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Methods

1 The twice differentiability of the dimorphic fitness

Let’s first be precise on the meaning of differentiability at (x1,x2,y) = (x∗,x∗,x∗) for the dimorphic fitness. Since point

(x∗,x∗,x∗) is on the boundary of the function’s domain—the singular point (x1,x2) = (x∗,x∗) being a corner point of the

resident-mutant coexistence region—twice differentiability should not be interpreted in the classical sense—existence of first

and second partial derivatives of the dimorphic fitness at (x∗,x∗,x∗)—but as the existence of a local polynomial expansion

sx1,x2
(y) = s∗+ s∗100 ∆x1 + s∗010 ∆x2 + s∗001∆y

+ 1
2
s∗200 ∆x2

1 + s∗110 ∆x1∆x2 + s∗101 ∆x1∆y+ 1
2
s∗020 ∆x2

2 + s∗011 ∆x2∆y+ 1
2
s∗002 ∆y2 + · · · , (M1)

∆xi := xi − x∗, i = 1,2, ∆y := y− x∗, that guarantees a 2nd-order approximation locally around (∆x1,∆x2,∆y) = (0,0,0). That

is, the higher-order terms in (M1) are o(‖(∆x1,∆x2,∆y)‖2) when the point (∆x1,∆x2) moves to (0,0) along any path in the

coexistence region (see Fig. 1e, f).

One way to show the existence of the expansion (M1) is based on a milder regularity assumption. Indeed, in Ref. 1

it is postulated that the dimorphic fitness sx1,x2
(y) has smooth directional derivatives at the singular point (x1,x2) = (x∗,x∗)

w.r.t. any direction (w1,w2) := (cosθ ,sinθ ) in the coexistence region. The assumption is based on the ecological origin of

the fitness function, that condones the regularity assumption to be applied to the attractor of coexistence. That is, the map

from (x1,x2) to the attractor admits directional limits (and smooth derivatives) at (x∗,x∗), despite the map’s discontinuity at

(x∗,x∗)—population i being absent on the extinction boundary i and present along boundary j (i = 1,2, j = 2,1). This is so

far shown to be the case (by direct computation of the directional limits) for the class of unstructured ecological models under

stationary coexistence.20

Once the directional smoothness at (x1,x2) = (x∗,x∗) is assumed, one should proceed as follows to show the kth-order

differentiability (in the sense specified above) of the dimorphic fitness at (x1,x2,y) = (x∗,x∗,x∗). Consider the restriction

s̄(ε,∆y,w1,w2) := sx∗+εw1,x∗+εw2
(x∗+ ∆y) of the dimorphic fitness on the θ -ray (xi = x∗+ εwi, i = 1,2, ε ≥ 0 being the

distance of point (x1,x2) from (x∗,x∗)) and expand it jointly in (ε,∆y) around (ε,∆y) = (0,0):

s̄(ε,∆y,w1,w2) := sx∗+εw1,x∗+εw2
(x∗+∆y)

= s∗+ s̄10(w1,w2)ε + s̄01∆y+ 1
2
s̄20(w1,w2)ε

2 + s̄11(w1,w2)ε∆y+ 1
2
s̄02∆y2 + · · · (M2)

Note the indexes of the expansion’s coefficients, indicating the order of differentiation w.r.t. (ε,∆y), and that the coefficients

involving ε-derivatives are explicitly indicated as functions of the direction (w1,w2). Then, the dimorphic fitness is kth-times

differentiable at (x1,x2,y) = (x∗,x∗,x∗) if the kth-order term in the expansion (M2) is polynomial of degree k in (w1,w2). More

precisely, the kth-order coefficient s̄d k−d(w1,w2) of the monomial εd∆yk−d , d ≤ k, must be either identically zero or a (w1,w2)-
polynomial of degree d. Moreover, the higher-order terms in (M2) are O(‖(ε,∆y)‖3)—because of the assumed directional

smoothness—and they formally coincide with the higher-order terms in (M1)—except that (w1,w2) can change in (M1) along

the path followed by (∆x1,∆x2). The higher-order terms in (M1) are hence O(‖(∆x1,∆x2,∆y)‖3), implying the required little-o

approximation.
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Monomorphic fitness sx(y)

zero order s∗ := sx∗(x
∗) = 0 (neutrality)

1st order ∂ys∗ := ∂ysx∗(y)|y=x∗ = 0 (singularity (1))

2nd order ∂xys∗ := ∂xysx(y)|x=y=x∗ < 0 (coexistence (2)) ∂y2s∗ := ∂y2sx∗(y)|y=x∗

3rd order ∂x2ys∗ := ∂x2ysx(y)|x=y=x∗ ∂xy2 s∗ := ∂xy2 sx(y)|x=y=x∗ ∂y3s∗ := ∂y3sx∗(y)|y=x∗ 6= 0 (genericity (7))

neutrality sx(x)=0 ∂xk s∗ := ∂xk sx(x
∗)|x=x∗ =−∑k

d=1

(

k
d

)

