
 

 

Recent progresses in incorporating human land-water management into global land surface 

models toward their integration into Earth system models  

 

 

Yadu N. Pokhrel* 
Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 
48823 
*Corresponding author; E-mail: ypokhrel@egr.msu.edu 

Naota Hanasaki 
National Institute for Environmental Studies, Tsukuba, Japan 

Yoshihide Wada 
NASA Goddard Institute for Space Studies, New York, NY 10025 
Hyungjun Kim 
Institute of Industrial Science, The University of Tokyo, Tokyo, Japan 

 

 

 

 

 

  

mailto:ypokhrel@egr.msu.edu


 

 

ABSTRACT 

The global water cycle has been profoundly affected by human land-water management especially 

during the last century. Since the changes in water cycle can affect the functioning of a wide range 

of biophysical and biogeochemical processes of the Earth system, it is essential to account for 

human land-water management in Earth system models (ESMs). During the recent past, 

noteworthy progress has been made in large-scale modeling of human impacts on the water cycle 

but sufficient advancements have not yet been made in integrating the newly developed schemes 

into ESMs. This paper reviews the progresses made in incorporating human factors in large-scale 

hydrological models and their integration into ESMs. The paper focuses primarily on the recent 

advancements and existing challenges in incorporating human impacts in global land surface 

models (LSMs) as a way forward to the development of ESMs with humans as integral components, 

but a brief review of global hydrological models (GHMs) is also provided. The paper begins with the 

general overview of human impacts on the water cycle. Then, the algorithms currently employed to 

represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, 

methodological deficiencies in current modeling approaches and existing challenges are identified. 

Further, light is shed on the sources of uncertainties associated with model parameterizations, grid 

resolution, and datasets used for forcing and validation. Finally, representing human land-water 

management in LSMs is highlighted as an important research direction toward developing 

integrated models using ESM frameworks for the holistic study of human-water interactions within 

the Earths system.   



 

 

INTRODUCTION  

Humans have historically modified the Earth’s landscape as a consequence of the 

exploitation of natural resources1, 2. Human impacts on the natural environment now rival global 

geophysical processes3-5 transforming our planet into a new geological epoch termed as the 

Anthropocene6, 7. Evidences are overwhelming that these human forces have been fundamentally 

altering the natural patterns of freshwater flows and storages over a broad range of spatio-

temporal scales2, 5, 8-10; Figure 1 shows a schematic of the present-day global water cycle depicting 

the major human factors that are affecting the large-scale flow and storage of water. Some of the 

plainly visible manifestations of the human impacts on the water cycle are diminishing river flows 

due to impoundment by large dams and long-distance water transport9, 11, 12, especially during 

reservoir filling, aquifer storage depletion due to over-exploitation of groundwater resources13-22, 

altered groundwater recharge due to change in land use and irrigation23, and desiccation of inland 

water bodies such as the Aral sea as a consequence of large-scale river diversion and irrigation24, 25.  

These evidences indicate that human footprint on freshwater and ecosystem services is 

widening across the planet at an alarming rate3, 10, 18, 26, 27. Increasing demand for water and food 

associated with future population and economic growths28-32 combined with the adverse climate 

impacts on water availability29, 33-35 will further exacerbate the current scale of human footprint, 

heighten water scarcity35, 36, and increase hydrologic extremes such as floods and droughts37-40 in 

many regions. Coping with these enormous challenges and providing reliable predictions of 

freshwater occurrence, circulation, and distribution requires a broad understanding of the 

continually changing water cycle as well as the dynamic and often complex human-water 

interactions27, 41-43.  

Earth system models (ESMs) are the tools used for studying the past evolution and potential 

future changes of these intricately intertwined Earth system processes and the interactions and 

feedback within them. ESMs integrate various—physical, chemical, and biological—aspects of the 

Earth system on land and in the atmosphere and ocean into a single, consistent modeling 

framework and simulate the interactions and feedback among them44. The land water cycle in ESMs 

is represented by land surface models (LSMs) which simulate the soil and vegetation processes and 

provide the lower boundary conditions to the atmospheric processes simulated by global climate 

models (GCMs) within ESM frameworks. Because of their crucial role within ESMs, LSMs have been 

significantly advanced over the last several decades through intensive improvements in schemes 

representing soil and vegetation processes45, 46. However, despite the widely recognized fact that 

the changes in water cycle due to human land-water management are now of global significance, as 

discussed above, most global LSMs do not yet account for human impacts on the water cycle. There 

has been increased attention in this line of research and noteworthy progress has been made 

during the last two decades, but the majority of these studies have focused on representing human 

impacts into offline global hydrological models47, 48 (GHMs) developed to assess water resources 

availability and use. As such, the advancements made so far have not been able to meet the urgent 

need to develop holistic and integrated models by representing human impacts into ESMs. 



 

 

This review presents the recent advances made in representing human land-water 

management into global LSMs as a way forward to the development of ESMs with humans as 

integral players within the Earth system. The emphasis is on reviewing current practices to model 

irrigation, reservoir operation, and groundwater pumping and identifying methodological 

deficiencies and existing challenges pertaining to the inclusion of these human factors into LSMs, 

but the progresses made in GHM development are also highlighted because some schemes 

developed for GHMs have been employed in LSMs and vice versa. Light is also shed on the sources 

of uncertainties associated with model parameterizations and grid resolution, as well as with the 

datasets used for forcing and validation, and the need for incorporating human land-water 

management in ESMs is highlighted as an important research direction for the future. We put less 

emphasis on the review of GHM developments because such reviews can be found in previous 

studies (e.g., Nazemi and Wheater42, 43; Sood and Smakhtin48).  

Nazemi and Wheater42, 43 provide a comprehensive review of various approaches currently 

employed to model human impacts on the water cycle; while they discuss the current state of 

representing human impacts in both online and offline models, particular emphasis was placed on 

reviewing and comparing the schemes used especially by various GHMs. The present paper expands 

on these previous reviews and provides further details and insights on the integrated impacts of 

human land-water management on various Earth system components which were not covered in 

the previous reviews. The paper focuses more on the technicalities of modeling human impacts in 

LSMs and discusses the current challenges and opportunities in integrating the new LSM 

developments into ESMs. The purpose of the paper is therefore not to review the findings of the 

literature published on human impact modeling but to characterize the current state of large-scale 

hydrologic modeling in the context of simulating the coupled human-water-climate interactions 

using consistent modeling frameworks. Specifically, the paper discusses how human factors interact 

with various hydro-climatic components of the Earth from the standpoint of Earth system modeling 

as shown in Figure 2. The figure depicts how the human and natural components are interlinked, 

and the possible pathways whereby human land-water management practices can affect various 

hydrologic, atmospheric, and oceanic processes within the Earth system.  In the rest of this review, 

we first provide an overview of the human impacts on the water cycle in general, then discuss the 

current modeling approaches, and finally identify current gaps and challenges related to data 

availability and modeling strategies. 

 

HUMAN WATER MANAGEMENT AND ITS IMPACTS ON THE GLOBAL WATER CYCLE 

Exploitation of freshwater resources has brought astounding socio-economic benefits; 

however, the benefits have come with an unprecedented scale of negative environmental 

consequences49. Contemporary global water withdrawals, estimated to be ~4,000 km3/yr31, 50, 

account for only ~10% of the total annual continental runoff (40,000-45,000 km3) to oceans31 

(Figure 1) and even a very small fraction of the total freshwater available on Earth51-54. However, 



 

 

the high spatial and temporal variability in both the availability and use of water has caused water 

scarcity in many regions around the world29, 55, 56. In an attempt to make this unevenly distributed 

resource available across space and time, humans have radically altered the natural patterns of 

freshwater flows and storages through impoundment and large-scale diversion2, 28, 29, 57. Since safe 

limits for surface water use have already reached in many regions58, groundwater resources have 

also been extensively exploited to meet the soaring water demands especially during the last 

several decades14, 16, 18, 22, 59.  

