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Financial markets are exposed to systemic risk (SR), the risk that a major fraction of the system
ceases to function, and collapses. It has recently become possible to quantify SR in terms of
underlying financial networks where nodes represent financial institutions, and links capture the size
and maturity of assets (loans), liabilities, and other obligations, such as derivatives. We demonstrate
that it is possible to quantify the share of SR that individual liabilities within a financial network
contribute to the overall SR. We use empirical data of nationwide interbank liabilities to show that
the marginal contribution to overall SR of liabilities for a given size varies by a factor of a thousand.
We propose a tax on individual transactions that is proportional to their marginal contribution to
overall SR. If a transaction does not increase SR it is tax-free. With an agent-based model (CRISIS
macro-financial model) we demonstrate that the proposed “Systemic Risk Tax” (SRT) leads to a
self-organised restructuring of financial networks that are practically free of SR. The SRT can be
seen as an insurance for the public against costs arising from cascading failure. ABM predictions
are shown to be in remarkable agreement with the empirical data and can be used to understand
the relation of credit risk and SR.
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I. INTRODUCTION

Failure to manage systemic risk (SR) has turned out
to be extremely costly for society. The financial crisis
of 2007-2008 and its consequences demonstrated the im-
portance of reducing it. The threat of collapse of large
parts of the financial system has forced national govern-
ments to bailout hundreds of banks [1]. As a result, one
observed falling global stock and real estate markets [2],
a severe and global credit crunch [3], skyrocketing and
prolonged unemployment rates, and several Western gov-
ernments at the verge of bankruptcy. Bank bailouts have
caused dangerously high levels of sovereign debt around
the world, and it has become necessary to find alterna-
tives to finance bailouts [4]. The International Monetary
Fund has proposed a tax on banks, called the “finan-
cial stability contribution” (FSC), i.e. a contribution of
the financial sector to the public costs of the financial
crisis, which is used to create reserves for future crises.
Bank taxes have been proposed in many countries around
the world, e.g. the “Financial Crisis Responsibility Fee”
in the US. In several European countries, including Ger-
many and Austria, bank taxes are currently in force. The
European Commission has proposed an EU-wide bank
tax under the “Single Resolution Mechanism”. In addi-
tion to bank taxes, a financial transaction tax (FTT) is
being considered by many countries. A FTT is not a tax
on financial institutions per se, but a levy placed on spe-
cific types of financial transactions. Its main purpose, be-
sides generating revenue for governments, is to curb the
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volatility of financial markets [5, 6]. Related empirical
studies are generally inconclusive, and a causal relation
between volatility and FTTs remains ambiguous [7, 8]. In
response to the financial crisis of 2007-2008, a consensus
on the need for new financial regulation is emerging [9].
New financial regulation must be designed to mitigate the
risk of the financial system as a whole. This approach to
financial regulation is known as “macroprudential regu-
lation”, and is currently being put in place around the
globe [9–11]. The Basel III framework recognises system-
ically important financial institutions (SIFI) and recom-
mends increased capital requirements for them – the so
called “SIFI surcharges” [12, 13]. Basel III further in-
troduces the idea of “counter-cyclical buffers” that allow
regulators to increase capital requirements during periods
of high credit growth. No matter how well-intended these
developments might be, they miss the central point about
the nature of SR, and therefore may not be suitable to
improve the stability of the financial system in a sustain-
able way. SR is closely related to the network structure
of financial assets and liabilities in a financial system.
Management of SR is essentially a matter of restructur-
ing financial networks in such a way that the probability
of cascading failure is reduced, or ideally eliminated.

Credit risk is the risk that a borrower will default on
a specific debt by failing to make the full pre-specified
repayments. It is usually seen as a risk that emerges
between two counterparties once they have engaged in
a financial transaction. The lender is the sole bearer of
credit risk and accounts for the likelihood of failed repay-
ments by demanding a risk premium. Lenders usually
charge higher interest rates to borrowers that are more
likely to default (risk-based pricing). Credit risk is rela-
tively well-understood, and can be mitigated through a
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number of methods and techniques [14]. The Basel Ac-
cords provide an extensive framework, dealing foremost
with the mitigation of credit risk [15–17]. When two
counterparties are part of a financial system, for exam-
ple as nodes in a financial network, the situation changes,
and their transaction may affect the financial system as
a whole. The lender is no more the sole bearer of credit
risk, nor does credit risk depend on the financial con-
ditions of the borrower alone. The impact of a default
of the borrower is no longer limited to the lender, but
may affect other creditors of the lender, which in turn
may affect their creditors. Similarly, the lender is not
only vulnerable to a default of the borrower but also to
defaults of all debtors of that borrower, as well as their
debtors. In other words, in financial networks credit risk
is no longer limited to two counterparties, but becomes
systemic.

SR is the risk that the financial system as a whole, or
a large fraction of it, can no longer perform its function
as a credit provider and collapses. In a narrow sense,
SR is the notion of contagion or impact from the failure
of a financial institution, or group of institutions, on the
financial system and the wider economy [12, 18]. It is
a result of the interconnected nature of financial trans-
actions, and claims or liabilities in the financial system.
It unfolds as secondary cascades of credit defaults, trig-
gered by credit defaults between individual counterpar-
ties [19]. These cascades can potentially wipe out the
financial system by a de-leveraging cascade [20–29]. It
is obvious that lenders have a strong incentive to miti-
gate credit risk. In the case of SR the situation is less
clear as SR involves externalities, i.e. financial institu-
tions manage their own risks but do not consider their
impact on the system as a whole [30]. In fact, funding
costs for large financial institutions are lowered due to
a market expectation that the state will bailout banks
that are deemed to be systemically important [31]. Un-
less financial institutions are required to internalise costs
of SR, institutions will have little incentive to minimise
risks that are borne by the general public [32]. Manage-
ment of SR is, therefore, foremost in the public interest.

SR is a network externality resulting from contagion
effects [33]. To cope with this externality, governments
can use two main policy instruments: taxation or regula-
tion [34]. Taxation is aimed at reducing the gap between
public and private costs of SR, while financial regulations
impose direct restrictions and requirements on financial
institutions. In general, taxation is superior to regula-
tion because a taxation scheme can be designed to pro-
duce any desired progressive impact [34]. In principle,
marginal tax rates can be set so that they reflect the
marginal cost of reducing SR. Several authors have re-
cently advocated for a taxation of SR [32, 35–39], while
in the real world regulation policies are being put in
place due to the inherent difficulties of measuring SR
[12]. In this context several measures for SR have re-
cently been proposed that focus (mainly) on statistics of
losses, accompanied by a potential shortfall during peri-

ods of synchronised behaviour where many institutions
are simultaneously distressed [32, 36, 40, 41]. None of
these measures, however, take cascading failure directly
into account.

SR is predominantly a network property of liability
networks [42, 43]. Recent econometric studies indicate
that network measures could potentially serve as early
warning indicators for crises [44–46]. Different financial
network topologies will have different probabilities for
contagion and systemic collapse, given the link density
and the financial conditions of nodes are the same [47].
In this sense the management of SR becomes a technical
problem of reshaping the topology of financial networks
[48]. The goal is to do this in a way that neither re-
duces the credit provision capacity, nor the transaction
volume of the financial system. Data on the topology of
liability networks is available to many central banks. Sev-
eral studies on historical data show typical scale-free con-
nectivity patterns in liability networks [49–55], including
overnight markets [56], financial flows [57] and mutual
cross holdings [58]. As a network property, SR can be
(precisely) quantified by using network metrics [42, 43].
In particular, a relative network measure (DebtRank) can
be assigned to all nodes in a financial network that speci-
fies the fraction of SR that they contribute to the system
(institution- or node-specific SR) [43]. As shown later, it
is natural to extend the notion of node-specific SR to in-
dividual liabilities between two counterparties (liability-
specific SR) and to individual transactions (transaction-
specific SR).

