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Abstract

When banks extend loans to each other, they generate a negative externality in
the form of systemic risk. They create a network of interbank exposures by which
they expose other banks to potential insolvency cascades. In this paper, we show how
a regulator can use information about the financial network to devise a transaction-
specific tax based on a network centrality measure that captures systemic importance.
Since different transactions have different impact on creating systemic risk, they are
taxed differently. We call this tax a Systemic Risk Tax (SRT). We use an equilibrium
concept inspired by the matching markets literature to show that this SRT induces a
unique equilibrium matching of lenders and borrowers that is systemic-risk efficient, i.e.
it minimizes systemic risk given a certain transaction volume. On the other hand, we
show that without this SRT multiple equilibrium matchings can exist and are generally
inefficient. This allows the regulator to effectively ‘rewire’ the equilibrium interbank
network so as to make it more resilient to insolvency cascades, without sacrificing
transaction volume. Moreover, we show that a standard financial transaction tax (e.g.
a Tobin-like tax) has no impact on reshaping the equilibrium financial network because
it taxes all transactions indiscriminately. A Tobin-like tax is indeed shown to have a
limited effect on reducing systemic risk while it decreases transaction volume.
Keywords: Systemic Risk, Interbank Networks, Insolvency Cascades, Network For-
mation, Matching Markets, Transaction-Specific Tax, Market Design.
JEL Codes: C78, D47, D85, D62, D71, D53, G01, G18, G21, G32, G33, G38

∗The authors thank participants at the Financial Risk and Network Theory Conference 2016, Cambridge
University, UK, and at the 7th Annual Financial Market Liquidity Conference (2016), Budapest, Hungary,
where this work was presented, and particularly Péter Biró for detailed feedback.
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1 Introduction

Systemic risk is a property of interconnected systems, by which the failure of a small set of
entities can lead to the failure of a significant part of the system. Mechanisms by which such
failures can spread have been studied in financial and economic networks, where different
institutions (e.g. banks, funds, insurance companies, etc.) are exposed to each other through
a network of assets and liabilities (e.g. Eisenberg and Noe (2001), Boss et al. (2004), Gai and
Kapadia (2010) or Amini et al. (2013)). The insolvency of a particular institution can then
precipitate other institutions into insolvency, thus generating an insolvency cascade threat-
ening the whole system. It is now understood that systemic risk is a network property and
thus different network topologies exhibit different levels of resilience to insolvency cascades.
For example, Acemoglu et al. (2013), Elliott et al. (2015) or Glasserman and Young (2015)
study how the level of interconnectedness, in conjunction with exogenous shocks, affects the
resilience of financial or economic networks.

Since systemic risk is closely related to network structure, managing systemic risk can
be understood as attempting to shape the architecture of the financial network. While some
work has studied the formation of financial networks (e.g. Farboodi (2014); Zawadowski
(2013); Babus (2016); Anufriev et al. (2016)), less work has been devoted to controlling the
incentives that institutions (e.g. banks) may have to form a resilient network. Moreover, the
main policies and regulations currently employed or under consideration do not emphasize
network structure. In financial systems, one such policy consists of setting capital buffers or
reserve requirements, especially for systemically important institution1. Taxes imposed on
banks in the form of contributions to a rescue fund have also been implemented2. Finally,
financial transaction taxes (FTT) have also been proposed3. Such FTT’s however fail to
capture the idea that transactions between different counter-parties may have drastically
different impacts on the resilience of the whole financial system, as this depends critically on
their respective positions (and thus their centrality) in the network of assets and liabilities
(Poledna et al. (2016)). For instance, a borrowing bank that borrows from a systemically
important lending bank may inherit its systemic importance. Indeed if the former becomes
insolvent, then it may cause the insolvency of the latter, which can then initiate a large
insolvency cascade. On the other hand, if the borrowing bank borrows from a lending bank
with low systemic importance, then the insolvency of the former will have little impact of the
system, even if it causes the insolvency of the latter (Thurner and Poledna (2013), Poledna
and Thurner (2016)). More and more now, information about the topology of financial or
interbank networks is available to regulators (e.g. Central Banks) and this allows them to
measure the impact of different transactions on the resilience of the whole system.

