from ECONADAPT project (Grant No. 603906). We are very thankful to Dr. M.M. 

Mekonnen for the very helpful advice and discussions. We especially thank our anonymous referees and 

Editor-in-Chief Prof. Tony Cox and Prof. James Lambert for detailed comments which allowed us to 

considerably improve the paper.  

28 

 



REFERENCES 

1. Aerts J, Botzen W. Climate change impacts on pricing long-term flood insurance: A 

comprehensive study for the Netherlands. Global Environmental Change-Human and Policy 

Dimensions. 2011;  21:1045-60. 

2. Amendola A, Ermolieva T, Linnerooth-Bayer J, and Mechler R. Integrated catastrophe risk 

modeling: Supporting policy processes. Dordrecht/ New York/London: Springer Verlag; 2013. 287 

p. 

3. AON. Voldoende dekking overstromingsrisico dichter Bij Dan Ooit. Available online; 

http://www.aon.com/netherlands/persberichten/2012/10-09-

12_Voldoende_dekking_overstromingsrisico_dichter_bij_dan_ooit.jsp (in Dutch). 2012.  

4. Bagstad K, Stapleton K, and D'Agostino J. Taxes, subsidies, and insurance as drivers of United 

States coastal development. Ecological Economics. 2007; 63:285-98. 

5. Banks E. Catastrophic risk: Analysis and management. London: Wiley; 2005. 193 p.  

6. Barnhizer D. Givings recapture: Funding public acquisition of private property interests on the 

coasts. Harvard Environmental Law Review. 2003;  27:295-375. 

7. Bin O and Landry C. Changes in implicit flood risk premiums: Empirical evidence from the housing 

market.  Journal of environmental economics and management (forthcoming). 

8. Botzen W, van den Bergh J, and Bouwer L. Climate change and increased risk for the insurance 

sector: A Global perspective and an assessment for the Netherlands. Natural Hazards. 2010; 

52:577-98. 

9. Brown D, Page S, Riolo R, Zellner M, and Rand W. Path dependence and the validation of agent-

based spatial models of land use. International Journal of Geographical Information Science. 

2005; 19:153-74. 

10. Daykin C, Pentikainen T, and Pesonen M. Practical risk theory for actuaries.  Monographs on 

Statistics and Applied Probability. London: Chapman and Hall Ltd.; 1994.  

11. De Bruijn K, Kind J, Slager K, Van Buren R, and Van der Doef M. Verbetering van de 

gevolgenbepaling van overstromingen buitendijks in de regio Rijnmond-Drechtsteden. Project 

1206053-000 report. Deltares, Delft, The Netherlands (In Dutch). 2012. 

29 

 



12. De Moel H, Van Vliet M, and Aerts J. Evaluating the effect of flood damage-reducing measures: A 

case study of theunembanked area of Rotterdam, the Netherlands. Regional Environmental 

Change. 2013 Feb. 

13. Defra. Government response to the conclusions and recommendations of the environmental audit 

committee: Adapting to climate change. Sixth Report of Session 2009-10. London: The Stationery 

Office Limited on behalf of the Controller of Her Majesty’s Stationery Office; 2010. p. 20. 

14. Di Mauro M and de Bruijn K. Application and validation of mortality functions to assess the 

consequences of flooding to people. Journal of Flood Risk Management. 2012; 5:92–110. 

15. Directive 2007/60/EC Of the European Parliament and of the Council of 23 October 2007 on the 

Assessment and Management of Food Risks. Official Journal of the European Union; 2007. p. 

27–34.  

16. Ermoliev Y, and Norkin V. On nonsmooth and discontinuous problems of stochastic systems 

optimization. European Journal of Operations Research. 1997; 101:230-244.  

17. Ermoliev Y, Ermolieva T, MacDonald G, and  Norkin V. Insurability of catastrophic risks: The 

stochastic optimization model. Optimization Journal. 2000;  47:251–65. 

18. Ermoliev Y, Ermolieva T, MacDonald G, and  Norkin V. Stochastic optimization of insurance 

portfolios for managing exposure to catastrophic risks. Annals of Operations Research. 2000; 

99:207-25. 

