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Abstract

Interdependencies among land use systems resemble a complex network connected
through demand–supply relationships. Disruption of this network may catalyse sys-
temic risks affecting food, energy, water and environmental security (FEWES)
worldwide. We describe the conceptual development, expansion and practical
application of a stochastic version of the Global Biosphere Management Model
(GLOBIOM), used to assess competition for land use between agriculture, bioen-
ergy and forestry at regional and global scales. In the stochastic version of the
model, systemic risks of various kinds are explicitly covered and can be analysed
and mitigated in all their interactions. While traditional deterministic scenario
analysis produces sets of scenario-dependent outcomes, stochastic GLOBIOM
explicitly derives robust outcomes that leave the systems better-off, independently
of which scenario applies. Stochastic GLOBIOM is formulated as a stochastic
optimisation model that is critical for evaluating portfolios of robust interdepen-
dent decisions: ex-ante strategic decisions (production allocation, storage capaci-
ties) and ex-post adaptive (demand, trading, storage control) decisions. As an
example, the model is applied to the question of optimal storage facilities, as buf-
fers for production shortfalls, to meet regional and global FEWES requirements
when extreme events occur. Expected shortfalls and storage capacities have a close
relationship with Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)
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risk measures. A Value of Stochastic Solutions is calculated to illustrate the bene-
fits of the stochastic over the deterministic model approach.
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1. Introduction

Globalisation and increasing interdependencies among land use systems (LUS) at
national and international levels substantially affect the vulnerability of those systems.
The interdependencies resemble a complex network connected through demand–sup-
ply relationships such that the disruption of one – perhaps due to a yield shock in one
region – may catalyse systemic risks and affect LUS worldwide (OECD, 2003;
Headey, 2010; Grain, 2013).

Although integrated land use planning is critically important (Arrow and Fisher,
1974; Stiglitz, 1974), the past shows that LUS policy design and implementation fre-
quently do not account for the interdependencies and risks inherent in them. Often,
the systems are governed by independent policies, and the impact of each policy on
other systems is inadequately considered, if at all (e.g. Gielen et al., 1998). Multiple
studies and decision support models for land use planning often rely on deterministic
scenario analysis (see Gielen et al., 1998, 2000; McCarl and Schneider, 2000; Agarwal
et al., 2002; Kok and Winograd, 2002), which reduces models with variable stochastic
parameters to a set of scenario-specific deterministic models. This may lead to erro-
neous policy implications2 with highly irreversible consequences, lock-in states of
development (USDE, 2008; Lecl�ere et al., 2014), and raise critical issues for food,
energy, water and environmental security (FEWES) (FAO, 2009; Headey, 2010; FAO
et al., 2011). We define security as the ability to deal with risks and uncertainties to
assure the necessary supply of food, feed, water, land and environmental quality
under all circumstances without a substantial cost increase (Ermoliev and von Winter-
feldt, 2012).

The intensifying interdependencies and vulnerability of LUS on the one hand and
the need to address FEWES on the other are becoming increasingly important, and
raise considerable methodological challenges. Unfortunately, the risks in intercon-
nected natural and anthropogenic systems are analytically intractable. In contrast to
standard risks, they are dependent on the decisions of various agents (OECD, 2003),
which restricts traditional risk assessment and prediction. The scenario-by-scenario
analysis of alternatives can provide only a range of scenario-dependent answers; they
do not give a clue as to the decisions that ensure mutual stability of the systems, irre-
spective of which scenario applies. Therefore, in the presence of inherent uncertain-
ties, the main issue is about designing optimal robust solutions (Ermoliev and
Hordijk, 2003) that leave systems better-off under all potential scenarios. As the

2For example, the conversion of wetlands that previously served as protection substantially con-
tributed to severe floods caused by hurricane Katrina (http://www.teenink.com/hot_topics/en-
vironment/article/297710/Causes-and-Effects-of-Hurricane-Katrina/; http://en.wikipedia.org/

wiki/Hurricane_Katrina).
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variety of, and the interconnections between LUS increase, the design of robust solu-
tions has to be based on the analysis of complex systemic interactions and the risk
exposures evaluated (section 3) with respect to FEWES targets.

We develop a stochastic Global Biosphere Management Model (GLOBIOM;
Havl�ık et al., 2011) to produce integrated and robust LUS management solutions
under systemic risks in a way that accounts for interdependencies among world
regions. The model incorporates stochastic crop yield shocks, which facilitates the
analysis of systemic risks affecting crop production and food, energy and water provi-
sion. The risks are measured in terms of regionally and globally expected shortages
(or expected shortfalls) that require additional decisions, for example, on storage.
Grain storage capacities, similar to global and regional insurance, reinsurance and
catastrophe funds (e.g. GFDRR, 2015; Swiss Re, 2013), can increase regional and glo-
bal FEWES if extreme events occur.

