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FOREWORD 

In recent years there has been considerable interest in developing models for river 
and lake ecological systems , much of it directed toward progressively larger and more 
complex simulation models . However , such a trend causes concern about several important 
issues. In particular, relatively little attention has been paid to the problems of errors and 
uncertainty in the field data, of inadequate amounts of field data , and of uncertainty about 
estimates of the model 's parameters and about relations among the system's important 
variables . 

The work of the International Institute for Applied Systems Analysis (IIASA) on 
environmental quality control and management is addressing problems such as these , and 
one of the principal themes of the work is modelling poorly defined environmental systems. 

This paper sets its discussion of uncertainty in models and their predictions against 
the background of environmental management. In particular, it emphasizes the close rela­
tion between the process of model calibration and the nature of the predictions that later 
emerge from it . Thus , when the available field data are sparse and highly uncertain, their 
imprecision will be reflected in the predictions of future behaviour patterns - a fact that 
has significant implications for solutions to management problems. 
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Chairman 
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ABSTRACT: Mathematical modelling may serve as a rational and powerful tool in the management 
of complex ecosystems. However, ecosystem models are drastic simplifications of the real world. As 
a rule they are based on a rather incomplete and scattered knowledge of the system in question. 
Furthermore, ecological systems and in particular marine systems are characterised by a high 
degree of complexity, spatial and functional heterogeneity, nonlinearity, complex behavioural 
features such as adptation and self-organisation, and a considerable stochastic element. Neverthe­
less, if management is to be based on predictions from mathematical models - and it has to be based 
on some kind of '"model"" in at least a broad sense - we need an estimate of prediction accuracy in 
terms of the management variables and constraints. One possible approach to model uncertainty is 
a probabilistic interpretation of model predictions, generated by use of Monte-Carlo techniques. 
Fuzzy data sets and ranges are used. The resulting model response allows the derivation of 
measures for model credibility. Probability distributions can be computed for certain system states 
under (un)certain input conditions, representing the effects of insufficient data and structural 
uncertainty on model-based predictions. Such analysis indicates that prediction uncertainty 
increases, not only with the uncertainty in the data, but also with increasing "'distance"" from the 
empirical conditions, and with time. Present ecoystem models can be a tool for qualitative 
discrimination between different management alternatives, rather than a credible means for 
detailed quantitative predictions of system response to a wide range of input conditions. 

ECOSYSTEM MODELLING IN A MANAGEMENT FRAMEWORK 

There is growing awareness that we need some kind of environmental management 
and quality control in order to '"balance'" the impact of our activities on the natural 
environment. Man's destructive capacity has reached a level where local catastrophies 
are only the most obvious signals of a continuous process of general and world wide 
environmental degradation. This might of course be understood as only the symptoms of 
more substantial problems in our growth-oriented world (c.f. Meadows et al., 1972); 
however, the symptoms are imminent and immediate decisions have to be made. 

Since decisions are being made, we might ask how this is done and on what 
scientific basis. Decisions are made on the basis of some implicit or explicit model 
developed of the systems to be affected by the decision. Environmental management 
decisions are generally made to minimize, or at least to reduce, overall cost/benefit 
ratios in a multi-objective, multi-user system. This includes the maintenance of certain 
environmental quality standards. Part of an environmental management model must be 
an ecosystems submodel, which predicts the system response in terms of quality 

© Biologische Anstalt Helgoland 0174-3597/80/ 0034/0221 /$ 02.00 



222 K. Fedra 

variables to potential management actions. This submodel is linked to the management 
model, which looks for the optimal strategy in the multiobjective framework. "Optimal" 
is defined by some kind of goal function, usually related to monetary values. 

Although there is a vast and continuously growing literature on ecological model­
ling, this seemingly does not influence management decisions to a considerable degree. 
In Mason's (1979) book "The Effective Management of Resources" on the North Sea, the 
term "ecology" is not even mentioned; regulation of pollution, one of the chapters, is 
treated as a legal, economic, and political (in a very narrow sense) problem. 

