
Chapter 7

Technological Change and Diffusion
as a Learning Process

Nebojsa Nakicenovic

7.1 Introduction

Energy and carbon intensities of aggregate economic activities, as measured by
the gross domestic product, have generally been declining since the onset of in-
dustrialization two centuries ago (Grübler and Nakicenovic 1996). This historical
tendency can be observed for most countries, and for some throughout the indus-
trialization process during the past two centuries, as will be shown for the United
States (Nakicenovic 1996). This contrasts significantly with the perspective pro-
vided by disaggregated energy and carbon intensities of individual economic sec-
tors and activities, and even with short-term intensity increases in some countries
(Schmalensee et al. 1998). An important part of the secular decline of energy
and carbon intensities is the result of technological change. Technologies that
are more energy efficient have replaced less efficient ones, and technologies that
are less carbon intensive have replaced those that are more carbon intensive. In
this way, technological change has made a major contribution to these long-term
improvements in the productivity of energy. In particular, the decarbonization of
energy—namely, the reduction of the specific carbon content of energy—can be
represented by a learning curve and thus interpreted as a long-term learning pro-
cess. In this chapter it is argued that an important component of the dynamics of
technological change and diffusion is a cumulative process of learning by doing.
Surely technology diffusion also takes place as a result of changes (decreases) in
the price of a technology or changes (increases) in the price of a saved input (en-
ergy), neither of which need be directly driven by a learning-by-doing process. To
the extent that it is a result of cumulative learning processes, technological change
is not an “autonomous” process, although it is often represented as such in energy
and economic models.

A number of implications will be considered with reference to the mitigation
of carbon dioxide (CO2) emissions. Various mitigation strategies for counter-
ing the possibility of climate change have been proposed. Recently, research has
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begun to focus on the formulation of global CO2 emissions profiles that would
lead to the stabilization of atmospheric concentrations at some negotiated level
in accordance with Article 2 of the Framework Convention on Climate Change
(UN/FCCC 1992). For example, all of the CO2 emissions profiles that lead to sta-
bilization of concentrations that were analyzed by the Intergovernmental Panel on
Climate Change (IPCC 1996, 2001) require the eventual elimination of global car-
bon emissions sometime during the next two centuries. In view of the increasing
need for energy services in the world, especially in developing countries, such
emissions reductions will require a substantial increase in the decarbonization
rate. This, in turn, implies a larger future role for new technologies with lower
CO2 emissions. Thus, there is an increasing recognition in the literature that
abatement of CO2 emissions requires a sustained commitment to research, devel-
opment, and demonstration (RD&D) today that could lead to diffusion of new,
less carbon-intensive technologies in the future (see, e.g., Wigley et al. 1996).

It will be shown that, in conjunction with RD&D, timely investment in new
technologies with lower CO2 emissions might be a more cost-effective strategy
for reducing global emissions than postponing investment decisions in the hope
that mitigation technologies might somehow become more attractive through “au-
tonomous” RD&D improvements and cost reductions in step with the natural
turnover of capital. It has been argued that the latter strategy is superior to a time-
lier introduction of lower-emission technologies, because at present these tech-
nologies are generally costlier than the alternatives (see, e.g., Wigley et al. 1996).
In some cases, there is a trade-off between the cost savings that may be brought
about by rapid technological change and the cost increases that may thereby be
brought about by prematurely rendering parts of the capital stock obsolete. Al-
though this is true, postponement in itself will bring few additional benefits.

While the costs and performance of technologies are generally modeled as if
they were exogenous, they are not. Costs of new technologies have been shown to
decline and performance to increase with accumulated experience and improve-
ments. Unless there is dedicated, timely, and pronounced investment in these
technologies, they are unlikely to be developed and thus become commercially
viable and competitive in the marketplace. Learning by doing is a prerequisite for
performance improvements, cost reductions, and eventual technology diffusion.
Postponing investment decisions will not by itself bring about the technological
change required to reduce CO2 emissions in a cost-effective way. Even worse,
under unfavorable conditions it might bring about further “lock-in” of energy sys-
tems and economic activities along fossil-intensive development paths.

The implication is that there may be great leverage in policies and measures
that accelerate the accumulation of experience in new technologies with lower
environmental impacts, for example, through early adoption and development of
special niche markets. This leverage can be important, particularly if these poli-
cies can minimize the “deadweight” loss to society associated with the foregone
exploitation of cheaper fossil fuels and possible reductions of RD&D in other
parts of the economy. It is important to note that the approach taken here does not
consider potential welfare losses associated with moving resources away from
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RD&D efforts, for example, in other sectors. That is, an acceleration of energy-
related technical progress may be accompanied by reduced levels of RD&D ac-
tivities in other sectors, leading to a slowdown in labor and capital productivity.
These are some of the problems and issues that must be resolved before techno-
logical change can become a truly endogenous component in standard modeling
approaches. In the meantime, an increasing number of models are being adapted
to explore alternative ways of incorporating endogenous technological change. In
this chapter, we will explore the nature of the relationship between technologi-
cal change, costs and performance of new technologies, and resulting emissions
profiles from the global electricity generation system with the MESSAGE model.

