Chapter 7

Technological Change and Diffusion
asa L earning Process

Nebojsa Nakicenovic

7.1 Introduction

Energy and carbon intensities of aggregate economic activities, as measured by
the gross domestic product, have generally been declining since the onset of in-
dustrialization two centuries ago (Grilbler and Nakicenovic 1996). Thishistorical
tendency can be observed for most countries, and for some throughout the indus-
trialization process during the past two centuries, as will be shown for the United
States (Nakicenovic 1996). This contrasts significantly with the perspective pro-
vided by disaggregated energy and carbon intensities of individua economic sec-
torsand activities, and even with short-term intensity increases in some countries
(Schmalensee et al. 1998). An important part of the secular decline of energy
and carbon intensities is the result of technologica change. Technologies that
are more energy efficient have replaced less efficient ones, and technol ogies that
are less carbon intensive have replaced those that are more carbon intensive. In
thisway, technologica change has made a mgjor contribution to these long-term
improvements in the productivity of energy. In particular, the decarbonization of
energy—namely, the reduction of the specific carbon content of energy—can be
represented by a learning curve and thus interpreted as along-term learning pro-
cess. In thischapter it isargued that an important component of the dynamics of
technological change and diffusion is a cumulative process of learning by doing.
Surely technology diffusion also takes place as aresult of changes (decreases) in
the price of atechnology or changes (increases) in the price of a saved input (en-
ergy), neither of which need be directly driven by alearning-by-doing process. To
theextent that it isaresult of cumulative learning processes, technological change
isnot an “autonomous’ process, althoughit is often represented as such in energy
and economic models.

A number of implications will be considered with reference to the mitigation
of carbon dioxide (CO2) emissions. Various mitigation strategies for counter-
ing the possibility of climate change have been proposed. Recently, research has
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begun to focus on the formulation of globa CO, emissions profiles that would
lead to the stabilization of atmospheric concentrations at some negotiated level
in accordance with Article 2 of the Framework Convention on Climate Change
(UN/FCCC 1992). For example, all of the CO, emissions profilesthat lead to sta-
bilization of concentrationsthat were analyzed by the Intergovernmenta Panel on
Climate Change (IPCC 1996, 2001) require the eventua elimination of global car-
bon emissions sometime during the next two centuries. In view of theincreasing
need for energy services in the world, especially in developing countries, such
emissions reductions will require a substantia increase in the decarbonization
rate. This, inturn, implies a larger future role for new technologies with lower
CO, emissions. Thus, there is an increasing recognition in the literature that
abatement of CO, emissions requires a sustained commitment to research, devel-
opment, and demonstration (RD&D) today that could lead to diffusion of new,
less carbon-intensive technologiesin the future (see, e.g., Wigley et al. 1996).

It will be shown that, in conjunction with RD&D, timely investment in new
technologies with lower CO, emissions might be a more cost-effective strategy
for reducing globa emissions than postponing investment decisions in the hope
that miti gati on technol ogies might somehow become more attractive through “au-
tonomous’ RD&D improvements and cost reductions in step with the natural
turnover of capitd. It has been argued that the | atter strategy is superior to atime-
lier introduction of lower-emission technologies, because at present these tech-
nologiesare generally costlier than the alternatives (see, e.g., Wigley et al. 1996).
In some cases, there is a trade-off between the cost savings that may be brought
about by rapid technologica change and the cost increases that may thereby be
brought about by prematurely rendering parts of the capital stock obsolete. Al-
though thisistrue, postponement initsalf will bring few additional benefits.

While the costs and performance of technologies are generaly modeled as if
they were exogenous, they are not. Costs of new technol ogieshave been shown to
decline and performance to increase with accumulated experience and improve-
ments. Unless there is dedicated, timely, and pronounced investment in these
technologies, they are unlikely to be developed and thus become commercidly
viable and competitivein the marketplace. Learning by doing isaprerequisitefor
performance improvements, cost reductions, and eventua technology diffusion.
Postponing investment decisions will not by itself bring about the technological
change required to reduce CO, emissions in a cost-effective way. Even worse,
under unfavorable conditionsit might bring about further “lock-in" of energy sys-
tems and economic activities dong fossil-intensive devel opment paths.

The implication is that there may be great leverage in policies and measures
that accelerate the accumulation of experience in new technologies with lower
environmenta impacts, for example, through early adoption and development of
special niche markets. This leverage can be important, particularly if these poli-
cies can minimize the “deadweight” loss to society associated with the foregone
exploitation of cheaper fossil fuels and possible reductions of RD&D in other
parts of the economy. Itisimportant to note that the approach taken here does not
consider potential welfare losses associated with moving resources away from
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RD&D efforts, for example, in other sectors. That is, an acceleration of energy-
related technica progress may be accompanied by reduced levels of RD&D ac-
tivitiesin other sectors, leading to a Slowdown in labor and capital productivity.
These are some of the problems and issues that must be resolved before techno-
logical change can become a truly endogenous component in standard modeling
approaches. |n the meantime, an increasing number of models are being adapted
to explore alternative ways of incorporating endogenous technologica change. In
this chapter, we will explore the nature of the relationship between technologi-
cal change, costs and performance of new technologies, and resulting emissions
profilesfrom the global electricity generation system with the MESSAGE mode.