In this paper we introduce a novel approach for the
management of SR in financial networks. First, we de-
velop a risk measure to quantify the marginal contribu-
tion of individual liabilities in financial networks to the
overall SR. Second, we use this risk measure to design
an incentive scheme where banks pay a Pigovian tax –
the “Systemic Risk Tax” (SRT) – on each transaction,
which is proportional to the increase in overall SR that
it would cause. Following this approach, financial in-
stitutions would internalise their externality, as they are
“taxed” according to their marginal contribution to over-
all SR. This incentive scheme leads to a self-organised
reduction of SR in the following way: Market partic-
ipants looking for credit will try to avoid this tax by
looking for credit opportunities that do not increase SR
and are thus tax-free. As a result, the network rearranges
toward a topology that, in combination with the finan-
cial conditions of individual institutions, will lead to a
de facto elimination of SR. This is due to the fact that
with the new topology cascading failures can no longer
occur. With the help of an agent-based model (ABM), we
show that financial institutions react to the SRT by rear-
ranging the financial network over time such that overall
SR is indeed drastically reduced. A number of ABMs
have been used recently to study interactions between
the financial system and the real economy, focusing on
destabilising feedback loops between the two sectors [59–
62]. We test the proposed SRT within the framework
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of the CRISIS macro-financial model1. In this ABM we
run the financial system in three modes. The first re-
flects the situation today, where banks do not care about
their systemic importance and where interbank loans are
traded with an “interbank offered rate” that is dynami-
cally formed in the interbank market. This interest rate
only reflects the creditworthiness of the borrowing coun-
terparty, and does not take SR into account. The second
mode introduces the SRT. In this mode, the effective in-
terest rate (interest rate + SRT) reflects both the cred-
itworthiness of the borrowing counterparty and the SR
increase associated with each transaction. For compari-
son, in a third mode we implement a FTT on all trans-
actions (Tobin-like tax) that does not depend on the SR
increase associated with transactions and hence does not
have any network restructuring effect.

II. THE SYSTEMIC RISK TAX

The SRT is a levy placed on a financial transaction
to offset the SR increase associated with that transac-
tion. We show that SR associated with a transaction can
be quantified by the DebtRank methodology, which was
originally suggested as a recursive method to determine
the systemic importance of nodes within financial net-
works [42]. It is a quantity that measures the fraction
of the total economic value (eq. (D2)) in the network
that is potentially affected by the default and distress of
a node or a set of nodes, see appendix D. For simplic-
ity’s sake let us think of the nodes in financial networks
as banks. By Lij(t) we denote the liability (exposure2)
network of a given financial system at a given moment.
Lij(t) =

∑
k lijk(t) is the sum of all loans lijk(t) that

bank j currently extends to bank i. Ci(t) is the cap-
ital of bank i at time t. If bank i defaults and can-
not repay its loans, bank j loses the loans Lij(t). If j
does not have enough capital available to cover the loss,
j also defaults. Given Lij(t) and Ci(t), the DebtRank
Ri(t) = Ri(Lij(t), Ci(t)) of bank i can be computed, see
eq. (D5).

DebtRank has the precise meaning of economic loss
(in Euros) that is caused by the distress or default of a
node [42]. This precise meaning of the DebtRank allows
us to define the “expected systemic loss” for the entire
economy. Assuming that we have B banks in the system,
the expected systemic loss can be approximated by

ELsyst(t) = V (t)

B∑
i=1

pi(t)Ri(t) , (1)

1 http://www.crisis-economics.eu
2 Note that the entries in Lij(t) are the liabilities bank i has to-

wards bank j. We use the convention to write liabilities in the
rows (second index) of L. If the matrix is read column-wise
(transpose of L) we get the assets or loans banks hold with each
other.

with pi(t) the probability of default of node i, and V (t)
the combined economic value of all nodes at time t. That
this is an excellent approximation has been demonstrated
in [63]. For the derivation, see appendix E.
Ri(t) measures the fraction of the total economic value

(eq. (D2)) that is potentially affected by node i. In gen-
eral, pi(t) is not known and can, in principle, also depend
on the particular topology of various financial networks.
Since Ri denotes the risk of financial contagion from the
liability network Lij(t), the probability of default pi(t)
should not explicitly depend on Lij(t). However, pi(t)
can, in principle, depend on other networks, like the net-
work of overlapping portfolios. Besides overlapping port-
folios there are a number of reasons why default correla-
tion exists, e.g. external events can trigger joint defaults
of firms in the same geographic region or sector [64]. Note
that we assume in eq. (1) that Ri denotes the risk of fi-
nancial contagion and all other factors that lead to de-
fault correlations are comparably small (second order).
Thus we calculate the total expected loss by summing
the expected losses across banks. However, summing the
expected losses across banks in general does not have
the meaning of total expected loss because it ignores the
joint probability of default. If the default correlation is
known, additional terms containing the joint probability
of default and the impact of a group can be added to
eq. (1), see section V.

To calculate the marginal contributions to the ex-
pected systemic loss, we start by defining the net liability
network Lnet

ij (t) = max[0, Lij(t)−Lji(t)]. After we add a
specific liability Lmn(t), we denote the liability network
by

L
(+mn)
ij (t) = Lnet

ij (t) +
∑
m,n

δimδjnLmn(t) , (2)

where δij is the Kronecker symbol. The marginal con-
tribution of the specific liability Lmn(t) on the expected
systemic loss is

∆(+mn)ELsyst(t) =

=

B∑
i=1

pi(t)
(
V (+mn)(t)R

(+mn)
i (t)− V (t)Ri(t)

)
, (3)

where R
(+mn)
i (t) = Ri(L

(+mn)
ij (t), Ci(t)) is the DebtRank

of the liability network and V (+mn)(t) the total economic
value with the added liability Lmn(t). Clearly, a positive
∆(+mn)ELsyst(t) means that Lmn(t) increases the total
SR.

Finally, the marginal contribution of a single loan (or
a transaction leading to that loan) can be calculated. We
denote a loan of bank i to bank j by lijk. The liability
network changes to

L
(+k)
ij (t) = Lnet

ij (t) +
∑
m,n,k

δimδjnδkklmnk(t) . (4)

Since i and j can have a number of loans at a given time
t, the index k numbers a specific loan between i and j.

http://www.crisis-economics.eu
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The marginal contribution of a single loan (transaction)

∆(+k)ELsyst(t) is obtained by substituting L
(+mn)
ij (t) by

L
(+k)
ij (t) in eq. (3). In this way every existing loan in the

financial system, as well as every hypothetical one, can
be evaluated with respect to its marginal contribution to
overall SR.

The central idea of the SRT is to tax every transaction
between any two counterparties that increases SR in the
system. The size of the tax is proportional to the increase
of the expected systemic loss that this transaction adds to
the system as seen at time t. The SRT for a transaction
lijk(t) between two banks i and j is given by

SRT
(+k)
ij (t) = ζ max[

0,
∑
i

pi(t)
(
V (+k)(t)R

(+k)
i (t)− V (t)Ri(t)

)]
. (5)

Note that we assume in eq. (5) that defaults occur only
on the maturity date of the loan. For simplicity’s sake we
do not discount. To allow defaults at any time, valuation
can be done similarly to credit risk models as for example
for credit default swaps [64–66]3.
ζ is a proportionality constant that specifies how much

of the generated expected systemic loss is taxed. ζ = 1
means that 100% of the expected systemic loss will be
charged. ζ < 1 means that only a fraction of the true
SR increase is added on to the tax due from the institu-
tion responsible. ζ can be chosen such that the efficiency
(total transaction volume) of the financial system is kept
the same as it would be in the untaxed world. We show
below that this is indeed the case.

III. THE MODEL TO TEST THE ABILITY OF
THE SYSTEMIC RISK TAX TO REDUCE

SYSTEMIC RISK

To test the economic and financial implications of the
SRT we use the CRISIS macro-financial model. This
is an economic simulator that combines a well-studied
macroeconomic ABM [67–69] with an ABM of financial
markets. We use a modified version of the macroeco-
nomic model of Delli Gatti et al. [69], which additionally

3

SRT
(+k)
ij (t) = ζmax

[
0,

∫ t+T

t
dτ v(τ)×

×
∑
i

p̂i(τ)
(
V (+k)(t)R

(+k)
i (t) − V (t)Ri(t)

)]
.