7.2 Decarbonization

Through decarbonization, energy services can be provided with lower carbon
emissions. The process can be expressed as a product of two factors: decar-
bonization of energy and reduction of the energy intensity of economic activities,
for example, as measured by gross domestic product (GDP). Figure 7.1 shows
the decarbonization of GDP; Figures 7.2 and 7.3 show the decarbonization of en-
ergy and the reduction of energy intensity of GDP, respectively. The example for
the United States is shown in the three figures primarily because the data are of
relatively good quality; however, available data allow the assessment of decar-
bonization trends with reasonable confidence for other major energy-consuming
regions and countries, such as France and the United Kingdom, and for the world
as a whole (see, e.g., Nakicenovic 1996; Grübler and Nakicenovic 1996). Over
shorter time periods similar decarbonization trends can be obtained for many de-
veloped and industrializing countries, such as India and China. In Figure 7.1, the
decarbonization rate is expressed in kilograms of carbon (kgC) per unit of GDP in
US dollars measured at 1990 prices. The average annual rate of decline is about
1.3 percent, meaning that every year about 1.3 percent less carbon is emitted to
generate one dollar of value added.

Today, about a quarter of a kilogram of carbon is emitted per dollar value
added in the United States, and about half that amount is emitted per dollar value
added in Europe and Japan. However, the amount of carbon emitted per dol-
lar value added is significantly greater in most developing and many re-forming
countries. Thus, it is evident there are different paths of economic development
that lead to similar levels of affluence at quite different levels of CO2 emissions.
The prime objective of possible mitigation strategies is to reduce these emission
levels by increasing the rate of decarbonization throughout the world. At an av-
erage decarbonization rate of 1.3 percent per year, global CO2 emissions will
increase about 1.7 percent annually, assuming the economic growth rate remains
at about 3 percent per year. This increase will lead to a doubling of emission levels
in about 40 years. Thus, to stabilize global emissions at some (higher) level in the
future, the decarbonization rate would have to at least double to offset the current
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Figure 7.1. Decarbonization of Economic Activities in the United States.
Expressed in kilograms of carbon per unit of GDP at constant 1990 prices
[kgC/US(1990)$].
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Figure 7.2. Decarbonization of Primary Energy in the United States and Selected
Countries.
Expressed in kilograms of carbon per ton oil equivalent (kgC/toe).

rate of economic growth. The second alternative, maintaining lower rates of eco-
nomic growth, is clearly undesirable in light of the existing widespread poverty
and deprivation throughout the world.

Figure 7.4 portrays another image of the dynamics of decarbonization. The
data from Figure 7.1 are now shown as a learning or experience curve. The ratio
of carbon emissions to GDP is shown versus the cumulative emissions in a double
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Figure 7.3. Primary Energy Intensity of Economic Activities in the United States
and Selected Countries.
Expressed in kilograms of oil equivalent per unit GDP at constant 1990 prices
[kgoe/US(1990)$].

logarithmic diagram. There is an exponential decline (linear on double logarith-
mic scales) in specific carbon emissions per doubling of cumulative emissions.
Apparently, the more we emit, the more we learn about how to emit less per unit
value. The progress ratio is actually quite high at about 76 percent (representing a
24 percent cost reduction in specific emissions) per doubling of cumulative emis-
sions. This figure compares with progress ratios in the range of 70–90 percent
across a number of energy technology learning curves reported in the literature
(see, e.g., Christiansson 1995).

The fact that decarbonization of the US economy can be represented as a
learning curve suggests that at least a part of the carbon reductions could be due
to a process of technological learning resulting from cumulative experience. At
the highly aggregated level of the relationship between cumulative emissions and
decreased emissions per unit of value for a whole country, it is difficult to identify
the component of decarbonization that is due to learning by doing, as opposed
to other mechanisms. The process of cumulative learning may be no more than
a small part of the explanation, but it may also be the dominant part. However,
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Figure 7.4. Decarbonization of Economic Activities in the United States as a
Learning Curve.
Accumulated experience is represented by cumulative CO2 emissions, expressed in kilo-
grams of carbon per unit of GDP at constant 1990 prices [kgC/US(1990)$] versus cumu-
lative CO2 emissions in gigatons of carbon (GtC) on double logarithmic axes.

determining its contribution would require an in-depth analysis of the underlying
processes that is not possible at this time, especially because of the lack of detailed
engineering and microeconomic data for such long periods even for a fairly well-
documented country such as the United States.