19. Ermolieva T, and Ermoliev Y. Modeling catastrophe risk for designing insurance systems. In: 

Amendola A, Ermolieva T, Linnerooth-Bayer J, and Mechler R, editors. Integrated Catastrophe 

Risk Modeling: Supporting Policy Processes. Dordrecht/ New York/London: Springer Verlag; 

2013. p. 29-53. 

20. Ermolieva T, Ermoliev Y, Fischer G, and Galambos I. The role of financial instruments in 

integrated catastrophic flood management. Multinational Finance Journal. 2003; 7:207-30. 

21. Ermolieva T, Ermoliev Y, and Norkin V. Spatial stochastic model for optimization capacity of 

insurance networks under dependent catastrophic risks: Numerical experiments. Interim Report 

IR-97-028. Int. Inst. For Applied Systems Analysis (IIASA), Laxenburg, Austria; 1997. 

30 

 



22. Filatova T, Mulder J, and van der Veen A. Coastal risk management: How to motivate individual 

economic decisions to lower flood risk?. Ocean & Coastal Management. 2011; 54:164-72. 

23. Fulcher G, Archer-Lock P, Caton R, Davies D, Fick T, James G, Kam H, Kershaw P, Masi L, 

Postlewhite S, Skinner J, and Wong D. Catastrophe modelling working party. In: General 

Insurance Convention, UK. Available online: http://www.actuaries.org.uk/research-and-

resources/documents/report-catastrophe-modelling-working-party; 2006. p.61. 

24. Grandell J. Aspects of risk theory. Springer series on statistics: Probability and iIts applications. 

New York/Berlin/Heidelberg: Springer Verlag; 1991.   

25. Grossi P, Kunreuther H, and Windeler D. An introduction to catastrophe models and insurance. In: 

Grossi P, and Kunreuther H, editors. Catastrophe modeling: A new approach to managing risk. 

Dordrecht/ New York/London: Springer Verlag; 2005. p.23-42. 

26. IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation.  

Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner 

G-K, Allen SK, Tignor M, and Midgley PM. Cambridge, England: Cambridge University Press;  

2012. p. 582. 

27. Jongejan R and Barrieu P. Insuring large-scale floods in the Netherlands. Geneva Papers on Risk 

and Insurance-Issues and Practice. 2008; 33:250-68. 

28. Jonkman SN, Kok M, and Vrijling JK. Economic optimization as a basis for choice of flood 

protection strategies in the Netherlands. In: International association for XXX IAHR Congress, 

August, 2003. Auth, Thessalon, Greece. Available online: 

http://www.hkv.nl/documenten/EconomicOptimizationasabasisfortheChoiceoffloodprotectionstrate

giesintheNetherlands_MK.pdf; 2003. 

29. Klijn F, de Bruijn K, Knoop J, and Kwadijk J. Assessment of the Netherlands’ flood risk 

management policy under global change. Ambio. 2012;  41:180–92, doi:10.1007/s13280-011-

0193-x. 

30. Kok M, Vrijling JK, van Gelder PH, and Vogelsang P. Risk of flooding and insurance in the 

Netherlands. In: Wu B, Wang Z-Y, Wang G, Huang G, Fang H,and Huang J, editors. Flood 

Defence. New York: Science Press; 2002. p. 146 - 54. 

31 

 

http://www.actuaries.org.uk/research-and-resources/documents/report-catastrophe-modelling-working-party
http://www.actuaries.org.uk/research-and-resources/documents/report-catastrophe-modelling-working-party
http://www.hkv.nl/documenten/EconomicOptimizationasabasisfortheChoiceoffloodprotectionstrategiesintheNetherlands_MK.pdf
http://www.hkv.nl/documenten/EconomicOptimizationasabasisfortheChoiceoffloodprotectionstrategiesintheNetherlands_MK.pdf


31. Kok M, Huizinga HJ, Vrouwenvelder AC, and Van den Braak WE. Standaardmethode 2005. 

Report Pr999.10, Hkv Consultants and Tno Bouw, Lelystad; 2005. 