Of course there are some exceptional examples of effective dialogues between 
decision makers and ecologists or ecosystem analysts (Clark et al., 1979), but rarely so for 
the marine environment. Scientists may well be asked to contribute their knowledge, but 
more often than not their reports are locked away in some drawers rather than affecting 
the management decisions. This is a very unsatisfactory situation, not least for the 
ecologist. For a discussion of this dilemma see e.g. Biswas (1975) . 

To return to the above-described ecosystem model needed for rational ecosystem 
management, the manager and decision maker would like to have a model he can 
understand, which can be proven to be reliable (cf. the discussion transcripts in Russel, 
1975) - and he would like to have it right now. 

DATA AND MODELS 

In order to build a mathematical model - which is only a special, formal, case of 
building a scientific theory - we usually organize the empirical information available in 
such a way that part of it is used to structure the model, i.e. to specify the elements of the 
model and their relations. Another part of the information is used as input (in a 
cybernetic sense) to the model structure: this comprises the coefficients, which quantita­
tively describe the internal relations. In the case of a dynamic model, this also includes 
the forcings, imports and exports, which represent the border-crossing relations connect­
ing the model with its environment, and finally the initial state of the model, assigning 
starting values to all of the elements. A third part of the available information is then 
used to compare the model response with what we have observed in the real world 
system, and by recursive adjustments of the model structure and coefficients we attempt 
to improve the model performance. However, the assignment of any piece of information 
to any of the above groups is arbitrary. Structure and coefficients cannot be estimated 
independently, and an operational model consists of many more simplifying assump­
tions than properties directly measurable in the real-world system. 

A close look at the kind of data we have on ecosystems shows mainly uncertainties, 
variability, and sampling errors (more often than not of undetermined magnitude). In 
addition, ecological theory is full of contradictory hypotheses, and it is mostly impossible 
to rule out any of those because of lack of reliable data. Experimental evidence as a rule 
stems from micro-scale physiological approaches, contradictory to the richness and 
variety of ecosystems, and deliberately neglecting a main feature of complex ecosys­
tems, which is the simultaneous interaction of large numbers of variables. Traditional 
concepts and approaches are merely extrapolations of ideas which proved to be success­
ful in physics and chemistry. However, ecosystems are quite different from electrical 
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networks and the frictionless pendulum. All these incompatibilities can be overcome 
only with numerous arbitrary assumptions, often enough implicitly hidden in a model 
formulation. The information we have at hand is of a jigsaw puzzle structure, and at best 
we can deduce fuzzy patterns, semiquantitative relations, ranges, and constraint condi­
tion, unless we blindly believe in numbers. 

Clearly, under the above constraints the traditional deterministic techniques, using 
means, averages, assumptions on homogeneity and error distributions, and a firm belief 
in numbers have to be questioned. Forcing ecological systems into a mathematical 
framework, developed for vastly different systems, for the sake of ease and elegance of 
the analysis, seems to me not only a futile but also dangerous line of work. As a 
consequence, many modelbased predictions on ecosystems are either trivial or false, or 
at best computerized intuition of the analyst. Therefore we should not be surprised to see 
ecosystems analysis with only meager impact on environmental decision making and 
public reasoning. 

THE METHODOLOGY OF THE APPROACH 

There seems to be no scientific way to predict the future of a system unless we have, 
based on a well established theory, sufficient information on all the processes and 
mechanisms determining the system's evolution. Clearly, we are far from that position in 
ecosystems research, and it might well be questioned, whether such a position can be 
reached in principle. To predict, however, the future state of a system, we have to 
extrapolate our present knowledge in time as well as in state space - the latter to 
estimate the systems' response under conditions not yet experienced. This is not too bad 
a strategy - in fact one could say it is a basic strategy of living systems; however, this 
strategy is based on some most stringent assumptions : first, the present, descriptive 
model of the system must be good enough; second, the "distance" of projection in time 
as well as in state space must be related to the unpredictable (in a deterministic sense) 
element of variability in the system. This strategy of prediction requires a large number 
of assumptions, and to improve the scientific quality - and credibility - of model-based 
predictions, these assumptions have to be made explicit. Wherever possible, the effect of 
such assumptions on model predictions should be explored, so that uncertainty about the 
system in question will be an explicit part of the numerical analysis. Such analysis no 
longer results in one single answer - a single number, pretending a most unrealistic kind 
of precision - but a range of possible answers. The probability distributions within such 
ranges will partly depend on the quality of our knowledge , but also on the degree of 
extrapolation in time and state space, as will be shown below. 