As such, freshwater systems are now among the most extensively exploited and altered 

ecosystems on Earth10. The most prominent and palpable impacts of such management and 

exploitation of freshwater resources are altered flow regimes and dwindling storages as discussed 

earlier. These are, however, only a few examples of the profound influence that mankind is exerting 

on the Earth system as a whole. The potential impacts on various other Earth system processes are, in 

fact, far-reaching and exceedingly complex as the changes in freshwater systems can affect a wide 

range of biophysical processes and biogeochemical cycles on Earth and can in turn be affected 

through important feedbacks.  For example, irrigation can alter regional precipitation patterns60, 61 

as well as global climate62, 63, which in turn can affect water resources availability. Reservoir 

impoundments and groundwater pumping over long times have been found to have a measurable 

impact on sea level change17, 64-67 and can substantially alter regional precipitation patterns68-70.  

The significance of various land-water management practices can be different at different 

spatial and temporal scales. Here, we identify agricultural irrigation, flow regulation, and 

groundwater use as the three major factors which are known to have affected the water cycle at 

global level and are important from large-scale hydrological modeling standpoint. In the following 

sub-sections, we first provide an overview of the direct impacts of these three factors on flows and 

storages of water and then highlight their combined effects on various Earth system processes in 

relation to the need for representing them in global LSMs. 

 

Agricultural Land Use Change and Irrigation 

 Human land management practices have largely transformed the terrestrial biosphere in 

the recent past8, 71-73. The primary mode of the alteration of natural landscape has been the 

conversion and modification of natural ecosystems for agriculture74-76. It is estimated that ~40% of 

the planet’s ice-free land surface has now been used for agriculture much of which replaced forests, 

savannas, and grasslands71, 77. Global cropland and pasture areas increased from 3 million km2 and 

3.24 million km2, respectively, in 1700 to 15.32 million km2 and 34.29 million km2 in 2000 [Klein 

Goldewijk et al.78]. The intensification in land use change associated with agriculture particularly 

began during the early 20th century during which the global cropland and pasture areas were still 

8.5 million km2 and 12.93 million km2 (Figures 3a-3c). 

 Changes in land use can alter the biophysical properties of land surface such as its albedo, 

roughness, leaf area index, and rooting depth consequently affecting various hydrologic processes 



 

 

such as evaporation from land and transpiration from leaf stomata72, 79, 80. The changes in 

evapotranspiration (ET) can in turn influence the climate over a range of spatio-temporal scales 

through alterations in the exchange of water, energy, and momentum between land surface and 

atmosphere81-87. Land use change can also affect the hydrologic functioning of the land surface as a 

result of changes in the partitioning of precipitation into ET and runoff and the alterations in soil 

water movement and root uptake80. Studies have suggested that change in land use, expansion of 

irrigated areas, and the associated effects on biophysical processes on land may have resulted in 

significant changes in the long-term global terrestrial water balance88-90. 

 Irrigation further intensifies the perturbations in land surface water and energy balances 

due to agricultural activities. Irrigation consumes the largest share of total global water withdrawals 

accounting for ~70% of total and ~90% of consumptive water use globally91, 92. Irrigated agriculture 

currently contributes to 40-45% of global food production93, 94. Therefore, irrigation is an important 

component of global water use and food production as well as that of the terrestrial water balance. 

Irrigation, through increased soil water content, affects land surface water and energy balances95-98 

which can directly influence regional as well as global climate60, 62, 63, 81, 83, 99-109. While irrigation has 

been used since the beginning of cultivation, rapid expansion in irrigated areas occurred during the 

20th century110, 111. In 2005, 3.1 million km2 of land was irrigated globally94, 111, 112 which is about 

three and five times of that in 1950 (1.1 million km2) and 1900 (0.6 million km2), respectively 

(Figures 3d-3f). The increased food demand driven by economic and population growths will likely 

result in further expansion of croplands and extension of irrigation facilities in the future, further 

accelerating the impacts on freshwater systems and climate55, 113.  

 

Large Dams and Flow Regulation 

 Globally, about 50,000 large dams—defined as >15m in height—were built during the last 

century with a major proliferation during its latter half11, 57  (Figure 4). Globally, the water 

impoundment on these dams has been estimated as 7,000-8,300 km3 [ICOLD114, Chao et al.65, 

Lehner et al.57] which represents about one-sixth of the annual continental discharge to global 

oceans31. If millions of small dams115-119, which have not been well documented, are accounted for 

the global total impoundment may even exceed 10,000 km3 [Chao et al.65]. Therefore, water stored 

in large reservoirs accounts for a significant portion of the terrestrial water balance.  

Flow regulations by these dams have fragmented most of the large river systems around the 

world2, 9, 119, 120, adversely affecting the natural flow regimes121 and ecological integrity of 

freshwater-dependent ecosystems26. While the impacts of reservoir impoundments on freshwater 

ecosystems, land use, sediment transport, and human settlement as well as the effects on sea level 

change have been relatively well documented11, 17, 64-67, 117, 122, their impacts on climate have 

remained underemphasized and largely unexamined. Studies suggest that large dams can alter 

regional precipitation patterns, particularly affecting extreme precipitation in surrounding regions, 

with potential implications on the safety of dams68-70. It is likely that rising global temperatures will 



 

 

further intensify these climate impacts as a result of increased evaporation rates from reservoirs. 

Therefore, the importance of incorporating reservoirs and their operation into large-scale 

hydrological model will continue to grow in the future.  

 

Groundwater Use 

 Increased use of groundwater—the readily available and generally high-quality source of 

freshwater—has facilitated improvement in livelihoods, increase in agricultural productivity, food 

security, economic growth, and human adaptability to climate variability in many regions14, 123. 

Today, at least one-fourth of world’s population relies heavily on groundwater59, 124, and it is likely 

that the dependence on groundwater will continue to rise in the future as demands for water will 

increase and surface water sources will likely diminish in many regions12, 29-31. Therefore, 

groundwater will play an increasingly important role in water resources and agricultural 

sustainability in the future18, 58, 125 but will also be adversely affected by global climate change126, 127. 

Recent studies have shown that aquifer storages have already been declining at an alarming rate in 

many regions15-17, 21, 128-130 as a result of groundwater overexploitation at the rate exceeding its 

natural replenishment and stream discharge14, 123.  This has caused unanticipated negative 

environmental consequences such as streamflow and aquifer storage depletion, water quality 

deterioration, and degradation of ecosystems13, 14, 123, 131-133.  

 Groundwater also plays a crucial role in global water circulation. It often regulates surface 

runoff in humid climates and also interacts with regional climate especially in areas where water 

table is shallow134-139. It can also strongly modulate the seasonal cycle of terrestrial water storage 

and buffer soil water stress potentially increasing vegetation resilience during long dry spells140, 141. 

Studies have suggested that groundwater-supplied moisture contributes to ~9% of global ET142 and 

the direct groundwater discharge to oceans accounts for ~10% of river discharge143. Therefore, 

alterations in groundwater dynamics can profoundly influence regional climate with important 

implications on global atmospheric circulations.  