1The Basel III framework acknowledges systemically important financial institutions (SIFI) and argues
for increasing their capital requirements. See for example Georg (2011).

2For example, the International Monetary Fund has proposed such a tax, the ‘financial stability contri-
bution’ (FSC). This means a contribution made by financial institutions to reserves for eventual crises. Such
taxes have also been proposed in many countries.

3Unlike a bank tax, a financial transactions tax (FTT) is a tax placed on certain types of financial
transactions. Such FTTs are being considered in various countries. A goal of such taxes is to curtail financial
market volatility (see, for example, Summers and Summers (1989) or Tobin (1978)). Related empirical
research generally remains ambiguous about Granger causality between FTTs and market volatility (e.g.
McCulloch and Pacillo (2011), Matheson (2012)).
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In this paper, we show how a regulator can use such information about the topology
of the interbank system to design incentives that help create a more resilient system. Us-
ing this information, the regulator can design a transaction-specific tax that discriminates
among the possible transactions between different lending and borrowing banks. By taxing
transactions between different counter-parties differently, a regulator can effectively control
the architecture of the financial system. A regulator can use this systemic risk tax (SRT)
to select an optimal equilibrium set of transactions that effectively ‘rewire’ the interbank
network so as to make it more resilient to insolvency cascades4. We prove that this can be
done without reducing the total credit (transaction) volume and thus without making the
system less efficient. This leads to the notion of a systemic risk-efficient equilibrium. The
intuition behind this result is that under the SRT, any given transaction volume is exchanged
under a different network configuration, which creates less systemic risk. Under this desired
configuration, transactions remains untaxed, whereas under other configurations, transac-
tions are taxed according to how much they increase systemic risk. This systemic risk tax
(Poledna and Thurner (2016)) is based on a notion of network centrality (e.g. Battiston
et al. (2012)) and can be easily implemented using information about the topology of the
interbank network and the banks’ capitalization.

To illustrate those facts, we study a stylized economy in which institutions (e.g. banks)
are hit by liquidity shocks from their clients and then trade that liquidity with other banks.
We derive a strategic equilibrium in which borrowing banks prefer to borrow from banks
offering the best terms (lowest borrowing rates) while lending banks, on the other hand,
manage their risk by setting a risk premium according to the probability of default of the
borrowing bank. This results in the creation of an interbank network of financial exposures
(loans), which carry default risk. Our equilibrium concept is inspired by the literature on
matching markets (e.g. Gale and Shapley (1962), Roth and Sotomayor (1992))5. Borrowing
banks are thus matched to lending banks in a way that reflects their preferences for one
another. We make no assumptions on the topology of the interbank system, instead allowing
it to emerge endogenously from the banks’ rational decisions.

We start by showing that under a standard bilateral contracting mechanism, in which the
lending rate is set according to the borrower’s default risk, multiple network configurations
can arise in equilibrium, and most of them may present ‘high’ systemic risk. We then show
that the proposed SRT allows a regulator to select a unique equilibrium network that is
efficient in the sense that it presents the lowest systemic risk given a certain transaction
volume. We also show that a standard financial transaction tax (FTT), such as a Tobin
tax, does not eliminate the multiplicity of equilibria and reduces transaction volume, while
having only a minimal effect on decreasing systemic risk. Indeed, a standard FTT has
no effect on controlling the topology of the financial system since it taxes all transactions
indiscriminately. In this sense, a SRT can be understood as a generalization of a standard
FTT, where each particular transaction can be taxed differently, thus allowing a regulator
to select distinct equilibrium configurations.

We also provide some additional results, such as that a risk management strategy by

4Such a tax was previously introduced and simulated using an agent-based model in Poledna and Thurner
(2016).

5It also bears similarities to equilibrium concepts found the literature on network formation games (e.g.
Jackson and Wolinsky (1996)).
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which lending banks favor the least risky borrowers leads to a unique equilibrium network
that is generally inefficient, i.e. it presents higher systemic risk than can be achieved with
the SRT.