Suppose a deterministic ecoystems simulation model, relating some management 
variables as part of the input to some relevant quality variables as the model response. 
To test a model's credibility for predicting the system's response to some management 
alternatives, one uses a set of empirical data, describing a selected or at best average 
"input", which, used with the given model structure, should result in a corresponding 
.,output". The set of data for this analysis will be - and this is not much of an unlikely 
assumption - scarce, scattered, noisy, and with regard to the variables measured, mostly 
irrelevant in terms of the management problem. Therefore, the information at hand will 
not allow for a detailed and reliable quantitative description of the input conditions and 
the corresponding systems response in terms of the variables of our model. 
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Fig. 1. Schematic summary of the approach, a two-dimensional example. (A) raw input-data space, 
defined by empirical ranges; (B) model response corresponding to A, indicating the empirical range 
of response patterns (compare Figs, 2, 3); (C) input-data space sub-region corresponding to the 
empirical range in B (compare Fig. 4); (D) Input scenarios, representing e .g . management alternati-

ves; (E) model response to D (compare Fig. 5) 

Instead, one can use a more fuzzy description of the empirical system behaviour in 
terms of ranges for each of the observed variables (Fig. 1 B) . Any such range is of course 
more reliable than the more or less arbitrary assignment of one single number for any 
measure describing the system, and thus less critical from the credibility point of view: 
even if objective criteria for the exact delimitation of such ranges are lacking, and again 
somewhat arbitrary assumptions have to be made, it seems more likely that an intersub­
jective agreement can be achieved on a range for a particular value, rather than on one 
single number. Each of these ranges, used as a constraint condition on the allowable 
response pattern of a model, which represents the empirical range of system behaviour, 
now allows an infinite set of response. But the combination of many constraining ranges 
and relations quickly reduces the allowable patterns. There is still an infinite number of 
them, of course, but by a sufficient number of constraint conditions we can delimit a 
meaningful region in the response space of the model. 

The input required by the model for the numerical simulation of the system will also 
be defined by a set of ranges (Fig. lA). Again these ranges represent various sources of 
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uncertainty, and are bounded by limits of plausibility, deduced from the available 
empirical knowledge. The first step in the numerical analysis is then to randomly sample 
this input-space region, and generate a model response for each of these sample input­
vectors. These sample vectors are then classified according to whether the resulting 
model reponse is within the region of plausible or empirical behaviour or not (Fig. 1C) . 
Thus, by reference to the expected model behaviour, a segregation of the initial, crude 
input space is attempted. This is necessary, as the definition of the input space did not 
consider the relations and dependencies between the input data: even within plausible 
ranges for each value, unrealistic combinations may be sampled. However, as our 
knowledge about these dependencies and correlations is generally even more specula­
tive than the knowledge on the single values empirical ranges, the a-priori specification 
of input-space structure will only be possible in a few cases. 

A multitude of behaviour generating input-vectors can thus be generated. Their 
variability represents the uncertainty in the basic assumptions, and an analysis of their 
structural relations allows some conclusions on the adequacy of the model chosen. For 
predictions, where one or more input-data are changed, the whole set of input-vectors is 
used, as each of them is a plausible solution of the model adjustment (or calibration) 
procedure in the light of the basic uncertainty (Fig. 1D). Consequently, each change in 
the input conditions for the model, each scenario or alternative to be explored, results in 
a multitude of answers, which can be interpreted in a probabilistic way (Fig. 1E) . Thus, 
the resolution or sensitivity of a model in predicting the systems response to input 
changes is an explicit part of the forecast. The approach is schematically summarized in 
Figure 1. For a detailed description of the numerical methods involved, see Fedra 
(1979b) . 