7.2 Decarbonization

Through decarbonization, energy services can be provided with lower carbon
emissions. The process can be expressed as a product of two factors. decar-
bonization of energy and reduction of the energy intensity of economic activities,
for example, as measured by gross domestic product (GDP). Figure 7.1 shows
the decarbonization of GDP; Figures 7.2 and 7.3 show the decarbonization of en-
ergy and the reduction of energy intensity of GDP, respectively. The example for
the United States is shown in the three figures primarily because the data are of
relatively good quality; however, available data allow the assessment of decar-
bonization trends with reasonable confidence for other mgjor energy-consuming
regions and countries, such as France and the United Kingdom, and for theworld
as awhole (see, e.g., Nakicenovic 1996; Gribler and Nakicenovic 1996). Over
shorter time periods similar decarbonization trends can be obtained for many de-
veloped and industriaizing countries, such as Indiaand China. In Figure 7.1, the
decarbonization rateis expressed in kilograms of carbon (kgC) per unit of GDPin
US dollars measured at 1990 prices. The average annual rate of decline is about
1.3 percent, meaning that every year about 1.3 percent less carbon is emitted to
generate one dollar of value added.

Today, about a quarter of a kilogram of carbon is emitted per dollar value
added in the United States, and about haf that amount is emitted per dollar value
added in Europe and Japan. However, the amount of carbon emitted per dol-
lar value added is significantly greater in most developing and many re-forming
countries. Thus, it is evident there are different paths of economic devel opment
that lead to similar levels of affluence at quite different levels of CO, emissions.
The prime objective of possible mitigation strategies is to reduce these emission
levels by increasing the rate of decarbonization throughout the world. At an av-
erage decarbonization rate of 1.3 percent per year, globa CO, emissions will
increase about 1.7 percent annually, assuming the economic growth rate remains
at about 3 percent per year. Thisincreasewill lead to adoubling of emission levels
in about 40 years. Thus, to stabilize global emissionsat some (higher) level in the
future, the decarbonization rate would have to at |east doubleto offset the current
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Figure 7.1. Decarbonization of Economic Activitiesin the United States.
Expressed in kilograms of carbon per unit of GDP a constant 1990 prices
[kgC/US(1990)%].
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Figure7.2. Decarbonization of Primary Energy inthe United States and Selected
Countries.
Expressedin kilograms of carbon per ton oil equivalent (kgC/toe).

rate of economic growth. The second aternative, maintaining lower rates of eco-
nomic growth, is clearly undesirable in light of the existing widespread poverty
and deprivation throughout the world.

Figure 7.4 portrays another image of the dynamics of decarbonization. The
data from Figure 7.1 are now shown as a learning or experience curve. Theratio
of carbon emissionsto GDP is shown versus the cumul ative emissionsin adouble
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Figure7.3. Primary Energy Intensity of Economic Activitiesin the United States
and Selected Countries.

Expressed in kilograms of oil equivalent per unit GDP at constant 1990 prices
[kgoe/US(1990)%].

logarithmic diagram. There is an exponential decline (linear on double |ogarith-
mic scales) in specific carbon emissions per doubling of cumulative emissions.
Apparently, the more we emit, the more we learn about how to emit less per unit
value. Theprogressratioisactually quite high at about 76 percent (representing a
24 percent cost reduction in specific emissions) per doubling of cumulative emis-
sions. This figure compares with progress ratios in the range of 70-90 percent
across a number of energy technology learning curves reported in the literature
(see, e.g., Christiansson 1995).

The fact that decarbonization of the US economy can be represented as a
learning curve suggests that at least a part of the carbon reductions could be due
to a process of technological learning resulting from cumulative experience. At
the highly aggregated level of the relationship between cumulative emissions and
decreased emissions per unit of value for awhole country, it isdifficult to identify
the component of decarbonization that is due to learning by doing, as opposed
to other mechanisms. The process of cumulative learning may be no more than
asmall part of the explanation, but it may also be the dominant part. However,
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Figure 7.4. Decarbonization of Economic Activitiesin the United States as a
Learning Curve.