As a kind of thought experiment, assume a hypothetical case where this rate of
decarbonization continues for another century. In this case, one could expect the
specific carbon emissions to continue to decline. To date, the United States has
emitted about 100 gigatons of carbon (GtC, or billion tons of carbon), slightly less
than half the cumulative global emissions, estimated at about 250 GtC. If the rate
of decarbonization were to remain the same, another 100 GtC would be emitted
before the specific emissions could be reduced by another 24 percent. This rate
is clearly too slow for a transition to the post-fossil era within a century or two.
Thus, for a more drastic increase of decarbonization, substantially higher progress
ratios would be required.

Before discussing the process of endogenizing technological learning, let us
first consider the technology dynamics behind the historical rates of decarboniza-
tion and the implications decarbonization carries for the possible diffusion of less
carbon-intensive energy technologies in the future. Figure 7.5 shows the hierar-
chy of replacements of old energy sources with new ones in the United States.
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Figure 7.5. Primary Energy Consumption by Major Energy Sources in the United
States.
Expressed in million tons of oil equivalent (Mtoe).

This dynamic process of technological substitution is the driving force behind the
historical rates of decarbonization.

Traditional energy forms such as animal feed and wood have a high carbon
content, both per unit of energy and per unit of economic activity, because of
the relatively low efficiency with which they deliver demanded energy services.
Draft animals and open fire have very low energy-conversion efficiencies com-
pared with contemporary prime movers and furnaces. It is true that some of the
released carbon can be reabsorbed by new plant growth and new trees, and by
the replanting of animal feed, but quite often the land is not used in a sustain-
able fashion. For example, because many of these activities are associated with
deforestation and land degradation, they often lead to net carbon flux to the at-
mosphere. The carbon intensity of fuelwood and animal feed is substantially
higher than that of coal. Moreover, coal can be used with generally higher effi-
ciencies and often much greater convenience for the consumer. For these reasons,
coal eventually supplanted traditional energy forms. This progress toward energy
sources with lower carbon contents and higher conversion efficiencies has con-
tinued, with shifts from coal to oil to natural gas, and more recently to nuclear
energy and new renewable sources of energy, both of which have minimal carbon
emissions. Natural gas in itself brings enormous reductions in carbon emissions
(with half the carbon emissions of coal) as well as higher efficiencies.

Using the available data, the historical replacement of coal with oil and later
with natural gas can be illustrated for most countries and major energy-consuming
regions, as well as for the world as a whole (Marchetti and Nakicenovic 1979;
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Figure 7.6. Primary Energy Substitution in the United States.
Historical data and model projections for the future, expressed in fractional market shares
(F) and transformed as F/(1–F) on logarithmic axes.

Nakicenovic 1979). If all energy sources are considered, the replacement process
is very intricate and complex, as can be seen from Figure 7.5. Similar dynamics of
technological substitution have been studied for other systems, such as transport
and steel making (Grübler and Nakicenovic 1988; Nakicenovic 1990). It is a pro-
cess with long transition periods from older to newer technologies, especially in
the areas of energy systems and infrastructure. The competitive struggle between
the six main sources of primary energy—wood, animal feed, coal, oil, gas, and
nuclear materials—has proved to be a process with regular dynamics that can be
described by relatively simple rules. This process is shown in Figure 7.6 for the
United States, based on the data from Figure 7.5.

A glance reveals the dominance of coal as the principal energy source between
the 1880s and the 1950s, after a long period during which fuelwood, animal feed,
and other traditional energy sources were predominant. The mature coal econ-
omy meshed with the massive expansion of railroads and steamship lines, the
growth of steel making, and the electrification of factories. During the 1960s,
oil assumed a dominant role in conjunction with the development of automotive
transport, the petrochemical industry, and markets for home heating oil. If this
substitution continues to progress at similar rates in the future, natural gas will be
the dominant source of energy during the first decades of the twenty-first century,
although oil is likely to maintain the second-largest share until the 2020s. Such
an exploratory look into the future requires additional assumptions to describe the
subsequent competition of potential new energy sources such as nuclear, solar,
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Figure 7.7. Reductions of Investment Costs for Three Representative New and
Advanced Technologies as a Learning Process.
Expressed in US dollars at constant 1990 prices per unit installed capacity [US(1990)$/kW]
versus cumulative installed capacity (MW) on double logarithmic axes.

and other renewables, which have not yet captured sufficient market shares to al-
low an estimation of their penetration rates and market potentials. Because all
of these alternative energy sources have only minimal CO2 emissions and natural
gas has the lowest emissions of all fossil fuels, the unfolding of primary energy
substitution implies a continuation of gradual energy decarbonization throughout
the world.