Here p̂i(τ) is the default probability density of node i at time
τ , and v(τ) the present value (at time t) of 1 Euro received at
time τ . The default probability density is defined as p̂i(t) =

h(t) exp−
∫ τ
0 h(τ)dτ , where h(t) is the hazard rate. The duration

T of the loan is from t until t+T and Ri(t) is computed at time
t.

Banks

Firms

Households

loans

deposits

consumption

deposits
wages / dividends

FIG. 1. Schematic overview of the model structure showing
the three agent types (banks, firms, and households), and
their interactions. Firms pay dividends to their owners, and
wages (financed through income and loans) to their workers.
Households consume goods produced by the firms. House-
holds and firms deposit money in banks, banks grant loans to
the firms.

has an interbank market and is a closed, stock-flow con-
sistent economic system that allows no in- or out-flows
of cash. Here we give a short description of the model,
for a comprehensive description, see Delli Gatti et al.
[69] or Gualdi et al. [70] and for the modifications, see
appendix A.

In the model, there are three types of agents: house-
holds, banks, and firms, as depicted in fig. 1. The agents
interact on four different markets:

(i) Firms and banks interact on the credit market.

(ii) Banks interact with banks on the interbank market.

(iii) Households and firms interact on the job market.

(iv) Households and firms interact on the consumption
goods market.

Banks hold all firms’ and households’ cash as deposits.
Households are randomly assigned as owners of firms and
banks (share-holders). Agents repeat the following se-
quence of decisions at each time step:

1. firms define labour and capital demand,

2. banks raise liquidity for loans,

3. firms allocate capital for production (labour),

4. households receive wages, decide on consumption and
saving,
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5. firms and banks pay dividends, firms with negative
liquidity go bankrupt,

6. banks and firms repay loans,

7. banks raise additional liquidity to manage unantici-
pated cash needs.

Households owning firms or banks receive dividends as
income. All other households earn salaries for work done
for firms. Banks and firms pay 20% of their profits as
dividends.

A. The agents

We give a short description of the agents; for more de-
tails on the agents and their interactions, see Delli Gatti
et al. [69], Gualdi et al. [70], and appendix A.

1. Households

There are H households of which there exist two types:
firm owners, and workers. Each of them has a personal
account Aj,b(t) at one of the B banks. j indexes the
worker, b the bank. Household accounts are randomly
assigned to banks. Workers apply for jobs at the F dif-
ferent firms. If hired, they receive a fixed income w per
time step, and supply a fixed labour productivity α. Firm
owners receive their income through dividends from their
firm’s profits. At each time step every household spends
a fixed percentage c of its current deposit account on the
consumption market. Households compare prices of con-
sumption goods from z randomly chosen firms and buy
the cheapest.

2. Firms

There are F firms producing perfectly substitutable
consumption goods. At every time step t firms compute
an expected demand for the next time step Di(t + 1),
and an estimated price Pi(t + 1) (subscripts label the
firm), based on a rule that takes into account both ex-
cess demand/supply and the deviation of the price Pi(t)
from the average price at the present time step. Each
firm computes the number of required workers to sup-
ply the expected demand. If the wages for the respective
workforce exceed the firm’s current liquidity, it applies
for a loan. Firms approach n randomly chosen banks
and choose the loan with the most favourable rate. If
this rate exceeds a threshold rate rmax, the firm only
asks for φ percent of whatever loan was originally re-
quested. Based on the outcome of this loan request, firms
re-evaluate the required workforce, and hire or fire the
necessary number of workers. Firms sell the goods on
the consumption goods market. Firms go bankrupt if
they have negative liquidity after the goods market has

closed. Each of the bankrupted firm’s debtors (banks)
incurs a capital loss in proportion to their investment in
the company. Firm owners of bankrupted firms are per-
sonally liable, and their personal account is divided by
the debtors pro rata. They immediately (next time step)
start a new company. Their initial estimates for Di(t+1)
and Pi(t+1) equals the respective current averages in the
population.

3. Banks

There are B banks that offer firm loans at rates that
take into account the individual specificity of banks
(modelled by a uniformly distributed random variable),
and the firms’ creditworthiness quantified by their lever-
age ratio (see appendix A). Firms pay a credit risk pre-
mium according to their creditworthiness, which is mod-
elled by a monotonically increasing function of their fi-
nancial fragility. Banks try to provide requested loans
and grant them if they have enough liquid resources. If
they do not have enough cash, they approach other banks
in the interbank market to obtain the necessary amount.
If a bank does not have enough cash and cannot raise
the full amount for the requested firm loan on the in-
terbank market it does not pay out the loan. Interbank
and firm loans have the same duration. Additional refi-
nancing costs of banks remain with the firms. Each time
step firms and banks repay τ percent of their outstand-
ing debt (principal plus interest). If banks have excess
liquidity they offer it on the interbank market for a nomi-
nal interest rate. The interbank market is modelled after
an electronic marketplace where, in principle, all partici-
pants can enter into business relationships. In the model,
banks choose the interbank offer with the most favourable
rate. This does not mean that the emerging interbank
network is fully connected. Emerging interbank networks
are shown in fig. 2 and (weighted) degree distributions
can be found in fig. 7. Interbank rates rij(t) offered by
bank i to bank j take into account the specificity of bank
i, and the creditworthiness (leverage ratio) of bank j. If
a firm goes bankrupt the respective creditor bank writes
off the respective outstanding loans as defaulted credits.
If the bank does not have enough equity capital to cover
these losses, it defaults. Following a bank default an it-
erative default-event unfolds for all interbank creditors.
This may trigger a cascade of bank defaults. For sim-
plicity’s sake, we assume no recovery for interbank loans.
This assumption is reasonable in practice for short term
liquidity [71]. A cascade of bankruptcies happens within
one time step. After the last bankruptcy is taken care of
the simulation is stopped.
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B. Implementation of the systemic risk tax and the
Tobin tax

A systemic risk premium, in form of the SRT, is im-
posed on all interbank transactions. Before entering a
desired loan contract lijk(t), the credit seeking banks i

can get quotes for the SRT
(+k)
ij (t) rates from the central

bank, for various offering banks j. They choose the inter-
bank offer from bank j with the smallest total rate, which

is composed of rtotalij (t) = rij(t) + SRT
(+k)
ij (t). All other

transactions are exempted from the SRT. In contrast to
current market practice, the effective interest rate reflects
both the creditworthiness of the borrowing counterparty
and the SR increase associated with each transaction.
The SRT is collected in a bailout fund. The SRT is cal-
culated according to eq. (5). We approximate pi(t) by
the financial fragility, defined by the borrower’s leverage
at time t. For more details, see appendix A 2.

For comparison, we implement a Tobin-like [5] FTT for
interbank loans. We impose a constant tax rate of 0.2% of
the transaction (this is about 5% of the interbank interest
rates) on all interbank rates on offer. Other transactions
are not taxed. The FTT makes lending less attractive for
firms that borrow from banks requiring liquidity from the
interbank market, as refinancing costs remain with the
firms.

IV. RESULTS

We implement the above model in MATLAB for B =
20 banks, F = 100 firms, and H = 1300 households. The
model is run in three modes, without any tax, with the
SRT, and with a Tobin-like FTT. Results are averages
over 10, 000 independent, identical simulations across 500
time steps. We set ζ = 0.02 (see section II), and for the
Tobin-like FTT we impose a constant tax rate of 0.2% of
the transaction. For different tax rates for the Tobin-like
FTT and an alternative mode in which the SRT is set to
the true increase in SR associated with each transaction
(ζ = 1), see appendix B. Additionally in appendix B
there is a short discussion of the effect of the SRT on the
network properties.