∂xk−dyd s∗

Dimorphic fitness sx1,x2
(y)

zero order s∗= sx∗,x∗(x
∗) = 0

1st order s∗100 = s∗010 = 0 s∗001 = 0

2nd order s∗200 = s∗020 = 0 s∗110 =
1
2
∂y2s∗ s∗101 = s∗011 =− 1

2
∂y2s∗ s∗002 = ∂y2s∗

3rd order s∗300 = s∗030 = 0 s∗210 = s∗120 =−1
2

∂
y2 s∗∂

xy2 s∗

∂xys∗ + 1
3
∂y3s∗ s∗201 = s∗021 =

1
2

∂
y2 s∗∂

xy2 s∗

∂xys∗ − 1
3
∂y3s∗

s∗111 =
1
2

∂
y2 s∗∂

xy2 s∗

∂xys∗ − 1
6
∂y3s∗ s∗102 = s∗012 =− 1

2

∂
y2 s∗∂

xy2 s∗

∂xys∗ s∗003 = ∂y3s∗

Directional derivatives s̄d k−d(w1,w2), d > 0

1st order s̄10(w1,w2) = s∗100 w1 + s∗010 w2

2nd order s̄20(w1,w2) = s∗200 w2
1 + 2s∗110 w1w2 + s∗020 w2

2 s̄11(w1,w2) = s∗101 w1 + s∗011 w2

3rd order s̄30(w1,w2) = s∗300 w3
1 + 3s∗210 w2

1w2 + 3s∗120 w1w2
2 + s∗030 w3

2 s̄21(w1,w2) = s∗201 w2
1 + 2s∗111 w1w2 + s∗021 w2

2

s̄12(w1,w2) = s∗102 w1 + s∗012 w2

Extinction boundary 2 sx1
(x2) = 0

2nd order tanθ2(0) =−
2∂xys∗+∂

y2 s∗

∂
y2 s∗

3nd order θ ′
2(0) =−

4(∂xys∗)2∂
y3 s∗−2∂xys∗∂

y2 s∗(3∂
xy2 s∗−∂

y3 s∗)+(∂
y2 s∗)2(3∂

x2y
s∗+∂

y3 s∗)

6
√

2
(

(∂xys∗)2+(∂xys∗+∂
y2 s∗)2

)3/2

Table. Notation and results summary

Unfortunately, without specific assumptions on the underlying ecological model—i.e., only exploiting the consistency re-

lations C1–C3 of the dimorphic fitness—the above procedure works only up to k = 2, as we now show (following unpublished

lecture notes by J.A.J. Metz).

First note that the smoothness of the dimorphic fitness w.r.t. the mutant strategy y is granted at (x1,x2,y) = (x∗,x∗,x∗) by

the smoothness of the monomorphic fitness together with property C1. By C1 we can actually write

s∗ = 0, s̄01 = ∂ys∗ = 0, s̄02 = ∂y2s∗ (M3)

(see Table, Monomorphic fitness, for the notation summary).

Imposing C3 (a and b), i.e., s̄(ε,εw1,w1,w2) = 0 and s̄(ε,εw2,w1,w2) = 0, and collecting from (M2) the resulting condi-

tions at order ε and ε2, give the following constraints

s̄10(w1,w2)+ s̄01w1 = 0, 1
2
s̄20(w1,w2)+ s̄11(w1,w2)w1 +

1
2
∂y2s∗w2

1 = 0, (M4a)

s̄10(w1,w2)+ s̄01w2 = 0, 1
2
s̄20(w1,w2)+ s̄11(w1,w2)w2 +

1
2
∂y2s∗w2

2 = 0, (M4b)

the first Eqs. in (M4a,b) yielding

s̄10(w1,w2) = 0 (M5a)

by (M3), the second solving for

s̄20(w1,w2) = ∂y2s∗w1w2, (M5b)

s̄11(w1,w2) = − 1
2
∂y2 s∗(w1 +w2) (M5c)

2/9



(under w1 6= w2 in the coexistence region).

The identified functions s̄10, s̄20, s̄11 are indeed polynomial in (w1,w2) of the expected degree (s̄10 is identically zero,

whereas s̄20 and s̄11 are of degree 2 and 1, respectively), proving the twice differentiability of the dimorphic fitness. Note

that the functions are symmetric w.r.t. the diagonal w1 = w2, i.e., s̄d k−d(w1,w2) = s̄d k−d(w2,w1), meaning that imposing

C2 is redundant. The first- and second-order coefficients in the expansion (M1) are then determined by the standard linear

combinations reported in Table (see Directional derivatives, 1st and 2nd orders, with results in Dimorphic fitness).

The consistency relations C1–C3 cannot determine the third and higher orders in the expansion (M2), because C3 gives

only two constraints (C3a and C3b) among the k unknown functions s̄d k−d(w1,w2), d = 1, . . . ,k at order k. Again C2 is of no

help in determining the unknown functions, it simply imposes the diagonal symmetry. To further constrain the coefficients of

the expansion (M2) at order k ≥ 3, a specific class of ecological models must be considered to allow the direct computation of

the directional derivatives (as done in Ref.20). Note that the monomorphic-dimorphic link is not fully exploited in C1, as it is

valid also along the extinction boundaries (on which only one population is present). This is however of no help here, because

the boundary in general is not straight (see Fig. 1e, f), so that, directionally, the link has only consequences at the singular

point (x∗,x∗).