The structure of the paper is as follows. Section 2 presents the main motiva-
tions for developing stochastic GLOBIOM. As GLOBIOM is a large-scale, recur-
sive-dynamic, partial-equilibrium, price-endogenous model, this section analyses its
stylised fragment, demonstrating that systemic risks are characterised by the struc-
ture of the whole model, including the distribution of risks shaped by decisions,
and also by the security constraints. Systemic interconnectedness (e.g. through
markets or food chains or through producers of a certain commodity) is often
considered beneficial. However, it can increase the vulnerability to shocks if a
vital component is damaged and no alternative is readily available. Thus, using
two regions as an example, section 2 shows that, unlike degenerated solutions of
scenario-dependent deterministic models stressing the role of efficient regions, the
stochastic GLOBIOM model calls for proper risk diversification between various
kinds of region. Section 2 also illustrates that explicit treatment of uncertainties
and security constraints through a two-stage stochastic optimisation (STO) model
induces risk aversion in the form of Value-at-Risk (VaR) risk functions. The two-
stage STO distinguishes two types of decisions: strategic and adaptive. Strategic
decisions (land management, storage capacities) can be viewed as decisions in the
face of uncertainties (before the exact state of nature is learned). Adaptive (opera-
tional) decisions (trading, demand, price and storage withdrawals) are executed
when additional information on uncertainties is revealed (after learning), allowing
the policies to be adjusted. Thus, the model derives a robust combination of com-
plementary mitigation and adaptation decisions. Ideas from this section are used
for the general model in section 3.

Section 3 concentrates on important methodological aspects of stochastic GLO-
BIOM using the general formulation of the model. In particular, the section charac-
terises global multidimensional systemic risks and security criteria. A more detailed
description of the model is presented in the supplementary Appendix available
online at the publisher’s website. In section 4, the benefits of the robust solutions
derived using the stochastic model in comparison with the solutions of its determin-
istic counterpart are measured using the Value of Stochastic Solution (VSS) (Birge,
1982). We illustrate the stochastic approach by examining robust storage strategies
towards systemic risks by buffering production shortfalls and meeting security
requirements at regional and global levels. Many models look either only at land
(Veldkamp and Fresco, 1996; Verburg et al., 2000) or at storage decisions (Gustaf-
son, 1958; Deaton and Laroque, 1996). Stochastic GLOBIOM allows both to be
done within the same modeling framework. Section 5 concludes.
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2. Systemic Risks and Security Targets

2.1. Deterministic GLOBIOM

Before focusing on stochastic aspects, we provide a conceptual description of the gen-
eral deterministic GLOBIOM (Havl�ık et al., 2011). GLOBIOM is a global recursive-
dynamic, partial-equilibrium model running at the level of major countries and world
regions. This section illustrates the variety of decision variables and exogenous drivers
(parameters), which provide the basis for the stochastic version of GLOBIOM to
address systemic risks in LUS. The model integrates the agricultural, bioenergy and
forestry sectors allowing for policy analysis of global and regional issues concerning
land use competition and land use transformations driven by increasing demands for
food, feed, water and biofuels (Coyle, 2007). GLOBIOM endogenously projects land
demand and resulting changes by land use types and regions. The main land uses dis-
tinguish crop land, grass land, forest (managed and non-managed) land, fast-rotation
forest plantations, and natural land. Land use change alternatives are limited by expli-
cit food, feed, energy, water and environmental security constraints.

The supply of crops (i.e. agricultural production) needs to cover food and feed
demands. The food security constraint ensures that the energy intake from food can-
not be lower than the minimum amount of kilocalories needed to satisfy dietary
requirements in cereals, vegetable and animal products (meat and dairy products)
measured in kilocalories per capita (WHO, 1985; James and Schofield, 1990). Feed
sources for livestock comprise crops, grass and biofuel co-products (feed cakes). Feeds
produced for livestock cannot be lower than the minimum livestock dietary require-
ments in energy measured in megacalories. First-generation biofuels from crops and
second-generation biofuels from lignocellulosic biomass (woody crops) and agricul-
tural residues have to fulfill biofuel production targets. Food security constraints and
biofuel security targets introduce competition for limited natural resources (land and
water) among different land uses.

Forestry resources are used for the production of saw logs, pulp logs and other
industrial logs. Forest production also includes biomass for woody energy and tradi-
tional fuel wood. The energy biomass can be converted through (i) combined heat
and power production, (ii) fermentation for ethanol, heat, power and gas production,
and (iii) gasification for methanol and heat production. Woody biomass for energy
can also be produced from short-rotation tree plantations. Thus, agriculture and for-
estry have binding bioenergy targets (Havl�ık et al., 2011) which induce systemic risks,
illustrated by example in section 2.2. Environmental3 security constraints are intro-
duced as targets on GHG emissions from land use and land use changes (Valin et al.,
2013).

