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ABSTRACT 

In recent decades, many megacities in the world have suffered from increasingly frequent 

heat waves.  During heat waves, air-conditioners, refrigerators, and electric fans add a considerable 

peak demand on electrical utility grids, and on the supply side, high temperatures exert adverse 

effects on electricity generation, transmission, and distribution. Without pro-active planning and 

mitigation measures, the overloading would result in more frequent blackouts (the complete failure 

of electricity distribution) and brownouts (voltage reductions). To facilitate a pro-active planning, 

which aims to replace blackouts and brownouts by a rationing regime in selected sectors, this 

research proposes an integrated modeling tool which couples a regression model between daily 

electricity use and maximum temperature over the summer and a mixed input-output model with 

supply constraints. With the help of available data in Shanghai, China, we show that this tool is 

capable of quantitatively estimating the overall economic effects and sequential changes in carbon 

emissions, which a given magnitude of power rationing in a specific sector can exert across all 

sectors. The availability of such information would enable decision makers to plan an electricity 

rationing regime at the sector level to meet the double criterions of minimizing the overall 

economic losses and maximizing the extent of carbon emission reduction. 
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1. Introduction 

 

In the Summary for Policymakers of the Working Group III to the 5th Assessment Report of 

the IPCC, it is clearly stated that in the last 130 years, the world has warmed by approximately 

0.85C; and furthermore, each of the last 3 decades has been successively warmer than any 

preceding decade since 1850 [1].  This increasing global warming trend, in combination with the 

heat-island effects of large urban establishments, has led to more frequent events of heat waves in 

many mega-cities across the world in recent decades.  Extreme high air temperatures lasting for 

several days can contribute directly to deaths from cardiovascular and respiratory disease, 

particularly among elderly people. For example, in the heat wave of summer 2003 in Europe, more 

than 70,000 excess deaths were recorded [2].  To mitigate the adversary impact of a heat wave on 

human health and to save human lives, power suppliers should grant the top priority to the cooling 

of residential and working spaces in power supply management. However, when air-conditioners, 

refrigerators, and electric fans add heavier power loads to the grid, blackouts (the complete failure 

of electricity distribution) and brownouts (voltage reductions) may occur as the power companies 

struggle to deal with the heat wave-caused problems with generation, transmission and distribution, 

in addition to the burden of overloading [3-4].1  This tension is much higher in big cities where 

economy is booming and demand for electricity increases rapidly owing to fast social-economic 

development and population growth. For example, the air conditioner ownership in Shanghai has 

increased from 93 in 2003 to 207 in 2013 per hundred households [7]. During heat wave, electricity 

shortage in Shanghai often reaches 1 million kWh or even a much higher level, and consequently, 

power rationing has to be imposed on certain sectors with very short notice [8].       

 Much research attention has been paid to the design of a power rationing regime. Given the 

complexity in assessing the direct and indirect impact of power rationing across many social and 

economic systems, decision-making regimes based on expert opinions has been regarded as the 

most practical approach [9-13].  However, experts’ opinions are often diverse and difficult to be 

                                                             
1 For example, during a two-week event of a heat wave in California in July 2006, Pacific Gas and Electric Company 

(PG&E), the biggest power company in the state, reported that heavy electricity use and ambient temperature heated 

the transformers and they failed to cool. This in turn tripped circuit breakers, broke fuses and burned the insulation, 

causing short circuits inside the transformers. In northern California, 1.2 million PG&E customers experienced 

electricity shortages when 1,150 distribution line transformers failed to cool down and stopped operating [3, 5-6]. 
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quantified and standardized. As a consequence, it is hard to monitor and objectively evaluate such 

decision-making processes. In the case where biased opinion driven by conflict interests become 

influential, the resultant rationing plan could lead to more social and economic problems than the 

plan could solve. Fahrioglu and Alvarado [14] employed the ‘revelation principle’ of game theory 

to design incentive compatible contracts for encouraging customers to participate in a demand 

management program. The goal of this approach is to get certain load relief when needed and to 

do so in a cost effective way.  While such a theoretical design is potentially helpful to reduce the 

peak load during a heat wave, it is unclear where the boundary should be for the cost-benefit 

calculation by the contracting parts in practice. In other words, it would be very difficult for such 

a contract to incorporate indirect impacts on upstream and downstream sectors.  