2 Expansion of the resident-mutant coexistence region

The extinction boundary i of the resident-mutant coexistence region, along which only the resident x j is present (i = 1,2,

j = 2,1) is defined by

sx j
(xi) = 0, (M6)

the invasion fitness of strategy xi being positive in the coexistence region and negative after crossing boundary i (Fig. 1a–c).

The two boundaries are evidently related by the symmetry w.r.t. the diagonal x1 = x2—one is obtained from the other by

exchanging x1 and x2 in (M6)—so that below we focus on boundary 2. To approximate it locally to the singular point (x∗,x∗),
we rewrite it in polar coordinates (ε,θ ) as θ = θ2(ε), θ2(ε) being the function that gives the angle θ of the boundary point at

distance ε from (x∗,x∗). The function θ2(ε) is implicitly defined by Eq. (9) of the main text (the boundary definition in polar

coordinates, reported below)

sx1
(x2) = sx∗+ε cosθ2(ε)(x

∗+ ε sin θ2(ε)) = 0, (9)

which holds good for any (sufficiently small) ε ≥ 0.

The approximation is in terms of an ε-expansion locally to ε = 0, i.e., θ2(ε) = θ2(0)+θ ′
2(0)ε + · · ·+θ

(k)
2 (0)εk/k!+ · · · ,

to be used also for negative ε to describe the boundary across the diagonal x1 = x2. The coefficients θ
(k)
2 (0), k ≥ 0, of the

expansion can be obtained by solving the ε-derivatives of Eq. (9) at ε = 0. The first derivative turns out to be the identity

due to the fitness neutrality sx(x) = 0, whereas the second and third derivatives respectively solve for θ2(0) and θ ′
2(0). The

result is reported in the Table (Extinction boundary 2), where only the monomorphic fitness derivatives with at least one order

of derivation w.r.t. the mutant strategy are used—the pure x-derivatives ∂xk s∗ are avoided by exploiting the fitness neutrality

(see Table, Monomorphic fitness). In general, the kth-order coefficient θ
(k)
2 (0) is determined by the monomorphic fitness

derivatives up to order k+ 2.

The angle θ2(0) gives the tangent direction to the extinction boundary 2 at (x∗,x∗). Under the condition

tanθ2(0) 6= 1, i.e., ∂xys∗+ ∂y2s∗ 6= 0, (M7)

which is met close to the ESS-branching transition (∂y2s∗≈ 0 under the coexistence condition (2)), there are two solutions for

θ2(0), one in ( 1
4
π , 5

4
π) (above the diagonal) and the other at distance π in (− 3

4
π , 1

4
π) (below the diagonal). They respectively

give, for ε ≥ 0, the boundary branch above and below the diagonal. We consider the former solution (the other option yielding

same/opposite coefficients θ
(k)
2 (0) for even/odd k ≥ 1). Note that θ2(0) decreases through 1

2
π in the transition from ESS to

branching (the opening angle θ1(0)− θ2(0) of the coexistence region increases from acute to obtuse, see Fig. 1e,f). Also

note that the coexistence condition (2) implies tanθ2(0) 6=−1, i.e., θ2(0) 6= 3
4
π , so that the tangent direction to boundary 2 at

(x∗,x∗) cannot be anti-diagonal.

The first derivative θ ′
2(0) is nonzero close to the ESS-branching transition (under the coexistence and genericity conditions

(2) and (7)) and determines the local curvature of the boundary—whether θ increases or decreases while moving away from

(x∗,x∗).
The extinction boundaries 1 and 2 in Fig. 1e,f are produced with the truncations

θ1(ε) =
3
2
π −θ2(0)+θ ′

2(0)ε, θ2(ε) = θ2(0)+θ ′
2(0)ε, (M8)

involving up to 3rd-order monomorphic fitness derivatives. Note that the diagonal symmetry yields for boundary 1 θ1(0) =
3
2
π −θ2(0) and θ

(k)
1 (0) = (−1)k−1θ

(k)
2 (0), k ≥ 1.

3/9



3 Expansion of the dimorphic invasion fitness

We now assume that the dimorphic fitness sx1,x2
(y) is three-times differentiable at (x1,x2,y) = (x∗,x∗,x∗), in the sense specified

in Sect.1. As stated in the main text, we recall once more that this is so far shown to be the case only for the class of unstructured

ecological models under stationary coexistence (done in Ref. 20 by direct computation of the directional expansion (M2)),

though we expect the assumption to hold good for any class of ecological models yielding a smooth monomorphic fitness for

a one-dimensional strategy.

We hence assume the existence of the 3rd-order local expansion

sx1,x2
(y) = s∗+ s∗100 ∆x1 + s∗010 ∆x2 + s∗001∆y

+ 1
2
s∗200 ∆x2

1 + s∗110 ∆x1∆x2 + s∗101 ∆x1∆y+ 1
2
s∗020 ∆x2

2 + s∗011 ∆x2∆y+ 1
2
s∗002 ∆y2

+ 1
6
s∗300 ∆x3

1 +
1
2
s∗210 ∆x2

1∆x2 +
1
2
s∗201 ∆x2

1∆y+ 1
2
s∗120 ∆x1∆x2

2 + s∗111 ∆x1∆x2∆y+ 1
2
s∗102 ∆x1∆y2

+ 1
6
s∗030 ∆x3

2 +
1
2
s∗021 ∆x2

2∆y+ 1
2
s∗012 ∆x2∆y2 + 1

6
s∗003 ∆y3 + o(‖(∆x1,∆x2,∆y)‖3), (M9)

for (∆x1,∆x2) within the coexistence region, and we determine the expansion’s coefficients by applying the consistency rela-

tions C1–C3.

