

Asian water futures - Multi scenarios, models and criteria assessment -

Yusuke SATOH

WAT Program

International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Water future and solutions (WFaS) initiatives

Peter Burek¹, Yoshihide Wada^{2,3,4}, Martina Flrörke⁵, Stephanie Eisner⁵, Naota Hanasaki⁶, Mohamed Taher Kahil¹, Sylvia Tramberend¹, Günther Fischer¹, David Wiberg⁷

> ¹International Institute for Applied System Analysis, Schlossplatz 1 A-2361 Laxenburg, Austria ²Department of Physical Geography, Utrecht University, Utrecht, The Netherlands, ³NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
> ⁴Center for Climate Systems Research, Columbia University, 2880 Broadway, New York, NY 10025, USA ⁵Center for Environmental Systems Research, University of Kassel, Kassel, Germany ⁶National Institute for Environmental Studies, Tsukuba, Japan ⁷International Water Management Institute, Colombo, Sri Lanka

18 April 2016 EGU, Vienna

Contents

- Introduction and purpose of this study
- WFaS approach
 - 1. Hydro-economic classification
 - 2. scenario-building
 - 3. multi-model analysis
- Results and analysis
 - 1. Projection of water supply
 - 2. Projection of water demand
 - 3. Water scarcity (Imbalance between demand and supply)
 - 4. Hydro-economic analysis
- Key messages/summary outcomes

S

Purpose of this study

Back ground:

- As well as climate change, these socio-economic change will put additional pressure on water, food and energy systems
- Assessment of these global change will provide essential knowledges for stakeholders and policy makers
- But, only very few assessments have yet used the Shared
 Socioeconomic Pathways (SSPs) to assess the impacts of global change
 on water resources because we need to develop scenarios for water-sector
 as extension of SSPs to investigate possible water futures

[Hanasaki, et al., 2013, Arnell & Lloyd-Hughes, 2014]

The IIASA Water Futures and Solutions Initiative (WFaS) initiative developed a set of water use scenarios

Purpose:

→ depict and assess Asian water futures at country and regional scale with a set of new "water scenarios

WFaS approach

✓ Multi-criteria
 ✓ Multi-scenarios
 ✓ Multi-models

Regions, countries or basins are classified on the basis of two major dimensions;

- bit the basis of two major dimensions;
 Economic-Institutional Capacity (Y-axis)
 GDP (in PPP) per capita
 Corruption Perception Index; Educational Achievements
- low Hydro-climatic Complexity (X-axis) 2. withdrawals/resources, variability, dependency)
 - Total renewable surface water resources per capita
 - Share of Total Water demand (withdrawal) in total surface water supply
 - Coefficient of variation of monthly runoff
 - Share of external water resources in total surface water supply

Multi-criteria approach Hydro-Economic Classification

Select component indicator variables for X-axis representing a country's hydrological complexity

 $IX = \sum_{i=1}^{Nx} w_i X_i / \sum_{i=1}^{Nx} w_i$

- 2. Map each indicator variable to respective component index values in interval [0,1]
- 3. Choose criteria weights wi, i=1,Nx and calculate compound index:

- 4. Select component indicator variables for Y-axis representing a country's economic-institutional capacity and map to component index values and compound index *IY*
- 5. Map countries according to X- and Y-dimensions and classify accordingly

✓ Multi-scenario approach

WFaS water scenarios

Rich

high

HE-3

Α

В

с

Poor

high

HE-4 нм

MM

LM

в

С

D

1. Define feasible combination of SSP and RCP

highest

lowest

✓ Multi-scenario approach

WFaS water scenarios

Scenario assumptions for technology and structural change in the industry and domestic sector