7.3 Technological Learning

The replacement of old technologies with new ones occurs gradually. The per-
formance of new technologies improves and their costs decrease with increases
in production and use. Accumulated experience and learning can be assumed to
increase with increases in the market shares of a new technology. As technologies
mature, their improvement potentials decrease. A somewhat stylized difference
between new and old technologies is that the former are costlier at the time of
their introduction, but their costs can be assumed to decrease with increases in
their market share so that at some point the cost curves might cross, making them
a more attractive choice than the old technology. Learning curves capture this
process. Figure 7.7 presents a number of illustrative examples (Grübler et al.
1996; Nakicenovic and Rogner 1996; Nakicenovic et al. 1998). It shows rapid



Nebojsa Nakicenovic 169

declines in investment costs with every doubling of cumulative installed capac-
ity of gas combustion turbines and wind and photovoltaic (PV) systems. This
pattern of performance improvement and cost reductions with accumulated expe-
rience and learning is common to most technologies, although its specific shape
depends on the technology. Typical progress ratios listed in the literature range
between 65 percent and 95 percent for all technologies and between 70 percent
and 90 percent for energy technologies (Christiansson 1995). There are signifi-
cant cost improvements during the RD&D phases of technological development.
For example, in Figure 7.7 an 18 percent reduction in investment costs per dou-
bling of cumulative production (a progress ratio of 88 percent) is shown for the
case of gas combustion turbines. These improvements during the RD&D phase
are followed by more modest improvements after commercialization, 7 percent
per production doubling for combustion turbines, for example. If such cost re-
ductions were to continue in the future for the PV systems, these systems could
become commercially viable in a few decades, with cost reductions of about a fac-
tor of five to one order of magnitude compared with today’s costs [from between
US$10,000/kW and US$5,000/kW to as little as US$1,000/kW; see Ishitani et al.
(1996); Nakicenovic et al. (1996); Nakicenovic et al. (1998)].

Technological learning is reflected in most energy and emission scenarios and
their underlying assumptions. New and emerging technologies are assumed to
have better performance and lower costs in the future compared with current
levels. Figure 7.8 reflects a range of such assumptions for some new and emerging
energy-conversion technologies. It is based on the International Institute for Ap-
plied Systems Analysis (IIASA) inventory of mitigation technologies, CO2DB
(Messner and Strubegger 1991; Messner and Nakicenovic 1992; Schäfer et al.
1992). This database currently includes characterization of about 1,600 energy
technologies, from energy extraction and conversion to energy end use. The
database includes current and future technologies based on information from the
literature for a number of countries and representative world regions. A large
share of technology descriptions come from various energy modeling efforts.
Most of the information is available for energy-conversion technologies. In many
cases, there are a sufficient number of data points for a given type of technol-
ogy, such as for gas combustion turbines or PV systems, so that sample mean and
standard deviation can be meaningfully derived. Figure 7.8 shows such statistics
for 10 representative conversion technologies and gives the mean and standard
deviation for current and future (about 2020) investment costs (Strubegger and
Reitgruber 1995). A glance reveals a clear pattern: current costs are higher than
the assumed future costs. The less mature a technology is today (such as the PV
systems), the higher the future cost reductions and the higher the uncertainty, as
evidenced by the wider distribution of cost estimates. This is indeed consistent
with the phenomenon of cost reductions associated with learning, assuming that
the installed capacities of these technologies will increase in the future, making
them more competitive compared with current alternatives.

Equivalent assumptions are made in most modeling efforts and scenarios
about future energy and emissions. Over time, new technologies become more
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Figure 7.8. Mean and Standard Deviation of Investment Costs for 10 Represen-
tative Conversion Technologies, Current and Future (about 2020).
Based on data in the IIASA technology inventory CO2DB. Source: Strubegger and
Reitgruber (1995).

attractive as their costs decrease and their performance improves. Sometimes
such new technologies are called “backstops.” Originally, Nordhaus (1973) for-
mulated the concept of a backstop to mean a technology that has a virtually infinite
resource base (e.g., PV systems). Generally it is assumed that backstop technolo-
gies require RD&D and that they are too costly to be competitive at the present
time. Alternatively, if the costs of other technologies increase, the backstops may
become competitive at some point in the future. There is, of course, a fundamen-
tal difference between the two approaches. In the first approach, it is assumed
that new technologies will become cheaper and have better performance through
RD&D and “autonomous” technological change, without, however, explicitly ac-
counting for RD&D and appropriability issues. In the second approach, backstops
become more attractive as supply limitations of currently competitive technolo-
gies lead to increases in their costs compared with those of the alternatives. In
either case, technological change either is assumed to occur implicitly through
specified market increases or takes the form of an exogenous parameter. This is a
standard view of technological change in most economic modeling approaches. In
some manner technologies are “ready” before entering the economic world and
the entrepreneurs can choose among them according to their costs and relative
performance so that they do have incentives to postpone investment in new tech-
nologies. In general, the problem is that new technologies appear as “manna from
heaven” in the standard approaches to modeling technological change: as time
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passes, new technologies become the best choices without any explicit RD&D
effort or investment and without any of the risks that entrepreneurs usually face.
This is why these models are said to have an “autonomous” rate of technological
change.