The paper is structured as follows: In Section 2, we present a simple model for the forma-
tion of an interbank network in which banks extend loans to each other, thereby generating
dynamically a network of assets and liabilities. Our equilibrium concept is introduced. In
Section 3, we examine how this network of assets and liabilities creates systemic risk and
how the systemic risk of any set of transactions can be quantified. We then introduce the
systemic risk tax and compare its performance to that of a Tobin-like tax. Section 4 con-
cludes. For clarity, all proofs are presented in the appendix (Section 5), along with a detailed
analysis of the properties of equilibrium interbank networks under different regimes (no tax,
Tobin-like tax, systemic risk tax). We also examine different risk management strategies on
the part of lending banks and some model variations.

2 The Formation of the Financial Network

Before studying the impact of a particular tax policy on a firm’s resilience to insolvency
cascades, we must discuss how an interbank network is formed from the banks’ decisions and
how this creates systemic risk as an externality. In this section, we study how a financial
network is formed by the matching of borrowers to lenders. This matching emerges from
the strategic decisions of banks, since borrowers have preferences for lenders based on the
lending rates they offer. We introduce an equilibrium concept inspired by the literature on
matching (e.g. Gale and Shapley (1962)).

2.1 Assets, Liabilities and an Exogenous Bankruptcy Mechanism

We study a stylized economy in which there is a set N of n banks and a time horizon
t ∈ [0, T ], where T is a random terminal time. At any time t, each bank i ∈ N owns an
(external) risky asset of value Y i

t and an (external) long-term liability Z of constant value.
We assume that Y i

0 > Z so that a bank is initially solvent.
In addition to these (external) assets and liabilities, each bank has other assets and

liabilities related to the conduct of normal banking operations at each discrete time point
{1, 2, ..., bT c}. These are: (i) the interbank assets Ai,IBt and liabilities Li,IBt resulting from
interbank lending and borrowing; (ii) assets Ai,HHt and liabilities Li,HHt resulting from loans
to and deposits from client households. It also has an additional risk-free asset (e.g. a bond)
X i
t in which it invests some household deposits. We can then define the equity of a bank i

as its assets minus its liabilities: Ei
t = Y i

t + Ai,IBt + Ai,HHt + Xt − Z − Li,IBt − Li,HHt . The
balance sheet of a bank i at time t is shown in Table 1.

At any time t, a bank i can be in either of two states θit ∈ {0, 1}, where θit = 1 means that
the bank is ‘bankrupt’ whereas θit = 0 means that the bank is ‘not bankrupt’. A bankruptcy
occurs when its equity becomes negative, i.e. Ei

t < 0. To generate exogenous defaults, we
assume that at any time t, the risky asset Y i

t can undergo a negative jump and lose its full
value. In the absence of this negative shock, the risky asset preserves its initial value Y i

0 .
The value of the risky asset Y i

t can thus be expressed as Y i
t = Y i

0 − 1{Nt>0}, where Nt is a
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Assets Liabilities

Interbank Ai,IBt Li,IBt

Household-related Ai,HHt Li,HHt

X i
t

External Y i
t Z

Equity Ei
t

Table 1: Bank i’s Balance Sheet at Time t. It consists of: (i) the interbank assets Ai,IBt

and liabilities Li,IBt resulting from interbank lending and borrowing; (ii) assets Ai,HHt and
liabilities Li,HHt resulting from loans to and deposits from client households; (iii) an additional
risk-free asset (e.g. a bond) X i

t in which bank i invests some household deposits; (iv) an
external (risky) asset Y i

t and an external liability Z. We can then define the equity of a bank
i as its assets minus its liabilities: Ei

t = Ai,IBt + Ai,HHt +Xt + Y i
t − L

i,IB
t − Li,HHt − Z.

counting process with N0 = 0 and hazard rate γi so that (Ns − Nt) ∼ Poiss(γi · (s − t)).
If this event happens for the first time at some time t, then t = T (the terminal time). At
time t = T , the bankrupt bank becomes unable to honor its interbank loans and thus may
cause the bankruptcy of other banks. Before studying such insolvency cascades, we will first
examine how the interbank assets and liabilities are formed dynamically.

