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Abstract. An approach to a posteriori integration of probability distributions serving as inde-
pendent a priori models of observed elementary events from a given finite set of elementary events is
proposed. A posteriori integration is understood as an improvement of data given by a priori proba-
bilities. The approach is based on the concept of an a posteriori event in the product of probability
spaces associated with a priori probabilities. The conditional probability on the product space that
is specified by an a posteriori event determines in a natural way the probability on the set of initial
elementary events; the latter is recognized as the result of a posteriori integration of a priori models.
Conditions under which the integration improves the informativeness of a priori probabilities are
established, algebraic properties of integration as a binary operation on the set of probabilities are
studied, and the problem of integral convergence of infinite probability sequences is considered.
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Introduction. In the study of complex poorly observable systems, especially
socio-economic and environmental systems, we often need to compare data obtained
from alternative sources. As a rule, they are in a poor agreement. In typical cases,
data are represented in the form of probability distributions reflecting observational or
simulation noise (see, for example, [10]). In concrete applied research papers, certain
specific (known or assumed) properties of objects under study are used to synthesize
(integrate) unmatched distributions (see, for example, [6]). In practice, universal
methods for integration of unmatched a priori distributions employ the idea of taking
their convex combinations with coefficients chosen on the basis of information on the
reliability of sources of these distributions (see, for example, [7], [8], [10]). These
methods are generally empirical in nature, and specialists recognize the need to work
out appropriate formalized approaches (see, for example, [5]). The lack of methods
for integration of a priori distributions is even more obvious in the cases of absence
of information on the reliability of their sources.

In this paper, which is motivated by the above-mentioned problems of processing
the results of observations of complex socio-economic and environmental systems,
we propose a unified approach to the integration of a priori distributions given by
independent sources—“observational methods”—in the absence of any prioritization
of these sources by reliability. It is assumed that some determined element—the
value of an index of a socio-economic or environmental system—is observed by several
alternative methods and that the result of each method is a probability distribution on
the set of all admissible elements (elementary events). These probability distributions
are hereinafter referred to as a priori probability distributions or, briefly, a priori
probabilities. The problem is to construct an a posteriori probability that gives more
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precise information on the observed element by synthesizing data derived from a priori
probabilities.

This problem is close in a sense to the problem of estimating an unknown pa-
rameter of a probability distribution by observing experimental outcomes (see [1,
Chap. I, section 7, p. 97]). However, in our case, admissible elements do not serve as
parameters of a priori distributions, and a family of alternative a priori distributions,
rather than a collection of empirical results of observations, is used to identify the
observed admissible element. To emphasize the peculiarity of the case, we can assume
that a priori distributions are empirical frequencies obtained as the result of multi-
ple experiments, and thus they are indistinguishable from probability distributions
characterizing errors of the respective observational methods.

Sets of probability distributions are studied in the literature from different points
of view. To see this, Wald’s theory of statistical decisions [11] focuses on the op-
timization of decisions with undetermined distribution of “states of nature”; in the
theory of comparison of experiments (see [2], [3], [9]), sets of probability distributions
serve as models of experiments to be compared by the criterion of informativeness;
some studies are devoted to analysis of statistical data generated by different sources
(see [4]). In this paper, sets of probability distributions play the role of material for
synthesis of integral information on the observed element.

The proposed approach is based on the notion of an a posteriori event in the prod-
uct of probability spaces corresponding to a priori probabilities. The definition of an
a posteriori event is based on the fact that all a priori probabilities are descriptions
of the same determined element—the observed elementary event; consequently, an
elementary event in the product space can be classified as an a posteriori admissible
event only if all its components are identical. The collection of all a posteriori admis-
sible elementary events forms the a posteriori event—the “diagonal” of the product
space. The conditional probability given the a posteriori event, which is specified on
the product space, is concentrated on the latter and naturally determines probability
on the set of initial elementary events; the latter probability is taken as the result of
a posteriori integration of a priori probabilities.

For the sake of simplicity, we consider here the case of a finite set of admissible
elementary events. Section 1 contains basic definitions and an informal discussion of
the approach. Section 2 is devoted to the comparison of informativeness of a priori and
a posteriori probabilities. In section 3, we study algebraic properties of a posteriori
integration as a binary operation on the set of probabilities. In section 4, studies of
asymptotic behavior of the results of a posteriori integration of infinite probability
sequences are outlined.

1. Basic definitions and informal discussion.

1.1. Basic elements. Here Z is a nonempty finite set with more than one
element; its elements are interpreted as admissible elementary events. The set of all
(elementary) probabilities on Z that are understood as nonnegative functions on Z
with all the values summing up to the unity is denoted by Π. Any probability π ∈ Π
specifies the probability space understood as the pair (Z, π). The set of probabilities
π ∈ Π assuming positive values is denoted by Π+. The uniform probability on Z
that assumes the constant value 1/|Z| (hereinafter |E| is the number of elements of
a finite set E) is denoted by π. We say that probability π ∈ Π is concentrated at
the point z ∈ Z if π(z) = 1. We say that probability π ∈ Π is concentrated if it is
concentrated at some point. We put Z+(π) = {z ∈ Z : π(z) > 0} for any probability
π ∈ Π. The set Π is considered to be a metric space with the natural mean square
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metric (π1, π2) �→ [
∑

z∈Z |π1(z)− π2(z)|2]1/2; it is clear that Π is a compactum. For

any natural number k, we consider Πk as a product of k copies of the metric space
Π; any subset of Πk is interpreted as its metric subspace. The continuity of functions
on subsets of Πk that assume either real values or values from Π is understood in the
sense of the above metric spaces.

1.2. Informal discussion. We assume that a determined, a priori fixed un-
known element z0 ∈ Z is observed by a researcher using n observational methods
numbered 1, . . . , n. Each method i is inexact in the sense that it presents z0 in the
form of a probability distribution (probability) πi on Z. For any z ∈ Z, it is natural to
interpret the value πi(z) of the probability πi as the empirical frequency of detection
of element z (as z0) in a large series of observations with method i. The probabili-
ties πi, . . . , πn are called a priori probabilities or a priori probability estimates of the
observed element z0.

Now we consider the a posteriori situation after the observation. The problem
is to synthesize more precise, integral information on element z0 relying on a priori
probability estimates.

The proposed approach of solving this nonstrictly posed problem is based on the
assumption of mutual independence of observational methods, to be precise, on the
assumption that the distribution of observed results (z1, . . . , zn) ∈ Zn obtained with
methods 1, . . . , n is described by the product space (Zn, P ) = (Z, π1)× · · · × (Z, πn),
where P = π1 × · · · × πn.

This assumption requires some explanation. It may seem to be unjustified in the
case where the observed element has a statistical nature, to be exact, if it is a variable
elementary event in some nontrivial probability space. We assume that this case is
beyond the scope of this work: as mentioned above, the observed element z0 ∈ Z
is regarded as being a priori fixed but unknown to the researcher. In this case, the
assumption of independence of observational methods in the above meaning reflects
a rather typical variety of situations (and is meant in many applied works, some of
which are cited in the introduction—see [5], [6], [7], [8], [10]). The corresponding
model of observation can be described in the following way. A pair “player–noise”
is placed inside a device used for multiple observations of the same fixed element.
Every time the device is used, the pair “player–noise” performs a trial to “disturb” the
observation, that is, to change from the actually observed element to generally another
element—the observational result; the pairs “player–noise” placed in different devices
act independently. Let us assume, for example, that the actually observed element
is 2; the pair “player–noise” from the first device forms deviations from the true
element of sizes 0 and 1 with probabilities p1(0) and p1(1) = 1 − p1(0), respectively,
and the pair “player–noise” from the second device, which is independent of the first
pair, forms the same deviations from the true element with probabilities p2(0) and
p2(1) = 1−p2(0), respectively. Then the probability spaces (Z, p1) and (Z, p2), where
Z = {2, 3}, p1(z) = p1(z − 2), p2(z) = p2(z − 2) (z ∈ Z), describe the distributions of
the results of observations of the true element with the help of the first and second
devices, respectively, and their product (Z2, p) = (Z, p1)× (Z, p2), where p = p1 × p2,
describes the distribution of pairs (z1, z2) of observational results obtained with the
two devices (here the result of observations with the first device goes first, and the
result of observations with the second device goes second). The researcher does not
know which of the two elements of the set Z is true; nor does he know values p1(2)
and p1(3), so he approximates these values by the frequencies π1(2) and π1(3) of
occurrence of values 2 and 3 in a large series of observations with the first device;
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similarly, he approximates unknown values p2(2) and p2(2) by the frequencies π2(2)
and π2(3) of occurrence of values 2 and 3 in a large series of observations with the
second device. The functions π1 and π2 regarded as being probabilities on Z are
taken as a priori probability estimates of the unknown observed true element, and the
product space (Z2, P ) = (Z, π1) × (Z, π2) is taken as a probability (approximating)
model describing the distribution of pairs (z1, z2) of observational results given by
the two devices. The probability P serves as a rather accurate approximation of
the above-mentioned probability p, which characterizes the true distribution of pairs
of observational results. On these grounds, the researcher takes the product space
(Z2, P ) as a fairly accurate description of the true distribution of pairs (z1, z2) of
observational results given by the first and second devices. In this scheme (which is
roughly sketched or, on the contrary, idealized, for it corresponds to infinite series
of observations), the researcher abstracts himself from the approximation nature of
the probabilities π1, π2, and P = π1 × π2 and uses them to solve the problem of a
posteriori integration of a priori probability estimates given by the first and second
devices.

The proposed approach to solving the problem of integration of a priori probability
estimates is based on the trivial circumstance that, in the a posteriori situation, the
results z1, . . . , zn ∈ Z of single observations made with methods 1, . . . , n, respectively,
are true if and only if z0 = z1 = · · · = zn. Since the element z0 is unknown, the
equality z1 = · · · = zn is a necessary condition of a posteriori consistency of the
results z1, . . . , zn. The event

A = {(z1, . . . , zn) ∈ Zn : z1 = · · · = zn} = {(z, . . . , z) : z ∈ Z}
in the product space (Zn, P ) = (Z, π1) × · · · × (Z, πn), where P = π1 × · · · × πn,
selects all of the a posteriori consistent combinations of observational results; all
other combinations of observational results (z1, . . . , zn) are mutually inconsistent and
thus give false information on the observed element. From here we conclude that, in
the a posteriori situation, the event A in the product space (Zn, P ) is realized with
certainty. We call it the a posteriori event. We have

P (A) =
∑
z∈Z

π1(z) · · ·πn(z).