RESULTS AND EXPERIENCES 

Three simulation models with largely different structure and characteristics were 
used to study the above approach: a trophic state prediction model for stratified water 
bodies, based on the lake phosphorus model of Imboden & Gachter (1978), a modified 
version of a pelagic food chain model (Steele, 1974), and a primary production model for 
shallow, unstratified water bodies such as lagoons or shallow lakes. In each case, an 
appropriate data set was established from literature, specifying ranges for input data and 
the corresponding empirical behaviour for a given ecosystem. Almost 100 000 runs of 
these three models, were performed, extending the simulations for up to 10 years, in 
order to obtain a sufficient number of runs for each model/scenario for the final analysis . 

As a common feature of all three models, the percentage of successful runs in terms 
of the empirical behaviour constraint (Figs 2, 3) was around 1 to 3 % . The effect of 
increasing "knowledge" about the system, resulting in a reduction of input data ranges, 
is shown in Figure 3: increasing knowledge increased the probability for a successful 
run giving rise to the expected model behaviour. The percentage of successful runs was 
about 15 % for a 80 % symmetric subregion of the initial input-data space. 

The input-data sub-spaces, established by comparison with the behaviour defining 
ranges of model response, exhibited rather bizzare features. This can be attributed in 
part to the nonlinearities of the models used as well as to the dimensionality of the input 
spaces of 19, 20, and 22 input-data dimensions, respectively. As mentioned above , these 



226 

w 
<..:) 
a: ..... 
z 
w 
u 
a: 
w 
a.. 
>­
u z 
w 
::> 
a 
w 
a: 
u... 
w 
> 
..... 
a: 
_J 
w 
a: 

e.e 
<.s 

RlcR. 
~ 8/ S.e 

01711 
Ss PtRI(- ' ·S 

VRl(Jf 

UNITS ON X-AXIS• NG P/CUBIC METER 
UNITS ON Z-AXIS• NG P/CUBIC METER 

LLJ 
Cl 
a: ..... 
z 
LLJ 
u 
er 
LLJ 
a... 
>­
u z 
LLJ 
::::i 
a 
LLJ 
er 
u... 
LLJ 
> 
l­
a: 
_J 
LLJ 
er 

ise. 8.""""~~<::1 

Yffil?, l<e.e 
'/... r P 'a 

'!Y/l'fli. '8.e 
'fir PfTa «1e. 8 Vue r 

IOtv 
UNITS ON X- AXIS• G C/SQM RNO YERR 
UNITS ON Z-AXIS• MG P/ CUBIC METER 

K. Fedra 

A 

B 

Fig. 2. Model response-space projections on planes of behaviour defining variables; 10 000 model 
runs over a field of "plausible" input-data ranges with rectangular probability density functions . 
The empirical, behaviour defining range is indicated by thicker lines and the projection rectangle 
in the x/z plane. The model used is based on the phosphorus/primary production model of Imboden 
& Gachter (1978); model response is sensitive to the behaviour defining ranges in (A). but less in (B) 



w 
<..:> 
a: ,_ 
z 
w 
w 
a: 
w 
a... 
>­
w z 
w 
:;) 
0 
w a: 
LL 

w 
> 
,_ 
a: 
_J 
w 
a:: 

w 
<..:> 
a: 
1-
z 
w 
w 
a: 
w a... 
>­
w z 
w 
:;) 
0 
w a: 
LL 

w 
> 
,_ 
a: 
_J 
w 
a:: 

Modelling - a management tool? 

UNITS ON X-AXIS• HG P/ CUB!C HETER 
UNITS ON Z-AXIS• HG P/CUB!C HETER 

A 

UNITS ON X-AXIS• G C/SQH ANO YEAR 
UNITS ON Z-AXIS• HG P/CUBIC HETER 

227 

Fig. 3. Model response-space projections on planes of behaviour defining variables; 3000 model 
runs from a sub-region (80 % of the single ranges, symmetric reduction) of the input-data space 

used for Fig. 2 
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input data comprise parameters sensu stricto, imports and forcings, and initial condi­
tions. Two examples of projections of such an input-data space are shown in Figure 4. 
The a-posteriori _distributions within the original ranges sampled (assuming rectangular 
probability density functions a-priori) give some indication of model sensitivity to the 
input-data under the behavioural constraints. Fig. 4a gives an example of governing 
parameters, significantly correlated, whereas Fig. 4b shows rather independent parame­
ters, more or less uniformly distributed. In general, the model behaviour is much more 
governed by the combinations and relative ratios of the input-data than their individual, 
absolute values. This results in the marked correlation structure of the input-data space 
for a given range of model response. This also indicates, that the deterministic calibra­
tion of more than one parameter is an almost futile exercise (at best a self-fulfilling 
tautology) as there exist no unique solutions, if the uncertainty in the data used is not 
assumed absent. 