Global interdependencies between demand, prices, international trade flows and
environmental constraints are analysed in an endogenous manner for 28 world
regions (Havl�ık et al., 2011), while decisions on production and land use allocation
are taken at a 50 9 50 km2 grid cell resolution. Product supply functions are included
implicitly and are based on detailed, geographically explicit Leontieff production
functions. We use the Environmental Policy Integrated Model (EPIC) model (Liu

3Discussions of environmental security have been evolving since 1970 (Myers, 1989). Several
definitions of environmental security have been adopted by a few countries and international
organisations. An overview of the definitions is found in The Millennium Project, http://millen-

nium-project.org/, Myers (1989).
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et al., 2007) to simulate climate- and management-related yields for 20 crops, which
represent more than 80% of the 2007 harvested area as reported by FAO (2009). The
GLOBIOM model is formulated as a linear optimisation problem. The objective func-
tion of GLOBIOM maximises the sum of producer and consumer surpluses subject to
food security, biofuel targets, GHG emissions and resource constraints. For further
details on GLOBIOM, the reader is referred to Havl�ık et al. (2011) where all basic
assumptions on exogenous drivers (i.e. population, economic, environmental and
technological development parameters, etc.) are also presented in detail. In the deter-
ministic version, crop yield variability is not taken into account in the decision vari-
ables of a social planner (i.e. the model assumes expected crop yields). This is
equivalent to dealing with only one scenario of possible developments. However, aver-
aging may lead to erroneous policy conclusions and remove the diversification neces-
sary to manage the risks.

2.2. Systemic risks

Global Biosphere Management Model is a large-scale model; therefore in this section
we analyse its main features with a stylised example in order to understand the main
drivers of systemic risks. The objective function of stochastic GLOBIOM maximises
total expected net benefit (benefits-costs) of consumers and producers under endoge-
nously calculated prices (supplementary Appendix, equation S1, available online). In
this simplified example we ignore the elasticity of the demand, reducing the model to
minimising the total cost subject to a demand security constraint. We analyze systemic
risks in a simple social planning model with only two regions cooperating in bio-etha-
nol production from corn and wheat, i = 1, 2, to meet exogenous inelastic demand d.
Systemic risks are induced through interdependencies between decisions of regions
and supply uncertainties. Corn, which is traditionally used for bio-ethanol produc-
tion, provides the highest yield at the lowest cost and wheat for bio-ethanol may be
used in lean corn years. Let xi denote the production level of region i, and ci is produc-
tion unit cost. We assume that in the case of production shortage, the goods can be
purchased on a market with a per unit price of b. Assume the first producer is the
cheapest, c1 < c2 < b.

2.2.1. Absence of uncertainty
In the absence of uncertainty (i.e. using average values and ignoring variability), the
deterministic model is formulated as the minimisation of the total cost function:

c1x1 þ c2x2 þ by ð1Þ
subject to the supply-demand security constraints:

x1 þ x2 þ y� d; x1 � 0; x2 � 0: ð2Þ
The optimal solution to the problem is x�1 ¼ d, x�2 ¼ 0, y� ¼ 0, that is, the degenerated
solution of the deterministic model (1)–(2) leaves all production to the most efficient
region.

2.2.2. Systemic risk, cooperation, and risk sharing
Consider the more realistic situation of planning production under uncertainty due to
yield variability, which may reduce production x1, x2. In this case, the endogenous
supply (2) is transformed to a constraint:
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a1ðxÞx1 þ a2ðxÞx2 þ yðxÞ� d; ð3Þ
where a1(x) and a2(x) are random shocks to x1, x2, for example, due to weather vari-
ability, 0� aiðxÞ� 1, i = 1, 2. We do not specify the structure of uncertain events x,
which may affect both regions simultaneously or independently. In general, we can
think of a vector x = (x2, x2), where x1 and x2 can be dependent random variables
(e.g. yield shocks), simulated by a Monte Carlo model producing a sequence of poten-
tial scenarios x ¼ xs, for example, weather events, s = 1, 2, . . ., with components
xs

i , i = 1, 2, which are then used in the EPIC model to calculate the yields shocks
a1(x) and a2(x). Often, x is characterised by a finite number of scenarios (Kall and
Mayer, 2004). Decisions on production x = (x1, x2) at stage 1 have to be made before
observing exact values a1(x) and a2(x). If supply a1(x)x1 + a2(x)x2 falls short of
demand d, the residual amount d � a1(x)x1 � a2(x)x2 must come from purchasing y
(x) on the market at stage 2 at per unit price b. The concept of two-stage modeling
with strategic (ex-ante) x1, x2 and adaptive (ex-post) decisions y(x) is critically impor-
tant for robust land use planning, as these decisions ensure the security constraint (3)
for any event x. The deterministic model (1)–(2) is now formulated as a linear two-
stage STO model: minimise the cost function

c1x1 þ c2x2 þ bEyðxÞ ð4Þ
subject to security constraint (3) for all potential scenarios of uncertainty x, where Ey
(x) is the expected value of the shortfall y(x), that is, EyðxÞ ¼ P

s psyðxsÞ, for discrete
scenarios xs and their probabilities ps, s = 1, 2, . . .. In this simple example, the opti-
mal stage 2 decision y(x, x) satisfying constraint (3) for any fixed vector x = (x1, x2),
x1 ≥ 0, x2 ≥ 0 and x can be found analytically as y(x, x) = max{0, d � a1(x)
x1 � a2(x)x2}. Therefore, optimal strategic decisions x1 and x2 minimising function
(4) also minimize:

FðxÞ ¼ c1x1 þ c2x2 þ bEmaxf0; d� a1ðxÞx1 � a2ðxÞx2g; ð5Þ
where Emax{0, d � a1(x)x1 � a2(x)x2} is the expected shortfall characterising the
systemic risks and vulnerability of the supply x1, x2.