If P (A) = 0, then methods 1, . . . , n are inconsistent in the sense that for any z ∈ Z
at least one method i allows the zero probability that z = z0 : πi(z) = 0.

Let methods 1, . . . , n be consistent, that is, P (A) > 0. We consider the conditional
probability P (· | A) on the product space (Zn, P ) given the a posteriori event A:

P ((z, . . . , z) |A) = π1(z) · · ·πn(z)

P (A)
(z ∈ Z).

Since the conditional probability P (· |A) is concentrated on A—the “diagonal” in
Zn, all elements of which have identical components—we identify P (· |A) with a
probability on Z; the latter is denoted by π1 · . . . · πn, so we have

(π1 · . . . · πn)(z) = P ((z, . . . , z) |A) (z ∈ Z).

We call π1 · . . . · πn the result of a posteriori integration of a priori probabilities
π1, . . . , πn, and we call the change from π1, . . . , πn to π1 · . . . · πn the a posteriori
integration of π1, . . . , πn.
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Thus, in the probability space (Z, π1 · . . . ·πn), for any z ∈ Z the probability that
z is the true observed element (the probability that z0 = z) is proportional to the
probability π1(z) · · ·πn(z) that all observational methods simultaneously allow that
z is the true observed element (that z0 = z). The value π1(z) · · ·πn(z) is a “measure
of consensus” among methods 1, . . . , n regarding the fact that z0 = z. All methods
have equal rights in formation of the “measure of consensus” π1(z) · · ·πn(z), and
every method i has the “veto power” in the sense that with πi(z) = 0 the “measure of
consensus” takes the zero value. We believe that the a posteriori probability π1 ·. . .·πn

gives desired integral information on the observed element z0 that is obtained by a
posteriori analysis of the results of its observations with methods 1, . . . , n.

The proposed method of a posteriori integration of a priori probability estimates
is based on the evident logical fact that the above-mentioned a posteriori event A is
certainly realized. This differs from integration methods traditionally used in studies
of socio-economic and environmental systems, which often got reduced to believable
justification of choice of coefficients of convex combinations of a priori probability
estimates. In this sense, the proposed method of a posteriori integration can be
more effective that the method of convex combinations. To illustrate this, we give an
example.

Example 1.1. This example is inspired by the research on classification of land
areas by type (forest, grass, ploughland, desert, etc.) using satellite images that do
not provide necessary information (see http://www.geo-wiki.org/). Let Z be a finite
set of land types and z0 ∈ Z be the type of a particular land area. To estimate
the unknown type z0 of this area, n independent groups of experts are involved;
these experts are assumed to have additional knowledge allowing them to make an
informed opinion on the land type. The distribution of conclusions of experts from
a group numbered i (i = 1, . . . , n) is a probability on Z; we take it as an a priori
probability estimate πi; we assume that πi(z) > 0 for any z ∈ Z. Since the expert
groups 1, . . . , n are independent, we assume that the distribution of all collections
(z1, . . . , zn) of conclusions made by these groups is described by the product space
(Zn, P ) = (Z, π1) × · · · × (Z, πn). We consider the integration result π1 · . . . · πn of
a priori probability estimates π1, . . . , πn as the result of their a posteriori processing.
We assume that among the expert groups there are “correctly recognizing” groups i in
which the percent of experts concluding that the type of land area is z0 is maximum:
πi(z

0) > πi(z) for any z ∈ Z not equal to z0. We denote the set of all such groups
by G+ and the set of all other groups by G−. Let us assume that for any group
i ∈ G+ for all z ∈ Z not equal to z0 the inequality πi(z

0) > qπi(z), where q > 1,
holds true, and that for any group j ∈ G− for all z ∈ Z not equal to z0 the inequality
πj(z

0) > rπj(z), where r ∈ (0, 1), holds true. Let m be the number of groups in G+.
We put π+(z) =

∏
i∈G+ πi(z), π

−(z) =
∏

i∈G− πi(z) (z ∈ Z). For any z ∈ Z we have

(π1 · . . . · πn)(z) =
π1(z) · · ·πn(z)∑

y∈Z π1(y) · · ·πn(y)

=

(
1 +

∑
y∈Z\{z}

π+(y)π−(y)
π+(z)π−(z)

)−1

and

(π1 · . . . · πn)(z
0) >

1

1 + (n− 1)/qmrn−m
>

1

1 + ε
> 1− ε
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for arbitrary small ε > 0 if qmrn−m > (n− 1)/ε; for example, the latter inequality is
true if qrα > 1, where α > 0, the number n of expert groups is sufficiently large, and
n−m < αm; we have in this case

qmrn−m

n− 1
=

qmrα(n−m)/α

n− 1
>

qmrαm

n− 1
=

(qrα)m

n− 1
>

(qrα)m

(α+ 1)m− 1
,

which tends to infinity as n (along with m) tends to infinity.
Now we consider an arbitrary convex combination π = a1π1 + · · ·+ anπn a priori

probability estimates π1, . . . , πn as the result of their a posteriori processing; here
a1, . . . , an � 0, a1 + · · ·+ an = 1. For arbitrary i = 1, . . . , n we have

πi(z0) � 1− (N − 1)γi,

where N is a number of elements of Z and γi = minz∈Z\{z0} πi(z); it is evident that
γi(N − 1 + r) �

∑
z∈Z πi(z) = 1. Consistent with the latter restriction, we assume

that for any i = 1, . . . , n the inequality γi > β/(N − 1 + r), where β ∈ (0, 1), holds
true. Then we have

π(z0) � max
i=1,...,n

πi(z0) < 1− N − 1

N − 1 + r
β.

Under the above assumptions made with respect to q, r, and γi (i = 1, . . . , n), the
right-hand side of this upper estimate is smaller than the right-hand side of the above
lower estimate 1 − ε for (π1 · . . . · πn)(z

0) if ε is sufficiently small (this means that n
is sufficiently large).

So, in this example, the result of processing a priori probability estimates by the
proposed method is preferable when compared to the result of their processing by the
method of convex combinations.

1.3. Definitions. Let us give rigorous definitions. For an arbitrary positive
integer n > 1, probabilities π1, . . . , πn ∈ Π are called inconsistent if π1(z) · · ·πn(z) = 0
for all z ∈ Z; otherwise probabilities π1, . . . , πn are called consistent; the set of all
(π1, . . . , πn) ∈ Πn such that π1, . . . , πn are consistent is denoted by Π(n).

Remark 1.1. The following statements are obviously true:
(i) (π1, . . . , πn) ∈ Π(n) for any probability π ∈ Π and any positive integer n > 1;
(ii) (π1, π2) ∈ Π(2) for all probabilities π1 ∈ Π and π2 ∈ Π+;
(iii) if probabilities (π1, . . . , πn) ∈ Π(n), then (πi1 , . . . , πin) ∈ Π(n) for any permu-

tation (i1, . . . , in) in (1, . . . , n);
(iv) (Π+)n ⊂ Π(n) for any positive integer n > 1.
Consistent with the preliminary definition given above, for any positive integer

n � 2 we consider a mapping (π1, . . . , πn) �→ π1 · . . . · πn : Π(n) �→ Π such that

(π1 · . . . · πn)(z) =
π1(z) · · ·πn(z)∑

z′∈Z π1(z′) · · ·πn(z′)
, (z ∈ Z)

for any collection (π1, . . . , πn) ∈ Π(n). This mapping is called the n-fold a posteriori
integration (briefly, integration); for any collection (π1, . . . , πn) ∈ Π(n) the probability
π1 · . . . · πn is called the a posteriori integration result (briefly, integration result) of
probabilities π1, . . . , πn.

Remark 1.2. It is easy to see that the n-fold a posteriori integration is continuous
for any positive integer n � 2.
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2. Integration and informativeness estimates.

2.1. Integration and extreme elements. Let us consider the change from
an a priori probability estimate π1 ∈ Π to an a posteriori probability estimate π1 ·
π2 obtained by integration of π1 with some probability π2 ∈ Π. We can state the
following.

Remark 2.1. (i) Integration of an arbitrary probability π ∈ Π with the uniform
probability π does not change π: π · π = π · π = π. (ii) If (π, π∗) ∈ Π(2) and the
probability π∗ is concentrated, then the integration of π with π∗ converts π into
π∗ : π · π∗ = π∗ · π = π∗.

We also note that, in typical cases, upon integration of an a priori probability π1

with π2, the probability of an element that is most likely with respect to the probability
space (Z, π2) increases, and the probability of a least likely element decreases.

Lemma 2.1. Let (π1, π2) ∈ Π(2), let z∗ be a maximum point of π2, π1(z
∗) > 0,

and let there exist an element z ∈ Z such that π2(z) < π2(z
∗) and π1(z)π2(z) > 0.

Then (π1 · π2)(z
∗) > π1(z

∗).
Proof. We put Z∗ = {z′ ∈ Z : π2(z

′) = π2(z
∗)}. We note that z ∈ Z \ Z∗. By

definition, we have

(π1 · π2)(z
∗) =

π1(z
∗)π2(z

∗)∑
z′∈Z π1(z′)π2(z′)

=
π1(z

∗)∑
z′∈Z∗ π1(z′) + π1(z)q(z) +

∑
z′∈Z\(Z∗∪{z}) π1(z′)q(z′)

,(2.1)

where

q(z′) =
π2(z

′)
π2(z∗)

(z′ ∈ Z).

Since π2(z
∗) = maxz∈Z , we have q(z′) < 1 for all z′ ∈ Z \ Z∗, which, along with the

inequality π1(z)π2(z) > 0, implies the estimate π1(z)q(z) < π1(z). Consequently, the
denominator on the right-hand side of (2.1) is smaller than

∑
z′∈Z π1(z

′) = 1. Now
(2.1) and the assumption π1(z

∗) > 0 yield (π1 · π2)(z
∗) < π1(z

∗). The lemma is
proved.

Similar reasoning leads to the following symmetric statement.
Lemma 2.2. Let (π1, π2) ∈ Π(2), let z∗ be a minimum point of π2, π1(z∗) > 0,

and let there exist an element z ∈ Z such that π2(z) > π2(z∗) and π1(z)π2(z) > 0.
Then (π1 · π2)(z∗) < π1(z∗).