In this research, we propose an integrated modeling tool that combines a regression model, 

which quantifies the relationship between daily electricity use (or peak load) and daily maximum 

temperature, and a mixed input-output model with supply constraints.  This tool is designed to 

facilitate a pro-active rationing regime in selected sectors with the intention to avoid shocks of 

sudden blackouts and brownouts.  The close relationship between daily maximum temperature and 

daily electricity consumption or peak load in summer months has been acknowledged by a large 

number of studies [15-24]. Many researches have employed this relationship to forecast the 

electricity demand at hourly, daily and weekly time-steps [23-27].  In this study, we establish this 

relationship based on Shanghai’s data and employ the relationship to estimate the extent of power 

shortage gap for 1C increase in daily maximum temperature during heat wave.  We call this extent 

of power shortage gap the Marginal Shortage Gap (MSG).  In a standard Input–Output (I-O) model, 

a change in final demand would stimulate changes in output and incomes across all economic 

sectors via a multiplier mechanism. However, an electricty rationing at the scale of the MSG in a 

specific sector leads to a constraint to the production activities in the sector and as a consequence, 

output of this sector will not automatically expand or shrink in direct proportion to changes in final 

demand. This means that the standard I-O model needs to be modified to incorporate supply 

constraints associated with the rationing, permitting a more realistic evaluation of multiplier effects 

across the economy [28], as we will present in details in Section 2.3. In addition to evaluating the 

direct and indirect impact on sectoral outputs, it is also important to estimate the changes in CO2 

emission induced by the above magnitude of electricty rationing. For the latter purpose, we extend 

the I-O model with a vector of sectoral CO2 emissions coefficients and this leads to an 
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environemtally-extended I-O model [29-31].     

We take Shanghai in China as an illustrative example to demonstrate the usefulness of this 

coupled modeling tool. We show that this tool is capable of quantitatively estimating the overall 

economic effects and carbon emissions consequences which a given magnitude of power rationing 

as measured by the MSG in a specific sector can impose to all sectors. Based on these estimations, 

we can rank individual economic sectors by (a) the total GDP loss, (b) total reduction of CO2 

emissions, and (c) the ratio of (a) to (b), as triggered by the given extent of power rationing in the 

sector. The availability of such information would enable decision makers to plan an electricity 

rationing regime at the sector level to meet the double criterions of minimizing the overall 

economic losses and maximizing the extent of carbon emissions reduction. 

Although the concept of adaptation to climate change has received increasing attention in 

recent years, for heat waves, anticipatory adaptation is not common as governments and power 

companies are not willing to expend effort or money without clear warnings of risks or obvious 

losses [4]. This paper provides a simple and effective tool for decision makers in governments and 

utility companies to clearly access the direct and indirect losses of a MSG shock to each individual 

sector of the economy. This makes it much easier for government agencies and utility companies 

to design short-term adaptation measures before and during a heat wave. To the best of our 

knowledge, there is no comparable work in the literature and this means that our work fills in an 

important niche in the field of applied energy.  

 

2. Materials and Methods 

 

2.1. Daily Weather and Electricity Data 

Daily maximum temperature data are the observation records of Xujiahui Meteorological 

Observatory Station [32]. Xujiahui Station is located in one of commercial centers of Shanghai. It 

was the first Meteorological Observatory Station in East Asian and has followed the highest 

standard in its operation.  We take July 1st to August 31st in 2007 as the illustration period for two 

reasons. First, heat waves occurred frequently during these two months. Second, the latest input-

output table publicly available for Shanghai is the 2007 table. The daily electricity consumption 

and peak-load data are from the State Grid Shanghai Municipal Electric Power Company [8]. 
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2.2. Input-output Table and CO2 Emissions Data 

The 2007 input-output table with 144 sectors is obtained from the Survey Office of the 

National Bureau of Statistics in Shanghai [7]. The I-O table reports the final consumption and 

value added for each of the 144 sectors, as well as the inter-sectoral supply and intermediate use 

matrix. The CO2 emissions data for Shanghai are calculated based on the Yearbook of Shanghai 