2.2 Equilibrium Matching of Lenders and Borrowers

2.2.1 Liquidity Shocks

In this section, we describe the strategic interactions that drive the formation of the interbank
network of assets and liabilities.

At each discrete time t ∈ {0, 1, 2, ...bT c}, each bank i ∈ N receives a liquidity shock εit
from the following distribution

εit =


+1 with prob. y/2

−1 with prob. y/2

0 with prob. 1− y

where y ∈ [0, 1]. Here, εit = 1 means that bank i is in supply of one unit of liquidity and
thus that bank i’s household clients have deposited one unit of cash. εit = −1 means that
bank i is in demand of one unit of liquidity and thus that bank i’s household clients want
to borrow one unit of cash. εit = 0 means that bank i did not receive a liquidity shock (is
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neither in demand nor in supply of liquidity). The εit are assumed to be i.i.d. across banks
and across time.

Banks in demand of liquidity will try to borrow from banks that are in excess of liquidity
on the interbank market. At each t, those liquidity shocks therefore induce two sets of
banks: the set of potential borrowers on the interbank market Bt = {i : εit < 0} and the set
of potential lenders on the interbank market Lt = {i : εit > 0}.

2.2.2 Bilateral Contracts

We study a simple bilateral contracting mechanism by which a bank i ∈ Lt, in excess of
liquidity, can lend money to another bank j ∈ Bt at a (per period) rate ri, augmented by a
risk premium hij. This risk premium reflects the banks’ view of the probability that bank
j will default on the loan. ri is the rate that bank i pays on the deposits of its household
clients.

In order to simplify the analysis, we assume that the loans that will be formed between
banks have identical maturities of S periods. This assumption can be easily relaxed and
does not affect the nature of our results.

Assumption 1. The time to maturity stij of an interbank loan made at time t between banks
i and j is equal to S ∈ N+, i.e. stij = S periods.

A lending bank i that lends to a borrowing bank j thus has an expected payoff

Πi
λ(j) =

1

(1 + ri)S
(1− ρjt,S)(1 + ri + hij)

S − 1 (1)

where ρjt,S = P{t′ ∈ [t, t + S] : Ej
t′ < 0} is the probability6 that the borrowing bank j will

default on this S-period loan and hij is the risk premium charged to bank j to compensate
for this credit risk. Equation (1) is the expected payment received from bank j at maturity
(assuming no recovery in the event of default) minus the amount that is lent immediately.
The expected payment received at maturity is discounted at rate ri, the rate at which bank
i borrows from its household clients (i.e., the rate paid on deposits).

Risk premia are set so as to render the lender indifferent between a risky loan and a
risk-free loan. Thus, two loans have the same expected payoff. Using Eq. (1), it is simple to
derive a formula for a fair risk premium and this is formalized in the following lemma.

Lemma 1 (Risk Premia). The fair risk premium set by a lending bank i ∈ Lt to a borrowing
bank j ∈ Bt with default probability ρjt,S is hij = 1+ri

(1−ρjt,S)1/S
− 1− ri.

Substituting hij in Eq. (1), it is easy to see that the lending bank i derives the same
payoff from lending to any bank j. We assume throughout that default probabilities ρjt,S are
common knowledge so that any lending bank can compute the risk premia hij. We will see
later in Section 3.2 how ρjt,S can be computed.

A borrowing bank j that borrows from bank i has an expected payoff

Πj
β(i) = 1− 1

(1 + rj)S
(1 + ri + hij)

S. (2)

6An expression for ρjt,S will be given later in Section 3.2.
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This is the amount that it receives immediately minus the discounted payment that it will
have to make at maturity, in S periods. This future payment is again discounted by the rate
rj at which it can borrow money from its own household clients (the rate paid on deposits).
Note that a borrowing bank does not consider its own risk of default when computing its
expected payoff. Doing so would however not affect our results, as will become clear later.

A borrowing bank j, maximizes its expected payoff by trying to borrow from the bank
that offers the lowest lending rate rij = ri + hij.