2.2. Measures of concentration. For probabilities from Π, we consider nu-
meric indicators that assume the largest values on concentrated probabilities; we call
them measures of concentration. Measures of concentration can be interpreted as
indices of informativeness of probabilities. If the result of integration of two a priori
probabilities (a priori estimates given by independent methods) has a larger measure
of concentration than each of them, then we have reason to believe that the a priori
probability estimates are consistent: when interacting, they carry more information
than each of them separately. In the opposite situation, when the result of integration
of two a priori probability estimates has a smaller measure of concentration than each
of them, the a priori estimates are in conflict with each other, and one of them is likely
to be rejected. Finally, in the intermediate situation, when the measure of concentra-
tion of the probability resulting from integration of two a priori probabilities is larger
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than the minimum and smaller than the maximum of their measures of concentration,
the a priori probability models have a dissymmetric interrelation; that is, one of them
makes the other more precise, but not vice versa. From the practical point of view,
of greatest interest is the first of the above situations, where the result of integration
of a priori probabilities π1 and π2 has a larger measure of concentration than each
of them; in this case, we say that a pair (π1, π2) of probabilities is compatible (with
respect to the given measure of concentration).

So, a measure of concentration is an arbitrary continuous function μ : Π �→
(−∞, 1] such that μ(π) = 1 if and only if the probability π is concentrated. A
pair (π1, π2) ∈ Π2 is called compatible with respect to a measure of concentration μ if
(π1, π2) ∈ Π(2) and μ(π1 ·π2) > max{μ(π1), μ(π2)}, and it is incompatible with respect
to μ if (π1, π2) ∈ Π(2) and μ(π1 · π2) < min{μ(π1), μ(π2)}.

The simplest measure of concentration is the function π �→ maxz∈Z π(z); we call
it the max-measure of concentration. In this study, we consider only the max-measure
of concentration.

Remark 2.2. Now we give several examples of other measures of concentration:
(i) π �→ maxz∈Z π(z) − minz∈Z π(z); (ii) π �→ ∑

z∈Z πk(z), where k > 1; (iii) π �→
1−∑

z∈Z [ξ(z)−
∑

z′∈Z ξ(z′)π(z′)]2π(z), where ξ is an arbitrary real-valued one-to-one
function on Z; the value of this measure of concentration at π ∈ Π is variance of the
random variable ξ on (Z, π); (iv) π �→ 1 +

∑
z∈Z π(z) log π(z) (for π(z) = 0 we put

π(z) log π(z) = 0); the latter sum with the opposite sign is known as the entropy of π.

Remark 2.3. It is clear that the minimum value of the max-measure of concen-
tration is 1/|Z|; it is assumed on the uniform probability π only.

For brevity, a pair (π1, π2) ∈ Π2 that is compatible (incompatible) with respect
to the max-measure of concentration is called max-compatible (max-incompatible).

Using Lemma 2.1, we derive a typical case when a pair (π1, π2) ∈ Π(2) is max-
compatible. In this case, it is assumed that sets of elementary events that are most
likely in probability spaces (Z, π1) and (Z, π2) have a nonempty intersection.

Theorem 2.1. Let (π1, π2) ∈ Π(2), and let there exist an element z∗ ∈ Z that
maximizes each probability π1, and let π2 on Z. The following statements hold true.

1. The element z∗ maximizes π1 · π2 on Z.

2. If there exists an element z ∈ Z such that 0 < π1(z) < maxz′∈Z π1(z
′) and

0 < π2(z) < maxz′∈Z π2(z
′), then the pair (π1, π2) is max-compatible.

Proof. Statement 1 follows directly from definition of the result of integration
π1 · π2. So, let us prove statement 2. It is evident that π1(z

∗) > 0. By assumption,
we have π2(z) < π2(z

∗) and π1(z)π2(z) > 0. Consequently, all the assumptions of
Lemma 2.1 are satisfied. Using this lemma, we get that (π1 · π2)(z

∗) > π1(z
∗) =

maxz′∈Z π1(z
′). Interchanging π1 and π2, we arrive at the symmetric relations (π1 ·

π2)(z
∗) > π2(z

∗) = maxz′∈Z π2(z
′). The proof is complete.

Theorem 2.1 immediately yields the following statement.

Corollary 2.1. For any not concentrated not uniform probability π ∈ Π the
pair (π, π) is max-compatible.

The notion of max-compatibility of pairs (π1, π2) ∈ Π(2) may be extended to
include n-fold collections (π1, . . . , πn) ∈ Π(n). For any positive integer n � 2, a col-
lection (π1, . . . , πn) ∈ Π(n) is called max-compatible if

max
z∈Z

(π1 · . . . · πn)(z) > max{max
z∈Z

π1(z), . . . ,max
z∈Z

πn(z)}.

The following statement is based on Theorem 2.1.
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Corollary 2.2. Let n � 2 be a positive integer, (π1, . . . , π2) ∈ Π(n), and there
exists an element z∗ ∈ Z that maximizes each probability π1, . . . , πn on Z. The
following statements are true.

1. The element z∗ maximizes π1 · . . . · πn on Z.

2. If there exists an element z ∈ Z such that 0 < πi(z) < maxz′∈Z πi(z
′) for all

i ∈ {1, . . . , n}, then the collection (π1, . . . , πn) is max-compatible.

The following statement derived from Corollary 2.1 is related to the topological
structure of the set of integration-invariant probabilities. We say that a set G ⊂ Π is
integration-invariant if any π1, π2 ∈ G are consistent and π1 · π2 ∈ G.

Theorem 2.2. Let a nonempty set G ⊂ Π be integration-invariant and not
contain concentrated probabilities. Then one and only one of the following statements
is true: (i) the set G has one element, and this element is the uniform probability π;
(ii) G is not closed in Π.

Let the set G consist of one element π. Then we have π · π = π. Let us as-
sume that π �= π. From Corollary 2.1, the pair (π, π) is max-compatible, that is,
maxz∈Z(π · π)(z) > maxz∈Z π(z). The latter cannot be true, since we have π · π = π.
Consequently, π = π.

Let G consist of more than one element. Then G contains the uniform proba-
bility. Let us assume that G is closed. We put p = supπ∈Gmaxz∈Z π(z). Since G
contains the uniform probability, the quantity p is larger than 1/|Z|, the value of the
uniform probability. Since G is closed, there exists a probability π∗ ∈ G such that
maxz∈Z π∗(z) = p. From the estimate p > 1/|Z| it follows that π∗ is not uniform.
Since, by assumption, the set G does not contain concentrated probabilities, π∗ is not
concentrated. Then, from Corollary 2.1, the pair (π∗, π∗) is max-compatible, that is,
maxz∈Z(π∗ ·π∗)(z) > maxz∈Z π∗(z) = p. But we have π∗ ·π∗ ∈ G, and hence we infer
that maxz∈Z(π∗ · π∗)(z) � p. This contradiction completes the proof.

Theorem 2.2 has the following direct corollary.

Corollary 2.3. Let a nonempty set G ⊂ Π be integration-invariant, not contain
concentrated probabilities, and consist of more than one element. Then the set G is
not finite.

To conclude this subsection, we note that the situation when a pair (π1, π2) ∈ Π(2)

is max-incompatible means that elements with high probabilities in the probability
space (Z, π1) have small probabilities in the probability space (Z, π2) and vice versa,
which suggests the qualitative inconsistency between the probability models π1 and
π2. Below we give a simple example of a max-incompatible pair of probabilities.

Example 2.1. We take Z = {z1, z2}, π1(z1) = 3/4, π1(z2) = 1/4, π2(z1) = 1/4,
π2(z2) = 3/4. Then (π1 · π2)(z1) = (π1 · π2)(z2) = 1/2 < 3/4 = maxz∈Z π1(z) =
maxz∈Z π2(z).

2.3. Marginal measure. For any not concentrated probability π ∈ Π, we
define the marginal measure of π ∈ Π as minz∈Z+(π) π(z).

It is clear that for any not concentrated probability π ∈ Π, its marginal measure
does not exceed 1/|Z| and is equal to 1/|Z| if and only if the probability π is uniform
(π = π). In this context the smaller the marginal measure of a not concentrated
probability π, the less it is uniform. As the uniform probability is least informative
among all probabilities from Π, probabilities with small marginal measures may be
interpreted as being more informative in a sense than probabilities with large (close
to 1/|Z|) marginal measures.
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We say that a pair (π1, π2) ∈ Π(2) of not concentrated probabilities is marginally
compatible if

min
z′∈Z+(π1,π2)

(π1 · π2)(z
′) < min

{
min

z′∈Z+(π1)
π1(z

′), min
z′∈Z+(π2)

π2(z
′)
}

and marginally incompatible if the opposite strict inequality holds.
Lemma 2.2 allows us to describe a typical situation where a pair (π1, π2) ∈ Π(2)

is marginally compatible: this property occurs if the sets of the least likely elements
in probability spaces (Z, π1) and (Z, π2) have a nonempty intersection.

Theorem 2.3. Let probabilities π1, π2 ∈ Π not be concentrated, (π1, π2) ∈ Π(2),
and there exists an element z∗ ∈ Z that minimizes the probability p1 on Z+(π1) and
the probability p2 on Z+(π2). Then the following statements are true.

1. The element z∗ minimizes π1 · π2 on Z+(π1 · π2).
2. It there exists an element z ∈ Z such that

π1(z) > min
z′∈Z+(π1)

π1(z
′) and π2(z) > min

z′∈Z+(π2)
π2(z

′),

then the pair (π1, π2) is marginally compatible.
The proof of this theorem is similar to that of Theorem 2.1. Theorem 2.3 implies

the following.
Corollary 2.4. For any not concentrated not uniform probability π ∈ Π, the

pair (π, π) is marginally compatible.
We say that an n-fold collection (π1, . . . , πn) ∈ Π(n) of not concentrated proba-

bilities (here n is a positive integer exceeding unity) is marginally compatible if

min
z∈Z

(π1 · . . . · πn)(z) < min{min
z∈Z

π1(z), . . . ,min
z∈Z

πn(z)}.

We give without proof a natural extension of Theorem 2.3.
Corollary 2.5. Let n � 2 be a positive integer, let probabilities π1, . . . , πn ∈ Π

be not concentrated, (π1, . . . , πn) ∈ Π(n), and there exists an element z∗ ∈ Z such that
for any i = 1, . . . , n it minimizes πi on the set Z+(πi). Then the following statements
are true.