We compare model results to historical, anonymised,
and linearly transformed interbank liability data pro-
vided by the Austrian Central Bank (OeNB), see ap-
pendix C. In fig. 2(a) we show a snapshot of the Aus-
trian interbank network at the end of the first quarter
of 2006. Nodes symbolise the banks of the Austrian
banking system and links represent their lending relations
(weighted by the liabilities). Nodes are coloured accord-
ing to their systemic importance Ri, from systemically
important banks (red) to unimportant ones (green). The
node-size represents the capitalisation of banks and the
width of the links symbolises the liabilities. In fig. 2(b)
we show the 20 largest banks of the Austrian interbank
network. Clearly, the 20 largest banks contribute most to

(a)

(b) (c)

(d) (e)

FIG. 2. Banking network. (a) Austrian interbank network
at the end of the first quarter of 2006, (b) the 20 largest
banks of the Austrian interbank network only, (c) banking
network of the ABM without a tax, (d) with the FTT, and (e)
with the SRT. Nodes (banks) are coloured according to their
systemic importance Ri, from systemically important banks
(red) to unimportant ones (green). The node-size represents
the capitalisation of the banks. Width of the links are the
liabilities of the banks in the interbank network and the colour
is according to the source.
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FIG. 3. Expected systemic loss as measured by DebtRank, ELsyst
i ∝ Ri. (a) DebtRank, Ri of the 20 largest banks of the

Austrian banking sector at the end of the first quarter of 2006. Banks are ordered by DebtRank, the most important being to
the very left. Inset: Expected systemic loss from all banks for the Austrian interbank data and the three model modes. Here
the SR measure is the size of a potential loss for the entire economy times the probability of that loss occurring as defined
in eq. (3). (b) Model results for Ri: without a tax (red), with the FTT (blue), and with the SRT (green). Clearly, the SRT
drastically reduces the SR contributions of individual banks. The situation without tax resembles the empirical distribution.
(c) Marginal contributions on expected systemic loss ∆(+mn)ELsyst of individual interbank liabilities Lmn vs. the relative size
of interbank loans in double logarithmic scale. Every data point represents an interbank liability Ldata

mn , see appendix C. The
loan size captures the credit risk for lenders, whereas ∆(+mn)ELsyst is the SR of the liability. (d) Marginal contributions for
the simulations in the three modes. The SRT reduces SR but leaves contract sizes unchanged.

overall SR (red and orange dots). Figure 2(c) shows re-
sults from the ABM without a tax, (d) with the FTT, and
(e) with the SRT. The SRT effectively reduces the spread-
ing of SR by preventing systemically important nodes
from lending. This can be seen from the fact that there
are only green links in fig. 2(e). In the snapshot of the
Austrian interbank network and in the model without the
SRT numerous red links are clearly visible. In fig. 3(a) we
show SR as measured by DebtRank Ri. In particular, we
show Ri for the 20 largest banks (according to total as-
sets) of the Austrian banking sector at the end of the first

quarter of 2006. Here we calculate Ri from Ldata
ij (t) (see

appendix C), in fig. 3(b) we use the net liability network
Lnet
ij (t). Banks are ordered by their DebtRank, the sys-

temically most important one is to the very left, the least
important one to the very right. The ABM results for
Ri(t) are presented in fig. 3(b): without a tax (red), with
the FTT (blue) and with the SRT (green). The shown
distributions are averages over 10, 000 independent simu-
lations. Clearly, the SRT drastically reduces the SR con-
tributions of individual banks. The situation without tax
resembles the empirical distribution remarkably well. In
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fig. 3(c) the marginal contributions on expected systemic
loss from eq. (3) are presented for all individual inter-
bank liabilities Ldata

mn , as a function of the relative size
of interbank loans. Every data point represents a single
interbank liability Ldata

mn from bank m to n. Interbank
loans are themselves power-law distributed (not shown),
which is known empirically [51]. The loan size captures
the credit risk for lenders, whereas ∆(+mn)ELsyst is the
SR contribution of the liability. Figure 3(d) shows the
corresponding marginal contributions for the ABM sim-
ulations for the three modes. It is clearly visible that
the SRT reduces the SR contribution of liabilities by ap-
proximately an order of magnitude (note the log scale),
but leaves contract-sizes practically unchanged. The ef-
fects of the SRT and the FTT on total losses to banks
L (see appendix F) that occur as a consequence of bank
defaults are shown in fig. 4(a). Clearly, the mode with-
out tax (red) produces fat tails in the loss distributions
of the banking sector. The Tobin tax slightly reduces
losses. The SRT gets rid of big losses in the system com-
pletely (green). The remaining losses reflect those from
firm defaults, which represents the economic risk in the
system. Note that economic risk can hardly be managed.
This elimination of losses on the interbank market is due
to the fact that under the SRT the possibility for cas-
cading defaults is drastically reduced. This is seen in
fig. 4(b), where the distributions of cascade sizes S (see
appendix F) for the three modes are compared. While
the untaxed mode produces considerable cascade sizes of
up to 20 banks, the maximum cascade sizes under the
SRT is less than half. The Tobin tax more or less fol-
lows the untaxed case. As mentioned above, the inter-
bank loan sizes are practically unchanged under the SRT.
This is also true for the total transaction volume V (see
appendix F) in the interbank market, as can be seen in
fig. 4(c), where the distributions of transaction volumes
at time step 100 are shown. Obviously, the situation for
the SRT (green) is very similar to the untaxed case (red),
whereas the transaction volume is drastically reduced in
the FTT scenario (blue), as expected.

V. DISCUSSION

We extend the notion of SR to individual liabilities
within a financial network and show with empirical data
of nation-wide interbank liabilities that this is indeed
feasible. The notion of liability-specific SR allows us
to quantify the marginal contribution of every financial
transaction to overall SR. We propose a Pigovian tax
(SRT) on every SR-increasing transaction, proportional
to the marginal contribution to overall SR. By trying to
avoid the SRT, financial institutions effectively rearrange
the financial network over time, such that cascading fail-
ures can no longer occur. This process leads to a sus-
tainable, self-organised and self-stabilising reduction of
SR.

The notion of liability-specific SR is based on the prob-
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FIG. 4. Comparison of no financial transaction tax (red) on
interbank loans, with systemic risk tax (green), and Tobin tax
(blue). (a) Distribution of total losses to banks L, (b) distri-
bution of cascade sizes C of defaulting banks, and (c) distri-
bution of total transaction volume in the interbank market
V. 10, 000 independent, identical simulations, each with 500
time steps, 20 banks.
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ability of default and the impact of a failure of a financial
institution, as measured by DebtRank. A central idea of
this paper is to separate default risk from contagion risk.
Contagion risk is the risk that a default by one institu-
tion leads to defaults of other institutions. DebtRank
denotes the risk of financial contagion from the inter-
bank liability network. The default risk of a financial
institution depends on its financial condition and on the
economic situation in general. In principle, it can also
depend on financial networks, for example, the network
of overlapping portfolios or the network of firms and re-
gions or industries. However, if network contributions
to the probability of default are small (second order), it
becomes possible to separate default risk from contagion
risk, as given by DebtRank, in a meaningful way. Oth-
erwise, it is necessary to replace or generalise DebtRank
with a methodology that includes the network of over-
lapping portfolios and other relevant networks.

In Poledna et al. [63] we show that DebtRank and the
ideas presented here can be generalised for multi-layer
networks to quantify and reduce SR originating from dif-
ferent financial markets, such as derivatives, foreign ex-
change and securities. In future work we will conduct
an empirical study on the network of overlapping portfo-
lios and its implications for SR. Joint defaults can also be
taken into account for example by copula methods. Once
the default correlation has been estimated, it is possi-
ble to include the joint probability of default straightfor-
wardly in the present framework. Joint defaults can be
included by considering the joint probability of default
of a group of financial institutions and by calculating the
DebtRank for this group. Thus, additional terms con-
taining the joint probability of default and the impact of
a group can be added to eqs. (1) and (5).