It is important to emphasise that the model (5) does not directly include any mea-
sure of risk in the objective function. The risk aversion arises through the coexistence
of ex-ante x and ex-post y(x, x) decisions in the form of VaR quantile-based risk con-
straint (Ermoliev and Jastremski, 1979; Ermoliev and Norkin, 1997). Let us show that
robust x�1, x

�
2 satisfy quantile-based risks constraints induced by interdependencies

between uncertainties a1(x) and a2(x), decisions x = (x1, x2), security requirements
(3), and the costs. Assume that only the efficient region is at risk (i.e. a2 = 1). Region 2
may be viewed as an inefficient region ðc1\c2Þ. Yet, we shall see that this region, due
to the interdependencies, is the key player in terms of securing the supply. Let func-
tion F(x) have continuous derivatives; for example, the distribution function of a1(x)
has a continuous density. This assumption avoids the use of more sophisticated non-
smooth STO techniques (Ermoliev and Wets, 1988). The optimal positive solution
x�1 [ 0, x�2 [ 0 exists in the case when Fx1ð0; 0Þ ¼ c1 � bEa1ðxÞ and Fx2ð0; 0Þ ¼ c2 � b
are negative, where Ea1(x) is the expected value of a1(x). The efficient region 1 is inac-
tive in the case c1 � bEa1(x) > 0, leaving production entirely to region 2. Both
regions are active only in the case when c1 � bEa1(x) < 0. Somewhat surprisingly,
inefficient region 2 is active unconditionally because c2 � b < 0.
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It is important to derive the optimal production level x�2 [ 0 of the inefficient pro-
ducer. Using optimality conditions of type Fx2ðxÞ ¼ 0 for stochastic minimax models
(see Ermoliev and Wets, 1988; Ermoliev and Norkin, 1997), it is defined by the
equation:

Probðd� a1ðxÞx�1 � x�2Þ ¼ c2=b ð6Þ
that is, the optimal production x�2 of the risk-free region 2 is a quantile of the proba-
bility distribution characterising the contingencies a1(x) of region 1. Equation (6)
shows that the ex-ante first-stage decisions x* cover only a fraction of the risks deter-
mined by the quantile c2/b, whereas second-stage decisions hedge the rest of the expo-
sure (i.e. the production shortfall). Although not at risk, region 2 is affected by
systemic risks characterised by the structure of the whole supply system, that is,
demand d, shocks a1(x), cost function c2, import prices b, robust decisions x�1 and x�2,
and the security constraint (3). These risks can be regulated by adjusting parameters
c1 and c2 on local (regional) and b and d on global (national and international) levels.
In engineering, insurance, and financial applications, equations of type (6) are known
as chance (or probabilistic) constraints (Prekopa, 1988), safety or reliability con-
straints (Marti, 2008), or VaR constraints (Rockafellar and Uryasev, 2000). The opti-
mal value F(x*) is a Conditional Value-at-Risk or CVaR risk measure (Rockafellar
and Uryasev, 2000).

3. Stochastic GLOBIOM

3.1. A two-stage model

In this section, similar to model (3), (4), we use the two-stage approach to formulate
general stochastic GLOBIOM. The model involves uncertainty and risks associated
with different scenarios x = (x1, x2, . . .) of potential crop yields. Accounting for
direct and indirect dependencies among 28 world regions, stochastic GLOBIOM
allows robust joint solutions to be identified with respect to production, trade, price
and storage to ensure food and feed security goals, bio-ethanol production targets
and resources and CO2 emission constraints from LUS in all regions, under all scenar-
ios x. As illustrated by the example in section 2, the variability of yields induces sys-
temic risks, which may cause non-risky activities to become indirectly risk-exposed.
First-stage strategic decisions are taken before the actual yield is observed and do not
depend on scenarios x. We denote them collectively by a vector x. These decisions
include crop acreage and storage capacities. Second-stage adaptive decisions y(x)
include trade choices, storage withdrawals, demand and prices, and these are made
after the yield scenario is observed.

The general stochastic version of GLOBIOM is formulated as a two-stage problem
of STO (programming) (Ermoliev and Wets, 1988; Birge and Louveaux, 1997): max-
imise with respect to decision variables (x, y(x)) the function:

FðxÞ ¼ Exfðx; yðxÞ;xÞ ¼
Z

fðx; yðxÞ;xÞPðdxÞ ð7Þ
under constraints:

giðx; yðxÞ;xÞ� 0; i ¼ 1;m; ð8Þ
where the goal function F(x) represents total systemic welfare or net benefits associ-
ated with both types of decision (x, y(x)). Functions gi(x, y(x), x) denote various
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security constraints and performance indicators, and vector x denotes potential sce-
narios of yields. A detailed description of functions F and gi can be found in the sup-
plementary Appendix, available online at the publisher’s website.