1. The element z∗ minimizes π1 · . . . · πn on Z+(π1 · . . . · πn).
2. If there exists an element z ∈ Z such that

πi(z) > max
z′∈Z

πi(z
′) for all i ∈ {1, . . . , n},

then the collection (π1, . . . , πn) is marginally compatible.
The situation where a pair (π1, π2) ∈ Π(2) of not concentrated probabilities is

marginally incompatible is similar in a sense to the situation where this pair is not
max-compatible: both situations mean that elementary events with large probabilities
in the probability space (Z, π1) have small probabilities in the probability space (Z, π2)
and vice versa. Example 2.1 illustrates this fact.

2.4. Max-concentrators. A probability π ∈ Π is called a max-concentrator
for a collection (π1, . . . , πn) ∈ Πn (here n is a positive integer exceeding unity) if
the pair (π, πi) is max-compatible for any i ∈ {1, . . . , n}. So, a probability estimate
π that is a max-concentrator for a collection (π1, . . . , πn) of estimates increases the
max-measure of concentration of each of them through integration.
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It is easy to detect max-concentrators for collections of pairwise max-compatible
probabilities.

Theorem 2.4. Let n � 2 be a positive integer, and let a collection (π1, . . . , πn) ∈
Πn of probabilities be such that for any different i, j ∈ {1, . . . , n} the pair (πi, πj) is
max-compatible. Then for any i ∈ {1, . . . , n} the probability πi is a max-concentrator
for the collection (π1, . . . , πn).

Proof. We take i, j ∈ {1, . . . , n}, j �= i. We have (πi, πi) ∈ Π(2) (see Re-
mark 1.1(i)); besides, (πi, πj) ∈ Π(2) by assumption. It is also assumed that the
pair (πi, πj) is max-compatible. This excludes the fact that the probability πi is
uniform (see Remark 2.1(i)). Consequently, from Corollary 2.1, the pair (πi, πi) is
max-compatible. The proof is complete.

The following theorem demonstrates that, in typical cases, a probability giving
sufficiently strong preference to an elementary event that has a nonzero probability
in every probability space (Z, π1), . . . , (Z, πn) is a max-concentrator for the collection
(π1, . . . , πn).

Theorem 2.5. Let n � 2 be a positive integer, (π1, . . . , πn) ∈ Πn, the probabilities
π1, . . . , πn be not concentrated, and an element z∗ ∈ Z be such that πi(z∗) > 0 for
any i ∈ {1, . . . , n}. Then any probability π ∈ Π such that π(z∗) is sufficiently close to
unity is a max-concentrator for the collection (π1, . . . , πn).

Proof. We take the probability π∗ ∈ Π that is concentrated at z∗. It is clear
that (π∗, πi) ∈ Π(2) for any i ∈ {1, . . . , n}. According to Remark 2.1(ii), for any
i ∈ {1, . . . , n} we have π∗ · πi = π∗ and, consequently, maxz∈Z(π∗ · πi)(z) = 1 >
maxz∈Z πi(z); the latter inequality is due to the fact that the probability πi is not
concentrated. Owing to continuity of integration (see Remark 1.2) and max-measure
of concentration, the latter inequality holds true for all i ∈ {1, . . . , n} when replacing
the probability π∗ by any π ∈ Π such that π(z∗) is sufficiently close to unity. The
proof is thus complete.

The following theorem is related to collections of probabilities that are sufficiently
close to the uniform probability.

Theorem 2.6. Let n � 2 be a positive integer, and let a probability π ∈ Π not
be uniform. Then π is a max-concentrator for any collection (π1, . . . , πn) ∈ Πn such
that the probabilities π1, . . . , πn are sufficiently close to the uniform probability π.

Proof. According to Remark 2.1(i), the equality π ·π = π holds true. Then, given
the fact that the probability π is not uniform, we have maxz∈Z(π·π) = maxz∈Z π(z) =
1/|Z|. Because of continuity of integration (see Remark 1.1) and continuity of the
max-measure of concentration, the latter inequality holds upon replacing the uniform
probability π in it by any probabilities π1, . . . , πn ∈ Π that are sufficiently close to π.
The proof is complete.

Now let us show that, if n < |Z|, in typical cases, for a given collection (π1, . . . , πn)
of probabilities there exists a max-concentrator that is sufficiently close to the uniform
probability. Interpreting this property, we can say that an estimate given by any of n
observational methods may be improved through integration with an estimate given
by the same additional observational method with a rather low information quality.

Theorem 2.7. Let N = |Z| and n be a positive integer such that 2 � n � N .
Let π1, . . . , πn ∈ Πn, Z = {z1, . . . , zN}, zki be a point of maximum of probability πi

for any i ∈ {1, . . . , n},

vik =

{
0 if k �= ki,
1 if k = ki

(i ∈ {1, . . . , n}, k ∈ {1, . . . , N}),
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and the rank of the matrix

(2.2) A =

⎛
⎜⎜⎝

π1(z1)− v11 π1(z2)− v12 . . . π1(zN )− v1N
. . . . . . . . . . . .

πn(z1)− vn1 πn(z2)− vn2 . . . πn(zN )− vnN
1 1 . . . 1

⎞
⎟⎟⎠

not be smaller than n + 1. Then, for any ε > 0, there exists a max-concentrator
π for the collection (π1, . . . , πn) such that the distance in Π from π to the uniform
probability π is smaller than ε.

Proof. For any probability π ∈ Π, we denote by π∗ the vector of its values
(π(z1), . . . , π(zN )) ∈ RN . For any vector h = (h1, . . . , hN ) ∈ RN such that

(2.3) h1 + · · ·+ hN = 0

and any sufficiently small λ > 0, we obviously have

(2.4) π∗ + λh ∈ Π∗ = {π∗ : π ∈ Π}.

For any vector p = (p+ 1, . . . , pN ) ∈ RN with positive components, we put

(2.5) gik(p) =
πi(zk)pk∑N
j=1 πi(zj)pj

(i ∈ {1, . . . , n}, k ∈ {1, . . . , N}).

It is clear that for any probability π ∈ Π with positive values we have

(2.6) gik(π
∗) = (πi · π)(zk) (i ∈ {1, . . . , n}, k ∈ {1, . . . , N});

in particular,

(2.7) gik(π
∗) = (πi · π)(zk) = π(zk) (i ∈ {1, . . . , n}, k ∈ {1, . . . , N}).

Now, in view of the fact that the relations (2.6) and (2.4) hold for all h ∈ RN

satisfying (2.3) and all sufficiently small λ > 0, it remains to show that there exists a
vector h ∈ RN such that the inequalities

max
k=1,...,N

gik(π
∗ + λh) > max

k=1,...,N
πi(zk) (i ∈ {1, . . . , n})

are true for all sufficiently small λ > 0. Taking into account the fact that zki for any
i ∈ {1, . . . , n} is a point of maximum of probability πi, it is enough to establish that
for some h ∈ RN and all sufficiently small λ > 0 the inequalities

(2.8) giki(π
∗ + λh) > πi(zki) (i ∈ {1, . . . , n})

hold. Let us show this. We note that, with a given h ∈ RN and all sufficiently small
λ > 0, the inequalities (2.8) are equivalent to the inequalities

giki(π
∗) + 〈grad giki(π

∗), h〉λ > πi(z)iki (i ∈ {1, . . . , n})

or, in view of (2.7) (where π = πi for i ∈ {1, . . . , n}), to the inequalities

(2.9) 〈grad giki(π
∗), h〉 > 0 (i ∈ {1, . . . , n});
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here grad gik(π
∗) is the gradient of the function p �→ gik(p) at the point π∗ and 〈·, ·〉

is the scalar product in RN .
Now let us show that there exists a vector h ∈ RN satisfying the equality (2.3)

and the inequalities (2.9). In view of (2.5), we have

grad giki(p) = (γ
(1)
i , . . . , γ

(N)
i ),

where

γ
(k)
i = − πi(zki)πi(zk)(1/N)

(
∑N

j=1 πi(zj)(1/N))2
= −Nπi(zki)πi(zk) for k �= ki,

γ
(ki)
i =

πi(zki)
∑N

j=1 πi(zj)(1/N)− πi(z)πi(zk)(1/N)

(
∑N

j=1 πi(zj)(1/N))2
= N [πi(zki)− π2

i (zki)];

it is taken into account here that
∑N

j=1 πi(zj) = 1. So for an arbitrary vector h =

(h1, . . . , hN ) ∈ RN we have

〈grad giki(π
∗), h〉

= −Nπi(zki)

( ki−1∑
k=1

πi(zk)hk + (πi(zki)− 1)hki +

N∑
k=ki+1

πi(zk)hk

)
,(2.10)

where i ∈ {1, . . . , n}. We take a1, . . . , an < 0. Let us consider the following system of
linear algebraic equations with h1, . . . , hN :

ki−1∑
k=1

πi(zk)hk + (πi(zki)− 1)hki +

N∑
k=ki+1

πi(zk)hk = ak,(2.11)

(i ∈ {1, . . . , n}),
h1 + · · ·+ hN = 0.(2.12)

Its matrix form is as follows: AhT = aT , where the matrix A is given by (2.2),
a = (a1, . . . , an, 0), and T is the sign of transposition for row vectors. By assumption,
in the first place, the rank of the matrix A is not smaller than the number of its
rows n + 1 (the number of equations in the system (2.11), (2.12)); in the second
place, the latter number does not exceed N , which is the number of columns of the
matrix A (the number of unknowns in the system (2.11), (2.12)). Thus the system
of equations (2.11), (2.12) has a solution. Let h = (h1, . . . , hN ) be its solution. As
a1, . . . , an < 0, the right-hand sides of the equalities (2.10) are positive, and so the
inequalities (2.9) hold true. The proof is complete.

3. Algebraic properties of integration.

3.1. Integration as multiplication. The following theorem establishes that
integration as a binary operation is commutative and associative, that is, it possesses
characteristic algebraic properties of multiplication. First, we give the following ob-
vious remark.

Remark 3.1. If (π1, π2, π3) ∈ Π(3), then ((π1 · π2), π3), (π1, (π2, π3)) ∈ Π(2).
Theorem 3.1. The following statements are true.
1. Integration is commutative, i.e., π1 · π2 = π2 · π1 for any (π1, π2) ∈ Π(2).
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2. Integration is associative, i.e., (π1 ·π2) ·π3 = π1 · (π2 ·π3) for any (π1, π2, π3) ∈
Π(3).