We test the SRT within the framework of the CRISIS
macro-financial model. The model produces SR-profiles
of banks that are practically identical to those of actual
interbank liability data. Even on the level of individual
transactions the model is fully compatible with the em-
pirical data (see also [63]). The SRT drastically reduces
the probability of a financial collapse due to restructured
liability networks that minimise the size of cascading fail-
ure. The tax is implemented in a simple way: an agent
would like to make a transaction (with a given coun-
terparty) and expresses this interest by announcing it
(and the envisioned counterparty) to the central bank.
The latter computes the SR increase associated with the
transaction based on the knowledge of the present state
of the entire liability network and the capitalisation of its
agents. The SR-increase is then presented to the agent
as a tax (SRT) for that particular transaction. If the
SR-increase is zero, then it is tax-free. The agent can
now look for other counterparties to carry out exactly
the same transaction. The agent will therefore typically
screen several possible counterparties and then decide on
the one with the lowest tax. Once the agent decides to
carry out the transaction, it is executed and the tax is
paid to the central bank or the government.

We show explicitly that SR is, to a large extent, a net-
work property. We show that the SRT is able to restruc-
ture financial liability networks without loss of transac-
tion volume in the financial market. For an explicit com-
parison we implement and test a Tobin-like tax that taxes
all transactions regardless of their SR contributions. The
Tobin-like tax does not restructure networks and only re-
duces SR because it also drastically reduces transaction
volume in the system. This is damaging as it makes the
system less efficient; the loss of efficiency materialises as
expensive credit for the real economy. We tested an alter-
native mode in which the SRT is set to the true increase
in SR associated with the transaction, and not only a
fraction (ζ = 1). This alternative leads to much more
homogeneous SR-spreading across all agents, and makes
the system even safer, see fig. 3(b) and fig. 6(d), how-
ever, it is done at the cost of much reduced transaction
volume.

An obvious alternative to the SRT are bank taxes for
SIFIs as recently suggested by several authors [32, 35–
39], or alternatively, to increase capital requirements for
them by imposing SIFI surcharges as proposed in Basel
III [12]. An immediate problem of a bank tax or capital
surcharges, compared to the SRT, is that financial in-
stitutions sometimes have no control over their systemic
importance. For instance, in case of publicly traded se-
curities, such as bonds, financial institutions have no au-
thority to decide who holds them and thus no influence
on their systemic importance. In recent work the effects
of the Basel III regulation framework on SR has been
studied in the same ABM environment [72]. Results in-
dicate that capital surcharges for SIFIs can reduce SR,
but must be larger than specified in Basel III to have a
measurable impact, and thus cause a loss of efficiency.

We close with a remark on the policy relevance of the
SRT. We think that the concept that network-related SR
can be managed most efficiently by restructuring the un-
derlying network topologies, is generally true. We further
believe that the concept of the SRT as presented here
is directly policy relevant. In particular, the incentive
scheme introduced to internalise the externalities that
lead to SR, can be directly transferred to banking regu-
lation. Technically, the requirements for its implementa-
tion would include an electronic market run by a central
bank or another central authority. This electronic mar-
ket would work in the same way as an airline reservations
system, i.e. by holding a quote for a limited amount of
time. The computational requirements for central banks
to compute the SRT for several thousand banks on a
minute by minute basis is by todays standards a techni-
cal triviality. Central banks would have to record trans-
actions in real-time; this is done as a matter of course for
several financial markets routinely, for instance at the
Banco de México [63, 73]. There are no privacy issues;
obtaining information about the portfolios of other banks
from the SRT quotes is impossible, in the same way as it
is impossible to infer the entries of a real valued matrix
from the eigenvector associated to the largest real eigen-
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value. The problem that generally applies to any FTT
– that it should be implemented globally to avoid free
riding – also applies in the context of the SRT.

We finally stress that the current market practice of
not pricing SR into transaction-costs effectively amounts
to an implicit subsidy for those with the highest contri-
bution to overall SR, and an effective tax on those with
the lowest. In that sense, the SRT can be seen as an
insurance premium that keeps the public neutral with
respect to the SR that is introduced by the non-optimal

liability networks.

ACKNOWLEDGEMENTS

We thank P. Klimek for many stimulating conver-
sations. We acknowledge financial support from EC
FP7 projects CRISIS, agreement no. 288501 (65%),
LASAGNE, agreement no. 318132 (15%) and MULTI-
PLEX, agreement no. 317532 (20%).

[1] The Economist. What Angela isn’t saying, August 2013.
[2] The Economist. America’s vulnerable economy, Novem-

ber 2007.
[3] The Economist. CSI: credit crunch, October 2007.
[4] P. Klimek, S. Poledna, J.D. Farmer, and S. Thurner.

To bail-out or to bail-in? answers from an agent-based
model. Journal of Economic Dynamics and Control, 50:
144–154, 2015.

[5] James Tobin. A proposal for international monetary re-
form. Technical Report 506, Cowles Foundation for Re-
search in Economics, Yale University, 1978.

[6] L. H. Summers and V. P. Summers. When financial mar-
kets work too well: A cautious case for a securities trans-
actions tax. Technical Report 12, Columbia - Center for
Futures Markets, 1989.

[7] Neil McCulloch and Grazia Pacillo. The tobin tax a re-
view of the evidence. Technical Report 1611, Department
of Economics, University of Sussex, Jan 2011.

[8] Thornton Matheson. Security transaction taxes: issues
and evidence. International Tax and Public Finance, 19
(6):884–912, 2012.

[9] D. Aikman, A. G. Haldane, and S. Kapadia. Opera-
tionalising a macroprudential regime: Goals, tools and
open issues. Financial Stability Journal of the Bank of
Spain, 24, 2013.

[10] Bank of England. Instruments of macroprudential policy.
Technical report, Bank of England, 2011.

[11] Bank of England. The financial policy committee’s pow-
ers to supplement capital requirements: a draft policy
statement. Technical report, Bank of England, 2013.

[12] Bank for International Settlements. Basel III: A global
regulatory framework for more resilient banks and bank-
ing systems. Bank for International Settlements, 2010.

[13] Co-Pierre Georg. Basel III and systemic risk regulation -
what way forward? Technical Report 17, Working Papers
on Global Financial Markets, 2011.

[14] D. Duffie and K.J. Singleton. Credit Risk: Pricing, Mea-
surement, and Management. Princeton Series in Finance.
Princeton University Press, 2012. ISBN 9781400829170.

[15] Bank for International Settlements. International con-
vergence of capital measurement and capital standards.
Bank for International Settlements, Basel, 1988.

[16] Bank for International Settlements. International Con-
vergence of Capital Measurement and Capital Standards:
A Revised Framework Comprehensive Version. Bank for
International Settlements, Basel, 2006.

[17] Bryan J. Balin. Basel I, Basel II, and emerging markets:
A nontechnical analysis. Available at SSRN 1477712,

2008.
[18] Olivier De Bandt and Philipp Hartmann. Systemic risk:

A survey. Technical report, CEPR Discussion Papers,
2000.

[19] Larry Eisenberg and Thomas H. Noe. Systemic risk in
financial systems. Management Science, 47(2):236–249,
2001.

[20] Hyman P. Minsky. The financial instability hypothesis.
The Jerome Levy Economics Institute Working Paper,
74, 1992.

[21] Ana Fostel and John Geanakoplos. Leverage cycles and
the anxious economy. American Economic Review, 98
(4):1211–44, 2008.

[22] John Geanakoplos. The leverage cycle. In D. Acemoglu,
K. Rogoff, and M. Woodford, editors, NBER Macro-
economics Annual 2009, volume 24, page 165. University
of Chicago Press, 2010.

[23] Tobias Adrian and Hyun S. Shin. Liquidity and leverage.
Tech. Rep. 328, Federal Reserve Bank of New York, 2008.