Accumulated experience is represented by cumulative CO, emissions, expressed in kilo-
grams of carbon per unit of GDP at constant 1990 prices [kgC/US(1990)$] versus cumu-
lative CO2 emissionsin gigatons of carbon (GtC) on double logarithmic axes.

determining its contribution would require an in-depth analysis of the underlying
processes that isnot possibleat thistime, especially because of thelack of detailed
engineering and microeconomic data for such long periods even for afairly well-
documented country such as the United States.

Asakind of thought experiment, assume a hypothetical case wherethisrate of
decarbonization continues for another century. In this case, one could expect the
specific carbon emissions to continue to decline. To date, the United States has
emitted about 100 gigatonsof carbon (GtC, or billiontonsof carbon), slightly less
than haf the cumulative global emissions, estimated at about 250 GtC. If therate
of decarbonization were to remain the same, another 100 GtC would be emitted
before the specific emissions could be reduced by another 24 percent. Thisrate
is clearly too dow for atransition to the post-fossil era within a century or two.
Thus, for amore drastic increase of decarbonization, substantially higher progress
ratios would be required.

Before discussing the process of endogenizing technologica learning, et us
first consider the technol ogy dynamics behind the historical rates of decarboniza-
tion and the implications decarboni zation carries for the possible diffusion of less
carbon-intensive energy technologiesin the future. Figure 7.5 shows the hierar-
chy of replacements of old energy sources with new ones in the United States.
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Figure7.5. Primary Energy Consumption by Major Energy Sourcesin the United
States.

Expressed in million tons of oil equivalent (Mtoe).

Thisdynamic process of technological substitutionisthedriving force behind the
historical rates of decarbonization.

Traditional energy forms such as animal feed and wood have a high carbon
content, both per unit of energy and per unit of economic activity, because of
the relatively low efficiency with which they deliver demanded energy services.
Draft animals and open fire have very low energy-conversion efficiencies com-
pared with contemporary prime movers and furnaces. It istrue that some of the
released carbon can be reabsorbed by new plant growth and new trees, and by
the replanting of animal feed, but quite often the land is not used in a sustain-
able fashion. For example, because many of these activities are associated with
deforestation and land degradation, they often lead to net carbon flux to the at-
mosphere. The carbon intensity of fuelwood and animal feed is substantialy
higher than that of coal. Moreover, coa can be used with generally higher effi-
ciencies and often much greater convenience for the consumer. For these reasons,
coal eventually supplanted traditional energy forms. This progress toward energy
sources with lower carbon contents and higher conversion efficiencies has con-
tinued, with shifts from coal to oil to natura gas, and more recently to nuclear
energy and new renewabl e sources of energy, both of which have minimal carbon
emissions. Natural gas in itself brings enormous reductions in carbon emissions
(with half the carbon emissions of coal) as well as higher efficiencies.

Using the available data, the historical replacement of coal with oil and later
with natura gascan beillustrated for most countriesand major energy-consuming
regions, as well as for the world as a whole (Marchetti and Nakicenovic 1979;
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Figure 7.6. Primary Energy Substitutionin the United States.

Historical dataand model projections for the future, expressed in fractional market shares
(F) and transformed as F/(1-F) on logarithmic axes.

Nakicenovic 1979). If al energy sources are considered, the replacement process
isvery intricate and complex, as can be seen from Figure 7.5. Similar dynamics of
technological substitution have been studied for other systems, such as transport
and steel making (Griibler and Nakicenovic 1988; Nakicenovic 1990). It isapro-
cess with long transition periods from older to newer technologies, especidly in
the areas of energy systems and infrastructure. The competitive struggle between
the six main sources of primary energy—wood, anima feed, cod, oil, gas, and
nuclear materials—has proved to be a process with regular dynamics that can be
described by relatively simple rules. This process is shown in Figure 7.6 for the
United States, based on the datafrom Figure 7.5.

A glancereved sthe dominance of coal asthe principal energy source between
the 1880s and the 1950s, after along period during which fuelwood, animal feed,
and other traditional energy sources were predominant. The mature coa econ-
omy meshed with the massive expansion of railroads and steamship lines, the
growth of steel making, and the eectrification of factories. During the 1960s,
oil assumed a dominant role in conjunction with the development of automotive
transport, the petrochemical industry, and markets for home heating oil. If this
substitution continuesto progress at similar ratesin the future, natural gaswill be
the dominant source of energy during thefirst decades of the twenty-first century,
athough ail is likely to maintain the second-largest share until the 2020s. Such
an exploratory ook into the future requires additional assumptionsto describe the
subsequent competition of potential new energy sources such as nuclear, solar,
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Figure 7.7. Reductions of Investment Costs for Three Representative New and
Advanced Technologies as a Learning Process.