Despite the critical role that groundwater plays in securing global water supplies and driving 

regional climate, it has received less research attention than surface water and therefore remains 

as a poorly understood component of the global water balance22. Moreover, the lack of global 

groundwater monitoring networks, reliable models, and geological data required to constrain large-

scale models limits our current understanding of the dynamic relationship between human water 

use, groundwater, and the hydrologic cycle124, 125, which are all changing continually in response to 

global climate change and increase in human pressure. Contemporary global groundwater 

withdrawals have been estimated to be within 600-1000 km3/yr (Table 1) based on country-level 

statistics14, 123, 144-147. These estimates provide the upper and lower bounds of total groundwater use 

but they may not be fully reliable as the country statistics obtained from different sources contain 

inherent uncertainties and are not always complete and accurate123. A number of hydrological 

models have also been used to estimate global groundwater withdrawals16, 19, 92, 148-151. The global 



 

 

total values simulated by different models fall within an even larger range of 500-1700 km3/yr 

(Table 1; see Wada et al.152 for details). Such large disagreements among different estimates 

suggest that reliable approaches and robust models to estimate global groundwater use are yet to 

be developed. Nonetheless, global models provide a large picture view with a generally good 

agreement in the broad spatial patterns of high groundwater withdrawals and depletion (Figure 5). 

The highest withdrawals are in the regions such as the northwest India, High Plains aquifer, and 

Central Valley Aquifer that are intensively irrigated using groundwater (Figure 5).  

 

Integrated Effects of Irrigation, Flow Regulation, and Groundwater Use 

As discussed in the preceding sections, human factors arising from land-water management 

exert profound influence on various hydro-climatic processes at varying spatial and temporal scales, 

but their combined effects have even broader implications on the changes in the overall system 

behavior and characteristics of the hydrologic cycle. Therefore, it is crucial to study their effects in 

an integrated manner and characterize the interactions and feedback among natural and human 

systems. Figure 2 shows different pathways whereby human-impacted landscape and water 

systems can potentially alter various atmospheric and oceanic processes. As indicated in the figure, 

the key underlying processes in the context of large-scale modeling include the changes in surface 

water and energy balances and the alteration in water drainage to global oceans. For instance, 

evidences indicate that irrigation can significantly alter precipitation patterns and the overall 

regional climate variability and change60, 61. Such changes in regional climate characteristics can 

directly influence water availability and use which can further perturb the overall system balance. 

Regional climate variability is also linked to increased evaporation from large artificial reservoirs68-70 

which can be expected to further accelerate with increase in global temperature, potentially 

affecting reservoir operation rules.  

Groundwater, another crucial component of the total terrestrial balance and human water 

use, can also directly influence near-surface climate as well as the long-term balance in terrestrial 

and ocean water stores. Of particular interest is the use of deep fossil groundwater which once 

pumped to the surface (primarily for irrigation) enters into a complex cycle of utilization, recharge, 

and long-rage transport through atmospheric and land surface hydrological processes. Offline 

modeling studies have demonstrated that use of deep and non-renewable groundwater has 

contributed to significant sea level rise over the past century17, 67 but the impacts of groundwater 

pumping on the overall system behavior still remains largely unexamined as groundwater is either 

ignored altogether or accounted rather crudely in many global LSMs and ESMs. This calls for the 

need to study these human systems as integral players within the Earth system as a whole, which 

requires the development and use of models that account for human factors and operate within the 

framework of ESMs. Such a holistic analysis will also promote a better understanding of various 

components of human-natural systems and the interaction and feedback among them under 

changing conditions of land use, water resources management, and climate variability in the future. 



 

 

 

MODELING HUMAN IMPACTS ON THE WATER CYCLE  

The way we model the global water cycle has been changing over the past few decades. It 

has been increasingly recognized that it no longer makes sense to model only natural hydrological 

cycles without considering human land-water management31. Consequently, there have been 

emerging efforts in representing human factors in large-scale hydrological models. However, 

majority of these modeling efforts have been focused on incorporating human activities into GHMs 

with the primary objective of assessing global water resources availability and use. As such, less 

attention has been paid in incorporating human factors into global LSMs, and particularly in 

integrating them into ESMs. In general, both LSMs and GHMs simulate the hydrological processes 

on land but they differ significantly in terms of their intended use and the details of 

parameterizations they employ to represent soil and vegetation processes. An extensive review of 

various GHMs and the current state of available methodologies and applications for the 

representation of water availability and use within these GHMs can be found in Nazemi and 

Wheater42, 43. Here, we provide a brief overview of GHMs in order to facilitate a clear distinction 

between modeling concepts in GHMs and LSMs.    

GHM47, 48, 153 developments have traditionally been focused more on water resources 

assessment154-156. They have a comprehensive representation of various hydrological processes but 

are typically simple in structure compared to the LSMs. While most GHMs are process-based, many 

treat soil and vegetation processes rather conceptually43, 46. GHMs typically are water balance 

models operating at a daily time scale without solving land surface energy balance. Since GHMs 

were traditionally designed to assess water resources availability, the primary goal in their 

development remains the accurate simulation of river discharge at the relevant scales. To achieve 

this, most GHMs typically employ a few parameters which can be tuned to match the simulated 

discharge with observations149, 156, 157. The underlying assumption is that since the models are tuned 

to capture the observed discharge, other variables such as ET are also simulated with reasonable 

accuracy. GHMs have been widely used to assess water resources availability and use at global to 

regional scales149, 150, 152, 154, 158-161 as well as to examine the human-induced changes in river flows149, 

161, 162. However, they are designed to be used in an offline mode, i.e., they simulate the water cycle 

on land with given climate information as an external input and are not coupled with GCMs, and 

hence are not the integral components of ESMs. Therefore, while the advancements in GHMs have 

led to the improved understanding and estimation of water resources availability and use, these 

progresses are not directly in line with the need to develop holistic models for the integrated study 

of human-natural systems using ESM frameworks.  

LSMs, on the contrary, simulate the terrestrial water cycle within ESMs. Specifically, they 

provide the lower boundary conditions required to simulate atmospheric processes in GCMs. LSMs 

can operate both in offline and online modes, and typically run on a sub-daily time scale solving 

both water and energy balances on land; solving energy balance in LSMs is vital to the simulation of 



 

 

diurnal patterns of temperature variations required in the parent GCMs. As such, LSMs simulate the 

water cycle on land and provide a dynamic linkage between land and atmosphere through 

continuous exchange of moisture, energy, and momentum. As opposed to the parameter tuning-

based water balance approach used in typical GHMs, LSMs simulate soil and vegetation processes 

on a physical basis with less involvement of tuning. Parameter tuning in LSMs may not also be 

always feasible as there are multiple parameters involved, and also because the evaporative fluxes 

are determined based on surface energy balance in advance of the estimation of runoff or river 

discharge. As such, accurate representation of state variables such as soil moisture and surface 

temperature is important for the realistic estimation of the land surface hydrologic fluxes which 

play crucial role in land-atmospheric interaction as well as for the estimation of water resources 

availability. It is, however, important to note that some LSMs employ parameter tuning, especially 

for runoff parameterizations. Such tuning can have important implications on land-atmosphere 

interactions and carbon cycle as runoff parameterizations in LSMs are tightly coupled with surface 

energy balance calculations163, 164.  