Proof. Statement 1 is obviously true. Let us prove statement 2. We take an
arbitrary collection (π1, π2, π3) ∈ Π(3). Let us consider an arbitrary element z ∈ Z.
By definition, we have

(π1 · π2)(z) = π1(z)π2(z)c12, where c12 =
1∑

z′∈Z π1(z′)π2(z′)
,

and

((π1 · π2) · π3)(z) = (π1 · π2)(Z)π3(z)c(12)3 = π1(z)π2(z)π3(z)c12c(12)3,

where

c(12)3 =
1∑

z′∈Z(π1 · π2)(z′)π3(z′)
=

1∑
z′∈Z π1(z′)π2(z′)π3(z′)c12

.

This yields that

((π1 · π2) · π3)(z) =
π1(z)π2(z)π3(z)∑

z′∈Z π1(z′)π2(z′)π3(z′)
.

We can similarly establish that the right-hand side of the latter equality coincides with
(π1 · (π2 · π3))(z). In view of the fact that z ∈ Z is arbitrary, we have (π1 · π2) · π3 =
π1 · (π2 · π3). The proof is complete.

Remark 3.2. Remark 2.1 can be interpreted in the following way: the uniform
probability π plays the role of unity with respect to integration as multiplication, and
any concentrated probability plays the role of zero.

Theorem 3.1 yields the following statement.
Corollary 3.1. For any positive integer n > 1 and any collection (π1, . . . , πn) ∈

Π(n), the integration result π1 ·. . .·πn does not change when “multiplying” in any order
and in any number of steps; to be precise, π1 ·. . .·πn = (πi1 ·. . .·πik1

)·(πik1+1 ·. . .·πik2
)·

. . . · (πikm · . . . · πin) for any permutation (i1, . . . , in) of (1, . . . , n) and any increasing
sequence (kj)

m
1 from {2, . . . , n− 1}.

3.2. Integration degrees. In view of Corollary 3.1, for any probability π ∈ Π
and any positive integer n > 1, we denote the result of integration of n copies of π
by πn; the probability πn is called the nth integration degree of probability π; for
consistency, probability π is called the first integration degree and is denoted by π−1.

The next theorem, which follows directly from the definition of integration result,
establishes that the nth integration degree of a probability inherits the order of its
values and makes the difference between them larger as n increases.

Theorem 3.2. For any probability π ∈ Π and any positive integer n, the following
statements are true.

1. Z+(πn) = Z+(π).
2. For any elements z1, z2 ∈ Z+(π) the equality

πn(z1)

πn(z2)
=

(
π(z1)

π(z2)

)n

holds.
Theorem 3.2 obviously yields the following.
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Corollary 3.2. Let Z∗ be the set of all points of maximum of a probability
π ∈ Π, and let the probability π∗ ∈ Π be uniform on Z∗, i.e., π∗(z) = 0 for all
z ∈ Z \ Z+(π) and π∗(z) = 1/|Z∗| for all z ∈ Z∗. Then πn → π∗ in Π as n → ∞.

We call a probability π∗ ∈ Π an integration root of the nth degree of a probability
π ∈ Π if πn

∗ = π (here n is a positive integer). According to Theorem 3.2, an integra-
tion root π∗ of the nth degree of a probability π ∈ Π inherits the order of values of π
and smoothes the difference between them; this fact allows for the interpretation that
the estimate π∗ is due to an imperfect prototype of the method giving the estimate π.

Theorem 3.3. For any probability π ∈ Π and any positive integer n there exists
a unique integration root of the nth degree of π.

Proof. Let us consider some probability π ∈ Π. By definition, probability π∗ ∈ Π
is an integration root of the nth degree of π if πn∗ = π or, which is the same, the
relation

πn
∗ (z)∑

z′∈Z πn∗ (z′)
= π(z) (z ∈ Z)

is true. Let us put elements of the set Z in order; i.e., we put Z = {z1, . . . , zN}, where
N = |Z|. Then the criterion that π∗ ∈ Π is an integration root of the nth degree of

π is that the vector (πn
∗ (z1), . . . , π

n
∗ (zN ),

∑N
i=1 π

n
∗ (zi)) solves the system of algebraic

equations

(3.1)

x1 − π(z1)xN+1 = 0,
. . . . . . . . . . . . . . . . . . . . . .
xN − π(zN )xN+1 = 0,

x1 + · · ·+ xN − xN+1 = 0

with additional restrictions

(3.2) x1, . . . , xN � 0, x
1/n
1 + · · ·+ x

1/n
N = 1.

Let A denote the matrix of the system (3.1). We have

A =

⎛
⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 −π(z1)
0 1 0 . . . 0 0 −π(z2)
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1 −π(zN)
1 1 1 . . . 1 1 −1

⎞
⎟⎟⎟⎟⎠ .

The sum of the first N rows of the matrix A is equal to its (N + 1)th row, and its
left upper submatrix of size N × N is not degenerate. Consequently, the rank of
the matrix A is equal to N . So the set of all solutions of the system (3.1) forms a
one-dimensional subspace in RN+1. Let (y1, . . . , yN+1) be some nonzero solution of
the system (3.1). Since π(z1), . . . , π(zN ) are nonnegative and there are nonzero values
among them, then, as it can be seen from (3.1), yN+1 �= 0, there are nonzero numbers
among y1, . . . , yN , and the signs of all such nonzero numbers coincide with the sign of
yN+1. Without loss of generality, we assume that yN+1 > 0 (otherwise we multiply
y1, . . . , yN+1 by −1). Then we have y1, . . . , yN+1 � 0.

We put

λ =

(
1

y
1/n
1 + · · ·+ y

1/N
N

)n

,(3.3)

xi = λyi (i ∈ {1, . . . , N + 1}).(3.4)
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It is evident that x1, . . . , xN satisfy the inequality from (3.2). Further, we have

(3.5) x
1/n
1 + · · ·+ x

1/n
N = λ1/n(y

1/n
1 + · · ·+ y

1/n
N ) = 1;

so the equality from (3.2) holds true for x1, . . . , xN . Hence, an integration root π∗ of
the nth degree of π exists and can be found from the relations

(3.6) π∗(zi) = x
1/n
i (i ∈ {1, . . . , N}).

If π∗ is an integration root of the nth degree of π, numbers x1, . . . , xN are specified
by (3.6), and xN+1 = x1 + · · ·+ xN ; then, as established above, x1, . . . , xN+1 form a
solution of the system (3.1) and satisfy the restrictions (3.2). Since the subspace of
all solutions of (3.1) is one-dimensional, the relations (3.4) hold for some real number
λ. Then the relations (3.2) imply (3.5); consequently, λ is determined from (3.3). So
there exists a unique integration root of the nth degree of π. The proof is complete.

Since, according to Theorem 3.3, for any positive integer n there exists a unique
integration root of the nth degree of an arbitrary probability π ∈ Π, hereinafter we
denote it by π1/n.

Remark 3.3. Theorem 3.2 yields that, for any probability π ∈ Π and any element
z ∈ Z \Z+(π), the equality π1/n(z) = 0 is true for any positive integer n, and for any
z1, z2 ∈ Z+(π) we have the convergence

π1/n(z1)

π1/n(z2)
=

(
π(z1)

π(z2)

)1/n

→ 1 as n → ∞.

The latter means that π1/n → π∗ in Π, where the probability π∗ is uniform on Z+(π),
i.e., π∗(z) = 0 for all z ∈ Z \ Z+(π) and π∗(z) = 1/|Z+(π)| for all z ∈ Z+(π).

In view of Theorem 3.3, we now introduce rational integration degrees of proba-
bilities. That is, for any probability π ∈ Π and any positive integers n and m, we call
the probability πm/n = (πm)1/n the m/nth integration degree of the probability π.

Remark 3.4. Standard arithmetic relations hold true for rational integration
degrees of probabilities. To be precise, for any probability π ∈ Π and any positive
integers n and m, the probability πm/n = (πm)1/n can be also defined as πm/n =
(π1/n)m. To see this, we have ((π1/n)m)n = (π1/n)mn = (π1/n)nm = ((π1/n)n)m =
πm. Referring to the definition of the root of the nth degree of πm, we obtain that
πm/n = (π1/n)m.

3.3. Disintegration. From the definition of integration of probabilities, it fol-
lows that Z+(π ·π1) = Z+(π)∩Z+(π1) for any probabilities (π, π1) ∈ Π(2). With this
fact in mind, we give the following definition. For probabilities π1, π2 ∈ Π such that
Z+(π2) ⊂ Z+(π1), a probability π ∈ Π is called a result of disintegration of π2 over
π1 if Z+(π2) = Z+(π) ∩ Z+(π1) (and thus (π, π1) ∈ Π(2)) and π · π1 = π2.

Theorem 3.4. Let probabilities π1, π2 ∈ Π be such that Z+(π2) ⊂ Z+(π1). Then
the following statements are true.

1. There exists a result of disintegration of the probability π2 over the probabil-
ity π1.

2. If probability π is a result of disintegration of π2 over π1, then probability
π′ ∈ Π is also a result of disintegration of π2 over π1 if and only if for some μ > 0
the equality π′|Z+(π1) = μπ|Z+(π1), where π|Z+(π1) and π′|Z+(π1) are the restrictions
of π and π′ to Z+(π1) respectively, holds true.



 
 

 

 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

78 A. V. KRYAZHIMSKIY

Proof. Let us organize elements of the set Z and put Z = {z1, . . . , zN}, where
N = |Z|; without loss of generality, we can assume that Z+(π2) = {z1, . . . , zk} and
Z+(π1) = {z1, . . . , zm} for some k,m ∈ {1, . . . , N}, m � k. Then we have

π1(zi)π2(zi) < 0 (i ∈ {1, . . . , k}),(3.7)

π1(zi) < 0, π2(zi) = 0 (i ∈ {k + 1, . . . ,m}),(3.8)

π1, π2(zi) = 0 (i ∈ {m+ 1, . . . , N}).(3.9)

By definition, a probability π ∈ Π is a result of disintegration of π2 over π1 if Z+(π)∩
Z+(π1) and

π(z)π1(z)∑
z′∈Z π(z′)π1(z′)

= π2(z) (z ∈ Z)

or, which is equivalent, the vector (π(z1), . . . , π(zN ),
∑N

i=1 π(zi)π1(zi)) is a solution
of the system of algebraic equations

(3.10)

π1(z1)x1 − π2(z1)xN+1 = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
π1(zN )xN − π2(zN )xN+1 = 0,
π1(z1)x1 + · · ·+ π1(zN )xN − xN+1 = 0

with additional restrictions

(3.11) x1, . . . , xk > 0, xk+1, . . . , xm = 0, xm+1, . . . , xN � 0, x1 + · · ·+ xN = 1

(in the cases k = m and m = N , the second or third restriction should be omitted,
respectively).