32. Matthijs  Kok, Een waterverzekering in Nederland: Mogelijk en wenselijk?. In: Opdrachtgever: 

Adviescommissie WaterHKV: LIJN IN WATER; 2005. p. 1-33. 

33. Kunreuther H, and Pauly M. Rules rather than discretion: Lessons from hurricane Katrina. Journal 

of Risk and Uncertainty. 2006; 33:101-16. 

34. Kuzak D, and Larsen T. Use of catastrophe models in insurance rate making.  In: Grossi P, and 

Kunreuther H, editors. Catastrophe modeling: A new approach to managing risk. Dordrecht/ New 

York/London: Springer Verlag; 2005. p. 97-118. 

35. Lalonde D. Risk financing. In: Grossi P, and Kunreuther H, editors. Catastrophe modeling: A new 

approach to managing risk. Dordrecht/ New York/London: Springer Verlag; 2005. p.135-164.  

36. Lave T, and Lave L. Public perception of the risks of floods: Implications for communication. Risk 

Analysis. 1991; 11: 255-67. 

37. Lescrauwaet AK, Vandepitte L, Van den Berghe E, and Mees J. Europese 

duurzaamheidsindicatoren voor kustgebieden in Nederland: Een eerste inventarisatie. In: VLIZ 

Special Publication, 31. Ostende, Belgium: Vlaams Instituut voor de Zee; 2006. p. 128. 

38. Michel-Kerjan E, and Kunreuther H. Redesigning flood insurance. Science. 2011; 333:408-09. 

39. Mukhopadhyay A, Dasgupta R, Hazra S, and Mitra D. Coastal hazards and vulnerability: A review. 

International Journal of Geology, Earth and Environmental Sciences. 2012; 2:57-69. 

40. Munich Re. 2012 Natural catastrophe year in review. Munich: Munich Re; 2013. 

41. Nowak P, and Romaniuk M. Pricing and simulations of catastrophe bonds. Insurance: 

Mathematics and Economics. 2013; 52:18–28. 

42. Rockafellar T, and Uryasev S. Optimization of conditional Value-at-Risk. Journal of Risk. 2000; 

2:21-41. 

43. Schwarze R, and Wagner R. The political economy of natural disaster insurance: Lessons from 

the failure of a proposed compulsory insurance scheme in Germany. European Environment. 

2007; 17:403–15. 

32 

 



44. Veerbeek W, Zevenbergen C, and Gersonius B. Flood risk in unembanked areas. Part C, 

vulnerability assessment based on direct flood damages. Utrecht: Dutch National Research 

Programme Knowledge for Climate; 2011. 

45. Walker G. Current developments in catastrophe modelling. In: Britton NR, and Oliver J, editors. 

Financial risks management for natural catastrophes. Brisbane, Griffith University,  Australia; 

1997. p. 17-35. 

46. Wiener J. Research opportunities in search of federal flood policy. Policy Sciences. 1996; 29:321-

44. 

47. Yang H. An integrated risk management method: Var approach. A Multinational Finance Journal. 

2000; 4:201-19. 

 

 

 

33 

 


	ABSTRACT
	1. INTRODUCTION
	2. INTEGRATED CATASTROPHE MANAGEMENT MODEL
	2.1 Insurability of catastrophic risks
	2.2 Stochastic Integrated Catastrophe Risk Management Model

	3. CASE STUDY AND THE REGIONAL MODEL
	3.1. Case study region
	3.2. Modules and data
	3.2.1 Hazard module (I)
	3.2.2 Exposure data (II)
	3.2.3 Vulnerability module (III)
	3.2.4 Loss estimates (IV)
	3.2.5 Regional Stochastic Integrated Catastrophe Risk Management Model (V)


	4. NUMERICAL RESULTS
	4.1 Spatial patterns of the robust model-derived premiums
	4.2 Analysis of optimal insurance program per stakeholder
	4.2.1 Analysis of the insurance program financial stability on the side of the insurer
	4.2.2 Analysis of the insurance program financial stability on the side of a households and firms
	4.2.3 Insurer’s demand for financial instruments


	5. Concluding remarks
	ACKNOWLEDGEMENTS
	REFERENCES