[24] Markus Brunnermeier and Lasse Pedersen. Market liq-
uidity and funding liquidity. Review of Financial Studies,
22(6):2201–2238, 2009.

[25] S. Thurner, J.D. Farmer, and J. Geanakoplos. Lever-
age causes fat tails and clustered volatility. Quantitative
Finance, 12(5):695–707, 2012.

[26] Fabio Caccioli, Jean-Philippe Bouchaud, and J. Doyne
Farmer. Impact-adjusted valuation and the criticality of
leverage. Risk, 25(12), 2012.

[27] Sebastian Poledna, Stefan Thurner, J. Doyne Farmer,
and John Geanakoplos. Leverage-induced systemic risk
under Basle II and other credit risk policies. Journal of
Banking & Finance, 42:199–212, 2014.

[28] Christoph Aymanns and Doyne Farmer. The dynamics
of the leverage cycle. Journal of Economic Dynamics and
Control, 50:155–179, 2015.

[29] Fabio Caccioli, J Doyne Farmer, Nick Foti, and Daniel
Rockmore. Overlapping portfolios, contagion, and finan-
cial stability. Journal of Economic Dynamics and Con-
trol, 51:50–63, 2015.

[30] Viral Acharya, Lasse Pedersen, Thomas Philippon, and
Matthew Richardson. Regulating systemic risk. Restor-
ing financial stability: How to repair a failed system,
pages 283–304, 2009.

[31] Richard Davies and Belinda Tracey. Too big to be effi-
cient? the impact of implicit subsidies on estimates of
scale economies for banks. Journal of Money, Credit and
Banking, 46(s1):219–253, 2014.



11

[32] Viral Acharya, Lasse Pedersen, Thomas Philippon, and
Matthew Richardson. Measuring systemic risk. Techni-
cal report, CEPR Discussion Papers, 2012. Available at
SSRN: http://ssrn.com/abstract=1573171.

[33] Daron Acemoglu, Asuman Ozdaglar, and Alireza
Tahbaz-Salehi. Systemic risk and stability in financial
networks. Technical report, National Bureau of Economic
Research, 2013.

[34] Donato Masciandaro and Francesco Passarelli. Finan-
cial systemic risk: Taxation or regulation? Journal of
Banking & Finance, 37(2):587–596, 2013.

[35] Thomas Cooley, Thomas Philippon, Viral Acharya, Lasse
Pedersen, and Matthew Richardson. Regulating systemic
risk. In Viral Acharya and Matthew P Richardson, ed-
itors, Restoring Financial Stability: How to Repair a
Failed System, pages 277–303. John Wiley & Sons, 2009.

[36] Tobias Adrian and Markus Brunnermeier. Covar. Techni-
cal report, National Bureau of Economic Research, 2011.

[37] Sheri Markose, Simone Giansante, and Ali Rais
Shaghaghi. ‘Too interconnected to fail’ financial network
of US CDS market: Topological fragility and systemic
risk. Journal of Economic Behavior & Organization, 83
(3):627–646, 2012.

[38] Viral Acharya, Lasse Pedersen, Thomas Philippon, and
Matthew Richardson. Taxing systemic risk. In J.P.
Fouque and J.A. Langsam, editors, Handbook on Sys-
temic Risk, pages 226–246. Cambridge University Press,
2013. ISBN 9781107023437.
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[52] Kimmo Soramäki, Morten L. Bech, Jeffrey Arnold,
Robert J. Glass, and Walter E. Beyeler. The topology
of interbank payment flows. Physica A: Statistical Me-
chanics and its Applications, 379(1):317–333, 2007.

[53] Daniel O Cajueiro, Benjamin M Tabak, and Roberto FS
Andrade. Fluctuations in interbank network dynamics.
Physical Review E, 79(3), 2009.

[54] Morten L. Bech and Enghin Atalay. The topology of the
federal funds market. Physica A: Statistical Mechanics
and its Applications, 389(22):5223–5246, 2010.

[55] Seraf́ın Mart́ınez-Jaramillo, Biliana Alexandrova-
Kabadjova, Bernardo Bravo-Benitez, and Juan Pablo
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Appendix A: Details of the model

In this section we describe the extensions and modifi-
cations of the macroeconomic model of Delli Gatti et al.
[69]. The modifications include the implementation of
an interbank market and a closed, stock-flow consistent
economic system that allows no in- or out-flow of cash.
The closed economic system is also discussed in Gualdi
et al. [70].

1. The credit market

There are B banks that offer firm loans at rates that
take the individual specificity of banks (modelled by a
uniformly distributed random variable) and the firms’
creditworthiness into account. Firms pay a credit risk
premium according to their creditworthiness that is mod-
elled by a monotonically increasing function of their fi-
nancial fragility. A firm’s financial fragility is defined as
the ratio between the outstanding debt and the liquid fi-
nancial resources of the firm [69]. Specifically the interest
rate for firm κ, borrowing from bank i is given by

rκi (t) = r̄(1 + χi(t)µ(lκ(t)) , (A1)

where r̄ is a benchmark interest rate, χi(t) is the speci-
ficity of bank i – modelled as random variations in its
operating costs, strategy, etc. and captured by a uni-
formly distributed random variable on the interval (0, 1).
µ(lκ(t)) is a proxy for the financial fragility of the bor-
rower – modelled by a monotonically increasing function
µ(·) of the borrower’s debt to liquidity ratio lκ(t). The
hyperbolic tangent is chosen for µ(·).

2. The interbank market

Banks try to provide firm loans and grant them if they
have enough liquidity. If they do not have enough cash,
they approach other banks in the interbank market to
obtain the required amount. If a bank does not have
enough cash, and cannot raise the full amount for the
requested firm loan on the interbank market, it does not
pay out the loan. Interbank and firm loans have the same
duration. Additional refinancing costs of banks remain
with the firms. Each time step firms and banks repay
τ percent of their outstanding debt. If banks have ex-
cess liquidity they offer it on the interbank market. The
interbank market is modelled after an electronic market-
place where, in principle, all participants can enter into
business relationships. In the model, banks choose the
interbank offer with the most favourable rate. This does
not mean that the emerging interbank network is fully
connected. Emerging interbank networks are shown in
fig. 2 and (weighted) degree distributions can be found
in fig. 7. Interbank rates rij(t) offered by bank i to bank
j take into account the specificity of bank i and the cred-
itworthiness of bank j. Specifically the interest rate on

the interbank market for bank j borrowing from bank i
is given by

rij(t) = r̄(1 + ψi(t)µ(lj(t)) , (A2)

where r̄ is a benchmark interest rate, ψi(t) is the speci-
ficity of bank i, modelled as random variations in its op-
erating costs, strategy, etc. and captured by a uniformly
distributed random variable on the interval (0, 0.1).
µ(lj(t)) is a proxy for the financial fragility of the bor-
rower, modelled by a monotonically increasing function
µ(·) of the borrower’s leverage lj(t). As the monotoni-
cally increasing function again the hyperbolic tangent is
chosen. Banks add the additional refinancing costs to
the offered interest rate for firms. Therefore the interest
rate for firm κ, borrowing from bank i, which requires
additional liquidity from bank j is given by

rκij(t) = rκi (t) +
ljik(t)

bκ(t)
rji(t) =

= r̄

(
1 + χi(t)µ(lκ(t)) +

ljik(t)

bκ(t)
ψj(t)µ(li(t))

)
, (A3)

where bκ(t) is the firm loan and ljik(t)/bκ(t) is the ratio
between the interbank and the firm loan.