This first, descriptive step in the approach results in a set of input-vectors, all giving 
rise to the expected range of model behaviour. The variability of this set represents the 
uncertainty about the "true" systems state as well as the systems variability during the 
time of reference. For predictions of the systems response outside this empirical range of 
behaviour, this variability is preserved by using the whole set of input-vectors. One or a 
few selected elements are changed to represent the change in input conditions to be 
studied (Fig. lD) . For the example shown in Figure 5, nutrient input in terms of 
phosphorus for the trophic state model for a stratified water body was varied around an 
empirical range of about 1 mg P/m-2 ct-1• 21 loading scenarios, ranging from 0 to 5 mg 
P/m-2 ct-1 were simulated over a period of 10 years. This could be taken to represent, e.g., 
changes in regional development, watershed management, land use, agricultural prac­
tice, sewer systems installations, or the operation of wastewater treatment facilities. 
Model response in terms of quality variables such as orthophosphate peak concentra­
tions, algae biomass peak, or total yearly primary production were simulated. The 
general patterns obtained showed: 

(a) an increase in the uncertainty of the predictions (measured e .g . as coefficient of 
variation) with increasing uncertainty (wide ranges) in the original data for inputs and 
empirical systems behaviour. This is to be expected and is the most straightforward 
relation; (b) an increase in the uncertainty of predictions with increasing deviation from 
the empirical ranges of input/behaviour. Plots of coefficients of variations versus inputs 
show a parabolic shape, with the minimum in the empirical range; (c) an increase in the 
uncertainty of the predictions with time. Although the means and ranges of the predicted 
variables reached some kind of steady state after several years of simulation (depending 
on the physical characteristics of the system), the transient period was characterised by a 
marked increase of variability in time. Plotting coeffcients of variation versus time 
resulted in hyperbolic patterns, approaching asymptotically a maximum level after some 
years. For example, after ten years of simulation, with a large deviation from the 
empirical situation (more than threefold nutrient input), estimates of primary production 
ranged from roughly 100 to 1000 g C/m-2 y-1• This is certainly a rather trivial prediction. 

Some conclusions on how simulation models can possibly be improved - in terms of 
practical applicability - might be deduced from these experiences. First of all , for a 
sound test of model performance, a model has to be simple in terms of state and input 
dimensionality. The number of runs for a given number of sampling points per input-
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range, for all possible combinations, will be the number of these sampling points to the 
the power of the number of inputs or dimensions. This quite obviously leads rather 
quickly to astronomic run numbers. Analysis of complicated models with large data 
requirements will be technically almost impossible - at least until more elegant methods 
are developed. Second, models should not contain variables or parameters not directly 
measurable in the real world system. Data uncertainty as a major element in prediction 
uncertainty can be reduced only if the ranges for each of the numbers to be used in the 
numerical simulation can be founded on the basis of sufficient measurements or 
experimentation. Finally, there is also an important contribution necessary from field 
research: not only has the model to be appropriate to the data available, but also data 
collection programs will have to be designed much more in accordance with the needs of 
numerical analysis, if such analysis is to be used to aid real-world management 
decisions . 

DISCUSSION 

One possible method is proposed above for exploring the limits of credibility of a 
numerical simulation model. That there exist such limits, and that they may be narrower 
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than we would like them to be, has been discussed (e .g. Hedgpeth, 1977). Also, critical 
evaluations have been made of implementations of systems analysis and modelling 
(Hilborn, 1979) and of the failures while implementing modelling into the management 
and decision-making process (Watt, 1977). However, for rational environmental man­
agement, the issue is very definitely on the side of having a model, even a crude one, 
against having no model at all (Biswas, 1975) It should be stressed that estimates of 
model uncertainty, and in particular prediction uncertainty, are seen as an essential 
criterion for model application and implementation. Some recent effort has been devoted 
to the estimation of model uncertainty and credibility (e.g. Di Toro & van Straten, 1979; 
van Straten & de Boer, 1979; Fedra, 1979b; Reckhow, 1979; Fedra et al., 1980), and the 
explicit inclusion of uncertainty in modelling studies (e.g . Walters, 1975; Spear & 