If k < m, we put

(3.12) xk+1, . . . , xm = 0.

Then, in view of (3.8), xk+1, . . . , xm satisfy the equations from (3.10) in the rows
numbered k+1, . . . ,m. Appealing to (3.9), we see that if m < N , then the equations
from (3.10) in the rows numbered m + 1, . . . , N are satisfied by arbitrary numbers
xm+1, . . . , xN .

Now we consider the rest of the system (3.10), i.e., its subsystem consisting of
equations in the rows numbered 1, . . . , k and N + 1:

(3.13)

π1(z1)x1 − π2(z1)xN+1 = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
π1(zk)xk − π2(zk)xN+1 = 0,
π1(z1)x1 + · · ·+ π1(zk)xk − xN+1 = 0.

The latter equation from (3.13) is equivalent to the (N + 1)th equation from (3.10).
This follows from (3.12) and (3.9). Let A denote the matrix of the system (3.13).
Then we have

A =

⎛
⎜⎜⎜⎜⎝

π1(z1) 0 0 . . . 0 0 −π2(z1)
0 π1(z2) 0 . . . 0 0 −π2(z2)
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 −π2(z1) −π2(zk)

π1(z1) π1(z2) π1(z3) . . . π1(zk−2) π1(zk−2) −1

⎞
⎟⎟⎟⎟⎠ .
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The first k rows of the matrix A add up to its (k + 1)th row, and its upper left
submatrix of size (k× k) does not degenerate in view of (3.7). So, the rank of matrix
A of the size ((k+1)× (k+1)) is equal to k. Consequently, the set of all solutions of
the system (3.13) is a one-dimensional subspace in Rk+1. Let (y1, . . . , yk, yN+1) be a
nonzero solution of the system (3.13). It is evident that yN+1 �= 0. Without loss of
generality, we can assume that yN+1 > 0 (otherwise, we multiply (y1, . . . , yk, yN+1)
by −1). Then y1, . . . , yk, yN+1 > 0. We take c ∈ (0, 1] and put

(3.14) λ =
c

y1 + · · ·+ yk
, xi = λyi (i ∈ {1, . . . , k,N + 1}).

It is obvious that x1, . . . , xk > 0, x1 + · · · + xk = c. Combining this with (3.12), we
obtain that x1, . . . , xm satisfy the first and the last restrictions in (3.11).

If m = N , then we put c = 1 and (in the case m > k) refer to (3.12); as a result,
we obtain that the collection (x1, . . . , xN , xN+1) of nonnegative numbers solves the
system (3.10) and satisfies the restrictions (3.11) (where the third restriction should be
omitted, and the second restriction should be omitted in the case m = k). If m < N ,
then we take arbitrary numbers xm+1, . . . , xN � 0 that add up to 1 − c. It can be
seen that the collection (x1, . . . , xN , xN+1) solves the system (3.10) and satisfies the
restrictions (3.11) (where the second restriction should be omitted in the case m = k).
So, the probability π ∈ Π determined by the relations

(3.15) π(zi) = xi (i ∈ {1, . . . , N})
is a result of disintegration of π2 over π1. Statement 1 is proved.

Let us prove statement 2. Let a probability π′ ∈ Π be such that π′|Z+(π1) =
μπ|Z+(π1) for some μ > 0 or, what is the same, its values

(3.16) x′
i = π′(zi) (i ∈ {1, . . . , N})

satisfy the equalities

x′
i = μxi (i ∈ {1, . . . ,m}).

Then, in view of (3.12) (in the case m > k), we have

(3.17) x′
k+1, . . . , x

′
m = 0.

We put

(3.18) x′
N+1 = π1(z1)x

′
1 + · · ·+ π1(zN )x′

N .

It is obvious that x′
N+1 = μxN+1. Since a collection (x1, . . . , xm, x′′

m+1, . . . , x
′′
N , xN+1)

with arbitrary numbers x′′
m+1, . . . , x

′′
N � 0 (in the case m < N) solves the sys-

tem (3.10) with the restrictions (3.11), we obtain that (π′(z1), . . . , π′(zN ), x′
N+1) =

(x′
1, . . . , x

′
N+1) possesses the same properties. Consequently, the probability π′ is a

result of disintegration of the probability π2 over the probability π1.
Conversely, let a probability π′ be a result of disintegration of the probability

π2 over the probability π1. Then the collection (x′
1, . . . , x

′
N+1) determined by the

formulas (3.16) and (3.18) is a solution of the system (3.10) with the restrictions (3.11);
in particular, with m > k, we have (3.17). Then the relations

x′
i = λyi (i ∈ {1, . . . , k,N + 1})
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hold true for some λ′ > 0. According to (3.14), we hence obtain

x′
i = μxi (i ∈ {1, . . . , k,N + 1}),

where μ = λ′/λ. Consequently, in view of (3.15), (3.16), (3.12), and (3.17) (the two
latter relations occur only in the case m > k), we conclude that

π′(zi) = μπ(zi) (i ∈ {1, . . . ,m}).

So we have π′|Z+(π1) = μπ|Z+(π1). Theorem 3.4 is proved.
For arbitrary probabilities π1, π2 ∈ Π such that Z+(π2) ⊂ Z+(π1), we denote

the set of all results of disintegration of π2 over π1 by [π2/π1]. The multivalued
mapping (π1, π2) �→ [π2/π1] that is defined on the set of all (π1, π2) ∈ Π2 such that
Z+(π2) ⊂ Z+(π1) is called disintegration.

Corollary 3.3. Let probabilities π1, π2 ∈ Π be such that Z+(π2) ⊂ Z+(π1).
The following statements are valid.

1. If Z+(π1) = Z, then the set [π2/π1] consists of one element.
2. If Z+(π1) �= Z and π ∈ [π2/π1], then the relation

[π2/π1] =

{
π′ ∈ Π: π′|Z+(π1) = μπ|Z+(π1), 0 < μ � 1∑

z∈Z+(π1)
π(z)

}

holds.
Proof. Let Z+(π1) = Z. If π′ ∈ [π2/π1], then, from statement 2 of Theorem 3.4,

we have π′ = π′|Z+(π1) = μπ|Z+(π1) = μπ for some μ > 0. As π, π′ ∈ Π, it is necessary
that μ = 1. Statement 1 is thus proved.

Let Z+(π1) �= Z. From statement 2 of Theorem 3.4, π′ ∈ [π2/π1] if and only if
π′|Z+(π1) = μπ|Z+(π1) for some μ > 0. The latter is, in turn, possible if and only if
μ
∑

z∈Z+(π1)
π(Z) ∈ (0, 1]. Statement 2 is proved.

Remark 3.5. Under the assumptions of Corollary 3.3, there exists a unique
probability π′ ∈ [π2/π1] such that Z+(π′) = Z+(π2). Indeed, let a probability π′ ∈
[π2/π1] be such that

(3.19) π′|Z+(π1) =
1∑

z∈Z+(π1)
π(z)

π|Z+(π1).

Then
∑

z∈Z+(π1)
π′(z) = 1, whence it follows that Z+(π′) ⊂ Z+(π1). Further, the

fact that π′ · π1 = π2 implies the equality π′(z) = 0 for any z ∈ Z+(π1) \ Z+(π2)
and the inequality π′(z) > 0 for any z ∈ Z+(π2). Consequently, Z+(π′) = Z+(π2).
Conversely, if a probability π′ ∈ [π2/π1] is such that Z+(π′) = Z+(π2), then the
relations (3.19) hold.

Based on Remark 3.5, for any probabilities π1, π2 ∈ Π such that Z+(π2) ⊂
Z+(π1), we denote the only probability π ∈ [π2/π1] such that Z+(π) = Z+(π2)
by π2/π1.

Remark 3.6. For any probability π ∈ Π+ (with positive values; see notation in
section 1), we have Z+(π) = Z. Thus the reduction of disintegration on the product
Π+ × Π+ is correctly defined. From statement 1 of Corollary 3.3, the reduction of
disintegration on the product Π+×Π+ is a one-to-one mapping; it evidently assumes
values in the set Π+. So, the set Π+ is invariant with respect to both integration
and disintegration. It can be easily seen that disintegration as a (one-to-one) function
on Π+ × Π+ with values in Π+ is continuous. As noted above (see Remark 1.1),
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integration is also continuous. Consequently, with account for commutativity and as-
sociativity of integration (Theorem 3.1), we conclude that the set Π+ with integration
understood as an algebraic operation of multiplication is a topological Abelian group,
in which the uniform probability π plays the role of unity (see Remark 2.1).

With respect to the operation of integration, the operation of disintegration plays
the same role that the operation of division plays with respect to the operation of
multiplication in arithmetics. The restriction Z+(π2) ⊂ Z+(π1) in defining the “quo-
tient” [π2/π1] is an analogue of the standard arithmetic restriction that a divisor is
not equal to zero. The following theorem states that the relationship between the
operations of integration and disintegration is completely similar to that between the
arithmetic operations of multiplication and division.

Theorem 3.5. The following statements are valid.
1. Let probabilities π1, π2, π3 ∈ Π be such that Z+(π3) ⊂ Z+(π2) ⊂ Z+(π1). Then

(3.20) [[π3/π2]/π1] = [π3/(π2 · π1)],

where

[[π3/π2]/π1] =
⋃

π′∈[π3/π2]

[π′/π1].

2. Let probabilities π1, π2, π3 ∈ Π be such that Z+(π1) = Z+(π2) = Z+(π3) and
π1 · π2 = π1 · π3. Then π2 = π3.

3. Let probabilities π1, π2, π3 ∈ Π be such that Z+(π1) = Z+(π2) = Z+(π3). Then

(3.21) (π3 · π2)/π1 = (π3/π1) · π2.