Expressedin USdollars at constant 1990 prices per unit installed capacity [US(1990)$/kW]
versus cumulative installed capacity (MW) on double logarithmic axes.

and other renewabl es, which have not yet captured sufficient market shares to al-
low an estimation of their penetration rates and market potentials. Because al
of these alternative energy sources have only minimal CO, emissionsand natural
gas has the lowest emissions of al fossil fuels, the unfolding of primary energy
substitutionimplies a continuation of gradual energy decarbonization throughout
theworld.

7.3 Technological Learning

The replacement of old technologies with new ones occurs gradually. The per-
formance of new technologies improves and their costs decrease with increases
in production and use. Accumulated experience and learning can be assumed to
increase with increases in the market shares of a new technology. Astechnologies
mature, their improvement potentials decrease. A somewhat stylized difference
between new and old technologies is that the former are costlier at the time of
thelr introduction, but their costs can be assumed to decrease with increases in
their market share so that at some point the cost curves might cross, making them
a more attractive choice than the old technology. Learning curves capture this
process. Figure 7.7 presents a number of illustrative examples (Grubler et al.
1996; Nakicenovic and Rogner 1996; Nakicenovic et al. 1998). It shows rapid
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declines in investment costs with every doubling of cumulative installed capac-
ity of gas combustion turbines and wind and photovoltaic (PV) systems. This
pattern of performance improvement and cost reductions with accumulated expe-
rience and learning is common to most technologies, although its specific shape
depends on the technology. Typica progress ratios listed in the literature range
between 65 percent and 95 percent for all technologies and between 70 percent
and 90 percent for energy technologies (Christiansson 1995). There are signifi-
cant cost improvements during the RD&D phases of technological devel opment.
For example, in Figure 7.7 an 18 percent reduction in investment costs per dou-
bling of cumulative production (a progress ratio of 88 percent) is shown for the
case of gas combustion turbines. These improvements during the RD&D phase
are followed by more modest improvements after commerciaization, 7 percent
per production doubling for combustion turbines, for example. If such cost re-
ductions were to continue in the future for the PV systems, these systems could
become commercially viableinafew decades, with cost reductionsof about afac-
tor of five to one order of magnitude compared with today’s costs [from between
US$10,000/kW and US$5,000/kW to as little as US$1,000/kW; see I shitani et al.
(1996); Nakicenovic et al. (1996); Nakicenovic et al. (1998)].

Technological learningisreflected in most energy and emission scenarios and
their underlying assumptions. New and emerging technologies are assumed to
have better performance and lower costs in the future compared with current
levels. Figure 7.8 reflects arange of such assumptionsfor some new and emerging
energy-conversion technologies. It is based on the Internationa Institute for Ap-
plied Systems Analysis (IIASA) inventory of mitigation technologies, CO2DB
(Messner and Strubegger 1991; Messner and Nakicenovic 1992; Schéfer et al.
1992). This database currently includes characterization of about 1,600 energy
technologies, from energy extraction and conversion to energy end use. The
database includes current and future technol ogies based on information from the
literature for a number of countries and representative world regions. A large
share of technology descriptions come from various energy modeling efforts.
Most of the information is available for energy-conversion technologies. In many
cases, there are a sufficient number of data points for a given type of technol-
ogy, such as for gas combustion turbinesor PV systems, so that sample mean and
standard deviation can be meaningfully derived. Figure 7.8 shows such statistics
for 10 representative conversion technologies and gives the mean and standard
deviation for current and future (about 2020) investment costs (Strubegger and
Reitgruber 1995). A glance reveds a clear pattern: current costs are higher than
the assumed future costs. The less mature a technology is today (such as the PV
systems), the higher the future cost reductions and the higher the uncertainty, as
evidenced by the wider distribution of cost estimates. Thisisindeed consistent
with the phenomenon of cost reductions associated with learning, assuming that
the installed capacities of these technologies will increase in the future, making
them more competitive compared with current aternatives.

Equivalent assumptions are made in most modeling efforts and scenarios
about future energy and emissions. Over time, new technol ogies become more
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Figure 7.8. Mean and Standard Deviation of Investment Costsfor 10 Represen-
tative Conversion Technologies, Current and Future (about 2020).

Based on data in the IIASA technology inventory CO2DB. Source Strubegger and
Reitgruber (1995).

attractive as their costs decrease and their performance improves. Sometimes
such new technologies are called “backstops.” Originaly, Nordhaus (1973) for-
mulated the concept of abackstop to mean atechnol ogy that hasavirtualy infinite
resource base (e.g., PV systems). Generaly it is assumed that backstop technol o-
giesrequire RD&D and that they are too costly to be competitive at the present
time. Alternatively, if the costs of other technologiesincrease, the backstops may
become competitive at some point in the future. Thereis, of course, afundamen-
tal difference between the two approaches. In the first approach, it is assumed
that new technologies will become cheaper and have better performance through
RD&D and “autonomous’ technological change, without, however, explicitly ac-
countingfor RD& D and appropriabilityissues. Inthe second approach, backstops
become more attractive as supply limitations of currently competitive technol o-
gies lead to increases in their costs compared with those of the aternatives. In
either case, technological change either is assumed to occur implicitly through
specified market increases or takes the form of an exogenous parameter. Thisisa
standard view of technologica changein most economic modeling approaches. In
some manner technologies are “ready” before entering the economic world and
the entrepreneurs can choose among them according to their costs and relative
performance so that they do have incentives to postpone investment in new tech-
nologies. In general, the problem isthat new technol ogies appear as“mannafrom
heaven” in the standard approaches to modeling technologica change: as time