Because land surface hydrological processes exert profound influence on the overlying 

atmosphere165, 166 and can potentially affect the biological and geochemical cycles simulated within 

ESMs, LSMs have been advanced through intensive improvements in many aspects of model 

parameterizations though concerted efforts across hydrological, atmospheric, and Earth system 

modeling communities (see Sellers et al.45, Pitman167, Overgaard et al.46). These efforts have led to 

the development of a family of advanced LSMs that employ sophisticated parameterizations of soil, 

water, and vegetation, processes including carbon exchange by plants168, 169. However, very few 

efforts have been made to represent human impacts in global LSMs170, 171. Advances have certainly 

been made during the past two decades but significant challenges and opportunities still remain in 

representing anthropogenic factors in global LSMs and integrating them into ESMs27, 171, 172.  

 

RECENT ADVANCES IN REPRESENTATING HUMAN IMPACTS IN HYDROLOGICAL MODELS 

During the last two decades there has been a surge of interests and efforts in modeling 

human impacts on the global water cycle. The early efforts were led by water resources modeling 

communities with the primary objective of assessing the impacts of human activities on the 

terrestrial water cycle and providing better estimates of global water resources availability and use. 

Therefore, the early studies used GHMs as the core of the modeling framework and incorporated 

various human water management schemes within them. For example, Alcamo et al.155 developed a 

global water resources model called the Water-Global Analysis and Prognosis (WaterGAP) by 

integrating together a global water use model, hydrology model156, and an irrigation model93. A 

number of subsequent studies have since then advanced the model substantially through improved 

representation of human water use150, 162. Haddeland et al.173 implemented reservoir operation and 

irrigation schemes into the Variable Infiltration Capacity (VIC) model174 and examined the effects of 

reservoir operation and irrigation water withdrawal on surface water fluxes at the continental scale. 



 

 

Hanasaki et al.175 developed a new global reservoir operation model for a global river routing model 

called the Total Runoff Integrating Pathways176 (TRIP). They further developed an integrated water 

resources assessment model H08157, 159 by incorporating the reservoir operation model175 and 

various other human water use modules into a bucket-model177 based global hydrology model. 

Adding to the continuing efforts in modeling human water management in GHMs, Wisser et al.149, 

178 simulated irrigation water use and the effects of global reservoirs on continental water fluxes to 

oceans by using WBMPlus. More recently, van Beek et al.160 and Wada et al.161 incorporated various 

water management practices including water allocation and use, irrigation, and reservoir operation 

in the macro-scale global hydrological model PCR-GLOBWB160.  

With the increased recognition of the need to account for human land-water management 

not only in water resources modeling but also in the broader context of modeling human-natural 

systems and the interactions and feedback within them, there have been concerted efforts in 

recent years from hydrological, climate, and Earth system modeling communities in incorporating 

human factors into LSMs and GCMs. The goal of these efforts is to inform the development of ESMs 

with human as integral players within the Earth system. Therefore, the objective is not only to 

improve land surface hydrologic simulations but also to explore and understand the dynamic 

pathways whereby human land-water management activities can affect various hydrologic and 

atmospheric processes and the mutual interactions and feedback among them over a range of 

spatio-temporal scales. Here, we review some of the major developments and advancements made 

in the development of LSMs with the representation of human land-water management. de Rosnay 

et al.179 incorporated an irrigation scheme into the Organizing Carbon and Hydrology in Dynamics 

Ecosystems (ORCHIDEE180) LSM and examined the regional impacts of irrigation on the partitioning 

of energy between sensible and latent heat fluxes. Tang et al.181 investigated the natural and 

anthropogenic heterogeneity, including irrigation, on the simulation of land surface hydrologic 

processes using a distributed biosphere hydrological model. Rost et al.92 enhanced the dynamic 

global vegetation model (DGVM) LPJmL182 through the representation of irrigation, river flow 

routing, and reservoirs and lakes. They used the model to examine agricultural blue and green 

water consumption in the context of changing land use and irrigation extents. Ozdogan et al.96 

integrated satellite-derived irrigation data into the NOAH LSM and examined the role of irrigation 

on the simulation of land surface hydrologic fluxes and states within the LSM.  

More recently, Pokhrel et al.97 incorporated various water use modules into an LSM called 

the Minimal Advanced Treatment of Surface Interactions and Runoff (MATSIRO183). Their model 

accounted for reservoir regulation, environmental flow requirements, as well as domestic and 

industrial water withdrawals which were unrepresented in the previous LSM studies; however, the 

model still lacked the inclusion of groundwater pumping.  In a recent study19, they further enhanced 

the model through the incorporation of a dynamic groundwater scheme134, 142 and an explicit 

groundwater pumping scheme, resulting in a new model called the HiGW-MAT which was of its first 

kind in terms of explicitly simulating groundwater withdrawal and depletion within a global LSM. 

This area of research has therefore been evolving with increasing number of studies in recent years. 



 

 

Some of the latest developments include those by Leng et al.98 and Leng et al.184 who integrated a 

simple groundwater pumping scheme into the interactive irrigation scheme 

(http://www.cesm.ucar.edu/models/cesm1.0/clm/CLMcropANDirrigTechDescriptions.pdf) in 

CLM4169 to examine the effects of irrigation, including groundwater use, over the conterminous 

United States at a relatively high spatial and temporal resolution. Voisin et al.185, 186 also examined 

the regional impacts of water resource management using an integrated model designed for 

integration into ESM. A number of other studies [e.g., Faunt187, Ferguson and Maxwell188, Condon 

and Maxwell189] have developed integrated models which simulate human water management 

within the models that fully resolve surface water and energy balances while also accounting for 

groundwater flows, but these models have been particularly designed for catchment to regional 

scale applications.  

Even though the LSM-based models summarized above have been developed for potential 

integration into ESMs, they were mostly used for offline applications. Some other studies have 

directly incorporated water management, particularly irrigation, into GCMs or regional climate 

models (RCMs) for online applications. The early studies of this category investigated the climate 

effects of irrigation and the associated feedbacks on land water cycle at global62, 63, 99, 101, 102, 107 and 

regional81, 83, 100, 103-106, 190, 191 scales. They differ primarily with the offline LSMs described above in 

that the model grid resolution, in general, is relatively coarse and many of these models employ 

rather simplified algorithms to represent irrigation processes without accounting for water 

withdrawals from man-made reservoirs and groundwater, as well as the temporal dynamics of crop 

growth. The volume of annual irrigation water in many of these studies is commonly fixed at a 

mean value based on the available data [e.g., Döll and Siebert93, Wisser et al.149], soil moisture in 

irrigated areas is set at saturation throughout the year without considering crop growing season, or 

the ET from irrigated areas is grossly set at the potential rate. Therefore, the temporal dynamics of 

irrigation water requirements is largely ignored. Such model configurations with highly simplified 

irrigation schemes may result in improper description of soil hydrological processes such as 

overestimation of soil moisture and deep-soil percolation which may lead to the overestimation or 

underestimation of the irrigation impacts on climate192. Therefore, while these studies have, in 

general, suggested that irrigation can affect climate by surface cooling and enhanced ET, there are 

large disagreements in the quantification of the magnitude of these impacts193.  