Proof. Let us prove statement 1. Let probabilities π1, π2, π3 ∈ Π be such that
Z+(π3) ⊂ Z+(π2) ⊂ Z+(π1). We take some probability π from [[π3/π2]/π1]. Then
π ∈ [π′/π1] for some π′ ∈ [π3/π2]. Hence it follows that π · π1 = π′ and π′ · π2 = p3.
Thus we have π · π1 · π2 = π3 which is the same as π · (π1 · π2) = π3. Consequently,
π ∈ [π3/(π2 · π1)]. Now let us show the inverse inclusion. We take some probability
π ∈ [π3/(π2 · π1)]. We have π · (π2 · π1) = π3 which is the same as (π · π1) · π2 = π3.
Consequently, π′ = (π ·π1) ∈ [π3/π2] and π ∈ [π′/π1]. The necessary inverse inclusion
is established. The equality (3.20) is valid.

Let us prove statement 2. Let probabilities π1, π2, π3 ∈ Π be such that Z+(π3) =
Z+(π2) = Z+(π1) and π1 · π2 = π1 · π3. It is evident that π2 = (π1 · π2)/π1 and
π3 = (π1 · π3)/π1. This yields π2 = π3.

Let us prove statement 3. Let probabilities π1, π2, π3 ∈ Π be such that Z+(π1) =
Z+(π2) = Z+(π3). We put π = (π3 · π2)/π1. By definition and assumptions, we have

(3.22) Z+(π3 · π2) = Z+(π1) = Z+(π)

and π ·π1 = π3 ·π2. Let π
′ = π/π2. By definition and in view of (3.22), the equalities

(3.23) Z+(π′) = Z+(π) = Z+(π1)

and

(3.24) π = π′ · π2

hold. From here, we have π′ · π2 · π1 = π3 · π2 or

(3.25) (π′ · π1) · π2 = π3 · π2.
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Using (3.23) and the assumption, we obtain the equalities Z+(π′ · π1) = Z+(π1) =
Z+(π2) = Z+(π3). Then from statement 2 of (3.25) it follows that π′ ·π1 = π3. Hence
π′ = π3/π1. Consequently, in view of (3.24), the equalities π = π′ · π2 = (π3/π1) · π2

are true. This proves the equality (3.21). The proof is complete.

4. Integration and probability sequences.

4.1. Integration limits. We call a sequence (πi)
∞
i=1 of probabilities from Π con-

sistent if for any positive integer n the probabilities π1, . . . , πn are consistent or, what
is the same, (π1, . . . , πn) ∈ Π(n). We note that, for a consistent sequence (πi)

∞
i=1 of

probabilities from Π, the result π1 · . . . ·πn of integration of the probabilities π1, . . . , πn

is determined for any positive integer n. For an arbitrary consistent sequence (πi)
∞
n=1

of probabilities from Π, we call each partial limit in Π of the sequence (π1 · . . . ·πn)
∞
n=1

a partial integration limit of the sequence (πi)
∞
i=1; if there exists only a partial in-

tegration limit of a sequence (πi)
∞
i=1, we call it the integration limit of the sequence

(πi)
∞
i=1.
Remark 4.1. As noted in section 1, the set Π as a topological space is a com-

pactum. Thus, every consistent sequence of probabilities in Π has at least one partial
limit.

We say that a consistent sequence of probabilities in Π integrationally converges
if it has an integration limit, and it integrationally diverges in the opposite case.
An integrationally converging sequence of probabilities in Π is called integrationally
concentrated if its integration limit is a concentrated probability.

These definitions allow simple informal interpretations. If a sequence (πi)
∞
i=1

of probabilities is integrationally concentrated, then the corresponding observational
methods 1, 2, . . . interact in the course of their sequential addition, improve informa-
tion on the observed element, and give complete information on it in the limit. If
a sequence (πi)

∞
i=1 integrationally converges but is not integrationally concentrated,

then the methods 1, 2, . . . “find consensus” in the course of their sequential integra-
tion and finally give substantial, though not complete, information on the observed
element. If a sequence (πi)

∞
i=1 integrationally diverges, then the methods 1, 2, . . . do

not give consistent information on the observed element in the limit.
Now we give an example of a consistent integrationally diverging sequence of

probabilities.
Example 4.1. Let Z = {z1, z2}, probabilities π(1), π(2) ∈ Π be such that

π(1)(z1) > π(1)(z2) > 0, π(2)(z2) > π(2)(z1) > 0,

and a sequence (πi)
∞
i=1 of probabilities from Π be determined by the following rela-

tions:

πi = π(1) (i ∈ {1, . . . , k2j−1}, j ∈ {1, 2, . . .}),
πi = π(2) (i ∈ {k2j−1 + 1, . . . , k2j}, j ∈ {1, 2, . . .}),

where 1 < k1 < k2 < k3 < · · · . The sequence (πi)
∞
i=1 is obviously consistent. We put

(4.1) π∗j = π1 · . . . · πkj , π∗
j,j+1 = πkj+1 · . . . · πkj+1 (j = 1, 2, . . .),

q(1) =
π(1)(z2)

π(1)(z1)
, q(2) =

π(2)(z2)

π(2)(z1)
.
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It is obvious that q(1) < 1, a(2) > 1. We have

π∗
1(z1) =

π(1)k1(z1)

π(1)k1(z1) + π(1)k1(z2)
=

1

1 + q(1)k1
.

Let us take a sequence (εj)
∞
j=1 of positive numbers that tends to zero. Let a positive

integer k1 be such that q(1)k1 < ε1. Then we have

(4.2) π∗
1(z1) >

1

1 + ε1
.

Furthermore, we obtain

π∗
1,2(z1) =

π(2)(k2−k1)(z1)

π(2)(k2−k1)(z1) + π(2)(k2−k1)(z2)
=

1

1 + q(2)(k2−k1)
,(4.3)

π∗
2(z1) = (π∗

1 · π∗
1,2)(z1) =

π∗
1(z1)π

∗
1,2(z1)

π∗
1(z1)π

∗
1,2(z1) + π∗

1(z2)π
∗
1,2(z2)

<
π∗
1(z1)π

∗
1,2(z1)

π∗
1(z2)π

∗
1,2(z2)

=
π∗
1(z1)

π∗
1(z2)

π∗
1,2(z1)

1− π∗
1,2(z1)

.(4.4)

Taking into account (4.3) and the inequality q(2) > 1, we choose a positive integer
k2 > k1 in such a way that the right-hand side of (4.4) is smaller than ε2. This yields

(4.5) π∗
2(z1) < ε2.

As with the estimates (4.2) and (4.5), we provide the validity of the inequalities

π∗
2j−1(z1) >

1

1 + ε2j−1

, π∗
2j (z1) < ε2j (j ∈ {1, 2, . . .})

by choosing positive integers k3, k4, . . . . It can be seen that probability limj→∞ π∗
2j−1

is concentrated at z1 and the probability limj→∞ π∗
2j is concentrated at z2. Accord-

ing to (4.1), both probabilities are partial integration limits of the sequence (πi)
∞
i=1.

Consequently, the sequence (πi)
∞
i=1 integrationally diverges.

Theorems 4.1, 4.2, and 4.3 specify simple conditions of integration concentration
of probability sequences. Theorem 4.1 follows directly from the fact that concentrated
probabilities play the role of zero elements with respect to the operation of integration
understood as multiplication (see Remark 3.2).

Theorem 4.1. Let (πi)
∞
i=1 be a consistent sequence of probabilities from Π and a

probability πk be concentrated for some positive integer k. Then the sequence (πi)
∞
i=1

is integrationally concentrated and πk is its integration limit.
The next theorem following from the definition of a measure of concentration

gives a criterion of concentration of a probability sequence.
Theorem 4.2. Let a measure μ be a measure of concentration. A consistent

sequence (πi)
∞
i=1 of probabilities from Π is integrationally concentrated if and only if

limn→∞ μ(π1 · . . . · πn) = 1.
The following theorem indicates that if probabilities forming a consistent sequence

give an unambiguous preference to the same element, then the sequence is integra-
tionally concentrated at this element.

Theorem 4.3. Let a sequence (πi)
∞
i=1 of probabilities from Π be consistent, and

there exists an element z∗ ∈ Z and a positive number q < 1 such that πi(z)/πi(z∗) < q
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for all z ∈ Z \ {z∗} and all positive integers i. Then the sequence (πi)
∞
i=1 is integra-

tionally concentrated and its integration limit is concentrated at z∗.
Proof. For each element z ∈ Z and each positive integer n, we put

(4.6) vn(z) =
(π1 · . . . · πn)(z)

(π1 · . . . · πn)(z∗)
=

π1(z) · · ·πn(z)

π1(z∗) · · ·πn(z∗)
.

It is obvious that, for each element z ∈ Z \ {z∗}, we have vn(z) � qn (n ∈ {1, 2, . . .})
and, consequently, (π1 · . . . · πn)(z) → 0 as n → ∞. So the sequence (π1 · . . . · πn)

∞
n=1

converges in Π to the probability concentrated at z∗. The proof is complete.

The following example demonstrates that, if the conditions of Theorem 4.3 are
satisfied with q = 1, then the statement of the theorem is generally not true.

Example 4.2. Let Z = {z, z∗}, π1, π2, . . . ∈ Π, and qi = πi(z)/πi(z∗) ∈ (0, 1) for
all positive integers i. Furthermore, let qi+1 > qi for all positive integers i and the
series

∑∞
i=1 | log qi| converge. Then the sequence (vn)

∞
n=1 specified by the formula (4.6)

assumes values in (0, 1) and decreases; consequently, vn → v ∈ [0, 1) as n → ∞. So,
the sequence (πi)

∞
i=1 is consistent and integrationally converges. Since the series∑∞

i=1 | log qi| converges, we have v = limn→∞ q1 · · · qn > 0. Hence the integration
limit of the sequence (πi)

∞
i=1 is not concentrated.

Now we give some sufficient conditions of integration convergence of a probability
sequence. The statement below follows directly from the definition of integration and
its continuity (see Remark 1.1).

Theorem 4.4. Let a sequence (πi)
∞
i=1 of probabilities from Π be consistent, let

there exist a positive integer k � 2 such that the sequence (πi)
∞
i=k integrationally

converges, and let π be its integration limit. Then the sequence (πi)
∞
i=1 integrationally

converges and π1 · . . . · πk−1π is its integration limit.

The following theorem is a generalization of Theorem 4.3, and its proof is similar
to that of the latter theorem.