Models that employ autonomous technological change portray exogenous im-
provement of technologies over time. Because these models employ market allo-
cation algorithms, the technologies gradually penetrate the market. This kind of
simulation can emulate the introduction of new technologies and their subsequent
diffusion. The employment of autonomous technological change assumptions can
lead to either too much or too little technological change relative to an endoge-
nous model, unless the nature of the autonomous path of technological change is
known a priori as a scenario assumption.

The exogenous specification of costs of new technologies and their decrease
over time implies that later adoption would be cheaper than early adoption. Thus,
it is evident that in a model where a given autonomous rate of technological
change is assumed, it is a cost-effective strategy to postpone investment in low-
carbon technologies until they become cheaper and until the current vintages be-
come obsolete. In reality, such results are misleading. If such mitigation strate-
gies were to be adopted, there would be no investment in new technologies: all
agents would wait for them to become more attractive, and no one would risk
an early investment. Consequently, the technologies would not enter the market-
place and there would be no backstops in the future to reduce emissions. Instead,
an emissions-intensive development path would be adopted that might prove dif-
ficult if not impossible to change midcourse. Even worse, there is some evidence
that technological “forgetting by not doing” can occur (Rosegger 1991). Figure
7.6 illustrates how important inertia is in the energy systems: it takes decades to
achieve a transition from old to new technologies through active innovation and
diffusion of new technologies, and for each success there are many failures. It
is in this light that the policy-relevant assessments of cost-optimal time paths of
emission reductions should be considered.

7.4 Endogenizing Technological Change

The lack of technological realism and dynamics in most energy modeling work
obviously must be rectified. This has been recognized for a long time. For exam-
ple, Nordhaus and van der Heyden (1977) attempted to endogenize technological
change in an energy model of the United States two decades ago. They included
RD&D and learning by doing in the form of cost reductions as a function of the
cumulative output of a technology. In the meantime, mathematical programming
and computing techniques have improved so that it is now possible to capture
RD&D and learning processes in greater detail, although computation require-
ments are still quite challenging.

A new research effort currently under way at IIASA aims at endogenizing
technological change into the energy systems mathematical programming model
MESSAGE (Messner 1995, 1997; Grübler and Messner 1998; and Chapter 11
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Table 7.1. Reductions of Investment Costs as a Learning Process for Electricity
Generation by Six New and Advanced Technologies.
Expressed in US dollars at constant 1990 prices per unit installed capacity [US(1990)$/kW].

Technology 1990 2050 Progress ratio

Advanced coal 1,650 1,350 0.93
Gas combined cycle 730 400 0.85
New nuclear 2,600 1,800 0.93
Wind 1,400 600 0.85
Solar thermal 2,900 1,200 0.85
Solar PV 5,100 1,000 0.72

in this volume) and introducing uncertainty into the characteristics of new and
emerging technologies (Messner et al. 1996; Gritsevskyi and Nakicenovic 2000;
and Chapter 10 in this volume).

Messner (1997) introduced technological learning into MESSAGE in terms
of investment-cost reductions as a function of cumulative installations for six
new and emerging electricity-generating technologies: advanced coal, natural gas
combined cycle, new nuclear, wind, solar thermal, and PV systems. The learning
process starts at present costs and can reach much lower and more competitive
costs by accumulating experience. For example, for solar PV systems the as-
sumed learning curve can lead to cost reductions of a factor of five between the
base year (1990) and 2050 (from US$5,100 to US$1,000 per kW installed); the
reduction potential for gas combined-cycle systems is approximately 45 percent
(from US$730 to US$400 per kW installed). The technological learning assump-
tions for all six conversion technologies are shown in Table 7.1, reproduced from
Messner (1997). In the model, RD&D activities and investments must be made
in expensive new technologies if the technologies are to become cheaper through
accumulated experience, represented by cumulative increase in installed capacity.

The representation of endogenous RD&D and technological learning in the
energy systems model MESSAGE requires so-called mixed integer programming
techniques, because the constraint set is nonconvex. Computationally, this ap-
proach is very demanding, so that only six new technologies are explicitly mod-
eled as a single-region world model of the electricity sector. The next research
tasks will include the extension of the approach to the whole energy system and
inclusion of other downstream technologies in addition to electricity generation
[see Gritsevskyi and Nakicenovic (2000) and Chapter 10 in this volume]. Among
the shortcomings of the approach are that the shape of the learning curves is
specified exogenously (including the RD&D phase) and that the uncertainty of
technological change is not yet captured in this particular model.

To compare the technological learning case with alternative ways of modeling
technological change, Messner (1997) developed two additional cases. The first
variant, the “static” case, is the least realistic of the three cases. In this variant, it
is assumed that the investment costs of the new technologies remain at their 1990
levels over the entire time horizon. The “dynamic” variant assumes the same
degree of cost reductions given in Table 7.1, but the reductions are exogenous
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Figure 7.9. World Electricity Generation (TWh) in 2050.
Figure shows eight generation technologies for three alternative cases: the “static” case,
with constant investment costs; the “dynamic” case, with exogenously declining costs; and
the “technological learning” case, with endogenously declining costs.

