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PREFACE

Water resource systems have been an important part of
resources and environment related research at IIASA since its
inception. As demands for water increase relative to supply,
the intensity and efficiency of water resources management must
be developed further. This in turn requires an increase in the
degree of detail and sophistication of the analysis, including
economic, social and environmental evaluation of water resources
development alternatives aided by application of mathematical
modeling techniques, to generate inputs for planning, design,
and operational decisions.

This paper is concerned with some aspects of stochastic
modeling in hydrology which are of fundamental importance for
planning, design, and operation of water resources systems.
The Author points out that in spite of the rich growth of
stochastic modeling in this field that has occurred in the
last decade, the emphasis is still more on the probabilistic
model than on the "statistical questions to which the model
gives rise". The additional research needs are stressed.

Janusz Kindler
Regional Water Management
Task Leader

-iii~



4.

5.

CONTENTS

WHAT HYDROLOGY IS ABOUT
THE STOCHASTIC NATURE OF HYDROLOGY

STOCHASTIC MODELING IN HYDROLOGY

3.1 The Hurst Effect

3.2 Short-Term Run-0Off Models
3.3 Stochastic Reservoir Theory
APOLOGIES

ACKNOWLEDGEMENT

REFERENCES

15
17

18
18

19



STOCHASTIC HYDROLOGY: AN INTRODUCTION
TO WET STATISTICS FOR DRY STATISTICIANS

Emlyn Lloyd

1.  WHAT HYDROLOGY IS ABOUT

Hydrology 1is, evidently, to do with water. Amplification
of that trite remark reveals a science of daunting scope.
According to one of the standard definitions [Ad Hoc Panel on
Hydrology (1962)], "Hydrology is the science that treats the
waters of the Earth, their occurrence, circulation, and
distribution, their chemical and physical properties, and their
reaction with their environment, ..." Another definition [Winsler
and Brator (1959)] sets out the subject as "... the science that
deals with the processes governing the depletion and replenish-
ment of water resources of the land areas of the earth. It is
concerned with the transportation of water through the air, over
the ground surface, and through the strata of the earth."

It is a subject with a respectable history, dating back at
least 3700 years to the irrigation problems of Hammurabi's
Babylon [Neumann (1980)]. While certain facets of hydrology are

still mainly descriptive, others have developed a considerable



technology. The (still large) empirical content is being
fertilized by the overlaps that have come into being with
physics, chemistry and hydraulics. During the past three
decades the whole area has increasingly been subjected to
theoretical and mathematical treatments of one sort or another.

Hydrology has enormous and obviously practical importance
to mankind, in the supply of water for domestic, industrial and
agricultural uses, as well as for power generation, for the
alleviation of the effects of floods and droughts, for river
navigation, etc. It is a very large employer of technically
qualified manpower, particularly of those with a civil engineering
background,Mand is related to huge capital outlays for the con-
struction of dams, reservoirs, weirs, aquaducts, levees, and so
on.

All advanced countries have scientific and professional
hydrological organizations, and there are many international
organizations as well. Of these, the one most relevant to this
article is the International Association of Scientific Hydrology
(IASH). The principal periodicals which publish (among other

papers) work of a stochastic nature are the IASH Bulletin, the

Journal of Hydrology, Water Resources Research, and Advances in

Hydrology.

To obtain a rapid view of what professional hydrologists
currently regard as standard equipment, an examination is recom-
mended of the chapter headings in the "Handbook of Applied
Hydrology" [Ven Te Chow (1964)]. As well as sections on
Meteorology, Fluid Mechanics, Runoff, Droughts, Quality of
Water, Hydrology of Flow Control, Water Law, Water Policy, etc.,
there is a chapter on Statistical and Probability Analysis in
Hydrologic Data. Significantly, this is the longest chapter in

the Handbook.



‘2. THE STOCHASTIC NATURE OF HYDROLOGY

It is, no doubt, to the stochastic nature of rainfall that
the weather owes its popularity as a subject for conversation,
and this high degree of apparently random variability is shared
by all aspects of the hydrologist's art.