2.2.3 Preference Lists

The bilateral contracting mechanism just described induces preferences. Indeed, banks have
preferences regarding which other bank they would like to trade with: If a bank j is in need of
liquidity (i.e j ∈ Bt), it would prefer borrowing from the bank that offers the lowest lending
rate rij. All banks also have a reservation rate r̄j so that they prefer not borrowing from a
bank i offering a rate rij > r̄j that is too high. Using standard tools from the literature on
matching markets7, the preferences of a borrowing bank j can therefore be represented by
an ordered list P j

β on the set of potential lenders Lt. Thus a borrower j’s preferences are of

the form P j
β = a, b, j, c... indicating that its first choice is to borrow from lender a, its second

choice is to borrow from lender b, its third choice is not to borrow from anyone (i.e. hence
a preference for itself j), its fourth choice is to borrow from lender c etc. We assume that
the ri’s can be strictly ordered8. Lenders are then strictly ordered according to the interest
rates they offer: raj < rbj < r̄j < rcj < ....

On the other hand, if a bank i ∈ Lt is in supply of liquidity, the risk premium hij renders
it indifferent as to which other bank j ∈ Bt it lends to. Its list of ordered preferences is thus
empty, i.e. P i

λ = ∅.
In the remainder of this paper, we write P j

β(a) � P j
β(b) to mean that j prefers borrowing

from a than from b. Similarly, will will write P i
λ(d) ∼ P i

λ(e) to mean that i is indifferent
between lending to d or to e. In Section 5.2, we will study risk management strategies by
which a lender has a strictly-ordered list of preferences over borrowers. Thus P i

λ will no
longer be empty and it will then be possible to have P i

λ(d) � P i
λ(e).

2.2.4 Two-Sided Matching

Denote by P the set of preferences lists:

P = {P a
β , P

b
β , P

c
β , ..., P

d
λ , P

e
λ , P

f
λ , ...}. (3)

The interbank market for liquidity at time t is denoted by the triple (Bt,Lt,P). An equi-
librium outcome of the interbank market at time t is a bipartite graph representing a set
of matches between potential lenders and borrowers. In general, not every bank may be
matched – some banks may not be able to trade because all the liquidity may be exchanged
between other banks. Some banks may also not trade because the terms of trade are such
that they prefer not to trade (i.e. r̄j < rij).

7E.g. see Gale and Shapley (1962) or Roth and Sotomayor (1992).
8This follows when, for example, ri is drawn from a continuous distribution. The ri’s can then be (almost

surely) strictly ordered and this induces strict preferences over the set of potential lenders Lt.
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Figure 1: The bipartite graph Mt induced by the matching µt between the set of lenders Lt
and the set of borrowers Bt in Example 1.

Definition 1 (Matching). A matching µt, at time t, is a one-to-one correspondence from
the set N onto itself such that for any b ∈ Bt, if µt(b) 6= b, then µt(b) ∈ Lt and for any
l ∈ Lt, if µt(l) 6= l, then µt(l) ∈ Bt.

Example 1. For example, let N = {1, 2, ..., 9}, Lt = {1, 2, 3, 4} and Bt = {5, 6, 7, 8, 9}.
Then we may write

µt =
4 1 2 3 (5)
6 7 8 9 5

so that µt(4) = 6 and µt(6) = 4 and thus bank 4 lends to bank 6, µt(1) = 7 and µt(7) = 1
and thus bank 1 lends to bank 7 and so on. Note that µt(5) = 5 and thus no one lends to
bank 5, which remains alone (or unmatched).

A matching induces a directed bipartite graph Mt = {Bt,Lt, Et} on the sets of potential
lenders and borrowers, where Et = {ij : µ(i) 6= i and i ∈ Lt, µ(j) 6= j and j ∈ Bt} is the set
of directed edges connecting lenders to borrowers. The weight of each edge is the amount of
liquidity exchanged, i.e. |εit| = 1. Note that there are no self loops in Mt. The self match
µt(5) = 5 in Example 1 is thus excluded from Mt. This is illustrated in Fig. 1.