Energy Statistics and the IPCC reference approach [33-34], with China-specific emission factors 

being used [29-31] instead of the IPCC default value as described in [30]. The CO2 emissions data 

cover 44 sectors. Therefore, we established a matching procedure to link the two datasets. For 

presentation convenience, we report results for these 44 aggregated sectors. The results for 144 

sectors are also available upon request.2 

 

2.3. Mixed I-O Model with Supply Constraint 

The basic I–O model presents the state of an economy during a single accounting period 

(generally a year) and enables to analyze the changes from one state to another as triggered by 

exogenous shocks. Dealing with discrete and explicit changes in economic structure through 

rigorous accounting constitutes the most distinguished feature of I–O modeling. This feature 

makes I-O model powerful in evaluating the direct and indirect impacts of alternative policy 

options, in dealing with contingencies and shocks, across all sectors of the economy. Through the 

evaluation of alternative policy options and by pinpointing the inadequacies and inconsistencies 

in some of the options, as a basis for improving them, policy evaluation based on I–O modeling 

can stimulate new insights in the search for the most promising policy choice. 

In the standard I-O model, changes in the exogenously given vector of final demand (y) are 

driving the economy via a matrix of output multipliers, i.e., the Leontief inverse (I – A)–1, leading 

to changes in sectoral output (x): 

(𝐼 − 𝐴)−1𝑦 = 𝑥 .                                                                          (1) 

To calculate CO2 emissions triggered by y, we extend the I-O model in Eq. (1) with a vector 

of sectoral CO2 emission coefficients e, which is defined as CO2 emissions per unit of economic 

                                                             
2 To evaluate the effects of a MSG shock for each of the 144 sectors, we disaggregate the emission data to match the 

I-O sectors instead of aggregating I-O sectors.  
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output in individual economic sectors n:  

𝑒 =  [𝑒1, 𝑒2 … 𝑒𝑛].                                                                                                           (2) 

Thus, the total change in CO2 emissions triggered by y can be calculated by: 

CO2 = e (I – A)–1y.                                                                             (3) 

It is worth noting that the standard I-O model assumes that the economy adjusts, within the 

given statistical year, to changes in spending patterns. All production activities are assumed to be 

endogenous and demand-driven, owing to the assumed excess capacity throughout the economy. 

Supply is assumed to be perfectly elastic in all sectors, and a change in demand is sufficient to 

stimulate changes in output and incomes across other sectors. However, in the case of this study, 

it is clear that the sector with power rationing will not automatically expand or shrink its output 

level in direct proportion to changes in final demand. A direct application of Eq. (1) in this case 

would provide multiplier estimates that are unrealistically large due to the simple assumption on 

supply response. To accommodate supply constraint caused by electricity rationing, we adopt the 

mixed I-O model with supply constraint as developed in [35-36]. The basic setup of such a mixed 

model is given by  
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The sub-matrices in Eq. (4) are defined as follows. 

P  is the k  k matrix containing the elements from the first k rows and the first k columns in (I – 

A), and represents average expenditure propensities of non-supply constrained sectors. The 

sectors have been labeled so that the first k sectors indicate the endogenous elements and the 

last (n – k) sectors are the exogenous sectors.  

R  is the (n – k)  k matrix containing elements from the last (n – k) rows and the first k columns 

of (–A) and represents average expenditure propensities of non-supply constrained sectors on 

supply constrained sector output. 

Xno  is the k-element column vector with elements x1 through xk;, representing endogenous total 

output of non-supply constrained sectors. 

Yco is the (n – k)-element column vector with elements yk+1 through yn, representing endogenous 

final demand of supply-constrained sectors.  
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Q is the k  (n – k) matrix of elements from the last (n – k) rows and first k columns of  (–A) the 

matrix, and represents supply constrained sector expenditure propensities on non-supply 

constrained sector output. 

S is the (n – k)  (n – k) matrix of elements from the last (n – k) rows and columns of – (I – A), 

and represents average expenditure propensities among supply-constrained sectors. 

noY  is the k-element column vector of elements y1 through yk , representing exogenous final 

demand for non-supply constrained sectors. 

coX  is the (n – k)-element column vector of elements xk+1 through xn, representing exogenous total 

output for supply constrained sectors. 

In above explanation of Eq (4), n stands for the total number of sectors in the input-output table, k 

refers to the number of the power rationing sectors.  