In numerical applications, the model (7), (8) is often formulated (Ermoliev and
Wets, 1988; Birge and Louveaux, 1997; Kall and Mayer, 2004) using a finite set of
explicitly or implicitly given scenarios xs, s = 1, . . ., S: maximise:

XS
s¼1

psfðx; ys;xsÞ ð9Þ

subject to:
giðx; ys;xsÞ� 0; i ¼ 1;m; s ¼ 1;S; ð10Þ

where x1, x2, . . ., xS is a sample of scenarios s ¼ 1;S for uncertain vector x derived
from real observations, uncertainty generators (e.g. EPIC model), or/and expert opin-
ions, and ys denotes scenario-specific second-stage decisions y(xs). Probabilities p1,
. . ., pS,

PS
s¼1 ps ¼ 1, can be calculated from historical data, suggested by experts or

generated by models. In the absence of any information, probabilities ps, s ¼ 1;S, can
be uniformly distributed with ps = 1/S or defined by feasible sets such as p1 ≤ p2,
p2 + p5 ≥ p3, and so on.

3.2. Security criteria

The model (9)–(10) assumes the feasibility of choosing strategic and adaptive deci-
sions (x, ys) controlling constraints (10) for any scenario xs from the admissible set.
Extreme weather-related events or market prices may affect large territories and the
structure of LUS (i.e. functions f and g). For example, droughts may restrict trading
capacity with some regions. Therefore, in general, the constraints of model (9)–(10)
can be fulfilled only for some scenarios (i.e. with a certain probability). In this case,
we can think about a ‘lack’ of systemic security characterised by a set of decision vari-
ables zis ≥ 0 satisfying equations:

giðx; ys;xsÞ� zis: ð11Þ
Variables zis are viewed as regional (and global

P
i zis) systemic shortages (short-

falls) requiring additional decisions such as storages, investments, insurance, financial
instruments and other options. There is an essential difference between ex-post deci-
sions ys and zs. Decisions ys can be viewed as already existing measures (e.g. possible
trading connections), whereas zs are additional capacities (e.g. grain, water, energy
storages) that must be constructed in proper locations (regions, countries, grids) to
guarantee a desirable regional and global systemic security level. Accounting for pos-
sible new capacities zs, let us consider the maximisation of the function:

XS
s¼1

psfðx; ys;xsÞ �
XS
s¼1

psðps; zsÞ; ð12Þ

subject to security constraints (11), where ps = (p1s, . . ., pms) ≥ 0, zs = (z1s, . . ., zms),
s = 1, . . ., S, are scaling vectors or security weights, risk premiums for insurance,
price of contingent credits, etc.; �; �ð Þ denotes the scalar product of vectors. The set of
all x, ys, s = 1, . . ., S, satisfying equation (11) for zs = 0, s = 1, . . ., S, can be identi-
fied as the security set. If optimal solution x*, y�s , z

�
s , s = 1, . . ., S, of model (11), and

(12) has some z�s 6¼ 0, then equations (10) are satisfied only for some scenarios.
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Random variable pisz�is characterises systemic risk associated with violation of security
constraint (10), whereas random variable

P
i pisz

�
is characterises total (global) systemic

risk. Therefore, criterion (12) provides a trade-off between the social welfare defined
by the first criterion and the systemic security (risks). Security constraints in the model
(11)–(12) are regulated by parameters ps. Larger ps impose stronger security require-
ments. These constraints can be introduced in the form of probabilistic constraints
(Ermoliev et al., 2000b) similar to insolvency constraints (Colin and Kunreuther,
1993; Ermoliev et al., 2000a) in insurance or reliability (safety) constraints (Marti,
2008) in engineering:

Pfx : giðx; yðxÞ;xÞ � g�i � 0g� ci; ð13Þ
where g�i is a targeted level of indicator giðx; yðxÞ;xÞ, for example, minimum (or rec-
ommended) food and feed requirements and bioenergy goals (see equations S2.1, S2.2
and S3 in the supplementary Appendix, available online at the publisher’s website).
The right-hand-side parameter ci imposes the desirable security level specifying the
probability of fulfilling the constraint (13). The probabilistic constraints define a non-
convex and possibly highly discontinuous optimisation model requiring specific solu-
tion methods. Therefore, they are often substituted (see e.g. Ermoliev et al., 2000b) by
the following risk functions:

Emaxf0; giðx; yðxÞ;xÞ � g�i g; ð14Þ
characterising supply shortages (shortfalls). In this case, vector zs = (z1s, . . ., zms) in
(12) is given explicitly as zis ¼ maxf0; giðx; ys;xsÞ � g�i g and the problem (11)–(12) is
reformulated as maximising:

XS
s¼1

psfðx; ys;xsÞ �
Xm
i¼1

XS
s¼1

pspismaxf0; giðx; ys;xsÞ � g�i g ð15Þ

or equivalently as maximising function (12), that is:

XS
s¼1

psfðx; ys;xsÞ �
XS
s¼1

psðps; zsÞ ð16Þ

under constraints:

zis � giðx; ys;xsÞ � g�i ; zis � 0; i ¼ 1;m; s ¼ 1;S: ð17Þ
The most important factor for real applications is that this approach converts dis-

continuous constraints (13) into a linear optimisation problem (16)–(17) similar to
deterministic GLOBIOM.