3. Implementation of the systemic risk tax and the
Tobin tax

A systemic risk premium, in form of the SRT, is im-
posed on all interbank transactions. Before entering a
desired loan lijk(t), the credit seeking banks i can get

quotes for the SRT
(+k)
ij (t) rates from the central bank,

for various banks j. They choose the interbank offer from
bank j with the smallest total rate, which is composed

of rtotalij (t) = rij(t) + SRT
(+k)
ij (t). All other transactions

are exempted from the SRT. In contrast to current mar-
ket practice, the effective interest rate reflects both the
creditworthiness of the borrowing counterparty and the
SR increase associated with each transaction. The SRT
is collected in a bailout fund. The SRT from the main
text is given by

SRT
(+k)
ij (t) = ζ max[

0,
∑
i

pi(t)
(
V (+k)(t)R

(+k)
i (t)− V (t)Ri(t)

)]
. (A4)

For pi(t) we use a proxy for the financial fragility of the
borrower, modelled by a monotonically increasing func-
tion pi(t) = 0.01µ(li(t)) of the borrower’s leverage li(t)
at time t.

For comparison we implement a FTT (Tobin tax [5])
for interbank loans. We impose a constant tax rate of
0.2% of the transaction (this is about 5% of the inter-
bank interest rates) on all interbank rates on offer. Other
transactions are not taxed. The FTT makes lending less
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attractive for firms that borrow from banks requiring liq-
uidity from the interbank market, as refinancing costs
remain with the firms.

Interbank rates rij(t) offered by bank i to bank j in-
cluding the FFT or the SRT are composed of

rtotalij (t) = rij(t) + TAX . (A5)

In case of the FFT the tax term is simply a constant tax
rate of 0.2%

rtotalij (t) = rij(t) + 0.002 . (A6)

To obtain a tax rate, the SRT must be ex-
pressed as a ratio with respect to the interbank loan

(SRT
(+k)
ij (t)/ljik(t)). The total rate is then given by

rtotalij (t) = rij(t) +
SRT

(+k)
ij (t)

lijk(t)
, (A7)

where rij(t) is from eq. (A2). Banks add the additional
refinancing costs, including taxes, to the offered interest
rate for firms. Therefore eq. (A1) becomes for the Tobin-
like tax

rκij(t) = rκi (t) +
ljik(t)

bκ(t)
rtotalji (t) =

= r̄

(
1 + χi(t)µ(lκ(t)) +

ljik(t)

bκ(t)
ψj(t)µ(li(t))

)
+

+
ljik(t)

bκ(t)
0.002 , (A8)

and in case of the SRT,

rκij(t) = rκi (t) +
ljik(t)

bκ(t)
rtotalji (t) =

= r̄

(
1 + χi(t)µ(lκ(t)) +

ljik(t)

bκ(t)
ψj(t)µ(li(t))

)
+

+
SRT

(+k)
ji (t)

bκ(t)
. (A9)

4. Model parameters

All parameters of the model are collected in table I.

Appendix B: Comparison of different tax rates for
the Tobin-like financial transaction tax

In fig. 5 we show the distribution functions of the three
measures for (a) losses L, (b) cascade sizes C, (c) trans-
action volume in the interbank market V and (d) the
distribution of DebtRank Ri, for the simulations per-
formed with different tax rates for the Tobin-like FTT,
0.1% (red), 0.2% (blue) and 0.5% (green). Clearly, the
shape of the distribution of losses L and cascade sizes C

are similar. The tail of the distributions is only reduced
due to a decrease in efficiency (transaction volume), as
can be seen in fig. 5(c). Evidently, average losses L are
reduced at the cost of a loss of efficiency by roughly the
same factor.

For the comparison of different levels of the SRT we
choose ζ = 0.02 (red) and ζ = 1 (blue), as shown in
fig. 6. Again, we compare the three measures for (a)
losses L, (b) cascade sizes C, (c) transaction volume in
the interbank market V and (d) the distribution of Deb-
tRank Ri. Clearly, for both ζ the SRT gets completely rid
of big losses in the system. ζ = 1 reduces average losses
L by a factor of 2 compared to the case of ζ = 0.02, at
the cost of a loss of efficiency by roughly the same fac-
tor, as can be seen in fig. 6(c). The SRT with (ζ = 1)
leads to homogeneous SR spreading across all agents, as
shown in fig. 6(d). In fig. 7 we show the effect of the
bank selection process induced by the SRT on the in-
terbank liability network topology. The distributions of
weighted in-degrees k of the interbank liability network
(Lnet

ij (t)), without FTT (red), 0.2% Tobin tax (blue), the
SRT (ζ = 0.02) (green) and, the SRT (ζ = 1) (yellow) are
shown in fig. 7(a). Without FTT, the emerging liability
network shows Poisson distributed in-degrees. The in-
terbank network topology without FTT coincides nicely
with the expected result from random linking. In the
SRT modes, market participants looking for credit will
try to avoid the tax by looking for credit opportunities
that do not increase SR and are thus tax-free. This leads
to fewer banks lending on the interbank market and is
reflected in fig. 7(a) by the high number of nodes with a
low weighted in-degree.

The total demand for interbank loans (which is approx-
imately the same for the SRT with ζ = 0.02 as without
FTT) is now serviced by fewer banks. As a result, the in-
degree distribution of the SRT mode broadens and has a
fat tail. The out-degree distribution is mainly influenced
by the cash needs of a bank. Therefore, the weighted
out-degree distribution of the SRT modes is less clearly
affected, which is shown in fig. 7(b).

In fig. 7(c) we show the average weighted clustering
coefficient of the interbank liability network (Lnet

ij (t)),
without FTT (red), 0.2% Tobin tax (blue), the SRT
(ζ = 0.02) (green) and the SRT (ζ = 1) (yellow). Average
weighted clustering coefficients are calculated according
to Barrat et al. [74]. The average clustering is roughly
the same without a FTT on interbank loans and for the
0.2% Tobin tax. The SRT reduces average clustering, as
can be seen in fig. 7(c).

Mean values of various centrality measures, averaged
over 1000 simulations runs, can be found in table II. 〈k〉
and 〈kweighted〉 shows the mean degree and the weighted
mean degree for the different modes. 〈k〉 is approximately
the same for all modes. 〈kweighted〉 shows the largest
value for the normal mode and lower values in all other
modes. Clearly, with the SRT (ζ = 1) 〈kweighted〉 is sub-

stantially reduced. With 〈Ci〉 and 〈Cweightedi 〉 we show
values for the average clustering coefficients and the av-
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TABLE I. List of the parameters as used in the model.

number of banks B = 20
number of firms/capitalists F = 100
number of workers (households) H = 1300
share of dividends div = 0.2
general refinancing rate r̄ = 0.02
labour productivity α = 0.1
credit demand contraction φ = 0.8
rate of debt reimbursement τ = 0.05
wage rate wb = 1
number of applications in consumption goods market z = 2
propensity to consume c = 0.8
number of applications in credit market n = 5
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FIG. 5. Comparison of different tax rates for the Tobin-like financial transaction tax, 0.1% (red), 0.2% (blue) and 0.5% (green).
(a) Distribution of total losses to banks L, (b) distribution of cascade sizes C of defaulting banks and (c) distribution of total
transaction volume in the interbank market V, (d) distribution of DebtRank Ri. Banks are ordered by DebtRank, the most
important being to the very left. 10, 000 independent, identical simulations, each with 500 time steps, 20 banks.
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FIG. 6. Comparison of different levels of the systemic risk tax, ζ = 0.02 (red) and ζ = 1 (blue). (a) Distribution of total
losses to banks L, (b) distribution of cascade sizes C of defaulting banks and (c) distribution of total transaction volume in the
interbank market V, (d) distribution of DebtRank Ri. Banks are ordered by DebtRank, the most important being to the very
left. 10, 000 independent, identical simulations, each with 500 time steps, 20 banks.