		Hydro-Economic (HE) classification ¹					
		HE-1	HE-2	HE-3	HE-4		
Socio-economic capacity to cope							
with water-related risks		Low (poor)	High (rich)	High (rich)	Low (poor		
Exposure to hydrologic							
complexity & challenges	5	Low	Low	High	High		
ENERGY SECTOR							
To the share is a labor to the second	SSP1-SUQ	1.10%	1.10%	1.20%	1.10%		
Technological change	SSP2-BAU	0.60%	1.00%	1.10%	1.00%		
(annual change rate)	SSP3-DIV	0.30%	0.60%	1.00%	0.60%		
Structural change*	5501.500	40 vr	40 yr	40 vr	40 vr		
[change in cooling	55P1-50Q	None	40 yr	40 11	40 yr		
system, i.e. from one-	55P2-040	None	40 yr	40 yr	40 yr		
through to tower	SSP3-DIV	None	None	40 yr	None		
cooring							
MANUFACTURING SECT	OR						
	SSP1-SUQ	1.10%	1.10%	1.20%	1.10%		
Technological change	SSP2-BAU	0.60%	1.00%	1.10%	1.00%		
[annual change rate]	SSP3-DIV	0.30%	0.60%	1.00%	0.60%		
Structural change	SSP1-SUQ	Yes	Yes	Yes	Yes		
[change in intensity	SSP2-BAU	Yes	Yes	Yes	Yes		
OVER TIME RELATIVE TO GDP per capital	SSP3-DIV	Yes	Yes	Yes	Yes		

		Hydro-Economic (HE) classification ¹					
				HE-3	HE-4		
Socio-economic capacity	to cope						
with water-related risks		Low (poor)	High (rich)	High (rich)	Low (poor)		
Exposure to hydrologic							
complexity & challenges		Low	Low	High	High		
DOMESTIC SECTOR							
To the clocked shares	SSP1-SUQ	1.10%	1.10%	1.20%	1.10%		
[annual change rate]	SSP2-BAU	0.60%	1.00%	1.10%	1.00%		
	SSP3-DIV	0.30%	0.60%	1.00%	0.60%		
Structural change ³ [decrease over given time]	SSP1-SUQ	20% unti 2050	20% until 2050	20% until 2050	20% until 2050		
	SSP2-BAU	None	None	None	None		
	SSP3-DIV	None	None	None	None		

 Detailed explanation of scenario development process and assumptions can be found in <u>Wada et al. (2015)</u>

1	A A 141 1	
	Multi-mod	lel approach

A consistent setting of simulations

Water supply: 5 global hydrological model x 5 forcing(ISI-MIP)Water demand: 3 global hydrological model(WFaS)

- Global 0.5x0.5 degree (applrox. 50km)
 - ⇒ Global -> Asia region
 - ⇒ Scale of assessment

(Asian, Sub-regional, country and sub-country) [Warszawski et al. 2014]

• Main analysis period : the 2010s- the 2050s

GHM	Resolution	Institute	Nation
WaterGAP	0.5° x 0.5°	University of Kassel	Germany
H08	0.5° x 0.5°	NIES	Japan
PCR-GLOBWB	0.5° x 0.5°	University of Utrecht	The Netherlands
MPI-HM	0.5° x 0.5°	Max Planck Institute	Germany
WBM	0.5° x 0.5°	City College of New York	The United States

Results

- 1. Change in water supply
- 2. Change in water demand
- 3. Water scarcity (Imbalance between water demand and supply)
- 4. Hydro-economical analysis

Many regions show decrease in per capita water resource...

Change in demand side

Asian total water demand in the 2010s is about 2410 km³/year and was projected that it will be 3170 - 3460 km³/year (increase by 30 - 40%) under the three scenarios

Middle of the Road

Imbalance between demand and supply

Middle of the Road

Water stress index

Imbalance between demand and supply

Middle of the Road

Imbalance between demand and supply

Middle of the Road

increase under all scenarios, in the range of 1.7 to 2.1 billion, which represents approximately 40% of Asian total population

Total renewable surface water resources per cap

Very high:	CL1 20000 > TWRC > 10000
High:	CL2 10000 > TWRC > 5000
A Medium:	CL3 5000 > TWRC > 2000
Low:	CL4 2000 > TWRC > 1000
Very low:	CL5 1000 > TWRC > 100

Intensity of water use

ery low:	CL1 0.01 < TWD/TWR < 0.05
ow:	CL2 0.05 < TWD/TWR < 0.15
fedium:	CL3 0.15 < TWD/TWR < 0.30
igh:	CL4 0.30 < TWD/TWR < 0.60
ery high:	CL5 $0.60 < TWD/TWR < 1.00$