3.3. Global systemic risks and security

The proposed general stochastic model integrates 28 world regions. It has a rich set (see
section 2.1, and the supplementary Appendix, available online) of decision variables
(internal drivers) and parameters (external drivers), providing unique possibilities for
analysing and managing regional and global systemic risks affecting various interdepen-
dent LUS. These risks are associated with a violation of the security constraints (10),
(11) regulated by vector zs and parameter ps in the objective function (12).

The following shows that, similar to the simplest two-region model in section 2.2,
the interdependent global systemic risks in general stochastic GLOBIOM are defined
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by a system of quantile-based multidimensional equations of type (6), (13). Consider
the model (7), (8) with linear stochastic functions:

fðx; yðxÞ;xÞ ¼
X
j

cjxjþ
X
k

dkðxÞykðxÞ ð18Þ
and

giðx; yðxÞ;xÞ ¼
X
j

aijðxÞxj þ
X
k

bikðxÞykðxÞ þ eiðxÞ; ð19Þ

where gi stands for various systemic security indicators, and cj, dk(x), bik(x), ei(x) are
deterministic and stochastic parameters. The model (15) can be formulated using the
general type of scenarios x as maximising adjusted to risk expectation function:

FðxÞ ¼ E fðx; yðxÞ;xÞ �
Xm
i¼1

piðxÞmaxf0; giðx; yðxÞÞ � g�i g
" #

: ð20Þ

Similarly to section 2.2, let us consider a positive component x�j [ 0 of the optimal
solution ðx�; y�ðxÞÞ maximising F(x). Again, for simplicity of illustration, assume that
F(x) has continuous partial derivative Fxjðx�Þ and that aij(x), pi(x) are deterministic
parameters aij, pi. Using formulas for gradients of stochastic maximin functions
(Ermoliev and Norkin, 1997) we obtain the equation for systemic risk equilibrium: if
x�j [ 0, then:

Fxjðx�Þ ¼ cj �
Xm
i¼1

piaijProb½giðx; yðxÞ;xÞ� g�i � ¼ 0: ð21Þ

Thus, global systemic risk indicators Prob½giðx; yðxÞ;xÞ� g�i � and the respective
robust combination of ex-ante and ex-post solutions x, y(x), z(x) are derived, with
stochastic GLOBIOM (20) solving a system of linear equations, with respect to these
indicators, (21). It is remarkable that, as in section 2.2, these computations avoid
direct evaluations of underlying probability distributions. Yet, it is complicated to
derive the indicators and the solutions in an analytical form, as in section 2.2. There-
fore, we consider some numerical results of stochastic GLOBIOM: in particular, his-
tograms of global storage withdrawals

P
i z

�
is hedging regional and global systemic

risks, which can be fine-tuned by parameter ps to a desirable level.

4. Numerical Results

This section analyses the advantages of robust solutions derived with stochastic GLO-
BIOM vs. solutions derived using traditional scenario analysis of its deterministic
counterpart. The two-region stochastic model in section 2.2 illustrates the essential
differences between these solutions. In particular, somewhat surprisingly, the ineffi-
cient region 2 (e.g. more labour- than capital-intensive), that is inactive in the deter-
ministic case, becomes unconditionally active in the stochastic model, enabling robust
production to fulfill biofuel security constraints. We calculate the ‘VSS’, which is used
to measure the importance of applying the stochastic model (Birge, 1982).

4.1. Data

Using data from 1960 to 2012 made available by the Food and Agriculture Organiza-
tion (http://faostat.fao.org) we derive yield probability distributions to model yield
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shocks according to different regions and crops. The analysis follows the approach
used in Beach et al. (2010). The data have been detrended and normalised by 2012
yield. As an example, histograms (i.e. empirical probability distributions) of wheat
yield based on a 52-year data series are depicted in Figure 1 for selected countries.

Yield distributions are characterised by multimodal shapes which precludes the use of
mean-variance criteria and indicators (Markowitz, 1952). Figure 1 also shows the main
statistics (i.e. average and main – 5th, 50th and 95th – percentiles) of yield distributions.
Countries such as France and China are characterised by higher yields and smaller yield
variability. In Russia, US and Brazil, the yields are smaller and the variability is larger.

4.2. Robust solutions: Strategic and operational decisions

In this paper, robust solutions of stochastic GLOBIOM comprise strategic decisions
(land allocation by LUS and storage capacities) and related adaptive decisions (trade,

France Russia

ChinaIndia

Brazil US

Figure 1. Empirical wheat yield distribution by selected grain producers, 1960–2012
Notes: Horizontal axis denotes yield (in kilograms per hectare of harvested land) and vertical
axis shows the number of years (frequency) the corresponding yield occurred in the 1960–2012
period. Cumulative distribution refers to the percentage of total of the yield occurrences at or

below the value on the horizontal axis.