This was obvious to most hydrologists from the start - not,
admittedly to quite all: there were some who were reluctant to
admit the idea of chance events - but the complexity of the
phenomena militated against the early adoption of statistical
methods into professional practice. In addition (and this is
the feature that most profoundly impresses itself on the newcomer
to hydrology) there is a widespread paucity of data. All but
the most trivial problems are concerned with multivariate
spatio-temporal variables, and the available time-series data
usually consist of short runs only: a 40-year record of river
flow is a good deal more than one can usually hope for, and 40
years is a very short time in the geophysical world. Not only
this, but the data themselves are often unreliable. Until
recently the only flow information related to the "stage" of
the river at the observation point, i.e. the height of the river
surface above a given reference level. To convert stage into
flow rates, one needs a calibration that depends on the cross-
section of the channel itself a fluctuating and ill-recorded
entity.

(When the present author first lectured on statistical
methods to an audience of hydrologists he referred to the
telemetering network what he naively assumed to exist,
automatically flashing a continuous record of flow rates to

a central recorder. He was greeted with coarse laughter.)




When one adds to the above the information that it is often
the worst-documented aspects of their inadequate data runs that
chiefly concern hydrologists (typically the tail of a distribu-
tion) the total picture that emerges is somewhat sombre.

To give a simple example, the annual flood season flows of
a river at a given location have a positively skewed distribu-
tion whose c.d.f. F(x) is known only to a somewhat rough approxima-
tion. A flood flow of specified magnitude X (somewhere in the
upper tail) will be exceeded with probability p =1 - F(xo).
Hydrologists speak in terms of the "n-year flood." That is the
flow X, whose recurrence time T, has expectation 1/n. What hope
has one of estimating the 100-year flood from a 40-year record?
Less hopelegsly, what is the distribution of Tn? The latter is
an important question since, if civil engineering works are to
be installed, designed to withstand, say, the 20-year flood,
the chance of their being overtopped in a given year is a matter
of high socio-economic (and possibly legal) interest. The
computation will involve assumptions about the form of F,
particularly its upper tail, as well as the autocorrelation
structure and the local stationarity or otherwise of the time
series of annual flows. Pure statistical questions become
confounded with matters of judgement and guesswork to which the
model may well be quite sensitive.

That hydrologists' preoccupation with stream-flow distribu-
tions is long-standing and continuing, may be verified by
examining some of the standard books [e.g. Fiering (1967)] and
the contents of recent issues of the standard periodicals such

as the current volume of Water Resources Research [e.g. Todini

(1980) ].



To go back a few years, it might be mentioned that the
American hydrologist, Hazen, was one of the first (if not the
first) to advocate the use of probability graph paper: "The
practical difficulty of plotting ... is the great curvature of
the lines showing the required storage. This difficulty... has
been removed by using paper ruled with lines spaced in accordance
with... the normal law of error" [Hazen (1914)]. Another
statistical first or near-first was Sudler's early advocacy
of the use of statistical simulation [Sudler (1927)]: "Using
an appropriate curve ... the theoretical run-off of all the years
of a stated period may be ascertained and by chance selection
of these values, an artificial record may be constructed."
Adoption of a stochastic approach was not to be taken for
granted for several decades. When it came, it was (not
surprisingly) in the form of the straightforward adaptation to
hydrological purposes of the standard canon of statistical
techniques of the time. The encyclopaedic "Handbook of Applied
Hydrology" referred to earlier [Ven Te Chow (1964)], for example,
presents an implied description of the accepted state-of-the-
art in the early sixties, with its catalogue of standard prob-
ability distributions and their lower moments, its account of
estimation and curve fitting, of regression and correlation
analysis, analysis of variance and of covariance, and - of prime
importance then and since to the practising professional -
time series analysis. This is carried out in terms of trends
(taken care of by moving averages), seasonal and other periodici-
ties (harmonic analysis), and tests for the significance of
estimated correlations. The chapter continues with a brief

account of moving-average and autoregressive sequences, and



ends with an introduction to the simulation techniques that were
subsequently to play such a large part in hydrologic research.

It might be added that the statistical expertise displayed
had been achieved by a boot-~strap operation on the part of
hydrologists and engineers, statisticians outside the profession
having - with a few honourable exceptions - shown a curious
reluctance to interest themselves in these applications.

At about the same time as Ven Te Chow's Handbook there

appeared the Harvard school's influential "Design of Water

Resource Systems [Maass, et al., (1962)]. This was designed

not as an encyclopaedia of accepted practice but as a deliberate
attempt to inform the hydrological world of newly developed
concepts and methods. The emphasis was on a "Systems" approach,
integrating technology with economic and social cost-~benefit
analyses. The techniques propounded were mainly deterministic
but were often presented in the (then relatively novel) form

of algorithms, flow-charts and computer programs. Mathematical
models involving deterministic programming played a large

part. This emphasis on optimization and systems analysis

has led to the situation where contemporary periodicals freguently
carry mathematically sophisticated papers involving, for example,
Kalman filter techniques [e.g. Bolzern, Ferrario and Fronza
(1980) 1.