Applying C2 implies the symmetry constraints s∗d1 d2 k−d1−d2
= s∗d2 d1 k−d1−d2

, d1+d2 ≤ k, at order k. We therefore eliminate

the unknown coefficients with d1 < d2 and write the constraints implied by C1 and C3 in the 12 unknowns with d1 ≥ d2 at

orders k = 1,2,3, plus the zero-order coefficient s∗ (see Table, Dimorphic fitness). So doing, we also eliminate the relation

C3b, as it is implied by C2 and C3a.

Applying C1 we get, analogously to (M3),

s∗ = 0, s∗001 = ∂ys∗ = 0, s∗002 = ∂y2 s∗, s∗003 = ∂y3 s∗, (M10)

so we remiain with 9 unknowns, s∗100 at 1st order, s∗200, s∗110, s∗101 at 2nd order, and s∗300, s∗210, s∗201, s∗111, s∗102 at 3rd order.

Applying C3a, i.e., substituting ∆y = ∆x1 in the truncated expansion (M9) and equating to zero the coefficient of each

monomial, we get the following linear constraints, where the results in (M10) are already taken into account:

∆x1 : s∗100 = 0, (M11a)

∆x2 : s∗100 = 0, (M11b)

∆x2
1 : 1

2
s∗200 + s∗101 +

1
2
∂y2s∗ = 0, (M11c)

∆x1∆x2 : s∗110 + s∗101 = 0, (M11d)

∆x2
2 : 1

2
s∗200 = 0, (M11e)

∆x3
1 : 1

6
s∗300 +

1
2
s∗201 +

1
2
s∗102 +

1
6
∂y3 s∗ = 0, (M11f)

∆x2
1∆x2 : 1

2
s∗210 + s∗111 +

1
2
s∗102 = 0, (M11g)

∆x1∆x2
2 : 1

2
s∗210 +

1
2
s∗201 = 0, (M11h)

∆x3
2 : 1

6
s∗300 = 0. (M11i)

The constraints at orders 1 and 2 are 5, but only 4 are independent (the first two are identical) and solve for the 4 unknowns,

giving the same results obtained in Sect.1 (see Table, Dimorphic fitness). The constraints at order 3 are however 4 for 5

unknown coefficients.

To find the missing constraint, we now exploit the monomorphic-dimorphic link along the extinction boundary 2, on

which only population 1 is present. This also implies, by the boundaries’ symmetry and property C2, the link on the extinction

boundary 1. Using the polar characterization of the boundary introduced in Sect. 2, we thus replace property C1 with

C1′: sx∗+ε cosθ2(ε),x∗+ε sinθ2(ε)(x
∗+∆y) = sx∗+ε cosθ2(ε)(x

∗+∆y),

which holds good for any (sufficiently small) ε ≥ 0 and ∆y.

Here is where we really need the differentiability of the dimorphic fitness. To exploit C1′ and constrain the coefficients

of the expansion (M9), we need to impose the (ε,∆y)-derivatives of C1′ at (ε,∆y) = (0,0). Such derivatives formally involve

the partial derivatives of the dimorphic fitness at (x1,x2,y) = (x∗,x∗,x∗), that are not defined. Equivalently, we can substitute

the truncated expansion (M9) in the left-hand side of C1′ and then differentiate. So doing, we obtain the following linear
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constraints, organized by the order of the considered derivative:

1 : s∗ = 0 (M12a)

ε : s∗100 = 0, (M12b)

∆y : s∗001 = ∂ys∗ = 0, (M12c)

ε2 : 2
(

2(∂xys∗)2+ 2∂xys∗∂y2 s∗+(∂y2s∗)2
)

s∗200 − 2(2∂xys∗+ ∂y2s∗)∂y2s∗s∗110 +(2∂xys∗+ ∂y2s∗)(∂y2 s∗)2 = 0, (M12d)

ε∆y : s∗101 =− 1
2
∂y2s∗, (M12e)

∆y2 : s∗002 = ∂y2s∗, (M12f)

ε3 : 4∂xys∗(∂xys∗+ ∂y2s∗)
(

4(∂xys∗)2∂y3s∗− 2∂xys∗∂y2 s∗(3∂xy2s∗− ∂y3s∗)+ (∂y2s∗)2(3∂x2ys∗+ ∂y3s∗)
)

s∗200

−2∂xys∗∂y2 s∗
(

8(∂xys∗)3+ 16(∂xys∗)2∂y2s∗+ 12∂xys∗(∂y2s∗)2+ 3(∂y2s∗)3
)

s∗300

+6∂xys∗(2∂xys∗+ ∂y2s∗)2(∂y2 s∗)2s∗210 − (2∂xys∗+ ∂y2s∗)2(∂y2 s∗)2(2∂xys∗∂y3s∗− 3∂y2s∗∂xy2 s∗) = 0, (M12g)