(“autonomous”), occurring at continuous rates between the base year (1990) and
2050. The dynamic case emulates the most common approach to modeling tech-
nological change in energy systems. In fact, it corresponds to Case A presented
in the joint IIASA and World Energy Conference (WEC) study Global Energy
Perspectives to 2050 and Beyond(Nakicenovic et al. 1998).

Figure 7.9 shows the mix of global electricity generation in 2050 from eight
different conversion technologies, including the six selected new and emerging
technologies. The static variant relies primarily on established technologies such
as standard coal and nuclear power plants, and to a more limited degree on less
costly advanced coal and natural gas combined-cycle technologies. With the ex-
ception of some coal, the new and advanced technologies are hardly used, because
of the relatively high investment costs. In comparison, the dynamic cost profile
does indeed lead to greater investment in new and advanced technologies. The
roles of coal and standard nuclear technologies diminish compared with the static
case; they are replaced by natural gas combined-cycle, new nuclear, solar, and
wind technologies. Because in the dynamic case these technology improvements
are exogenous, the shift in investments from traditional to new and advanced tech-
nologies changes in step with the cost reductions. In contrast to the dynamic
case, with technological learning investments in new technologies must be made
up front, when these technologies are much costlier than the conventional alter-
natives, if they are to become cheaper with cumulative experience as installed
capacity increases. With technological learning, the structure of electricity pro-
duction in 2050 is not all that different from the dynamic alternative, with the
exception of a slight shift from new nuclear to solar PV systems.
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Figure 7.10. Annual Investment Requirements for Global Electricity Generation.
Investment is shown for three alternative cases: the “dynamic” case, with exogenously
declining costs, and the “technological learning” case, with endogenously declining costs,
compared with the “static” case, with constant costs (index = 100), expressed as an index.

Messner (1997) has analyzed the different dynamics of investment paths in
new and advanced technologies in the two alternative cases—the dynamic case
with exogenous cost reductions and the technological learning case with endoge-
nous cost reductions. Figure 7.10 presents her findings for global annual invest-
ments in electricity generation in the technological learning and dynamic cases
compared with the static case. The most striking difference is that the case with
endogenous learning shows higher up-front investment costs but has lower dis-
counted systems costs than the dynamic case with exogenous cost reductions.
Both cases lead to roughly the same investment costs in 2050, because there is
sufficient cumulative investment in new and advanced technologies to reduce the
costs along the learning curve to the level of exogenous reductions in the dynamic
case. Over the entire time period (1990–2050), cumulative discounted invest-
ments are 6.6 percent lower in the dynamic case with exogenous learning and 9.7
percent lower in the case with endogenous learning than in the static case (Mess-
ner 1997). The difference in the investments is particularly large between 2020
and 2050. The discounted investment costs in the case with technological learning
are 50 percent below the discounted investment costs of the dynamic case.

This single example illustrates some of the generic differences between the
two approaches to modeling future technology costs and performance. In the dy-
namic case it pays to postpone some investment in new technologies until the
costs are reduced (exogenously). In the case of technological learning there is no
time to waste. Higher levels of costly investments are made immediately to ac-
crue sufficient experience to be able to reap the benefits of cost reductions at some
point further along the learning curve. If these costly investments are not made,
the technology stays expensive. Nonetheless, despite high initial investments, the
overall discounted costs are lower in this example than in the other cases. This
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result means that early RD&D expenditures and development of niche markets for
new technologies may be able to reduce the overall discounted costs of long-term
mitigation strategies, even if similar rates of “autonomous” technology improve-
ment are assumed in the case without learning. In reality, however, the exogenous
cost reductions are unlikely to occur unless someone else invests instead. At the
global level this is of course a contradiction, because even in the dynamic case
such investments must be included in the calculations if cost reductions are to
occur.

7.5 Conclusion

Incorporating the concept of technological learning into the energy model
MESSAGE led to lower CO2 mitigationcosts compared with an alternative model
employing a fixed rate of autonomous technological change, as is usually done in
studies of future energy and emissions perspectives. The costs were also lower
although exactly the same rates of performance improvements and cost reduc-
tions were assumed to occur over the study time horizon in both approaches.
Compared with the case of endogenized learning, the “autonomous” case leads to
the postponement of investment decisions until lower-emission technologies “be-
come” cheaper. This means that initially the investments are somewhat lower. In
the case with endogenous technological learning, initial investments are higher.
However, this higher investment is offset later through the possibilities of reduc-
ing emissions at substantially lower costs when installed capacities and emission
levels are higher. Even with discounting at 5 percent per year, the endogenous
learning case leads to lower total costs in the global electricity sector. Of course,
these results are sector specific and do not reflect any of the deadweight loss or
intersectoral trade-offs stipulated by Goulder (1996). In other words, the analy-
sis does not consider the potential loss of welfare associated with the costly initial
market penetration of the new technologies or the transfer of resources away from
other technology development toward the development of new technologies. The
results, however, do shed light on the process by which new technologies enter
and penetrate the market, which has important implications for both the cost and
timing of policy interventions designed to achieve emission mitigation.