In addition to that kind of applied mathematics, however,
the Maass opus also contain a chapter on the "synthesis"
(hydrologese for simulation) of stream-flow sequences for the
analysis of river basins by computer experiments that marks a
forward significant step of a stochastic nature. Realizations
of seasonally varying flow distributions with seasonal auto-

correlations were dealt with by means of seasonal autoregressive



schemes, fed by random numbers taken from published tables of
random digits (it being still too early for computer-generated
pseudo-random numbers) .

A more consistently stochastic viewpoint in hydrology
was presented by an equally influential book on the application
of stochastic processes by the Russian writer, Kartvelishvili,
an English translation of which appeared in 1969 [Kartvelishvili
(1969)]. This was followed by Yevjevich 's book on stochastic
processes [Yevjevich (1972)] based mainly on American experience
and expressing American research activities. A few years later a
translation into English of Kaczmarek's (Polish) book on
statistical methods appeared [Kaczmarek (1977)1].

The more recent work on stochastic hydrology is available
only in the form of disseminated research papers or in the
proceedings of conferences (to which hydrologists, fortunately

for us, are rather addicted).

3. STOCHASTIC MODELING IN HYDROLOGY

It would be impossible to do justice to recent theoretical
work on the space available here, but there is one outstanding
characteristic which must be remarked on. This is the astonishingly
rich growth of stochastic modeling that has occurred, the emphasis
being more on the probabilistic model than on the statistical
questions to which the model gives rise. This is not to say
that there has not been a continuation of traditional engineering
methods and bread-and-butter statistics, with much use of regres-
sion techniques, and a development of applications of more
sophisticated classical multivariate statistics‘such as principal
component analysis [see, e.g. Morin et al., (1979)]. This healthy
development proceeds, but the new quality of the past few decades

has been the modeling mentioned above.



To quote the anonymous author of the Introduction to a
recent volume of Conference Proceedings [Coriani, Maroni and
Wallis (1977)] "... the building of models has outpaced their
use in specific water resource planning and management activities.
The lag in the use of specific models may be attributed to many
factors, among them being that planners and managers are unaware
of recent developments in mathematical models, reluctant to use
more sophisticated models when simpler ones seemingly suffice,
or lack of understanding and competence in the use of advanced
models. On the other hand, model builders have not always
understood the problems faced by planners and managers, and have
not in general constructed their models in ways that facilitate

decision-making."

3.1 The Hurst Effect

The flavour of the kind of research referred to may perhaps
be conveyed by outlining the recent history of long-term stream-
flow investigations.

A good stochastic model for the sequence of flows at a
given location is a matter of prime importance to hydrologists.
It is on this model [see, for example, Fiering (1967), and
Todini (1980)] that he has to base his calculations for reservoir
design, flood prevention, and so on. Of particular technical
interest are not only the seasonal and annual means, variances
and skewnesses of the flows, but also the magnitudes and fluc-
tuation patterns of annual maxima and minima. The failure of
consecutive monthly flows to display mutual independence, and
even more importantly, the tendency of wet years (and high flows)
to occur in groups, and for dry years (and low flows) to occur

in groups, is called persistence, and every clue to the pattern




of persistence and its effects must be utilized to the full in
creating the model on which the (unavoidable) simulation studies
are to be based.

Such a clue, which caused the greatest excitement, was
announced to the world in 1951 by the British engineer, H.E.
Hurst, and elaborated by him in subsequent years [Hurst (1951),
(1956), (1957) and (1965)]. Hurst had spent his professional
life in Egypt, in charge of studies of the Nile. It was from
this work that the "Hurst effect" was discovered, but Hurst
went on to show it to be a feature of most rivers (and, indeed,
of many other geophysical time series).