Source: FAO, http://faostat.fao.org.
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storage withdrawals, prices, demands). Stochastic GLOBIOM runs for a time horizon
of 40 years (from 2010 to 2050) with a time step of 10 years. Stochastic yields are rep-
resented by a finite set of historical yield scenarios from 1960 to 2015, analysed in sec-
tion 4.1. In the calculations, we use food, feed, water, environmental and biofuel
security constraints by requiring that, in each yield scenario, the demand for food,
feeds and biofuels is not less than the exogenously given targeted levels, as in equa-
tion (13) and functions (14). Water security is introduced through a constraint on the
total admissible water consumption by the following activities: crop production and
processing, animal farming, forest production and processing, and biofuel production
and conversion. GHG emissions targets from LUS (Valin et al., 2013) are included as
environmental security constraints.

The benefits of robust solutions derived with stochastic GLOBIOM over the solu-
tions of its deterministic counterpart are measured with the VSS. The VSS is calcu-
lated by comparing the value of the stochastic goal function F(x*sto) (equation S1 in
the supplementary Appendix, available online) using the robust x*sto solution with
the value of the stochastic goal function F(x*det) using the deterministic x*det solution.
The value F(x*sto) is by about 25% higher than F(x*det), indicating the gains from
using the stochastic model.

We analyse two cases of policy recommendations. The first case (C1) represents a
popular approach to examining uncertainty and risks through a scenario analysis;
that is, deterministic GLOBIOM is run in a ‘what-if’ manner, using alternative yield
scenarios. In each scenario, the model provides scenario-specific recommendations.
The second case (C2) involves stochastic GLOBIOM and corresponds to planning
under uncertainty and risk when strategic (ex-ante) decisions on land allocation
between LUS are made before information on stochastic yields becomes available.
These decisions are adjusted using adaptive (ex-post) decisions (trade, storage with-
drawals, prices) after the actual yield is observed, thus ensuring robustness of coordi-
nated strategic and adaptive decisions. The combination of the decisions minimises
the costs of implementing the strategic decisions and the costs of adjustment actions
in response to each yield shock propagating through LUS.

In case (C1), GLOBIOM assumes that a spatio-temporal yield scenario occurs with
probability 1, and there is no need to adjust to shocks. When all is known in advance,
LUS can manage without ex-post responses. In each yield shock scenario, the global
commodity market redistributes production ‘shortages’ between regions so that food,
energy, water and environmental constraints are satisfied. However, the implementa-
tion of these scenario-dependent solutions can require considerable adjustments, such
as conversion of forest into crop land or additional irrigation capacities if, for exam-
ple, a drier than anticipated year occurs. Figure 2 presents percentage of land in dif-
ferent LUS in C1 and C2 cases at the global level.

To fulfill FEWES targets in the face of all yield shocks, stochastic GLOBIOM sug-
gests that crop land be used only 0.1% more compared with the results of determinis-
tic GLOBIOM (C1) under the average yield scenario (Figure 2, panel a). In some
yield scenarios, for example, those in the year 2000 when droughts occurred simulta-
neously in Australia, Russia and China (Zou et al., 2005; Spinoni et al., 2015), the
actual demand for crop land may exceed the robust requirement (demand) for crop
land calculated using stochastic GLOBIOM.

Having the possibility of flexible ex-post adjustments to all potential scenarios,
stochastic GLOBIOM recommends qualitatively different solutions. For example,
natural ecosystems should be preserved, the conversion of natural forests into
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managed woodland should slow down, grass land should be protected as an impor-
tant feed source for livestock (see panels b and c in Figure 2). At the same time, it cal-
culates a higher percentage of short-rotation tree plantations to fulfill bioenergy goals
(Figure 2, panel e). All conversions come primarily from natural land (Figure 2, panel
f). It is critically important that robust strategic decisions on land allocation among
LUS are supplemented with adaptive scenario-specific trade decisions ys in the objec-
tive function (12). Stochastic GLOBIOM accounts for spatial dependencies between
yield shocks (FAO, 2011) and suggests scenario-specific geographical diversification
of trade across uncorrelated (or negatively correlated) regions and commodities.

(a) Crop land (b) Grass land

(c) Natural forest (d) Managed forest

Planted forest Natural land
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Figure 2. Percentage of total land occupied by different LUS calculated using stochastic GLO-
BIOM (Robust, C2), deterministic GLOBIOM under the average yield scenario (Average yield
scenario, C1), and deterministic GLOBIOM under extreme shock scenario (2000 yield shock
scenario, C1). Horizontal axis labels simulation year and vertical axis identifies percent. (a)

Crop land; (b) Grass land; (c) Natural forest; (d) Managed forest; (e) Planted forest; (f) Natural
land.
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To hedge global systemic risks and ensure FEWES goals, stochastic GLOBIOM
makes use of storage facilities (which in the deterministic case are not required) to
hedge regional and global (systemic) risks of shortfalls. They are essential for self-suf-
ficient management of interdependent systemic risks to cover food demand when trad-
ing is restricted or limited because of a direct or indirect (induced) yield and price
shocks, or when land and water resources are scarce. Thus, storage can be viewed as
insurance in cases where no other sources of supply, domestic or foreign, are avail-
able. In this sense, storage capacities measure the systemic risks and (in)security, as
discussed in section 3.3. From the formal point of view, storage withdrawals corre-
spond to decision variables zis in (12) and (21). By changing pi, the stochastic model
can achieve more or less systemic risk hedging. Adjustments of storage can be intro-
duced to help ensure the required global FEWES levels, as discussed in section 3.3,
equation (21).