Endogenization of technological change through technological learning cap-
tures some of the positive externalities generated by RD&D and early investment
in new technologies. This means that not only will a given technology be im-
proved through RD&D and learning, but other technologies of the same “family”
will improve, as well. Knowledge spillover is often assumed to be determined by
the combination of processes by which knowledge diffuses and by which it be-
comes obsolete. It has a positive impact on the social return of the technological
learning development strategies.

The introduction of technological learning into the model does not solve all
the problems associated with understanding technological change or the future
costs of alternative energy technology strategies. Some basic problems also en-
countered in the autonomous technological change approach are still unsolved.
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Technical performance and cost profiles of learning curves must be specified
a priori. In the real world the performance improvement rates of new technolo-
gies are not known a priori, which is reflected in the risks that entrepreneurs
usually face when they make new technology adoption decisions. It should be
acknowledged that technical change is only one of several factors that determine
technology costs and performance and thus ultimately also emissions paths.

Including this “stylized” treatment of technological change in the model cap-
tures some of the dynamic patterns common to the cost reductions and improve-
ment in performance of almost all technologies that are successful in the market-
place. Initially, costs are high owing to batch-production methods that require
highly skilled labor. Performance optimization and cost minimization are rarely
important; the overriding objective is the demonstration of technical feasibility.
When the technology seeks entry into a market niche, costs begin to matter, al-
though usually what is of central importance is the technology’s ability to perform
a task that cannot be accomplished by any other technology. Examples are fuel
cells in space applications, PV systems for remote and unattended electricity gen-
eration, gas turbines for military aircraft propulsion, and drill-bit steering technol-
ogy in oil and gas exploration. Including in the model the more costly new and
advanced technologies with the promise of lower costs and better performance
through accumulated learning captures these effects of early and pre-commercial
technology development and entry into specialized niche markets.

A technology’s success in a niche market, however, does not ensure its suc-
cessful commercialization. Improvements must be made in reliability, durability,
and efficiency, and, even more important, costs must be reduced. Any RD&D
devoted to these objectives creates a supply push. This supply push must be com-
plemented by a demand pull, by which initial markets are expanded sufficiently to
further reduce costs through economies of scale. The demand pull may be policy
driven. Technically feasible technologies that are not yet economically compet-
itive might benefit from environmental or energy security policies that increase
their competitors’ costs. For example, other electricity generation options benefit
from requirements for flue gas desulfurization in coal-fired plants, or from bans
on electricity generation from natural gas that restrict combined-cycle gas tech-
nology. New technologies may also benefit from economies of scale and market
dominance already achieved by older technologies. The existing transmission
infrastructure, for example, can be readily used by new electricity-generating
technologies (Nakicenovic et al. 1998). Including such effects in the model by
initially introducing new and advanced technologies only in some niche markets
and later in more widespread applications as their costs decrease captures some of
these complex phenomena associated with innovation diffusion and technological
change.

Thus, the rate of technological change depends on the diffusion of innova-
tions and the dynamics of their adoption. The replacement of carbon-intensive
technologies with zero- or low-carbon alternatives can be expressed as the pro-
cess of energy decarbonization. Scenarios with high shares of coal actually lead
to a reversal of the historical trends toward decarbonization. Other scenarios that
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Figure 7.11. Decarbonization of Global Electricity.
Rates are shown for three alternative cases: the “static” case, with constant investment
costs; the “dynamic” case, with exogenously declining costs; and the “technological learn-
ing” case, with endogenously declining costs. Rates are expressed in kilograms of carbon
per kilowatt-year of electricity (kgC/kWyr).

envisage that the transition to the post-fossil era will occur during the twenty-
first century portray decarbonization rates similar to, or sometimes even higher
than, historical rates. Decarbonization must continue if CO2 emissions and even-
tually also concentrations are to stabilize in the future. Quite high rates would
be required to actually reduce global CO2 emissions, as would be required to
achieve stabilization of atmospheric concentrations at some negotiated level in
accordance with Article 2 of the Framework Convention on Climate Change
(UN/FCCC 1992). Figure 7.11 captures the differences in the decarbonization
of global electricity generation with and without technological learning presented
in this chapter.