Theorem 4.5. Let a sequence (πi)
∞
i=1 of probabilities from Π be consistent, let

the probabilities π1, π2, . . . have a common set Z∗ of maximum points, and there exists
a positive number q < 1 such that πi(z)/πi(z∗) < q for all z ∈ Z \ Z∗, all z∗ ∈ Z∗,
and all positive integers i. Then the sequence (πi)

∞
i=1 integrationally converges and its

integration limit π is the uniform probability on Z∗, i.e., π(z) = 1/|Z∗| for all z∗ ∈ Z∗
and π(z) = 0 for all z ∈ Z \ Z∗.

The following theorem states that a probability sequence integrationally converges
if the probabilities forming it put the elementary events in order in a similar way.

Theorem 4.6. Let a sequence (πi)
∞
i=1 of probabilities from Π be consistent, and

there exists a sequence (zk)
N
k=1 from Z such that {z1, . . . , zN} = Z and πi(z1) � · · · �

πi(zN ) for all positive integers i. Then the following statements are true.

1. The sequence (πi)
∞
i=1 integrationally converges and its integration limit π sat-

isfies the inequalities π(z1) � · · · � π(zN ).

2. If there exist a positive number q < 1, a positive integer l ∈ {1, . . . , N − 1},
and a subsequence (πim)∞m=1 of the sequence (πi)

∞
i=1 such that πim(zl)/πim(zN ) < q

for all positive integers m, then π(z1) = · · · = π(zl) = 0.

Proof. We prove statement 1. Let j ∈ {1, . . . , N} be the minimum of all k ∈
{1, . . . , N} such that πi(zk) > 0 for all positive integers i. It is evident that, for any
positive integer k < j, we have (π1 · . . . · πn)(zk) = 0 for all sufficiently large n. If
j = N , then for all sufficiently large n we obtain (π1 · . . . ·πn)(zk) = 1, which completes
the proof. Let j � N − 1. For any k ∈ {j, . . . , N − 1} and any positive integer n,
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we put

vkn =
(π1 · . . . · πn)(zk)

(π1 · . . . · πn)(zk+1)
=

π1(zk) · · ·πn(zk)

π1(zk+1) · · ·πn(zk+1)
.

By assumption, for any k ∈ {j, . . . , N − 1} we have vkn � 1, and the sequence
(vkn)

∞
n=1 does not increase; hence vkn � 1 for all positive integers n. Consequently,

(π1·. . .·πn)(zk) � (π1·. . .·πn)(zk+1) for all k ∈ {j, . . . , N−1} and all positive integers n.
To complete the proof, it is sufficient to show that the sequence ((π1 · . . . ·πn)(zk))

∞
n=1

converges for any k ∈ {j, . . . , N − 1}. We note that, for any k ∈ {j, . . . , N − 1},
the not increasing sequence (vkn)

∞
n=1 converges. Let us show that the sequence ((π1 ·

. . . ·πn)(zN ))∞n=1 does not decrease (here we slightly modify the reasoning used in the
proof of Lemma 2.1). By definition, we have

(π1 · π2)(zN ) =
π1(zN)π2(zN )∑N
k=1 π1(zk)π2(zk)

=
π1(zN)∑N−1

k=1 π1(zk)q(zk) + π1(zN )
,

where q(zk) = π2(zk)/π2(zN ) for k ∈ {1, . . . , N − 1}. Since q(zk) � 1 for k ∈
{1, . . . , N − 1}, we have (π1 · π2)(zN ) � π1(zN ). Similarly, by induction, we establish
that (π1 · . . . · πn+1)(zN ) � (π1 · . . . · πn)(zN ) for any positive integer n. So, the
sequence ((π1 · . . . · πn)(zN ))∞n=1 does not decrease and, consequently, converges. For
all positive integers n, we have (π1 · . . . · πn)(zN−1) = vN−1,n(π1 · . . . · πn)(zN ). As
each of the sequences (vN−1,n)

∞
n=1 and ((π1 · . . . ·πn)(zN ))∞n=1 converges, the sequence

((π1 · . . . ·πn)(zN−1))
∞
n=1 also converges. Similarly, by induction, we establish that the

sequence ((π1 · . . . · πn)(zk))
∞
n=1 converges for any k ∈ {j, . . . , N − 1}. Statement 1 is

proved.
Let us prove statement 2. Let its assumptions be satisfied. For all sufficiently

large positive integers n, we have

wn =
(π1 · . . . · πn)(zl)

(π1 · . . . · πn)(zN )
=

π1(zl) · · ·πn(zl)

π1(zN ) · · ·πn(zN )
� qs(n),

where s(n) is the maximum of all im (m ∈ {1, 2, . . .}) such that im � n. Since
s(n) → ∞ as n → ∞, we have wn → 0 as n → ∞. Consequently, π(zl) = limn→∞(π1 ·
. . . · πn)(zl) = 0. Since π(z1) � · · · � π(zl), we have π(z1) = · · · = π(zl) = 0.
Statement 2 is proved.

Taking into account Theorem 4.4, we immediately derive from Theorem 4.6 that,
for integration convergence of a probability sequence, it is sufficient that all probabil-
ities forming it, with the possible exception of a finite number, prioritize elementary
events in the same order.

Corollary 4.1. Let a sequence (πi)
∞
i=1 of probabilities from Π be consistent

and there exist a sequence (zk)
N
k=1 in Z such that {z1, . . . , zN} = Z and πi(z1) �

· · · � πi(zN) for all sufficiently large positive integers i. Then the sequence (πi)
∞
i=1

integrationally converges, and statement 2 of Theorem 4.6 is valid.

4.2. Permutations in integration of sequences. As noted above (see Corol-
lary 3.1), the result of integration of a finite number of probabilities does not depend
on the order in which they are integrated. From here it follows immediately that finite
permutations in infinite probability sequences do not change their partial limits. To
be precise, the following is true.

Corollary 4.2. Let a sequence (πi)
∞
i=1 of probabilities from Π be consistent,

k be a positive integer, (i1, i2, . . . , ik) be a permutation in the collection (1, 2, . . . , k),
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and

π∗
j =

{
πij if j ∈ {1, . . . , k},
πj if j ∈ {k + 1, k + 2, . . .}.

Then the sets of all partial integration limits of the sequences (πi)
∞
i=1 and (π∗

i )
∞
i=1

coincide.
The following example demonstrates that this statement is not true for infinite

permutations in probability sequences.

Example 4.3. Let Z = {z1, z2} and probabilities π
(1)
i , π

(2)
i ∈ Π (i ∈ {1, 2, . . .})

be such that

π
(1)
i (z1) = 1− εi, π

(1)
i (z2) = εi, π

(2)
i (z1) = εi, π

(2)
i (z2) = 1− εi,

where εi ∈ (0, 1) and limi→∞ εi = 0. For arbitrary i and j � i, we introduce notation

π
(1)
ij = π

(1)
i · . . . · π(1)

j , π
(2)
ij = π

(2)
i · . . . · π(2)

j .

From Theorem 4.3 we have

(4.7) π
(1)
ij → π(1) in Π, π

(2)
ij → π(2) in Π,

where π(1) and π(2) are concentrated at z1 and z2, respectively. We take positive
integers k1, k2, . . . and put

π′
j = π

(1)
j , (j ∈ {1, . . . , k1}),

π′
k1+1 = π

(2)
1 ,

π′
j = π

(1)
j , (j ∈ {k1 + 2, . . . , k1 + 2 + k2}),

π′
k1+k2+3 = π

(2)
2 ,

. . . . . . . . . . . . . . . . . . . . . . . . .

π′
j = π

(1)
j , (j ∈ {ms, . . . ,ms+1}),

π′
ms+1+1 = π

(2)
s+1,

. . . . . . . . . . . . . . . . . . . . . . . . . ,

where ms =
∑s

l=1 kl + s+ 1. The sequence (π′
j)

∞
j=1 is obviously consistent. We take

positive numbers δ1, δ2, . . . such that lims→∞ δs = 0. Taking into account (4.7), the
fact that π(1) is a zero with respect to integration as an operation of multiplication,
and the continuity of integration, we sequentially choose positive integers k1, k2, . . .
in such a way that the relations

(π′
1 · . . . · π′

ms+1+1)(z1) = (π′
1 · . . . · π′

ms+1 · · ·π(1)
ms+1ms+1 · π(2)

ms+1+1)(z1)

=
(
π
(1)
ms+1ms+1

· (π′
1 · . . . · π′

ms+1 · π(2)
ms+1+1

))
(z1) > 1− δs

are true. Then, in view of Theorem 2.1, for all k ∈ {ms+1 + 2, . . . ,ms+3} =
{ms+2, . . . ,ms+3}, we obtain

(π′
1 · . . . · π′

k)(z1) = ((π′
1 · . . . · π′

ms+1+1) · πms+2 · . . . · π′
k)(z1)

= ((π′
1 · . . . · π′

ms+1+1) · π(1)
ms+2

· . . . · π(1)
k )(z1)

> (π′
1 · . . . · π′

ms+1+1)(z1) > 1− δs.
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So, π(1) is the integration limit of the sequence (π′
j)

∞
j=1. Now we define probabilities

π′′
1 , π

′′
2 , . . . ∈ Π by interchanging the positions of π

(1)
j and π

(2)
j in the definition of

π′
1, π

′
2, . . . . Reasoning in a similar way, we establish that π(2) is the integration limit

of the sequence (π′′
j )

∞
j=1. It is clear that the sequence (π′′

j )
∞
j=1 is derived from the

sequence (π′
j)

∞
j=1 by infinite permutation. So, the infinite permutation of the sequence

(π′
j)

∞
j=1 changes its integration limit, though it remains integrationally converging.

Conclusion. This paper is inspired by problems arising in applied research in
analysis of inexact data coming from alternative independent sources. A method for
integration of data represented in the form of probability distributions is proposed.
Initial research of the method in the simplest case of a finite set of elementary events
is conducted. Among problems planned for further research, we mention the follow-
ing: extension of this theory to the cases of infinite probability spaces, in particular,
spaces with probabilities given by distribution densities; creation of a “multiplication
table” of standard distributions, that is, of the results of their pairwise integration;
comparison of informativeness of a priori probabilities and results of their a posteriori
integration in terms of different measures of concentration; extension of the proposed
method to stochastic processes; and problems of optimal choice of a priori probabilities
for a posteriori integration.
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