ε2∆y : 6
(

2(∂xys∗)2+ 2∂xys∗∂y2 s∗+(∂y2s∗)2
)

s∗201 − 6(2∂xys∗+ ∂y2s∗)∂y2s∗s∗111

+
(

4(∂xys∗)2∂y3s∗− 2∂xys∗∂y2 s∗(3∂xy2s∗− ∂y3s∗)+ (∂y2s∗)2∂y3 s∗
)

= 0, (M12h)

ε∆y2 : 2∂xys∗s∗102 + ∂y2s∗∂xy2 s∗ = 0, (M12i)

∆y3 : s∗003 = ∂y3s∗. (M12j)

Of course the constraints in (M12) include those in (M10), obtained by C1 at order 0 and with the pure ∆y-derivatives. For the

ε- and mixed-derivatives, the results at 1st order (M12b,c) are exploited to obtain the constraints at 2nd order and the results at

1st and 2nd orders (M12b–f) are exploited to obtain the constraints at 3rd order. This allows to eliminate θ ′
2(0) at 2nd order and

θ ′′
2 (0) at 3rd order, so that only the expressions for θ2(0) and θ ′

2(0) (Table, Extinction boundary 2) are involved and substituted

where needed. Also the coexistence condition (2) is taken into account to remove the denominators coming from θ2(0) and

θ ′
2(0).

The constraints implied by C1′ up to 2nd order (M12a–f) are obviously redundant w.r.t. those implied by C1–C3 in (M10)

and (M11). By contrast, each of the new 3rd-order constraints (M12g–i) equivalently solves, together with (M11f–i), for the

five 3rd-order coefficients in (M9). The results are reported in the Table (Dimorphic fitness, 3rd order). Note that, under our

smoothness assumption for the dimorphic fitness, the 3rd-order coefficients determine (according to the linear combinations

in Table, Directional derivatives) the directional functions s̄30(w1,w2), s̄21(w1,w2), s̄12(w1,w2) appearing at order 3 in the

directional expansion (M2). The results indeed coincide with those found for the class of unstructured ecological models

under stationary coexistence.20

Unfortunately, the constraints implied by properties C1′-C3 at 4th order are not enough to solve for the 15 4th-order

coefficients of the expansion (M9). Out of the 16 constraints, only 14 are independent. In general, we have (k+ 1)(k+ 2)/2

coefficients at order k and the number of constraints, counting redundancies, is k+ 1 for C1′ and C3a and (k/2)(k/2+ 1)
(k even) or (k + 1)2/4 (k odd) for C2. Thus, even counting redundancies, the number of unknowns exceeds the number of

constraints starting from order 6. This does not necessarily mean that the geometry of the dimorphic fitness, locally to the

singularity (x1,x2,y) = (x∗,x∗,x∗), is not fully determined by the local geometry of the monomorphic fitness. The two fitness

functions are linked to each other by the underlying ecological model, that is a much stronger link than C1′. Only by exploiting

the full ecological link we can then answer the above question, starting from order 4. Whether the answer is yes or no remains

an open theoretical issue of AD.

4 The canonical model of the ESS-branching transition

Using the results derived in Sects. 2 and 3, we now derive the canonical model (8). We consider the continuous evolutionary

dynamics ruled by the so-called AD canonical equation11,12 in the limit of rare and infinitesimally small mutational steps.

We note however that the assumption of rare mutation can be relaxed14 and that the dynamics of model (8) (the direction of

evolution in Eq. (8a), the ecological scaling rates in Eqs. (8b,c), and the fitness gradients in Eqs. (8d,e)) inform as well about

the adaptive dynamics driven by sufficiently small but finite strategy mutations.23,24

In the simple setting of unstructured ecological models under stationary coexistence, the AD canonical equation reads

ẋ = 1
2

µ(x)σ(x)2 n̄(x)∂ysx(y)|y=x (M13)

before branching (monomorphic phase) and

ẋi =
1
2

µ(xi)σ(xi)
2 n̄i(x1,x2)∂ysx1,x2

(y)|y=xi
, i = 1,2, (M14)

after branching (dimorphic phase), where µ(x) and σ(x)2 respectively scale with the frequency and variance of mutations in

strategy x (half of which are at disadvantage and go extinct), n̄(x) and n̄i(x1,x2) are the resident equilibrium densities (see
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Fig. 1c), and ẋ is the time-derivative of x on an evolutionary time scale that is fully separated from the ecological one. In

more complex ecological settings—including structured population models and non-stationary attractors of coexistence—the

fitness gradients in Eqs. (M13) and (M14) are scaled by the average birth outputs shown by the populations at the ecological

regime,11,12,18 in lieu of the resident equilibrium densities. This ecological scaling has been shown equivalent to four times

the effective population size,35 as defined in population genetics.

As an approximation of the stochastic dynamics driven by finite mutations, Eqs. (M13) and (M14) give better results the

more mutations are small. The convergence of the stochastic dynamics to the deterministic solution, as mutational steps be-

come infinitesimal, is however non-uniform,12 i.e., closer to a singular strategy the approximation requires smaller mutations.

As a consequence, branching must be discussed by resorting on finite mutations close to the singular strategy36 (see also the

discussion on finite mutations following Fig. 2 in the main text).