For a matching to credibly emerge from the banks’ individual decisions, it has to be
strategically stable, i.e. no bank should be able to gain (i.e. increase its payoff) by behaving
differently. This means that no two banks on opposite sides of the market (i.e. a lender
and a borrower) should be better off by dropping their matched counter-parties and trading
with each other instead. Likewise, if their matched counter-parties are indifferent, no group
of borrowers should benefit from agreeing to swap their assigned lenders. Finally, no single
bank should benefit from unilaterally refusing to trade with its matched counter-party. This
leads us to the definition of a stable matching, which is the basis of our equilibrium concept.

Definition 2 (Stable Matching). A matching µ∗t is stable if :

(I) (Pairwise deviation) For all i, l ∈ Lt and k, j ∈ Bt such that µ∗t (i) = j and µ∗t (k) = l, it
cannot be that both P i

λ(k) � P i
λ(j) and P k

β (i) � P k
β (l);
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(II) (Coalitional deviation) Let ~b ∈ Bt be a set of borrowers such that their assigned lenders

are indifferent between any borrower in ~b, i.e. for any j, k ∈ ~b, P µ∗t (j)
λ (j) ∼ P

µ∗t (k)
λ (j). Then

there cannot be another matching µ
′
t such that for all j ∈ ~b, P j

β(µ
′
t(j)) � P j

β(µ∗t (j));

(III) (Unilateral deviation) For any j ∈ Bt such that µ∗t (j) 6= j, it cannot be that P j
β(j) �

P j
β(µ∗t (j)), and for any j ∈ Bt, it cannot be that P j

β(k) � P j
β(µ∗t (j)) for some k ∈ Lt such

that µ∗t (k) = k.

Condition (I) states that in a stable matching, no two banks on opposite sides of the
market (i.e. a lender and a borrower) can benefit from dropping their current trading partners
and agreeing to trade together instead. Condition (II) states that no group of borrowing
banks can agree to swap counter-parties if their lenders are indifferent. Finally, condition
(III) simply states that in a stable matching, no single borrowing bank can benefit from
unilaterally breaking its current trading relationship and not trading with anyone or trading
with a different unmatched lender.

This concept of a stable matching is similar to that introduced in Gale and Shapley (1962),
which has been widely used in two-sided matching markets such as the matching of students
to schools (Abdulkadiroglu and Sönmez (2003)), medical school graduates to hospitals (Roth
(1984), Roth and Peranson (1999)), as well as kidney donors to recipients (Roth et al. (2003)),
for example9. The standard matching problem however typically assumes that agents on each
side of the market have strict10 preferences over the other side. While condition (I) captures
this, condition (II) allows us to deal with the indifference of the lenders, which occurs with
the contracting mechanism introduced in Section 2.2.2. To handle this case, we allow agents
on the borrowing side to swap counter-parties if they benefit from doing so.

Given a stable matching µ∗t at time t, define the liquidity exchanged (or transaction
volume) as

V ol(µ∗t ) =
1

2

∑
i∈Lt

⋃
Bt

1{µ∗t (i) 6=i}. (4)

Proposition 1 (Equilibrium Multiplicity under Bilateral Contracting). Let (Bt,Lt,P) be
a market for liquidity at time t and let i ∈ Lt and j ∈ Bt. Under a bilateral contracting
mechanism, any matching µt such that rij < r̄j for any µt(i) = j and rij < rkj for any k ∈ Lt
such that µt(k) = k is stable, i.e. µ∗t = µt. We denote by EQt the set of such equilibria.
Moreover, the trading volume at time t is bounded as follows: V ol(µ∗t ) ≤ min(|Bt|, |Lt|).

The above proposition says that any matching such that the lending rate charged is
strictly lower than a bank’s reservation rate r̄j and is strictly lower than the lending rate
offered by any unmatched lender can be sustained in equilibrium. In fact, the lenders being
indifferent as to which bank they lend to, they will agree to trade with any borrowing bank.

9Our equilibrium concept is also similar to concepts introduced in the network formation games literature,
e.g. Jackson and Watts (2002), Jackson and Wolinsky (1996). A key difference is that we form a network
dynamically through a sequence of equilibrium matchings, instead of forming it statically. Our equilibrium
concept is thus better adapted to the formation of a financial network, which takes place dynamically, through
the formation of equilibrium matchings between lenders and borrowers.