More recently, various studies have used improved schemes to investigate regional climate 

impacts of irrigation.  For example, Sorooshian et al.192 incorporated a “more realistic” irrigation 

scheme based on actual irrigation practices in California194 into the NCAR/PENN STATE mesoscale 

model MM5. The model, which has recently been enhanced further109, 193, was used to study 

climate impacts due to irrigation in the California Central Valley. Lo and Famiglietti108 also studied 

the irrigation-induced climate impacts in California using the Community Land Model (CLM) but 

they prescribed the amount of annual irrigation from surface water and groundwater based on the 

available estimates. Numerous other studies have also incorporated irrigation, and in some cases 



 

 

groundwater withdrawal schemes, into various climate models to study the regional climate 

impacts of irrigation195-200.  

As discussed above, the advances in representing human impacts in GHMs and LSMs have 

been made by isolated efforts from different modeling groups. However, there are methodological 

similarities between the algorithms employed by different models, and the schemes originally 

developed for GHMs have been implemented into LSMs and vice versa. Therefore, in the following, 

we present an overview of the current practices in representing the three major human activities 

discussed earlier in large-scale water cycle models without making a clear distinction between 

GHMs and LSMs. Nonetheless, the aim here is to review the schemes compatible with global LSMs 

and identify the major shortcomings in these schemes and existing challenges in further integrating 

them into ESMs. 

 

Irrigation Schemes 

 The primary purpose of irrigation is to increase root-zone soil water content to reduce 

moisture stress and ensure optimal crop growth and productivity. From modeling perspective, 

when to irrigate (timing), how to irrigation (method), and how much to irrigate (amount) are the 

three key aspects of irrigation96. Since various irrigation practices are used in different regions, and 

farmers use different methods to determine the timing and amount of irrigation and may act 

rationally, it is difficult to represent the actual irrigation practices in large-scale models. 

Nevertheless, certain guidelines can be used to capture some of these complex irrigation 

mechanisms. These guidelines can be established by using the information on cropping pattern, soil 

texture, and climate conditions. Once the amount of irrigation water requirement is estimated 

based on these guidelines, the next step is to realistically determine the source of water and the 

method and timing of irrigation. The amount of water used consumptively by crops can vary with 

the irrigation method used and this can largely alter surface water energy balances. Therefore, 

realistically representing irrigation practices is crucial for accurate representation of irrigation and 

its effect on land surface hydrology and the interaction with the atmosphere through the exchange 

of moisture and heat.   

 While some studies use the available estimates of annual irrigation water requirements [e.g., 

Döll and Siebert93, Wisser et al.149] as model input62, 63, 102, 104, 107, 108, others calculate the net 

irrigation water requirements within the models19, 92, 93, 95-98, 109, 157, 161, 178. Assuming that crops 

evapotranspire at the potential rate under irrigated conditions, irrigation water requirement can be 

estimated as the difference between potential evapotranspiration (PET) and the actual ET under 

unirrigated conditions93. It can also be estimated as the difference between crop-specific PET and 

the effective rainfall reaching the soil179. These approaches are generally useful only in GHMs 

because ET in most LSMs is estimated by solving energy balance at the land surface without 

calculating PET. Therefore, the method commonly employed in most LSMs, as well as in  some 

GHMs, is the soil moisture deficit approach, in which the net irrigation water requirement is 



 

 

calculated as the difference between the target soil moisture content (
T ) and the simulated actual 

soil moisture, as described in Pokhrel et al.97, as, 

 𝐼 =
𝜌𝑤
Δ𝑡

∑{𝑚𝑎𝑥[(𝜃𝑇 − 𝜃𝑘), 0]𝐷𝑘}

𝑛

𝑘=1

 (1)  

Where T  is given as αθs, I [kg m-2 s-1] is the net irrigation demand; ρw [kg m-3] is the density 

of water; Δt is model time step; θs and θk [m3 m-3] are the field capacity and simulated actual 

volumetric soil moisture content, respectively; and Dk [m] is the thickness of kth soil layer from the 

land surface. The n represents the number of soil layers considered in the calculation (usually those 

in the top-meter), and α is the parameter that defines the upper soil moisture limit which has been 

used varyingly96-98, 109, 200 from 0.5 to 1.  

While this method has been widely used and yields plausible results of regional (e.g., 

country-scale) irrigation water demand (Figure 6; also see Pokhrel et al.97 for detailed evaluation 

and comparison of results from different models), it may not be suitable for finer-scale studies. 

Recent studies have therefore begun to account for actual irrigation practices especially for regions 

where reliable data are available. For example, Sorooshian et al.109 reflected the irrigation practices 

in California into their model and also used additional factors such as solar radiation and soil 

temperature to trigger irrigation. In the early studies, use of groundwater was ignored altogether or 

implicitly accounted for by withdrawing groundwater unlimitedly from an imaginary source 

representing fossil groundwater92, 97, 148, 159. Recent studies have, however, begun to account for 

groundwater withdrawals as well as irrigation return flows which can be substantial in some 

regions19, 21, 152.  

A tile approach is typically employed to represent sub-grid variability of irrigated areas. Each 

grid cell is divided into two tiles and calculations are performed for irrigated and non-irrigated 

conditions with no interactions between the tiles. Grid-averaged values of all relevant fluxes and 

states are then calculated by using the fractional weights of irrigated and non-irrigated areas. Crop 

types and their planting and harvesting dates are either simulated with the model or taken from 

available global database201-203. Regardless of the regional differences in actual irrigation practices 

used, the estimated irrigation demand in most models is added to the soil either as throughfall or 

rain (sprinkler irrigation) at a specified time each day96, 97. It is suggested that the effects of 

irrigation on the fluxes and states may not differ significantly with different irrigation methods, but 

the estimated irrigation water requirements may vary to some extent due to the difference in 

efficiency96. Irrigating uniformly between 0600 and 1000 local time has been suggested to be the 

optimal irrigation period to reduce evaporation losses96, but irrigation at every time step has also 

been commonly used198. Owing to such methodological differences, the estimated irrigation water 

requirements vary greatly among different models (Table 2). 

 



 

 

Reservoir Operation Schemes 

 Even though the role of reservoirs in modulating the temporal dynamics of surface water 

flows is well known9, 11, 57, 204 and their regional climate impacts have also been recognized68, 69, 

representation of reservoir operation in large-scale models has received less attention compared to 

other human water managements such as irrigation and groundwater withdrawals. A few schemes 

that have been developed during the last decade have mainly been used for offline water resources 

assessments and there have been no online studies on the impacts of reservoirs on climate. Early 

studies incorporated simple parameterization into large-scale models to study the effects of 

reservoir operation on river flows at regional scales, for example, in eastern and southern Africa205 

and in the Parana river basin206. Döll et al.156 modified the parameterizations of Meigh et al.205 and 

applied the model to simulate the effects of reservoirs on river flows and water use, but they 

treated global reservoirs as lake owing to the lack of information on their management.  

  Hanasaki et al.175 and Haddeland et al.173 carried out the pioneering works in representing 

reservoir operation in large-scale hydrological models. The model of Hanasaki et al.175 was originally 

developed to simulate reservoir regulation within a global river routing model but has subsequently 

been incorporated into various GHMs157, 185 and LSMs97. The model sets operating rules for 

individual reservoirs based on the information on reservoir storage capacity, intended purpose, 

simulated inflow, and water demand in the lower reaches. Reservoirs are categorized into irrigation 

and non-irrigation (hydropower, water supply, flood control, recreation and others), and the 

operating rules are determined in three steps. First, once each year, the annual total release for the 

following year is provisionally targeted to reproduce the inter-annual fluctuations in release. Second, 

monthly release is provisionally targeted, considering the simulated storage, inflow, and water 

demands within the reach of the reservoir; this reproduces the monthly variations in release. Third, 

the targeted annual and monthly releases are combined to determine the actual monthly release. 