Nebojsa Nakicenovic 171

passes, new technologies become the best choices without any explicit RD&D
effort or investment and without any of the risks that entrepreneurs usualy face.
Thisiswhy these models are said to have an “autonomous’ rate of technological
change.

Model s that empl oy autonomoustechnol ogical change portray exogenousim-
provement of technologiesover time. Because these models employ market alo-
cation algorithms, the technologies gradualy penetrate the market. This kind of
simulation can emulate the introduction of new technol ogiesand their subsequent
diffusion. The employment of autonomoustechnological change assumptions can
lead to either too much or too little technological change relative to an endoge-
nous model, unless the nature of the autonomous path of technological changeis
known a priori as a scenario assumption.

The exogenous specification of costs of new technologies and their decrease
over timeimpliesthat later adoption would be cheaper than early adoption. Thus,
it is evident that in a model where a given autonomous rate of technological
change is assumed, it is a cost-effective strategy to postpone investment in low-
carbon technologies until they become cheaper and until the current vintages be-
come obsolete. In redlity, such results are misleading. If such mitigation strate-
gies were to be adopted, there would be no investment in new technologies. al
agents would wait for them to become more attractive, and no one would risk
an early investment. Consequently, the technol ogies would not enter the market-
place and there would be no backstops in the future to reduce emissions. | nstead,
an emissions-intensive devel opment path would be adopted that might prove dif-
ficult if not impossible to change midcourse. Even worse, there is some evidence
that technological “forgetting by not doing” can occur (Rosegger 1991). Figure
7.6 illustrates how important inertiais in the energy systems: it takes decades to
achieve a transition from old to new technol ogies through active innovation and
diffusion of new technologies, and for each success there are many failures. It
isin thislight that the policy-relevant assessments of cost-optima time paths of
emission reductions should be considered.

7.4 Endogenizing Technological Change

The lack of technological realism and dynamics in most energy modeling work
obviously must be rectified. This has been recognized for along time. For exam-
ple, Nordhaus and van der Heyden (1977) attempted to endogeni ze technol ogical
change in an energy model of the United States two decades ago. They included
RD&D and learning by doing in the form of cost reductions as a function of the
cumul ative output of atechnology. In the meantime, mathematical programming
and computing techniques have improved so that it is now possible to capture
RD&D and learning processes in greater detail, although computation require-
ments are till quite challenging.

A new research effort currently under way at [IASA aims at endogenizing
technological change into the energy systems mathematical programming model
MESSAGE (Messner 1995, 1997; Gribler and Messner 1998; and Chapter 11
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Table 7.1. Reductions of Investment Costs as a Learning Process for Electricity
Generation by Six New and Advanced Technologies.
Expressed in US dollars at constant 1990 prices per unit installed capacity [US(1990)$/kW].

Technology 1990 2050 Progressratio
Advanced coal 1,650 1,350 0.93
Gas combined cycle 730 400 0.85
New nuclear 2,600 1,800 0.93
Wind 1,400 600 0.85
Solar thermal 2,900 1,200 0.85
Solar PV 5,100 1,000 0.72

in this volume) and introducing uncertainty into the characteristics of new and
emerging technologies (Messner et al. 1996; Gritsevskyi and Nakicenovic 2000;
and Chapter 10 in thisvolume).

Messner (1997) introduced technologica learning into MESSAGE in terms
of investment-cost reductions as a function of cumulative installations for six
new and emerging €l ectricity-generating technol ogies: advanced cod, natural gas
combined cycle, new nuclear, wind, solar thermal, and PV systems. The learning
process starts at present costs and can reach much lower and more competitive
costs by accumulating experience. For example, for solar PV systems the as-
sumed learning curve can lead to cost reductions of a factor of five between the
base year (1990) and 2050 (from US$5,100 to US$1,000 per kW instaled); the
reduction potential for gas combined-cycle systems is approximately 45 percent
(from US$730 to US$400 per kW ingtalled). The technological |earning assump-
tionsfor al six conversion technologies are shown in Table 7.1, reproduced from
Messner (1997). In the model, RD&D eactivities and investments must be made
in expensive new technologiesif the technol ogies are to become cheaper through
accumulated experience, represented by cumulativeincrease in installed capacity.