Without improvements in technological performance or cost reductions com-
pared with the present situation, the static case actually leads to a reversal of
historical trends toward decarbonization after the 2020s as the global electric-
ity generation is “locked-in” the carbon-intensive generation technologies. De-
carbonization occurs in the dynamic case, indicating a high degree of structural
change in electricity-generating capacity. However, the rate slows down after the
2030s compared with the technological learning case. The more dynamic inter-
play in the learning case among different electricity-generating technologies leads
to the highest degree of decarbonization, and yet here the total discounted costs
are the lowest of all three alternatives. That the costs are lower than in the static
case is not at all surprising, as the static case does not include any reduction in
costs, and thus older and cheaper technologies are generally chosen, leading to
relatively high emissions and high costs.
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An interesting result of this analysis is that technological learning leads to
lower emissions and costs compared with the dynamic case, even though costs
and emission-reduction potentials are the same as the exogenously assumed im-
provement rates in the dynamic case by the end of the time horizon. The addi-
tional degree of freedom of initially introducing promising technologies in the
niche markets although they are still too costly leads to overall cost reductions,
because cumulative learning allows for significant cost reductions later on, when
installed capacities and emission levels are high. In contrast, the dynamic case
does not lead to early market entry of new and advanced technologies. These
technologies diffuse as they become more attractive, but by that time the system’s
inertia and the still-high shares of older technologies in the vintage structure do
not allow a more dynamic transition toward lower emissions.

The “stylized” treatment of RD&D and technological learning in the model
requires further improvement. Endogenous technological change is captured only
for six new technologies in the presented example. This is seriously deficient
and clearly needs to be extended to other technologies in the energy system and
other sectors of the economy [see also Gritsevskyi and Nakicenovic (2000) and
Chapter 10 in this volume]. High computational requirements are a serious barrier
to such extensions, so that new research is required. There are serious method-
ological shortcomings to the approach, as it captures RD&D and learning only
for low-carbon-emitting technologies. According to Goulder (1996), knowledge-
generating resources are generally scarce, so that expansion of technological
progress in one industry often implies a reduction in the rate of technological
progress in others, even if the policy in question does not intend to discourage
any industry’s rate of technological progress. Another critical issue is that en-
dogenization of technological change through learning by doing means that the
energy system will be “locked-in” a few technologies that have high progress ra-
tios. But variety has a value in itself. This means that a number of speculative
projects should be funded in any case, with the idea that this will enlarge the stock
of future possibilities.

This first result of endogenizing technological change indicates that the post-
ponement of investments in new and advanced technologies in itself will bring few
additional benefits to future CO2 mitigation strategies. In other cases there might
be benefits from delay. The costs of some technologies might decrease as a result
of “exogenous” improvement of other technologies. For example, improvements
in information technologies might benefit energy technologies so that postpone-
ment might be attractive. The main result of the analysis, however, is robust:
unless there is dedicated, timely, and pronounced investment in CO2 mitigation
technologies, they are less likely to be developed and thus become commercially
viable and competitive in the marketplace. Learning by doing is a prerequisite
for performance improvements, cost reductions, and eventual diffusion. Post-
ponement of investment decisions will not bring about the technological change
required to reduce CO2 emissions in a cost-effective way. Even worse, it might
bring about further “lock-in” of energy systems and economic activities along
fossil-intensive development paths.
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Nakicenovic, N., Grübler, A., and McDonald, A., eds, 1998, Global Energy Perspectives,
Cambridge University Press, Cambridge, UK.

Nordhaus, W.D., 1973, The allocation of energy resources, Brookings Institution,
Washington, DC, USA, Brookings Papers on Economics Activity, 3:529–576.

Nordhaus, W.D., and van der Heyden, L., 1997, Modeling Technological Change: Use
of Mathematical Programming Models in the Energy Sector, Cowles Foundation
Discussion Paper No. 457, New Haven, CT, USA.

Rosegger, G., 1991, Diffusion through interfirm cooperation: A case study, in N. Nakicen-
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Schäfer, A., Schrattenholzer, L., and Messner, S., 1992, Inventory of Greenhouse-Gas Mit-
igation Measures: Examples from IIASA Technology Data Bank, WP-92-85, Inter-
national Institute for Applied Systems Analysis, Laxenburg, Austria.



Nebojsa Nakicenovic 181

Schmalensee, R., Stoker, T.M., and Judson, R.A., 1998, World carbon dioxide emissions:
1950–2050, The Review of Economics and Statistics, 80:15–27.

Strubegger, M., and Reitgruber, I., 1995, Statistical Analysis of Investment Costs for Power
Generation Technologies, WP-95-109, International Institute for Applied Systems
Analysis, Laxenburg, Austria.

UN/FCCC (United Nations Framework Convention on Climate Change), 1992, Conven-
tion Text, IUCC, Geneva, Switzerland.

Wigley, T.M.L., Richels, R., and Edmonds, J.A., 1996, Economic and environmen-
tal choices in the stabilization of atmospheric CO2 concentrations, Nature,
379:240–243.