In terms of our study, noY  corresponds to the change in the final demand of electricity supply 

sector caused by exogenous shock of a heat wave, and is calculated as the difference between peak-

load in the heat wave and peak-load without the heat wave. We assume there is no exogenous 

change of final demand in other sectors. coX  represents the direct output reduction of the sector 

which is under power rationing. We will impose power rationing at the scale of MSG sector by 

sector.  𝑋𝑛𝑜 refers to the output change of the non-power rationing sectors induced by the indirect 

impact of the power rationing. Because the power supply of the electricity generation sector 

reaches the maximum capacity during the heat wave, the extra power needs will show up as 

negative numbers in the accounting system. 𝑌𝑐𝑜 stands for the final demand change of the power 

rationing sectors  

 

2.4. Setting for Evaluating Electricity Rationing Choices across Economic Sectors 

The electricity rationing plan is designed to handle the situation when electricity demand 

increases significantly owing to a heat wave shock and the demand surpasses the maximum power 

supply capacity at an interval around the peak. In order to mitigate the adversary impact of a heat 

wave on human health and to save human lives, electricity use for cooling residential and working 

spaces will not be targeted for rationing.  In order to maintain the safe functioning of the city 

systems, electricity supply to several key sectors such as food, water and energy supply, public 

transportation, and medical and educational services will not be rationed. As a consequence, the 
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rationing plan is designed to target industrial sectors. 

  

 

Fig. 1. Flowchart of the evaluating procedure 

 

Because there was no record of a daily power shortage, we calibrated a proxy measurement 

as follows. We run a linear regression between daily power use and daily maximum temperature 

over all work-days in July and August in 2007 and take the slope coefficient of the regression 

model as the proxy measure of the marginal shortage gap (MSG) in response to 1C increase in 

daily maximum temperature during a heat wave. Section 3.2 will report the result of this regression 

and its statistical reliability.  We also convert MSG into monetary value based on average 

electricity price for its convenient use in the mixed I-O table. By imposing an MSG shock to the 

mixed I-O model (Eq. 4) and run the rationing loop across industrial sectors, we can rank industrial 

sectors in terms of (a) the magnitude of total GDP loss (economic cost), (b) the extent of total CO2 

emissions reduction (environmental gain), and (c) the ratio between GDP loss and emissions 

reduction (economic cost of environmental gain), respectively, as triggered by the MSG shock. 



9 
 

Figure 1 presents the flowchart of this evaluation procedure.  

 

2.5. Limitation of the Method 

Two limitations to our evaluating method are worth mentioning. First, the fixed technical 

coefficients of the A-matrix in our mixed I-O model with supply constraint imply that the amount 

of electricity input for producing one unit of sectoral output is fixed and will not change during a 

heat wave. This may lead to an over-estimation of economic losses triggered by a heat wave 

because some end-users may switch to less electricity-intensive ways of working (e.g., more 

intensive utilization of underground spaces for office work and storage). However, the extent of 

such electricity saving is limited. Second, we do not explicitly take into account the possible 

reduction of power-supply capacity caused by the adversary effects of a heat wave on electricity 

generation, transmission and distribution system. This omission may lead to an under-estimation 

of the extent of power-shortage. This limitation can be overcome with the help of technical data 

from the power generation, transmission and distribution system.    

 

3. Results and Discussions 

 

3.1. Daily Maximum Temperature and Electricity Use Regression     

We run two regressions, one between daily electricity use and daily maximum temperature 

and the other between daily peak load and the maximum temperature over work-days during July 

and August in Shanghai. While both regressions are statistically well-performed, the first 

regression produces a higher R2 value at 0.761, in comparison with a R2 value of 0.719 from the 

second regression. Therefore, we employ the first regression. Figure 2 presents the scatter plot and 

the fitted line of the first regression. The figure indicates a close association between daily 

electricity consumption and maximum temperature. Such a close association was clearly owing to 

the electricity demand for cooling residential and working spaces in a very hot summer when the 

average of daily maximum temperature was 34.4C and the highest value of daily maximum 

temperature was 39.5C. The slope coefficient of the fitted line is 8.47, indicating that a 1C 

increase in daily maximum temperature typically requires an additional power supply of 8.47 

million kWh, which amounts to about 2.3% of the average daily electricity consumption over July 

and August in 2007. We take 8.47 million kWh as the MSG in our simulations.  
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Fig. 2. Linear regression between daily electricity use and daily maximum temperature (p-value 

< 0.001) 

 

3.2. Electricity Consumption and CO2 Emissions in 20 Industrial Sectors 

As discussed in Section 2.2, the sectoral match between the I-O table and list of CO2 emission 

inventories results an aggregate I-O table with 44 sectors. After excluding those critical for the 

safe functioning of city systems, 20 industrial sectors are identified for potential implementation 

of electricity rationing, as listed in Figure 3.  