The representation of endogenous RD&D and technological learning in the
energy systems model MESSAGE requires so-called mixed integer programming
techniques, because the constraint set is nonconvex. Computationaly, this ap-
proach is very demanding, so that only six new technologies are explicitly mod-
eled as a single-region world model of the electricity sector. The next research
tasks will include the extension of the approach to the whole energy system and
inclusion of other downstream technologies in addition to electricity generation
[see Gritsevskyi and Nakicenovic (2000) and Chapter 10 in thisvolume]. Among
the shortcomings of the approach are that the shape of the learning curves is
specified exogenoudly (including the RD&D phase) and that the uncertainty of
technological change is not yet captured in this particular model.

To compare the technological learning case with aternative ways of modeling
technological change, Messner (1997) devel oped two additional cases. The first
variant, the“static” case, isthe least realistic of the three cases. In thisvariant, it
isassumed that the investment costs of the new technologiesremain at their 1990
levels over the entire time horizon. The “dynamic” variant assumes the same
degree of cost reductions given in Table 7.1, but the reductions are exogenous
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Figure 7.9. World Electricity Generation (TWh) in 2050.

Figure shows eight generation technologies for three alternative cases: the “static” case,
with constant investment costs; the “dynamic” case, with exogenously declining costs; and
the “technological learning” case, with endogenously declining costs.

(“autonomous”), occurring at continuous rates between the base year (1990) and
2050. The dynamic case emulates the most common approach to modeling tech-
nological change in energy systems. In fact, it corresponds to Case A presented
in the joint HASA and World Energy Conference (WEC) study Global Energy
Perspectives to 2050 and Beyofiibkicenovic et al. 1998).

Figure 7.9 shows the mix of global electricity generation in 2050 from eight
different conversion technologies, including the six selected new and emerging
technologies. The static variant relies primarily on established technol ogies such
as standard coal and nuclear power plants, and to a more limited degree on less
costly advanced coal and natura gas combined-cycle technologies. With the ex-
ception of some coal, the new and advanced technologiesare hardly used, because
of the relatively high investment costs. In comparison, the dynamic cost profile
does indeed lead to greater investment in new and advanced technologies. The
roles of coal and standard nuclear technol ogies diminish compared with the static
case, they are replaced by natura gas combined-cycle, new nuclear, solar, and
wind technologies. Because in the dynamic case these technol ogy improvements
are exogenous, the shift ininvestmentsfrom traditional to new and advanced tech-
nologies changes in step with the cost reductions. In contrast to the dynamic
case, with technological learning investments in new technologies must be made
up front, when these technologies are much costlier than the conventional alter-
natives, if they are to become cheaper with cumulative experience as instaled
capacity increases. With technological learning, the structure of eectricity pro-
duction in 2050 is not al that different from the dynamic dternative, with the
exception of adight shift from new nuclear to solar PV systems.
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Figure 7.10. Annua Investment Requirementsfor Global Electricity Generation.
Investment is shown for three alternative cases. the “dynamic” case, with exogenously
declining costs, and the “technological learning” case, with endogenously declining costs,
compared with the “ static” case, with constant costs (index = 100), expressed as an index.

Messner (1997) has analyzed the different dynamics of investment pathsin
new and advanced technologies in the two aternative cases—the dynamic case
with exogenous cost reductions and the technological |earning case with endoge-
nous cost reductions. Figure 7.10 presents her findings for global annua invest-
ments in electricity generation in the technological learning and dynamic cases
compared with the static case. The most striking difference is that the case with
endogenous learning shows higher up-front investment costs but has lower dis-
counted systems costs than the dynamic case with exogenous cost reductions.
Both cases lead to roughly the same investment costs in 2050, because there is
sufficient cumulative investment in new and advanced technol ogies to reduce the
costs along the learning curve to thelevel of exogenous reductionsin the dynamic
case. Over the entire time period (1990-2050), cumulative discounted invest-
ments are 6.6 percent lower in the dynamic case with exogenous learning and 9.7
percent lower in the case with endogenous learning than in the static case (Mess-
ner 1997). The difference in the investments is particularly large between 2020
and 2050. The discounted investment costsin the case with technological learning
are 50 percent below the discounted investment costs of the dynamic case.

This single example illustrates some of the generic differences between the
two approaches to modeling future technology costs and performance. In the dy-
namic case it pays to postpone some investment in new technologies until the
costs are reduced (exogenously). In the case of technological learning thereis no
time to waste. Higher levels of costly investments are made immediately to ac-
crue sufficient experience to be able to reap the benefits of cost reductionsat some
point further along the learning curve. If these costly investments are not made,
the technol ogy stays expensive. Nonetheless, despite high initia investments, the
overal discounted costs are lower in this example than in the other cases. This
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result means that early RD& D expendituresand devel opment of niche marketsfor
new technologiesmay be able to reduce the overall discounted costs of long-term
mitigation strategies, even if similar rates of “autonomous’ technology improve-
ment are assumed in the case without learning. In reality, however, the exogenous
cost reductions are unlikely to occur unless someone else invests instead. At the
globa level thisis of course a contradiction, because even in the dynamic case
such investments must be included in the calculations if cost reductions are to
occur.