To derive the canonical model (8), we first get rid of the evolutionary scaling 1
2

µ(xi)σ(xi)
2 in Eq. (M14). Locally to

the singular point (x∗,x∗) this can be done in two steps. A near-identity coordinate transformation, zi = zi(x1,x2), i = 1,2
(near-identity meaning ∂ zi/∂x j = 1 if i = j, 0 otherwise), whose expansion can be set to eliminate all the derivatives of µ and

σ in the expansion of the scaling factor around x1 = x2 = x∗; a time-scaling τ = 1
2

µ(x∗)σ(x∗)2 t, τ being the new time. For

simplicity, we keep on using variables xi (actually ∆xi) and t for the new variables and time.

Second, we approximate the ecological scaling factor in Eq. (M14). To avoid specific assumptions at the ecological level,

the idea is to replace the resident equilibrium density n̄i(x1,x2) with a quantity that is determined by the geometry of the

monomorphic fitness and that qualitatively behaves as the birth output of population i, i = 1,2, locally to the singular point

(x∗,x∗). So doing, we lose the quantitative mapping between our canonical model and the AD canonical equation (M14), that

can however be saved only working with a specific class of ecological models.

The birth output of population i is positive in the resident-mutant coexistence region and vanishes while approaching the

extinction boundary i. It is therefore sign-equivalent, within the coexistence region (boundaries included), to the invasion

fitness of strategy xi that defines boundary i in (M6). However, while the monomorphic fitness is smooth and quadratically

vanishes at the singular point (x∗,x∗), the birth output i is discontinuous at (x∗,x∗)—population i being absent on boundary i

and present along boundary j, i 6= j.

Expanding the fitnesses of strategies x1 (against x2) and x2 (against x1) around (x∗,x∗) we get

sx2
(x1) = sx∗+∆x2

(x∗+∆x1) = η1(∆x1,∆x2)(∆x1−∆x2)+O(‖(∆x1,∆x2)‖4), (M15a)

sx1
(x2) = sx∗+∆x1

(x∗+∆x2) = η2(∆x1,∆x2)(∆x2−∆x1)+O(‖(∆x1,∆x2)‖4), (M15b)

with the quantities η1(∆x1,∆x2) and η2(∆x1,∆x2) defined in Eqs. (8b,c) of the main text (reported below)

η1(∆x1,∆x2) := ∂xys∗∆x2 +
1
2
∂y2s∗(∆x1+∆x2)+

1
2
∂x2ys∗∆x2

2 +
1
2
∂xy2 s∗∆x2(∆x1+∆x2)+

1
6
∂y3s∗(∆x2

1 +∆x1∆x2 +∆x2
2), (8b)

η2(∆x1,∆x2) := η1(∆x2,∆x1). (8c)

We note that the following expressions

ñ1(∆x1,∆x2) := − n̄∗

∂xys∗
η1(∆x1,∆x2)

∆x1 −∆x2

, (M16a)

ñ2(∆x1,∆x2) := − n̄∗

∂xys∗
η2(∆x1,∆x2)

∆x2 −∆x1

= ñ1(∆x2,∆x1), (M16b)

are also sign-equivalent to the birth outputs of populations 1 and 2, respectively, and similarly behave discontinuously at

(∆x1,∆x2) = (0,0). Specifically, using the quadratic approximations η1(∆x1,∆x2) = 0 and η2(∆x2,∆x1) = 0 of the ex-

tinction boundaries 1 and 2—involving up to 3rd-order monomorphic fitness derivatives—the quantity ñi(∆x1,∆x2) is zero

along boundary i and its limit to (x∗,x∗) along boundary j is equal to the ecological scaling factor n̄∗. To compute the

latter limit we have ε-expanded (in polar coordinates) ñi(ε cosθ ,ε sinθ ) at ε = 0 along the boundary θ = θ j(ε) defined by

η j(ε cosθ j(ε),ε sinθ j(ε)) = 0. Note that this is a different boundary approximation than the truncations in (M8), that however

gives the same angle θ2(0) and curvature θ ′
2(0) reported in Table (Extinction boundary 2). The result is indeed

ñi(ε cosθ j(ε),ε sinθ j(ε)) = n̄∗+O(ε), i = 1,2, j = 2,1. (M17)

We thus replace in Eq. (M14) the resident equilibrium density n̄i(x1,x2) with ñi(∆x1,∆x2) from (M16a,b), arbitrarily setting

the scaling factor n̄∗ to 1. In the simple setting (unstructured ecological models under stationary coexistence), ñi(∆x1,∆x2)
was shown to correspond to the directional expansion (ε-expansion with (∆x1,∆x2) = (ε cosθ ,ε sinθ )) of the equilibrium

density n̄i(x1,x2) up to the linear terms in ηi(∆x1,∆x2), i = 1,2.20

Third step, we compute the fitness gradient ∂ysx1,x2
(y)|y=xi

using our expansion (4, 6), thus obtaining

∂ysx1,x2
(y)|y=xi

= si(∆x1,∆x2)(∆xi−∆x j), i = 1,2, j = 2,1, (M18)
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with the quantities s1(∆x1,∆x2) and s2(∆x1,∆x2) defined in Eqs. (8d,e) of the main text (reported below)

s1(∆x1,∆x2) := 1
2
∂y2 s∗− 1

4

∂y2 s∗∂xy2 s∗

∂xys∗
(∆x1+∆x2)+

1
6
∂y3s∗(2∆x1+∆x2), (8d)

s2(∆x1,∆x2) := s1(∆x2,∆x1). (8e)

Our canonical model of the ESS-branching transition then reads

ẋi = ñi(∆x1,∆x2)∂ysx1,x2
(y)|y=xi

=− 1

∂xys∗
ηi(∆x1,∆x2)si(∆x1,∆x2), i = 1,2, (8a)

and is defined in the coexistence region delimited by the extinction boundaries η1(∆x1,∆x2)= 0 (boundary 1) and η2(∆x1,∆x2)=
0 (boundary 2). Note the cancellation of the differences (∆xi −∆x j) at denominator in Eqs. (M16a,b) and at numerator in

Eq. (M18), that makes the model equations polynomial (and therefore smooth!).