Figure 3 shows the monetary value of electricity use as intermediate input in each of the 20 

industrial sectors targeted for potential power rationing. The values range from 3.1 million to 1.4 

billion Yuan. The top three sectors are Smelting and Pressing of Ferrous Metals, Metal Products, 

and Ordinary Machinery, with a value of power consumption over 1 billion Yuan per annum. 

Figure 4 reports the share of electricity purchase in the total sectoral output across these 20 sectors. 

It can be seen that the Metal Products sector is most electricity-intensive, where electricity 

purchase accounts for 1.32% of the total sectoral output, followed by the sector of Smelting and 

Pressing of Ferrous Metals, with a share of 0.75%.  
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Fig. 3. Monetary value of electricity use as intermediate input in each of the 20 industrial sectors 

in 2007 
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Fig. 4. Share of electricity purchase in the total sectoral output in 2007 

 

The total CO2 emissions of Shanghai was 200 million tons in 2007. Direct emissions from 

these 20 industrial sectors accounted for about 25% of the total emissions or 51.7 million tons. As 

shown in Figure 5, the top five emission sectors are Smelting and Pressing of Ferrous Metals, 

Nonmetal Mineral Products, Construction, Raw Chemical Materials and Chemical Products, and 

Ordinary Machinery. The Smelting and Pressing of Ferrous Metals sector was by far the largest 

emitter and directly emitted 37.4 million tons of CO2 in 2007, which accounted for 72.3% of the 

total emissions from these 20 industrial sectors and 18.7% of the city total emissions. Table 6 ranks 

these 20 industrial sectors by CO2 emissions intensity, which is measured by direct emission 

quantity per unit of sectoral output. It shows that the Smelting and Pressing of Ferrous Metals and 

Nonmetal Mineral Products were the most emission-intensive sectors, with an intensity level as 

about 204 and 130 thousand tons per million Yuan, respectively. At the ranks 3-5 were the Textile, 

Papermaking and Paper Products, and Other Manufacturing, with an emission intensity above 100 
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thousand tons per million Yuan. 

 

 

Fig. 5. Direct CO2 emissions from each of the 20 industrial sectors in 2007 

 

 



14 
 

 

Fig. 6. CO2 emission intensity in the 20 industrial sectors in 2007 

 

3.3. Evaluating Economic Loss versus Environmental Gain across Industrial Sectors 

 

We run the MSG-based rationing loop across industrial sectors as presented in Section 2.4. 

The results show that for 14 sectors among the 20 industries, in each of them the direct output loss 

caused by this MSG-based rationing is greater than its average daily output. This implies that a 

complete shut-down of the sector for one day would be insufficient to solve the shortage problem 

on the day. We exclude these 14 sectors from the priority list of power rationing. The remaining 

sectors include Raw Chemical Materials and Chemical Products, Construction, Nonmetal Mineral 

Products, Smelting and Pressing of Ferrous Metals, Ordinary Machinery, and Equipment for 

Special Purposes.    

The total GDP loss triggered by the MSG-based rationing in each of the above selected 6 
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sectors is presented in Figure 7. A comparison across Figures 3, 5, and 7 shows that while the 

Smelting and Pressing of Ferrous Metals is the largest sector in terms of electricity use as 

intermediate input (Fig. 3) and direct CO2 emission (Fig. 5), it takes only the number 4 position in 

Figure 7, which ranks the 6 priority sectors from the least to the largest GDP loss as triggered by 

the MSG-based rationing in each of the sectors. The previous practices in Shanghai often regarded 

this sector as the priority target for power rationing owing to its top position in Figures 3 and 5. 