7.5 Conclusion

Incorporating the concept of technological learning into the energy model
MESSAGE led to lower CO, mitigation costs compared with an alternative model
employing afixed rate of autonomous technological change, asisusualy donein
studies of future energy and emissions perspectives. The costs were aso lower
although exactly the same rates of performance improvements and cost reduc-
tions were assumed to occur over the study time horizon in both approaches.
Compared with the case of endogenized learning, the“autonomous’ case leads to
the postponement of investment decisions until |ower-emission technol ogies* be-
come” cheaper. This means that initialy the investments are somewhat lower. In
the case with endogenous technological learning, initia investments are higher.
However, this higher investment is offset later through the possibilities of reduc-
ing emissions at substantially lower costs when installed capacities and emission
levels are higher. Even with discounting at 5 percent per year, the endogenous
learning case leads to lower total costsin the globa electricity sector. Of course,
these results are sector specific and do not reflect any of the deadweight loss or
intersectora trade-offs stipulated by Goulder (1996). In other words, the analy-
sisdoes not consider the potential |oss of welfare associated with the costly initia
market penetration of the new technologies or the transfer of resources avay from
other technology devel opment toward the development of new technologies. The
results, however, do shed light on the process by which new technologies enter
and penetrate the market, which has important implicationsfor both the cost and
timing of policy interventionsdesigned to achieve emission mitigation.

Endogenization of technological change through technological learning cap-
tures some of the positive externaities generated by RD&D and early investment
in new technologies. This means that not only will a given technology be im-
proved through RD&D and learning, but other technologies of the same “family”
will improve, as well. Knowledge spillover is often assumed to be determined by
the combination of processes by which knowledge diffuses and by which it be-
comes obsolete. It has a positive impact on the social return of the technological
learning devel opment strategies.

The introduction of technological learning into the model does not solve all
the problems associated with understanding technological change or the future
costs of aternative energy technology strategies. Some basic problems aso en-
countered in the autonomous technological change approach are still unsolved.
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Technical performance and cost profiles of learning curves must be specified
a priori. In the real world the performance improvement rates of new technolo-
gies are not known a priori, which is reflected in the risks that entrepreneurs
usualy face when they make new technology adoption decisions. It should be
acknowledged that technical change is only one of several factors that determine
technology costs and performance and thus ultimately a so emissions paths.

Including this“ stylized” treatment of technological change in the model cap-
tures some of the dynamic patterns common to the cost reductions and improve-
ment in performance of almost al technologiesthat are successful in the market-
place. Initidly, costs are high owing to batch-production methods that require
highly skilled labor. Performance optimization and cost minimization are rarely
important; the overriding objective is the demonstration of technica feasibility.
When the technology seeks entry into a market niche, costs begin to matter, a-
though usually what isof central importanceisthetechnology’sability to perform
atask that cannot be accomplished by any other technology. Examples are fuel
cellsin space applications, PV systems for remote and unattended el ectricity gen-
eration, gasturbinesfor military aircraft propulsion, and drill-bit steering technol-
ogy in oil and gas exploration. Including in the model the more costly new and
advanced technologies with the promise of lower costs and better performance
through accumulated learning captures these effects of early and pre-commercia
technology devel opment and entry into speciaized niche markets.

A technology’s success in a niche market, however, does not ensure its suc-
cessful commerciaization. Improvements must be made in reliability, durability,
and efficiency, and, even more important, costs must be reduced. Any RD&D
devoted to these objectives creates a supply push. Thissupply push must be com-
plemented by ademand pull, by whichinitial markets are expanded sufficiently to
further reduce costs through economies of scale. The demand pull may be policy
driven. Technically feasible technologies that are not yet economically compet-
itive might benefit from environmental or energy security policies that increase
their competitors' costs. For example, other electricity generation options benefit
from requirements for flue gas desulfurization in coal-fired plants, or from bans
on electricity generation from natural gas that restrict combined-cycle gas tech-
nology. New technologies may also benefit from economies of scale and market
dominance aready achieved by older technologies. The existing transmission
infrastructure, for example, can be readily used by new electricity-generating
technologies (Nakicenovic et al. 1998). Including such effects in the model by
initially introducing new and advanced technol ogies only in some niche markets
and later in more widespread applicationsas their costs decrease captures some of
these complex phenomena associated with innovation diffusion and technol ogical
change.