To understand what the Hurst effect is, imagine an arbitrarily
large reservoir of rectangular section, whose initial contents
define a conventional zero level. Annual inflows x., X,, ...,

X _, 1n the absence of any withdrawal, would bring the water

n
n
content after n years to a level s, = Zxr = nx, . A constant
1
annual withdrawal rate over the n years, of magnitude in’ would
leave the system at the same level at which it started. (This

simple but powerful concept is due to an Austrian engineer

appropriately named Rippl [Rippl (1883)].) 1In the j-th year,
. . * - B
j =1,2,...,n, the quantity §5j = Sj - Jxg (where sj = %Xr)

represents the height of the water level above (if positive)
or below (if negative) the conventional zero mark. Consequently

the magnitude of

*
u ¥ o max (.5.)
n j=1,2,...,n aj ’

represents the lowest height of the reservoir walls consistent

with there being no overflow during the n-year period, and
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*
- = - min (.8.) ,
i=1,2,...,n nJ

the least required depth below the conventional origin consistent
with the maintenance of the desired annual withdrawal rate.
The smallest reservoir volume consistent with no overflow and

no failure of yield during the n years in

the so-called adjusted Hurst range. This may be expressed in
non-dimensional form by dividing by the sample standard deviation
dn of the inflows, leading finally to the rescaled adjusted

Hurst range

* % */d
r =r
n n’ " n

Although this quantity arises in a natural way in éonnection
with reservoir design, the sampling distribution of r:*, as a
function of the time duration n, is of more general interest.
Denoting by R;* the random variable of which r;* is a realiza-

tion, Hurst's empirical law may be interpreted as stating that
n < ca, 1000,

where the "Hurst exponent" h is a constant whose value is about
0.73. Elementary models (see below) would suggest a law of the
form n1/2, and it is the fact that h # 1/2 that constitutes
the Hurst effect. (The possibly mysterious 1000 in the above
formula refers to the fact that Hurst's longest data run,
giving the history of the Nile is about 1000 years long.)

The Hurst exponent was taken to be a significant charac-

teristic of geophysical time series in general, and hydrologists

soon expressed a desire to build this into their simulation
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models. Mathematicians were attracted. Difficulties consequent
on the apparent mathematical intractability of the distribution
of R~ were initially disposed of by the familiar mathematical
device of attacking a simpler related problem. Thus, in 1951,

Feller deecmed expressions for the asymptotic expectation of

the "crude Hurst range" R defined as

and of the "unrescaled" adjusted range R:, after replacing the
input sequence {Xe} by an.approximating diffusion process. Not
surprisingly he showed [Feller (1951)], for both the crude and
the adjusted range, that the asymptotic expected value was

1/2

proportional to n . The exact value of the expected crude

range E(Rn) of a sequence of i.i.d. Normals was next. [Anis

n

and Lloyd (1953)] discovered to be proportional to Zr*1/2,
A

a quantity which is asymptotic to n1/2, and this work was’

later extended, to the adjusted range E(RZ), [Solari and Anis
(1957)1, again of course asymptotically n1/2, the corresponding
result for the rescaled adjusted range of i.i.d. Normal incre-
ments, the result required for direct comparison with Hurst's

empirical law, defied attack until 1976, when it was shown

[Anis and Lloyd (1976)] that

_rt/2tm-n) e V2
YT I(1/2n) r=1 T

* %
E(Rn )

This shows Hurst-like behaviour for quite small values of n

* %
only, the local Hurst exponent d log E(Rn )/d log n decreasing
fairly rapidly from 0.65 at n = 5 to 0.54 at n = 100, falling

off thereafter to the asymptotic value of 0.5.
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This work put paid to any lingering ideas that independent
Normal summands would display Hurst-like behaviour. Could the
explanation of the Hurst effect lie in the shape of the distribu-~
tion of the summands? In principle, yes. Moran (1964) pointed
out that, for the crude range at least, Hurst-like behaviour
would be displayed by independent summands having a stable
distribution. (This property depends on the result that if,
for example, the summands Xr are independently distributed in

k
the symmetrical stable form with index y, the sum S, = Zxr

k

has, for k =1,2,..., the same distribution as kaSi, with1
o = 1/y, so that the distribution of k-dSk is independent of
k.) The extension of this Hurst-like behaviour to the adjusted
range was e;tablished by Boes and Salas-La Cruz (1973).

Interesting though this was, it did not persuade hydrologists
that they ought to model their flows in terms of stable variables.
Moran (1964) had pointed out that gamma variables of sufficiently
high skewness would have to some degree the heavy-tail property
to which the Hurst-like behaviour of the stables seemed intui-
tively to be attributable and could be expected to exhibit the
Hurst-effect over an acceptably long pre-asymptotic interval,
but the degree of skewness required turned out to be unrealis-
tically high [Anis and Lloyd (1975)].