The monthly release for non-irrigation reservoirs is fixed at the mean annual inflow, except during 

the time of overflow and storage depletion. Despite being generic and retrospective, this algorithm 

has been found to substantially improve river discharge simulations in the highly regulated global 

river basins (Figure 7). 

 The model of Haddeland et al.173 is based on an optimization scheme in which the 

information regarding the inflow, storage capacity, and downstream demands is used to calculate 

optimal releases. The model simulates operation of reservoirs for different purposes such as 

irrigation, flood control, hydropower, water supply, and navigation by employing different objective 

functions. Irrigation demand is taken into account by estimating irrigation water requirements in 

the downstream of reservoirs and the optimization scheme attempts to optimize power production 

for hydropower dams. This model is also retrospective in a sense that the release for the next 

operational year is targeted at the beginning of the operational year based on the known 

information on long-term mean inflow and storage.   



 

 

 A number of subsequent studies have incorporated the models of Hanasaki et al.175 and 

Haddeland et al.173 into other models and have improved them to some extent97, 160, 162, 207-209. For 

example, Adam et al.207 incorporated reservoir filling, storage-area-depth relationships, and 

minimum storage criteria into the scheme of Haddeland et al.173. Biemans et al.208 combined the 

key aspects of the two modeling approaches173, 175 and added some new functionalities including 

the representation of the influence of upstream reservoirs in setting the beginning of operational 

year and sharing of irrigation demand between multiple reservoirs. Döll et al.162 adopted the 

parameterizations of Hanasaki et al.175 but, in addition to the long-term mean inflow, they also used 

the difference between precipitation and evaporation over the reservoir to determine monthly 

release.  

 van Beek et al.160 enhanced the scheme of Haddeland et al.173 particularly by adding the 

functionality to prospectively target the future release by taking into account both the gradual 

changes in long-term expectancies of demand and inflow as well as the short-term variations. Their 

model determines the target storage over a defined period ensuring its proper functioning given 

the forecasts of inflow and downstream demands. Notwithstanding these continuing efforts, there 

have not been sufficient advancements in terms of representing realistic and adaptive operation 

rules and especially in integrating them into ESM frameworks. The available schemes also lack the 

representation of water temperature and evaporation from reservoir surface, which becomes 

crucial if the schemes are to be used within ESM frameworks. Seepage from reservoirs to 

groundwater and associated changes in other components of the terrestrial water balance as well 

as the changes in ocean water should also be accounted for in a consistent manner.  

 

Groundwater Pumping Schemes 

Groundwater pumping and its effects on surface and sub-surface hydrological processes and 

the potential implications on climate are either ignored altogether in many large-scale hydrological 

models or represented rather crudely. Realistically simulating the effects of pumping requires the 

representation of both the water table dynamics and allocation of water withdrawn from surface 

and groundwater resources. Despite the growing interest in incorporating water table dynamics134, 

135, 138, 142, 210-215 as well as human water withdrawals19, 92, 96-98, 149, 150, 152, 155, 157, 160, 186 in large-scale 

hydrological models, there is still lack of models that integrate both factors within a single and 

consistent modeling framework.  

In most models that account for human water use but do not explicitly represent water 

table dynamics, the amount of non-sustainable water use, termed as the non-local, non-renewable 

blue water (NNBW92), is estimated as the difference between total demand of a grid cell and water 

availability from near-surface sources. Due to the lack of rigorous modeling approach, particularly 

applicable for global studies, this method has subsequently been adopted by many other studies97, 

148, 149. The approach is useful in estimating the non-renewable portion of human water use but the 

model configuration may result in improper description of certain hydrological processes such as 



 

 

recharge to deep groundwater and soil moisture variation, which in turn can alter ET and irrigative 

demands.  

To circumvent the deficiencies in the NNBW approach, recent studies have used improved 

representation of groundwater withdrawal and storage change. For example, Döll et al.150 added a 

sub-module into the WaterGAP model to account for water withdrawn from surface water and 

groundwater and estimated the net storage depletion using withdrawals and recharge including 

irrigation return flows. They modeled groundwater as a linear reservoir by setting a globally-

constant outflow coefficient or 0.01. While new functionalities such as recharge from surface water 

bodies have been added in their recent study21, the model still lacks the explicit representation of 

water table dynamics. Wada et al.152 simulated groundwater withdrawals and storage depletion by 

adding a deep groundwater layer to their previously developed model161. They used the daily 

baseflow and long-term mean discharge as a proxy of groundwater availability and also accounted 

for irrigation return flows. More recently, Pokhrel et al.19 implemented explicit water table 

dynamics and pumping schemes into an LSM which accounts for various human activities such as 

irrigation and reservoir operation. Their model therefore explicitly simulates both groundwater 

withdrawal and depletion within a consistent modeling framework while also accounting for the 

dynamic interaction between soil moisture and groundwater, an important mechanism for 

sustaining summertime ET, which has been confirmed by various previous studies [e.g., Miguez-

Macho and Fan216, Koirala et al.142]. The model however lacks the representation of lateral 

groundwater flow and any physical constraints on groundwater pumping. Despite these limitations, 

the model simulates the rate of change in global groundwater storage and regional water table 

fairly well (Figure 8; see Pokhrel et al.19 for the evaluation of results with observations). A number of 

other studies have developed integrated hydrological models with more comprehensive 

representation of groundwater-surface water interactions and human water use, but their global 

application has not yet been tested187-189.  

 

EXISTING GAPS AND CHALLENGES 

Despite the significant efforts that have been made during the last two decades to 

incorporate human impacts in large-scale hydrological models, significant gaps and major 

challenges still remain. First, an increasing number of studies have incorporated various human 

land-water management practices into large-scale hydrological models but there is still lack of 

coordinated efforts in integrating the patchwork of these individual studies into common modeling 

framework using ESMs to examine the integrated effects of human factors in various Earth system 

processes and the interactions and feedback among them. While the early modeling studies were 

oriented more on the development of integrated GHMs for accurate assessment of global water 

availability and use, recent years have seen emerging efforts in incorporating human impacts also in 

global LSMs. Nonetheless, most of these LSMs have been used for offline studies and their use 

within ESMs is yet to be tested. Even though the model advancements using LSM frameworks can 



 

 

be integrated into ESMs, the integration can be challenging because of the increased complexities 

and added uncertainties in online simulations. This is particularly so due to the varying level of 

complexities at which various biophysical and biogeochemical processes are represented in ESMs 

and human land-water management practices, which can potentially alter these processes, are 

simulated in the human impacts modules. Satisfactorily closing land surface water and energy 

balances could also become challenging due to increased level of model complexities when human 

water management schemes within LSMs are integrated into ESMs. Therefore, it is crucial to 

rigorously test the new schemes in offline mode before integrating them into ESMs. Moreover, 

future efforts should focus on developing robust modeling frameworks which can be used at 

varying spatial and temporal resolutions as required for different purposes such as global climate 

impacts studies and regional water management. This will also help identify and incorporate various 

human land-water management practices at their relevant spatio-temporal scales. It will also be an 

important exercise to examine the extent to which the uncertainties in human impacts schemes 

propagate through various systems in the ESM framework especially when these coupled models 

are used for extended future simulations.  