Thus, the rate of technologica change depends on the diffusion of innova
tions and the dynamics of their adoption. The replacement of carbon-intensive
technologies with zero- or low-carbon aternatives can be expressed as the pro-
cess of energy decarbonization. Scenarios with high shares of coa actudly lead
to areversa of the historical trendstoward decarbonization. Other scenarios that
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Figure 7.11. Decarbonization of Global Electricity.

Rates are shown for three alternative cases: the “static” case, with constant investment
costs; the“dynamic” case, with exogenously declining costs; and the “technological learn-
ing” case, with endogenously declining costs. Rates are expressed in kilograms of carbon
per kilowatt-year of electricity (kgC/kWyr).

envisage that the transition to the post-fossil era will occur during the twenty-
first century portray decarbonization rates similar to, or sometimes even higher
than, historical rates. Decarbonization must continueif CO» emissions and even-
tually aso concentrations are to stabilize in the future. Quite high rates would
be required to actually reduce global CO, emissions, as would be required to
achieve stabilization of atmospheric concentrations at some negotiated level in
accordance with Article 2 of the Framework Convention on Climate Change
(UN/FCCC 1992). Figure 7.11 captures the differences in the decarbonization
of global electricity generation with and without technol ogical |earning presented
in this chapter.

Without improvements in technological performance or cost reductions com-
pared with the present situation, the static case actualy leads to a reversd of
historical trends toward decarbonization after the 2020s as the global electric-
ity generation is “locked-in” the carbon-intensive generation technologies. De-
carbonization occurs in the dynamic case, indicating a high degree of structural
change in e ectricity-generating capacity. However, the rate slows down after the
2030s compared with the technological learning case. The more dynamic inter-
play inthelearning case among different el ectricity-generating technol ogiesleads
to the highest degree of decarbonization, and yet here the total discounted costs
are the lowest of al three aternatives. That the costs are lower than in the static
caseisnot at all surprising, as the static case does not include any reduction in
costs, and thus older and cheaper technologies are generally chosen, leading to
relatively high emissions and high costs.
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An interesting result of this analysis is that technologica learning leads to
lower emissions and costs compared with the dynamic case, even though costs
and emission-reduction potentials are the same as the exogenously assumed im-
provement rates in the dynamic case by the end of the time horizon. The addi-
tiona degree of freedom of initially introducing promising technologies in the
niche markets although they are till too costly leads to overal cost reductions,
because cumulative learning allows for significant cost reductions later on, when
installed capacities and emission levels are high. In contrast, the dynamic case
does not lead to early market entry of new and advanced technologies. These
technol ogies diffuse as they become more attractive, but by that timethe system’s
inertia and the still-high shares of older technologies in the vintage structure do
not alow a more dynamic transition toward lower emissions.

The “stylized” treatment of RD&D and technological learning in the model
requires further improvement. Endogenoustechnological changeis captured only
for six new technologies in the presented example. This is seriously deficient
and clearly needs to be extended to other technologies in the energy system and
other sectors of the economy [see also Gritsevskyi and Nakicenovic (2000) and
Chapter 10inthisvolume]. High computational requirementsare aseriousbarrier
to such extensions, so that new research is required. There are serious method-
ologica shortcomings to the approach, as it captures RD&D and learning only
for low-carbon-emitting technologies. According to Goulder (1996), knowledge-
generating resources are generaly scarce, so that expansion of technological
progress in one industry often implies a reduction in the rate of technologica
progress in others, even if the policy in question does not intend to discourage
any industry’s rate of technological progress. Another critical issue is that en-
dogenization of technologica change through learning by doing means that the
energy system will be “locked-in" afew technologies that have high progress ra-
tios. But variety has avalue in itself. This means that a number of speculative
projects should be funded in any case, with theideathat thiswill enlargethe stock
of future possihilities.

Thisfirst result of endogenizing technologica change indicates that the post-
ponement of investmentsin new and advanced technol ogiesinitsalf will bring few
additiona benefits to future CO, mitigation strategies. In other cases there might
be benefits from delay. The costs of some technol ogies might decrease as aresult
of “exogenous’ improvement of other technologies. For example, improvements
in information technologies might benefit energy technologies so that postpone-
ment might be attractive. The main result of the anaysis, however, is robust:
unless there is dedicated, timely, and pronounced investment in CO. mitigation
technologies, they are less likely to be developed and thus become commercidly
viable and competitive in the marketplace. Learning by doing is a prerequisite
for performance improvements, cost reductions, and eventud diffusion. Post-
ponement of investment decisions will not bring about the technologica change
required to reduce CO, emissions in a cost-effective way. Even worse, it might
bring about further “lock-in" of energy systems and economic activities adong
fossil-intensive devel opment paths.
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