Close to ESS-branching transition (∂y2s∗≈ 0 under the coexistence and genericity conditions (2) and (7)), model (8) is

qualitatively equivalent to the dimorphic canonical equation (M14), locally to the singular point (x∗,x∗). Note that model (8)

is not a (∆x1,∆x2)-expansion of the dimorphic canonical equation (M14). Even in the simple setting (unstructured ecologi-

cal models under stationary coexistence) in which ñi(∆x1,∆x2) quantitatively approximates the resident equilibrium density

n̄i(x1,x2), the canonical model misses some cubic terms—e.g. those given by the product of a linear term in ηi(∆x1,∆x2) with

the missing quadratic terms in si(∆x1,∆x2). This is due to the choice of separately approximating the resident equilibrium

densities and the fitness gradients, with the advantage of preserving some structural features of the canonical equation. E.g.,

the presence of boundary evolutionary equilibria when ηi(∆x1,∆x2) and s j(∆x1,∆x2) vanish with i 6= j and the (O((∂y2s∗)2)-
approximated) connections of the flow nullclines with the horizontal and vertical extremal points of the extinction boundaries

(see Fig. 2; see Ref.1, Sect. 6.3.3, and Ref.25, Appx., for further detail on the above structural features).

The unfolding parameter of the ESS-branching transition—that we move across zero—is ∂y2 s∗. Four other parameters are

left in model (8): ∂xys∗, ∂x2ys∗, ∂xy2 s∗, ∂y3s∗, i.e., all second and third independent derivatives of the monomorphic fitness—the

pure x-derivatives ∂x2 s∗ and ∂x3 s∗ being related to the others by the fitness neutrality (see Table, Monomorphic fitness). The

first and last parameters are constrained by the coexistence and genericity conditions (2) and (7), whereas ∂x2ys∗ and ∂xy2 s∗

play no role in the transition. In fact, though they both appear in ηi(∆x1,∆x2) (see Eqs. (8b,c)) and only ∂xy2 s∗ appears in

si(∆x1,∆x2) (see Eqs. (8d,e)), at the transition (∂y2s∗= 0) the curvature of the extinction boundaries and the flow nullclines are

unaffected (see the expression of θ ′
2(0) in Table, Extinction boundary 2, where the effect of ∂x2ys∗ and ∂xy2 s∗ is modulated by

∂y2 s∗, and note that ∂xy2 s∗ is multiplied by ∂y2s∗ in si(∆x1,∆x2)), whereas the flow of model (8) is perturbed only in the cubic

(∆x1,∆x2)-terms. With ∂xys∗ constrained in sign, ∂y3s∗ is the only relevant coefficient of the canonical model.

Finally, we note that model (8) serves as canonical model for the ESS-branching transition also in the presence of other

evolving (one-dimensional) strategies (e.g. the transition to a higher polymorphism or the coevolution in a multi-species

model). Whether the other strategies are at singularity or slowly evolving,37 our analysis in Ref.20, Appx. C, shows that they

remain selectively neutral during the initial phase of branching in strategy x.

5 Unfolding of the ESS-branching transition

We analyze in this last section the dynamics of the canonical model (8), under the coexistence and genericity conditions (2) and

(7), while varying the unfolding parameter ∂y2s∗ across zero. Model (8) is defined only within the resident-mutant coexistence

region defined by ñi(∆x1,∆x2) ≥ 0, i = 1,2, see Eqs. (M16a,b) and (8b,c). However, for the purpose of the mathematical

analysis, we extend the validity of the model’s equations in a full neighborhood of (∆x1,∆x2) = (0,0).
By inspection of Eq. (8a), it is easy to see that there are four equilibria (the pairs (∆x1,∆x2) in a full neighborhood of (0,0)

at which ẋ1= ẋ2 = 0):

E0: (∆x1,∆x2) = (0,0) zeroing η1 and η2.

E1: (∆x1,∆x2) = (∆x∗1,∆x∗2) zeroing η1 and s2, with

∆x∗1 := − 3

∂y3s∗
∂y2s∗− 9

2

∂xy2 s∗

∂xys∗(∂y3 s∗)2
(∂y2 s∗)2 − 9

4

(3∂xy2 s∗− 2∂y3s∗)∂xy2 s∗

(∂xys∗)2(∂y3 s∗)3
(∂y2 s∗)3 +O((∂y2s∗)4),

∆x∗2 := −9

4

∂xy2 s∗

(∂xys∗∂y3s∗)2
(∂y2 s∗)3 +O((∂y2s∗)4),

here expressed as power series in the unfolding parameter ∂y2 s∗.