So one turns to the autocorrelation structure. At this
point an element of fantasy enters the story. Mandelbrot (1965)
introduced a brilliantly constructed Gaussian process that
exhibited the Hurst effect, the so-called "fractional Gaussian

noise." This is a continuous-time process S(t) which has the

"self-similar" property that, for specified a, 0 < a < 1/2, the
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process t s (at) is time-independent. (Compare the Stables .)

In this sense the Brownian movement B(t) is self-similar with
parameter o = 1/2: for B(at) is Normal (0,at), whence (at)-1/2B(at)
is Normal (0,1), and so independent of t, with exponent a = 1/2.
Mandelbrot's process has the advantage of possessing this
property for arbitrary «, 0 < o < = 1/2, for arbitrarily large
values of t. Explicitly this process, Bk(t)’ say, 1s defined

as an additive one with independent increments given by

k=1/2_ h-1/2

B (ty) = By (e1) = a, (8" 1{(t,~s) (t,-5) }aB/s)
t) h-1/2
+ S T (t,-s) dB(s)] oty >ty

1
This may be regarded as having been derived by the usual limiting
process from a discrete moving averagJe scheme. It is a mathe-
matical entity of the highest interest, but, as was remarked by
the present author [Lloyd (1974)] "as an algorithm for computing
realizations of Hurst-like sequences this process has the serious
disadvantage (a consequence of its slow convergence) of requiring
extremely large computer capacity.... There are those in the
hydrological world who profess to find difficulties in visualizing
a physical process that could in fact plausibly be described as
fractional Gaussian, and from this fact a certain amount of
controversy has arisen." Mandelbrot and Wallis (1969) ascribe
the Hurst-like behaviour of the process to its "long memory",
and the element of fantasy referred to earlier lies (in the
writer's opinion) in the belief that remotely distant realiza-
tions of a geophysical time series could perceptably influence
its present fluctuations.

Truly amazing quantities of computer time have been devoted
to this process and approximations thereto [e.g. Mandelbrot and

Wallis (1969)], its relation to realistic hydrology becoming a
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little diffuse. It is presumably this kind of dehydrated
hydrology that has induced respected pioneers of stochastic
hydrology to voice their disquiet at what they regard as
numerology [Nash (1978)] and at what they see as the excessive
zeal of desk-top theoreticians. Thus Fiering (1976) says:
"Fascination with automatic computation has encouraged a new
set of mathematical formalisms simply because they can now be
computed; ... flow synthesis and systems simulation have become
common methodologies in water-resource design. Neither is used
to generalize results but rather to make highly specific estimates
of system performance when alternative systems are defined and
tested. ... But it is well-known that data is not available
at preciseiy the locations where the simulation needs to test
system performance. Thus it must be transferred ... from
gauged to ungauged locations...." He goes on to point out that
the model error associated with the transfer of information to
ungauged sites is often so great as to cast severe doubt on the
validity of the results, which tend nevertheless to be
uncritically calculated to several significant figures.

Realistic engineers have since developed simple ARMA models
for generating sequences having Hurst-like behaviour [0'Connell
(1971) 1.

The likely physical explanation of the Hurst effect
is now however thought to lie in the unavoidable heterogeneify
imposed on historical data by occasional shifts of origin (as
must certainly have occurred during the 1000-years of the
Nilometer record) or displacements of the measuring equipment
(as in occasional redesigning of rain-gauge networks). Such
an explanation is consistent with Hurst's own suggested model

[Hurst (1957)], which visualizes a process in which the
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summands are independently distributed about a mean which 1is
itself subjected to jumps of random magnitudes at random times.
This has been shown by extended computer experiments by Klemes
(1974) and others to have the required properties. [For a
recent review, see Boes and Salas (1978).] Analysis of such
meteorological time series showing pronounced Hurst-like
behaviour has recently shown that the relevant data were indeed
contaminated in this way [Potter (1970)]. In a similar view of
scepticism, Klemes and Bulu (1979) have poured some refreshingly
cold hydrological fluid on the wilder flights of stochastic

fancy.