Second, there are important methodological deficiencies in current approaches to represent 

various water resources management practices. For example, as discussed earlier in the paper, 

irrigation has been represented rather crudely in many LSMs. As a consequence, there are large 

disagreements among models both in estimating irrigation water use and quantifying the potential 

impacts on climate. Studies have begun to incorporate actual irrigation practices but the dearth of 

global database poses enormous challenges in using the new schemes for global applications. There 

is also lack of efforts to consider both natural and anthropogenic sources for nutrients, as well as to 

couple them with agricultural and irrigation models that simulate crop growth and yield. In addition, 

future models should also account for seasonal crop growth dynamics as well as the inter-annual 

variations in cropping patterns.  

Some models account for flow regulation by dams but the currently employed schemes use 

generic algorithms for all global reservoirs and are not able to fully capture the timing and 

magnitude of peak and low flows in some river basins (Figure 7). Moreover, reservoirs are typically 

considered as a part of river flow routing and their dynamic interactions with the underlying soil 

and overlying atmosphere are not accounted for. In addition, the hydrologic and climate impacts of 

lakes and wetlands also remain largely unrepresented in most models and hence unexamined. 

Groundwater pumping, which was traditionally ignored altogether in global modeling, has now 

been represented in some models but the existing schemes are highly simplified. The NNBW 

concept that has been employed by many studies enables the estimation of unsustainable water 

use but involves inconsistencies in the representation of various hydrologic processes associated 

with groundwater withdrawal and recharge. Recent studies have used improved and explicit 

representation of groundwater withdrawals and recharge, and simulate aquifer storage change 

within the models but groundwater is still modeled as an unlimited resource without setting any 

physical constraints on its availability in space and time.   



 

 

Third, as argued by Wood et al.172, in order to adequately address critical water cycle 

science questions global hydrological models should be implemented at much higher spatial 

resolution (~1 km, referred to as "hyper-resolution") than the 10-100 km typically employed in 

current models. The use of such high-resolution models, however, still remains as a challenge due 

to data gaps as well the limitations in computational resources, and hence is yet to be fully assessed. 

The increase in spatial resolution alone will, however, not solve the grand challenges of predicting 

the past and projecting the future of hydrology because there are many physical processes (both 

natural and human-induced) which are not represented in current models and can become 

increasingly important as model grid resolution becomes finer. For example, lateral groundwater 

flows can be insignificant within ~100 km grid cells but  may become a significant portion of the 

overall water budget as grid resolution increases to ~10 km (see Krakauer et al.217). Beven and 

Cloke218 consequently argue that representing scale-dependent physical processes is crucial 

because there will still be inherent subgrid heterogeneities even within 1 km grids. In addition, it is 

also important to reduce the gap between the grid resolutions of GCMs and LSMs in order to be 

able to consistently use current LSM developments for online simulations. This implies that model 

parameterizations and spatial resolution must improve in parallel in both LSMs and GCMs such that 

the future model developments can become promising tools both to study the large-scale patterns 

of human-induced changes in the Earth system as well as to provide basic information for decision 

making in integrated water resources management at regional to local scales.  

Fourth, there is a lack of common and standardized framework for the advancement of 

LSMs and characterization of modeling uncertainties. Lack of such coordinated efforts have resulted 

in a wide range of models which differ significantly in many aspects of model parameterizations to 

account for various biophysical processes and human land-water management. Community-

governed efforts are therefore required to develop common frameworks for the assessment of 

global LSMs and to pave pathways for future model improvement and their integration into ESMs. 

Recent years have seen significant progress in evaluating the performance of GHMs under 

standardized modeling protocols but there is a lack of such intercomparison of global LSMs, 

especially in relation to human water management. For example, the Water Model Intercomparison 

Project47 and Inter-sectoral Impact Model Intercomparison Project219 brought together a number of 

GHMs to characterize the uncertainties arising from both the forcing data and model 

parameterizations. Results from these intercomparisons have demonstrated that the spatial 

agreement among models in simulating human water use is rather small for many regions and that 

the disagreement further increases for future simulations220. Therefore, it is essential that 

community-driven efforts are made to develop common frameworks for LSMs development and set 

standardized approaches for their integration into ESMs.  

Fifth, there are no comprehensive datasets required to adequately constrain and evaluate 

hydrological models. The data gaps limit our ability to fully assess model accuracy for the past and 

hence to develop more reliable models to predict the future. While relatively more reliable data for 

some hydrologic variables such as precipitation, air temperature, and river discharge are available 



 

 

for many regions, data on groundwater and human water use are particularly lacking. Regional 

groundwater datasets are now becoming increasingly available23, 137 but significant challenges still 

remain in collecting and synthesizing the data with global coverage because even the available data 

for most regions are not easily accessible. Vast amounts of soil and aquifer analyses and 

measurements have been made but the data remain dispersed and unstructured in the scientific 

literature, government archives, and online repositories. It is therefore essential to make 

community-driven efforts to compile these scattered data into a synthesis of comprehensive 

database easily accessible to the modeling community221. Some of the available global datasets on 

human water management and use include the Food and Agriculture Organization's AQUASTAT 

(http://www.fao.org/nr/water/aquastat/main/index.stm) database of water use and agricultural 

management, the groundwater database of the International Groundwater Resources Center 

(IGRAC: http://www.un-igrac.org/) and global reservoir database developed by the International 

Commission on Large Dams (ICOLD: http://www.icold-cigb.org/). Hydrologic modeling community 

has hugely benefited from such coordinated data collection and distribution efforts but it may be 

time to revise these datasets to meet the growing need for more comprehensive, spatially explicit, 

and time-varying data on human interactions with the hydrological cycle171.  

Recently, use of remote sensing has provided an unprecedented opportunity to fill the 

spatial and temporal gaps in ground-based observations. For example, the data obtained from the 

Advanced Very High Resolution Radiometer, the Landsat mission, and the Moderate-Resolution 

Imaging Spectroradiometer (MODIS) have provided a unique opportunity to derive global land 

cover and land use data which have been widely used in global hydrologic and climate modeling. 

MODIS data have been utilized to derive global ET at very high spatial resolution222-224 which are 

used for the evaluation of global and regional hydrological models. The Shuttle Radar Topography 

Mission (SRTM) provides a high resolution topography data useful for global and regional water 

transport modeling. Satellite radar altimetry and laser altimetry have provided measurements that 

can be used to derive water surface elevation of lakes and reservoirs225. Precipitation has also been 

measured from space by recent satellite missions such as the Tropical Rainfall Monitoring Mission 

(TRMM) that delivers rainfall data for mid- and low-latitude regions.  

The Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided the 

measurements of the changes in Earth's gravity field at an unprecedented accuracy. GRACE data 

have been used to infer the changes in terrestrial water storage over large regions and have been 

widely used to study human-induced changes in surface and groundwater storages15, 128-130, 226. The 

Global Precipitation Measurement (GPM), Soil Moisture Active Passive (SMAP), and Surface Water 

and Ocean Topography (SWOT) mission are expected to provide comprehensive data on global 

precipitation, near-surface soil moisture, and ocean and terrestrial surface waters respectively. 