Our calculations using stochastic GLOBIOM show that stochastic yields induce
considerable volatility of global prices affecting various regions (Wright, 2011).
This reduces the robustness of trade-based systemic risk management. Therefore,
robust solutions of stochastic GLOBIOM in the presence of grain storage can
increase the feasibility of biofuel targets, as discussed in section 2.2. For example,
storage capacities (Figure 3) of about 80 and 300 thousand tons for rape and sun-
flower, respectively, modulate the instantaneous demand for crop land caused by
a yield shock (similar to the year 2000, as in Figure 2, panel a), and decrease the
investments in and conversion of rainfed land into irrigated land to sustain rare
high-impact shocks. Global reserves (Figure 3) of about 1,000, 250, 80 and 300
thousand tons of rice, barley, wheat, rape, sunflower, respectively, can obviate the
need for investment in the irrigation of about 3,545 thousand hectares of agricul-
tural land globally.

The availability of storage decreases prices and stimulates the increase in demand
for commodities produced in interdependent LUS and necessary for FEWES. Fig-
ure 4 compares global demand for selected crops. For example, stochastic GLO-
BIOM allows that rice and wheat demand be increased by about 4.5% and 6%,
respectively, compared with the deterministic model. On the other hand, the model
suggests that production of rape and sunflower be decreased by about 5% and 6%,
respectively. Stochastic GLOBIOM also recommends that biofuel targets can be ful-
filled at lower cost through using cheaper biofuel feedstocks, e.g. second-generation
biofuels from lignocellulosic biomass produced on short rotation tree plantations
(Figure 1, panel e).

5. Concluding Remarks

The paper develops the stochastic GLOBIOM model, accounting for interdependen-
cies among the main LUS on the global, national, and grid-cell levels. As section 2
demonstrates, shocks due, for example, to weather variability, may induce systemic
risks that implicitly affect non- risky regions and activities. Analysis of FEWES in
LUS under these ‘distributed’ risks requires robust solutions that comprise a proper
set of ex-ante strategic (first-stage) and ex-post adaptive (second-stage) decisions
enabling flexible adjustments to be made when new information becomes available.
Thus, the ex-ante first-stage decisions cover only a fraction (quantile) of the risks
determined by the FEWES requirement, whereas second-stage decisions hedge the
rest of the exposure.
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The risks in general stochastic GLOBIOM are defined by a system of quantile-
based multi-dimensional security equations characterising production and resource
shortfalls (shortages) at regional and global level (section 3). Robust management of
shortfalls requires additional decisions to be made, for example, such as grain, water
and energy stores, where storage capacities are similar to global and regional catastro-
phe funds. In section 4 we show that stochastic GLOBIOM calculates robust grain
and oilseed storage, which, in the presence of yield shocks and resource constraints
help to fulfill combined FEWES targets (e.g. biofuel security) at lower costs without
diverting grains from human consumption. By proper risk-adjusted spatial redistribu-
tion of production and selection of management strategies and processing technolo-
gies, stochastic GLOBIOM suggests lowering production of biofuel crops such as
rape and sunflower and instead making use of cheaper feedstocks such as lignocellu-
losic biomass from short rotation tree plantations. Analysing grain and oilseed stor-
age is essential for self-sufficiency of world regions coping with potentially extreme
events affecting large territories; for example, droughts may reduce yields, restrict
trading, increase prices, and so on.

The combination of robust ex-ante and ex-post solutions is evaluated by stochastic
GLOBIOM for 28 world regions accounting for interdependent trade and respecting
security constraints. We find that, in many regions, current policies relying on degen-
erated solutions from deterministic models are not robust. The results of stochastic
and deterministic GLOBIOM are compared at the global level showing that while the

(a) Rice. (b) Wheat.

(c) Rape. (d) Sunflower.
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Figure 3. Distribution of storage withdrawals, in thousand tons, at the global level. Frequency
refers to the absolute number of withdrawals within a range identified on the horizontal axis.

Cumulative refers to the percentage of total withdrawals at or below the value on the horizontal

axis. (a) Rice; (b) Wheat; (c) Rape; (d) Sunflower.
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robust land allocation among LUS fulfills FEWES targets in the face of all yield
shocks, the policy recommendations from deterministic GLOBIOM are scenario-
dependent. For example, in some scenarios the demand for crop land may exceed the
robust requirement (demand) calculated using stochastic GLOBIOM. In section 4,
the benefits of robust solutions derived with stochastic GLOBIOM over the solutions
derived by scenario analysis of its deterministic counterpart are measured with the
VSS. The calculated VSS indicates the importance of including uncertainties when
designing robust solutions.

Supporting Information

Additional Supporting Information may be found in the online version of this article:
Appendix S1. Detailed description of stochastic GLOBIOM.
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