E2: (∆x1,∆x2) = (∆x∗2,∆x∗1) symmetrically zeroing η2 and s1.

E3: (∆x1,∆x2) = (∆x∗,∆x∗), ∆x∗ :=− ∂xys∗∂y2s∗

∂xys∗∂y3 s∗− ∂y2s∗∂xy2 s∗
, zeroing s1 and s2.
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Figure M1. Unfolding of the ESS-branching transition according to model (8). The unfolding parameter ∂y2s∗ increases

from left to right and vanishes in the central panel, in which all equilibria E0–E3 collide at (∆x1,∆x2) = (0,0). Top row:

∂y3 s∗= 10; bottom row: ∂y3 s∗= −10; other parameters as in Fig. 2. The resident-mutant coexistence region is shaded, with

color code orange-to-blue measuring the magnitude of the vector field. The extinction boundary 1 (η1(∆x1,∆x2) = 0) and

the x1-nullcline (s1(∆x1,∆x2) = 0) are plotted in blue (solid and dashed); red for boundary 2 (η2(∆x1,∆x2) = 0) and the x2-

nullcline (s2(∆x1,∆x2) = 0). At the transition (central panel) the nullclines pass through the singular point (∆x1,∆x2) = (0,0)
with slopes −2 and −1/2, respectively (see Eqs. (8d,e) with ∂y2s∗= 0 and ∂y3s∗ 6= 0). Full points: attractors; half-filled points:

saddles; empty points: repellors.

Note that E1 and E2 are symmetric boundary equilibria, respectively lying on the extinction boundaries 1 and 2, while E3 lies

on the diagonal (and is therefore unfeasible for the evolutionary dynamics).

The four equilibria are all involved in the ESS-branching transition occurring at ∂y2s∗=0, as they collide at (0,0) at the

transition. Under conditions (2) and (7), equilibria E0–E3 intersect transversely as ∂y2 s∗ moves across zero. The transi-

tion classifies as a non-simple branch point bifurcation38–40 (not to be confused with the branching point of AD!), i.e., the

transversal intersection of more than two ∂y2s∗-parameterized equilibrium branches. This bifurcation generically requires the

continuation problem41 that defines the intersecting equilibrium branches to have a nullspace with dimension larger than two

at the bifurcation. Specifically, the continuation problem is defined in the space (∆x1,∆x2,∂y2 s∗) by

C(∆x1,∆x2,∂y2s∗) :=

[

η1(∆x1,∆x2,∂y2 s∗) s1(∆x1,∆x2,∂y2 s∗)
η2(∆x1,∆x2,∂y2 s∗) s2(∆x1,∆x2,∂y2 s∗)

]

= 0,

where ∂y2 s∗ is explicitly mentioned as an argument of ηi and si. The Jacobian of the (vector-valued) function C w.r.t.

(∆x1,∆x2,∂y2s∗) is indeed a (2× 3) null matrix at the bifurcation (easy to check), i.e., the nullspace is three-dimensional.

Due to the diagonal symmetries of the canonical model (8), this bifurcation occurs with codimension-one, i.e., moving a

single unfolding parameter (see Ref.38, Sect. 8.2, for further detail).

Two cases can be distinguished, namely ∂y3 s∗> 0 and ∂y3s∗< 0, whose unfoldings are pictured in Fig. M1 (top and bottom

panels, respectively). The movements and stability of the four equilibria, as ∂y2 s∗ goes from negative to positive, are evident
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from the graphics (left-to-right panels; the trajectories of the canonical model (8) are drawn also outside the resident-mutant

coexistence region to make stability easily readable).

Note that the stability for the unrestricted model is different from the stability for the dimorphic canonical equation. E.g.,

equilibrium E0 is always unstable (saddle type) for the unrestricted model. The associated Jacobian,

1
2
∂y2s∗

[

1
2
∂y2 s∗ ∂xys∗+ 1

2
∂y2 s∗

∂xys∗+ 1
2
∂y2 s∗ 1

2
∂y2 s∗

]

,

has eigenvalues 1
2
∂y2s∗

(

∂xys∗+∂y2s∗
)

and − 1
2
∂xys∗∂y2s∗ with the diagonal ∆x1=∆x2 and the anti-diagonal ∆x1+∆x2 = 0 as

eigenvectors (away from the bifurcation, ∂y2s∗ 6= 0). By contrast, E0 is stable/unstable for the dimorphic canonical equation

when ∂y2 s∗ ≶ 0 (ESS/branching).

Also note that the two cases (∂y3s∗≷ 0) are topologically equivalent, since at the transition there is, locally to (x∗,x∗), a

symmetry w.r.t. the anti-diagonal. The distinction between the two cases is hence mathematically irrelevant. However, the

distinction is biologically important, due to the different curvatures of the extinction boundaries in the two cases (the value of

θ ′
2(0), see Table, Extinction boundary 2, gives the curvature of the locally vertical boundary, negative/positive for ∂y3 s∗≷ 0,

see Fig. M1). Indeed, ∂y3 s∗≷ 0 makes branching possible at the transition only for mutants with larger/smaller trait values

(as already noted, without a formal derivation, in Ref. 26). In both cases branching is possible, so the singular strategy is a

branching point at the ESS-branching transition.
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