Satellite observations have therefore enabled us to better constrain and evaluate hydrological 

models and monitor the Earth's water cycle. However, there are inherent uncertainties and 

limitations in satellite-derived products. Satellite data usually provide global coverage filling the 

spatial gap in ground-based observations, but their temporal coverage may be limited. In addition, 

http://www.fao.org/nr/water/aquastat/main/index.stm
http://www.un-igrac.org/
http://www.icold-cigb.org/


 

 

satellite-derived products can contain significant uncertainties because certain algorithms are used 

to derive the desired geophysical product as satellites typically measure the surface characteristics 

of Earth rather than the geophysical variables themselves. Therefore, it is important to expand 

ground-based observational networks in parallel with the advancements in remote sensing 

technology because even the satellite-derived products need to be verified with independent 

observations. 

And finally, there are a number of other factors that still remain largely ignored in large-

scale hydrological models. Some of the processes that are either ignored completely or represented 

crudely include lateral groundwater flow between grid cells, long-distance water transfer, temporal 

evolution of land cover, and vegetation dynamics among others. Future studies should also account 

for water quality in large-scale models, particularly in relation to the adverse effects of human 

activities such as irrigation, flow regulation, and groundwater exploitation which can radically alter 

and deteriorate water quality in the affected regions. Most global water resources and climate 

studies are currently confined to understanding the occurrence, flow, and distribution; there are 

very limited studies that deal with water quality issues especially at the global-scale227-229.  

 

CONCLUDING REMARKS 

 Human activities have fundamentally altered the patterns of global freshwater flows and 

storages. Therefore, anthropogenic factors can no longer be neglected in large-scale hydrological 

modeling. In particular, it is essential to account for human factors in global LSMs as a way forward 

to integrate them into Earth system models because the changes in water cycle as a consequence of 

human land-water management can affect a wide range of geophysical and biogeochemical 

processes of the Earth system. Significant advances have been made during the last two decades in 

incorporating human land-water management in large scale hydrological models; however, these 

efforts have primarily been focused on the development of GHMs for water resources assessment 

and less attention has been paid in developing global LSMs with the inclusion of human factors and 

integrating them into ESMs. Therefore, the progresses made so far have not been able to meet the 

urgent need to develop holistic models for integrated study of the impacts of human activities on 

the Earth system and the essentially complex interactions and feedbacks between human and 

natural systems. Human impacts have been incorporated in some global LSMs, but majority of 

these models have been used for offline applications and their integration into ESMs has not yet 

been fully assessed. Therefore, we emphasize that coordinated efforts are required to integrate the 

existing model developments into ESMs and further advance them by improving the currently 

employed schemes. We also corroborate with the conclusion of various earlier studies27, 80, 171, 172 

that it is essential to change the way we conduct hydrologic research today by considering humans 

as the integral driver of the global environment; the importance of dealing with human factors will 

further heighten in the future as the growing demand for water and food compounded by negative 

climate impacts will significantly expand the current scale of human footprints on Earth.   
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Tables  

Table 1. Global estimates of groundwater abstraction (km3 yr-1) 

Reference 

Total/Nonrenewable 

Groundwater 

abstraction1 

Year Sources 

Data based estimates 

Postel144 -/~200 Contemporary Literature and country statistics 

IGRAC-GGIS ~750/- 2000 Literature and country statistics 

Shah et al.123 750-800/- Contemporary FAO AQUASTAT 

Zekster and Everett145 600-700/- Contemporary  Country statistics 

Model based estimates 

Vörösmarty et al.146 -/391Irr. -/830Tot. Avg. 1995-2000 Simulated by WBM (0.5°) 

Rost et al.92 -/730 Avg. 1971-2000 Simulated by LPJmL (0.5°) 

Döll126 1100/- 2000 IGRAC-GGIS and WaterGAP (0.5°) 

Wisser et al.149 1708/1199 Contemporary  Simulated by WBMplus (0.5°) 

Hanasaki et al.148 -/703 Avg. 1985-1999 Simulated by H08 (1.0°) 

Siebert et al.147 545/- 2000 
15,038 national/sub-national statistics 

(irrigation) 

Wada et al.16 734(±82)/283(±40) 2000 IGRAC-GGIS and PCR-GLOBWB (0.5°) 

Pokhrel et al.97 -/455(±42) 2000 Simulated by MATSIRO (1.0°) 

Döll et al.150 ~1500/- Avg. 1998-2002 IGRAC-GGIS and WaterGAP (0.5°) 

Wada et al.152 952/304 2010 IGRAC-GGIS and PCR-GLOBWB (0.5°) 

Pokhrel et al.19 570(±61)/330(±49) Avg. 1998-2002 Simulated by HiGW-MAT (1.0°) 

1Some model based studies also include the estimate of nonlocal water abstraction (e.g., water supplied 

from cross-basin water diversions) 

  



 

 

Table 2: Global Total Irrigation Water Withdrawals 

Reference Crop Types Crop Calendar Year 
Irrigation Water (km3 yr-1) 

Consumption Withdrawal 

FAO - - 2000 - 2660 

Döll and Siebert93 Rice, Non-Rice Optimal growth 2000 1257 3256 

Rost et al.92 11 Crops, Pasture Simulated 1971-2000 1364 2555 

Hanasaki et al.148 Monfreda et al.201 Simulated 2000 1598 3755 

Siebert et al.147 Portmann et al.202 Portmann et al.202 2000 1277 - 

Wisser et al.149 Monfreda et al.201 Optimal growth 2002 - 2997 

Pokhrel et al.97 Monfreda et al.201 Simulated 2000 1021 ± 55 2462 ± 130 

Döll et al.150 Rice, Non-Rice Simulated 1998-2002 1231 3185 

Wada et al.152 Portmann et al.202 Portmann et al.202 2000 1098 2572 

Pokhrel et al.19 Monfreda et al.201 Simulated 1998-2002 1238 ± 67 3028 ± 171 

  



 

 

Figure captions 

Figure 1: A schematic of global water cycle depicting the major natural processes and human land-

water management. The three major human factors discussed in the paper are shown in 

boldface. The fluxes and river storage are taken from Oki and Kanae31, reservoir storage 

from Lehner et al.57, and groundwater withdrawals from Wada et al.16. The total 

withdrawals (agricultural, domestic, and industrial) sum up to ~3810 km3/yr of which ~730 

km3/yr comes from groundwater (see Table 1 and 2).  

Figure 2: A schematic representation of various pathways whereby human land-water management 

practices interact with and affect various land-atmosphere-ocean processes simulated by 

Earth System Models. Blue color indicates storages and green indicates temperature.   

Figure 3: Global cropland78 (a,b,c) and irrigated111 (d,e,f) areas in 1900, 1950, and 2005 shown as 

the percentage of the area within 5 arc minute grid cells. The insets show the temporal 

changes in global total values from 1900 to 2005.  

Figure 4: Global distribution of large reservoirs (storage capacity > 0.5 km3) from GRanD database57. 

The inset shows the cumulative change in global total storage capacity from 1900 to 2010.  

Figure 5: Groundwater withdrawals per 0.5 degree grid cell for circa 2000, compiled by Wada et 

al.16 based on the groundwater database of the International Groundwater Resources 

Assessment Centre (IGRAC). The inset depicts the time series of global total withdrawals 

from 1900 to 2010. 

Figure 6: Simulated global irrigation water withdrawals19 in million km3 (MCM) per year.  

Figure 7: Comparison of the seasonal cycle of river discharge simulated with and without 

considering human impacts97 with observations obtained from the Global Runoff Data 

Center (GRDC).  

Figure 8: Global groundwater depletion around 2000 simulated by HiGW-MAT model19 (a), and the 

anomaly of water table depth averaged over the High Plains (b) and Central Valley (c) 

aquifers also simulated by HiGW-MAT.  
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