Hornberger, 1978), partly in an attempt to explicitly predict probabilities for certain 
events or system states (Reichel & Dyck, 1979; James et al., 1979). Also, on the 
implementation side, strategies to cope with uncertainty and non-unique answers are 
being developed (Holling, 1978; IIASA 1979). 

With regard to the marine environment, comparatively few ecosystem models have 
been published (for some more recent examples see e.g. O'Brien & Wroblinski, 1976; 
Walsh & Howe, 1976; Vinogradov & Menshutkin, 1977; Kremer & Nixon, 1978). To my 
knowledge, none of them could claim to be used in a management cont~xt; but 
admittedly these models have been designed for different purposes. The situation is 
somewhat different when looking at lakes, rivers, and estuaries, where some successful 
work has been carried out and (partly) implemented (e.g. Chen & Orlob, 1975; Bigelow & 

de Haven, 1977; Bigelow et al., 1977; Bigelow et al., 1978; IAHS-AISH, 1978; J1ngensen, 
1979; Scavia & Robertson, 1979). This might partly be attributed to the fact that marine 
systems are generally large scale systems. Here spatial patterns play an important role 
(cf. Steele, 1978), but these are difficult to assess. 

Marine models are often restricted to selected physico-chemical features of the 
environment (e.g. Goldberg et al., 1977), or to selected compartments, as in fisheries 
models. Extending such fishery models towards multi-species and ecosystem models 
(Andersen & Ursin, 1977) results in a rather complex model with high data requirements, 
high dimensionality and numerous coefficients - and the consequent "educated guess­
work" . Without doubt, such models may play an important role in the development of 
environmental science. But it may well be questioned whether they can reasonably be 
applied to real-world management problems, as their complexity and high dimensional­
ity is prohibitive to an analysis of their sensitivity to uncertainty. 

However, the use of numerical models should promote our understanding of 
environmental problems. The least thing a model can do is to organize our knowledge 
and identify the lacunae in it (Steele, 1974). With regard to application in management 
problems, two major constraints are worth reiterating: first, the uncertainties in ecosys­
tem analysis are an inevitable, principal component of the environmental systems, 
including man; and second, as mentioned above, environmental decision making is 
characterized by a demanding nowness . There is no time to measure in the field for 
another 10 years to reduce data uncertainty; and whatever effort is dedicated to data 
collection, there will always be a considerable element of uncertainty in prediction. This 
is not meant to discredit the importance of field data: on the contrary, the above analysis 
clearly showed the direct relation between prediction uncertainty and the quality of 
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data. This rather aims at a reconsideration of the questions we might reasonably expect a 
mathematical model to answer, and consequently the design of such models. Models for 
management applications will have to be comparatively simple; attempts have to be 
made to capture natural complexity in a manner other than adding mechanistic detail 
(see e.g., Fedra, 1979a; Straskraba, 1979). 

Clearly, considering the above, the answers obtainable from the most sophisticated 
model are hardly reliable in quantitative terms. Although the computer will of course 
produce numbers, it is not their arithmetic precision, but their meaning which matters. 
As the ariswer will always be some number, the question must be put in an appropriate 
way. This amounts to the formulation of alternative hypotheses, which then can be tested 
by means of the computer. This is somewhat comparable to hypothesis testing in 
mathematical statistics. It is not the actual value of the test statistic which matters, but 
whether it forces us to reject our hypothesis or not. In terms of management application 
of ecosystem models, this would mean a more or less qualitative discrimination between 
several management alternatives, some kind of ranking according to performance 
criteria of the possible strategies. This of course requires a rather careful and elaborate 
formulation of the management alternatives and performance criteria; and it has to be 
understood that a mathematical model can only be a tool for ecosystem management, if 
the basic environmental and management problem is well formulated for the numerical 
analysis. 
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