TABLE II. Network measures

Mode 〈k〉 〈kweighted〉 〈Ci〉 〈Cweightedi 〉 〈gi〉 〈gweightedi 〉
Normal 9.43(5) 38.4(35) 0.136(5) 0.119(3) 10.3(7) 40.2(53)

Tobin tax 9.39(9) 32.4(32) 0.135(5) 0.117(3) 10.4(7) 40.0(55)

SRT (ζ = 0.02) 9.15(13) 25.4(35) 0.138(6) 0.112(5) 11.9(20) 44.1(76)

SRT (ζ = 1) 8.73(20) 7.4(14) 0.122(6) 0.100(4) 11.3(12) 45.9(68)
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FIG. 7. The effect of the bank selection process induced
by the systemic risk tax on the interbank liability network
topology. Distributions of weighted in-degrees k (a), and
weighted out-degrees k (b) of the interbank liability network
(Lnet

ij (t)), without FTT (red), 0.2% Tobin tax (blue), the SRT
(ζ = 0.02) (green) and the SRT (ζ = 1) (yellow). (c) Shows
the average weighted clustering coefficient of the interbank
liability network (Lnet

ij (t)) from the model. The weighted in-
degrees distributions are clearly affected in the SRT modes.
The weighted out-degree distribution is mainly influenced by
the cash needs of a bank. Therefore, the weighted out-degree
distribution of the SRT modes is less clearly affected. The
distributions are from an average over 1000 simulations runs
and show the situation at time t = 100.

erage weighted clustering coefficients from fig. 7(c). Ad-
ditionally, we provide values for the average betweenness
centrality (〈gi〉) and the average weighted betweenness

centrality (〈gweightedi 〉) for the different modes. The SRT

increases both the 〈gi〉 and the 〈gweightedi 〉.

Appendix C: Empirical data

Data provided by the Austrian Central Bank (OeNB)
contains fully anonymised, and linearly transformed in-
terbank liabilities/exposures Ldata

ij (t) from the entire
Austrian banking system, comprised of about 800 banks
over 12 consecutive quarters from 2006-2008. The data
set additionally includes total assets, total liabilities, as-
sets due from banks, liabilities due to banks, and liquid
assets (without interbank assets/liabilities) for all banks
again in anonymised form. The data does not contain
credit ratings of banks. Therefore we assume pi = 0.0025
for all banks in the data set. This corresponds approxi-
mately to Standard & Poor’s One-Year Global Corporate
Default Rates for Rating Categories A+, A, and BBB+
in 2008 [75]. Representative Austrian banks are in the
Rating Categories A+, A and A-.

Appendix D: DebtRank

DebtRank is a recursive method suggested in Battis-
ton et al. [42] to determine the systemic importance of
nodes in financial networks. It is a number measuring
the fraction of the total economic value in the network
that is potentially affected by a node or a set of nodes.
Lij denotes the interbank liability network at any given
moment (loans of bank j to bank i), and Ci is the capital
of bank i. If bank i defaults and cannot repay its loans,
bank j loses the loans Lij . If j does not have enough
capital available to cover the loss, j also defaults. The
impact of bank i on bank j (in case of a default of i) is
therefore defined as

Wij = min

[
1,
Lij
Cj

]
. (D1)

The value of the impact of bank i on its neighbours is
Ii =

∑
jWijvj . The impact is measured by the economic

value vi of bank i. For the economic value we use two
different proxies. Given the total outstanding interbank
liabilities of bank i, Li =

∑
j Lji, its economic value is

defined as

vi = Li/
∑
j

Lj . (D2)

To take into account the impact of nodes at distance
two and higher, this has to be computed recursively.
If the network Wij contains cycles, the impact can ex-
ceed one. To avoid this problem an alternative was sug-
gested in Battiston et al. [42], where two state variables,
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hi(t) and si(t), are assigned to each node. hi is a con-
tinuous variable between zero and one; si is a discrete
state variable for three possible states, undistressed, dis-
tressed, and inactive, si ∈ {U,D, I}. The initial condi-
tions are hi(1) = Ψ ,∀i ∈ S; hi(1) = 0 ,∀i 6∈ S, and
si(1) = D , ∀i ∈ S; si(1) = U ,∀i 6∈ S (parameter Ψ
quantifies the initial level of distress: Ψ ∈ [0, 1], with
Ψ = 1 meaning default). The dynamics of hi is then
specified by

hi(t) = min

1, hi(t− 1) +
∑

j|sj(t−1)=D

Wjihj(t− 1)

 .

(D3)
The sum extends over these j, for which sj(t− 1) = D,

si(t) =


D if hi(t) > 0; si(t− 1) 6= I,

I if si(t− 1) = D,

si(t− 1) otherwise .

(D4)

The DebtRank of the set S (set of nodes in distress at
time 1), is R′S =

∑
j hj(T )vj−

∑
j hj(1)vj , and measures

the distress in the system, excluding the initial distress.
If S is a single node, the DebtRank measures its sys-
temic importance on the network. The DebtRank of S
containing only the single node i is

R′i =
∑
j

hj(T )vj − hi(1)vi . (D5)

The DebtRank, as defined in eq. (D5), excludes the
loss generated directly by the default of the node itself
and measures only the impact on the rest of the system
through default contagion. For some purposes, however,
it is useful to include the direct loss of a default of i
as well. The total loss caused by the set of nodes S in
distress at time 1, including the initial distress is

RS =
∑
j

hj(T )vj . (D6)

Appendix E: Derivation of the expected systemic
loss

To compute the expected systemic loss, we first con-
sider the simple case where only one bank i can default
and all other b − 1 banks survive. In this case the ex-
pected loss is given by ELsyst

i (one default) = V · pi · (1−
p1) · . . . · (1− pi−1) · (1− pi+1) · . . . · (1− pb) ·Ri, where pi
is the probability of default of bank i, and (1 − pj) the
survival probability of j. The general case occurs when
we also consider possible joint defaults, meaning that a
set of banks S go into distress. Taking into account all
possible combinations of defaulting and surviving banks,
we arrive at a combinatorial expression of the expected
loss for an economy of b banks

ELsyst = V
∑

S∈P(B)

∏
i∈S

pi
∏

j∈B\S

(1− pj)RS , (E1)

where P(B) is the power set of the set of banks B, and
RS is the DebtRank of the set S of nodes initially in
distress. R∅, the DebtRank of the empty set is defined
as zero. The reason is that, by definition of DebtRank,
RS ≤ 1, the value obtained in eq. (E1) cannot exceed the
total economic value.

Equation (E1) is only practical for situations with less
than about 20 − 30 banks. Computing the power set
and calculating DebtRanks for all possible combinations
of more than 30 banks in a large financial networks is
practically unfeasible. If the default probabilities are low
(pi � 1) or the interconnectedness is low (Ri ≈ vi), RS
can be approximated by

RS ≈
∑
i∈S

Ri . (E2)

In an unconnected or unleveraged financial system (Ri =
vi), RS is exactly equal to

∑
i∈S Ri. If pi � 1, the first

terms of eq. (E1) (with only one node initially in distress)
contribute more to the final result. Thus the approxima-
tion eq. (E2) has only a minor impact on the final result.
Typically, pi � 1 or Ri ≈ vi holds in real word financial
networks. With the approximation eq. (E2), eq. (1) can
be derived from eq. (E1) by

ELsyst ≈ V
∑

S∈P(B)

∏
i∈S

pi
∏

j∈B\S

(1− pj)

(∑
i∈S

Ri

)
(E3)

= V

B∑
i=1

 ∑
J∈P(B\{i})

∏
j∈J

pj
∏

k∈B\(J∪{i})

(1− pk)


︸ ︷︷ ︸

=1

piRi

(E4)

= V

B∑
i=1

piRi . (E5)

The term in brackets in eq. (E4) sums to 1 (proof by
induction). This approximation is practical for large fi-
nancial networks, for details see [63].

Appendix F: Measures for losses, default cascades
and transaction volume

We use the following three observables: (1) the size of
the cascade, C as the number of defaulting banks trig-
gered by an initial bank default (1 ≤ C ≤ B), (2) the
total losses to banks following a default or cascade of

defaults, L =
∑
i∈I
∑B
j=1 Lij(t), where I is the set of de-

faulting banks, and (3) the average transaction volume
in the interbank market in simulation runs longer than
100 time steps,

V =
1

T

T∑
t=1

B∑
j=1

B∑
i=1

∑
k∈K

ljik(t) , (F1)

where K represents new interbank loans at time step t.
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