Inter- and intra annual variability of runoff

 Very low:
 CL1 ... 0 < CVTWR < 30</td>

 Low:
 CL2 ... 30 < CVTWR < 60</td>

 Medium:
 CL3 ... 60 < CVTWR < 100</td>

 High:
 CL4 ... 100 < CVTWR < 150</td>

 Very high:
 CL5 ... 150 < CVTWR < 225</td>

Dependency share of external water resources

Very low.	$CL1 = 0.05 \le DPC \le 0.30$
ow.	$CL^2 = 0.30 \le DPC \le 0.45$
Medium:	$CI_3 = 0.45 < DPC < 0.55$
Jigh.	CL4 = 0.55 < DPC < 0.70
Jery high	CL5 = 0.70 < DPC < 0.05

Country level Hydro-Economic Analysis

Azerbaijan

0.5

0.4

0.3

0.2

0.1

0

0

Australia

New Zealand

🔔 Brunei Darussalam 💁 Japan

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Singapore

Republic of Korea

Pakistan, Afghanistan, and Azerbaijan will remain the most vulnerable countries in Asia, as they will be highly stressed with low adaptive capacity under all scenarios

Viet Nam

Malaysia

ter challenge bing capacity

HE analysis Scenario comparison		Area Po		Popula	Population		GDP		Number of country				
		[10 ⁶ km ²]		[Billon] Trillion US\$200		\$2005/yr							
		2010	2050	2010	2050	2010	2050	2010	2020	2030	2040	2050	
	Total	40		3.9	4.3	23	148						
(SSP1/RCP4.5)	HE1	61%	3%	57%	6%	53%	2%	27	24	20	16	4	
Sustainability	HE2	25%	83%	5%	50%	28%	70%	6	9	12	17	29	
scenario	HE3	0%	10%	0%	37%	0%	25%	0	0	1	2	4	
	HE4	14%	4%	38%	7%	19%	2%	6	6	6	4	2	
	Total	40		3.9	4.7	23	112						
(SSP2/RCP6.0)	HE1	61%	10%	57%	11%	53%	4%	27	24	20	16	15	
Middle of the Road	HE2	25%	51%	5%	16%	28%	23%	6	9	12	16	17	
SCENARIO	HE3	0%	34%	0%	65%	0%	70%	0	0	1	1	4	
	HE4	14%	4%	38%	8%	19%	3%	6	6	6	6	3	
	Total	40		3.9	5.1	23	83						
(SSP3/RCP6.0)	HE1	61%	21%	57%	19%	53%	11%	27	25	21	20	17	
Regional Rivalry	HE2	25%	41%	5%	7%	28%	17%	6	8	11	12	15	
SCENario	HE3	0%	24%	0%	25%	0%	46%	0	0	1	1	1	
	HE4	14%	14%	38%	48%	19%	26%	6	6	6	6	6	
 in the 2050s, in HE-3 or HE-4: 44-73% of Asian population, 27-73% of Asian GDP HE-4 Water Stress, Poor 													
Hydro-climatic cor	- 38% of Asian population, 19% of GDP												

Summary

This study shows that;

- □ We need feasible future water scenarios in conjunction with SSPs and RCPs
- □ Socioeconomic change has significant impacts of on water resource management

Water demand:

- □ Asian total water demand increase between **30 and 40%** under the three scenarios
- At country level, China and India will remain the largest water consumer, followed by Pakistan, Indonesia, and Uzbekistan.

Water scarcity:

Future projections indicate that the area under severe water scarcity conditions in Asia will grow by the 2050s, to include large parts of India, China, and Turkmenistan.
 The number of people living in area experiencing severe water scarcity will increase under all scenarios considered, in the range of 1.7 to 2.1 billion (approximately 40% of Asia's total population).

HE analysis:

Population between 1.9 and 3.4 billion (about 44 to 73% of Asia's total population) will be under high hydro-climatic complexity Complexity (HE3 or HE4) in the 2050s.
 Pakistan, Afghanistan, and Azerbaijan will remain the most vulnerable countries in sia throughout all three scenarios.

Partners Needed! Get Involved

Web: <u>http://www.iiasa.ac.at/wfas</u> Twitter: @WFaS_IIASA Email: <u>wfas.info@iiasa.ac.at</u>

If we focus our attention on problems, we will find problems. If we focus our attention on solutions, we will find solutions.