Our result in Figure 7 suggests that if a power rationing at the scale of the MSG were imposed on 

the Raw Chemical Materials sector rather than the Smelting and Pressing of Ferrous Metals, the 

total GDP loss could be reduced by 85 million yuan, which is a significant saving for one day.   

The reduction of CO2 emissions triggered by the MSG-based rationing in each of the 6 sector 

is presented in Figure 8. Because the Smelting and Pressing of Ferrous Metals sector is by far the 

largest sector in term of direct CO2 emissions (Fig. 5), it is not a surprise that the greatest reduction 

of 42,000 tons can be triggered by a power rationing at the scale of MSG in this sector. The number 

2 sector in Figure 8 is Nonmetal Mineral Products, and this is consistent with its rank in Figure 5. 

Interestingly, while the Ordinary Machinery sector ranks number 5 in Figure 5, it moves to number 

3 in Figure 7. This move-up can be attributed to the fact that the up-stream and down-stream 

industries of this sector are relatively more CO2 intensive and this results in a significant reduction 

in terms of indirect CO2 emissions. 

Although the issue on how to effectively coordinate the policy choices based on the different 

ranks in Figures 7 and 8 are subject to political consideration of the local planners, based on our 

research findings we can propose a simple indicator which can help decision-makers to evaluate 

the economic cost of emissions reduction as triggered by a given degree of electricity rationing. 

This indicator is the ratio of the total GDP loss to the reduction of total CO2 emissions (thousand 

Yuan/ton) as triggered by the rationing. Figure 9 reports this ratio for the 6 priority sectors for 

power rationing. It shows that the power rationing in the Nonmetal Mineral Products sector results 

in the lowest economic cost of CO2 reduction at 2,900 yuan/ton, followed by the Smelting and 

Pressing of Ferrous Metals sector and Ordinary Machinery sector, at 3,100 and 5,900 yuan/ton, 

respectively. In contrast, the rationing in the Raw Chemical Materials and Chemical Products 

sector results in the highest economic cost of CO2 reduction at 25,400 yuan/ton, which is about 9 

times higher than the figure triggered by the rationing in the Nonmetal Mineral Products sector. 
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Fig. 7. Total GDP loss triggered by MSG rationing in 6 sectors 

 

 

 

Fig. 8. The reduction of total CO2 emissions triggered by MSG power rationing in 6 sectors 
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Fig. 9. Ratio of GDP loss to the reduction of CO2 emissions in 6 sectors 

 

4. Concluding Remarks 

 

Three great challenges of the 21st century for many megacities in the world are maintaining 

sustainable economic growth, fostering low-carbon development, and managing climate change. 

While failure on any of them would lead to failures on the other two, a well-constructed response 

to one can provide great advantages and opportunities for the others. This research aims to facilitate 

a well-constructed short-term electricity rationing regime for managing electricity shortage caused 

by heat wave shocks. The regime should eliminate the shock incidents of blackouts and brownout, 

minimize the overall economic cost of the electricity rationing, and maximize the environmental 

gain of the rationing. We have proposed a policy support tool which combines a regression model 

between daily electricity use and maximum temperature over the summer months and a mixed 

input-output model with supply constraint. We applied this tool to the datasets of Shanghai in 

China and ranked individual industrial sectors of Shanghai according to (a) the total GDP loss, (b) 

total reduction of CO2 emissions, and (c) the economic cost of emissions reduction, as triggered 

by a given degree of electricity rationing enacted in the sector.  These results on ranks and the 

magnitudes of losses and gains will provide scientifically integrated information for the local 

planners to effectively identify priority policy choices and coordinate policy actions in line with 

their political consideration and value judgement. Given the concern in the literature that for heat 

waves, anticipatory adaptation is not common owing to the lack of simple and effective tools to 
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clearly assess the risks and losses caused by a heat wave [4], our work fills an important niche in 

the field of applied energy. 

It is worth noting that the prerequisite for applying this tool is the availability of well-

constructed input-output table at the city level and the table should not be behind the current year 

for more than five years because some technical coefficients may experience significant change 

after five years. Although this prerequisite may form a hard constraint for the applicability of this 

decision supporting tool in many cities, it is highly possible that the rapid progress in big-data 

collection, consolidation, and analytics would make such input-output tables widely available in 

near future.       
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