3.2 Short-Term Run-Off Models

Of equal importance with the long-term pattern of annual,
seasonal or monthly flows is the problem of predicting the
immediate and short-term run-off generated by a single rain-
storm in a given catchment, and the associated problem of
"routing" the ensuing water through the channels and other
storage and alternating devices available. The time lags
differentially imposed on the rain-induced run-off by the
nature of the surface and subsurface soil and its percolation
properties invite the use of geophysically based models in
conjunction with the resources of classical hydraulics. Given
that the rainfall incidence is stochastic, the working techniques
in standard use tend to be largely empirical models of a partly
deterministic and partly probabilistic nature. One interesting
model [Nash (1957), (1958), (1960)] treats the catchment as a
sequence ("cascade") of lineaf reservoirs, the outflow from
each constituting the inflow to the next. (A "linear reservoir"
is a conceptual storage system, from which the outflow is a

linear function of the quantity of water contained in it.)
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Stochastic linear reservoirs have been studied by Moran (1967)
and by Anis, Lloyd and Saleem (1979) and others.

Stochastic models of rainfall generation [Amorocho and
Lloyd (1978)] and run-off [Weiss (1973)] are now beginning to
appear. In the Amorocho model, rain is produced by precipitation
cells which come into existence at random epochs on a spatially
three-dimensional Poisson process (itself moving at uniform
speed relative to the ground), each cell‘s rain-producing
capacity growing spatially and in intensity and then dying away.
In its simplest form the Weiss run-off model is an application
of a filtered Poisson process to the problem of simulating
the hydrograph (viz. the run-off as a function of time) generated
by a brief'concentrated rainstorm. The hydrograph typically
looks like a positively skewed probability density function
superimposed on a more or less constant "base flow," the skew
shape resulting from a rapid initial increase in run-off
followed by a slower recession. A continued record of real
flows will show a succession of such shapes, with maxima of
varying heights occurring at apparently random epochs. Weiss's
"shot-noise"” model gives the flow at time t as the sum of
pulses of the form d(t,Tm) Ym—exp—b(t—Tm), the jumps Ym being
i.i.d. exponential variables and their epochs of occurrence
T being generated as a Poisson process. (Here the § :function
equals unity if t > T and equals zero otherwise.) Elaboration
of the model involve the superposition of several independent
shot-noise processes having differing Poisson rates and reces-

sion constants. [For a brief review, see 0"Connell (1977)].
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3.3 Stochastic Reservoir Theory

The third and final example of stochastic modeling to be
touched upon in this brief survey concerns water storage.
Stochastic reservoir theory owes its existence to Moran [(1954),
(1955), (1959)]. The model is basically one in which a sequence
of random variables is fed into a finite reservoir from which
water is released in accordance with a "withdrawal policy" which
may depend on current and past inflows and storage values. 1In
the Moran reservoir these inflows are i.i.d. or independent but
seasonally distributed. For i.i.d. inflows and constant with-
drawals the sequence of storage values is a lag-1 Markov Chain.

The model turned out to be the ancestor of a branching
process with markedly non-identical offspring. One such des-
cendant was the influential R.S.S. symposium on storage systems
in which Gani (1957) summarized the findings of Moran's school
and D.G. Kendall (1957) introduced to a delighted mathematical

world the charms of dam theory (effectively infinite reservoirs

with inflows consisting of continuous-time processes with
independent increments, with unit withdrawal policy), in a
paper which was itself the highly fecund parent of a large
progeny of research activity. Other evolutionarylines have
concerned themselves less with mathematical elegance and more
with attempts at engineering realism, in particular the adapta-
tion of Moran's original model to the case of autocorrelated
inflows. Lloyd (1963) for example produced a modificatidn
allowing Markovian inflows, in which the joint distribution of
inflows and storage values is bivariate first-order Markov.
[See also Langbein (1958), Phatarfod and Mardia (1973),

Phatarfod (1976).]
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At the time of writing, however, no satisfactory stochastic
model has appeared capable of dealing with interconnected
systems of multipurpose (flood-prevention/over-year storage/
seasonal storage/power generation) reservoir; much work remains

to be done.

4. APOLOGIES

The foregoing is a brief, partial and incomplete picture
of some aspects of stochastic hydrology, written for statis-
ticians who have not yet got their feet into the water. It
was written in the hope of conveying to them some idea of the
attractiveness of stochastic hydrology: so - statisticians and
applied probabilists, if you are sighing for fresh worlds to

conquer - come on in! Hydrology is waiting for you!
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