10See Irving (1994) for generalizations that account for indifference through partial orders.
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Borrowing banks have strict preferences as to which bank they borrow from: they favor a
lender that offers the lower rate and trade with it, if it is available. If the rate offered is
higher than its reservation rate, the borrowing bank does not trade with that lender. The
total transaction volume exchanged (the total number of loans extended) is bounded by the
cardinality of the smallest of the sets of lenders and borrowers.

As we will see in Section 3, this multiplicity of equilibria leads to many possible network
configurations with varying levels of systemic risk. We first examine how an equilibrium
matching µ∗t affects the banks’ balance sheets.

2.3 Effect of Equilibrium Matching on Balance Sheets and Inter-
bank Network

2.3.1 Household-Related Assets and Liabilities

When bank i receives a cash deposit from household clients (i.e. a liquidity shock εit = 1),
it tries to lend it to another bank on the interbank market. Deposits have a maturity of S
periods. If no other bank needs to borrow it, then bank i invests it in an external11 risk-free
asset (e.g. a bond) X i

t for the whole duration of the deposit (i.e. for S periods). The sum
of all household deposits made at times t′ < t and with any remaining time to maturity is
denoted by Li,HHt ≥ 0.

When households wish to borrow cash from bank i, bank i needs to obtain that cash by
borrowing on the interbank market. If it succeeds in finding that money on the interbank
market, it extends the loan to the households. Household loans have a maturity of S periods.
If bank i cannot find that money on the interbank market, it simply declines to extend the
loan to the households. The sum of all loans made to households at times t′ < t and with
any remaining time to maturity is Ai,HHt ≥ 0.

2.3.2 Interbank Assets and Liabilities

The interbank assets of bank i at time t are loans extended to other banks, so that Ai,IBt =∑
j 6=iA

ij,IB
t , where Aij,IBt ≥ 0 is the total amount currently loaned to bank j at any time t.

Aij,IBt can be expressed as
∑

t′:st
′
ij>0 a

ij,IB
t′ , where aij,IBt′ is a loan extended from i to j at time

t′. Thus, Aij,IBt denotes the sum of loans extended by i to j with some remaining time to
maturity. Likewise, the interbank liabilities at time t are borrowings from other banks, i.e.
Li,IBt =

∑
j 6=i L

ij,IB
t , where Lij,IB ≥ 0 is the total amount currently borrowed from bank j

at any time t. This consists of all the loans extended by j to i at times t′ ≤ t and with any
remaining time to maturity. Note that by symmetry, Lij,IBt = Aji,IBt (i.e. a liability of i to j
is an asset of j).

Note that in all the above, we neglect the effect of interest rates payments on balance
sheets as this would obscure the analysis and would not change the nature of our results.

Note that at any time t, Ai,IBt + X i
t = Li,HHt since what is deposited by households is

either loaned to another bank or invested in the external risk-free asset X i
t for the duration of

11This assumption does not change the nature of our results, but is convenient. It makes the equity Eit
independent of interbank activities and thus avoids pathological cases where Eit could turn negative for no
meaningful reason (a concern in models like Eisenberg and Noe (2001)).
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Figure 2: Example of an interbank network at time t. In this example, only banks 3 and
4 are lenders at time t and only banks 6 and 7 are borrowers at time t. The dotted edges
represent the new loans formed at time t (i.e. Mt in Eq. (5)). The solid edges represent the
loans formed at previous times t′ < t and which have not yet reached their maturities (i.e.
t′ + D > t). The network with solid edges can be written as Gt−1 \ {ij : t′ + D = t} in Eq.
(5).

the deposit. Likewise, Ai,HHt = Li,IBt since what is loaned to households is always borrowed
on the interbank market. Since the equity of any bank i (assets minus liabilities) is Ei

t =
Ai,IBt +Ai,HHt +Xt +Y i

t −L
i,IB
t −Li,HHt −Z, it follows that it has a particularly simple form.

It is simply Ei
t = Y i

t − Z.
As stated in Assumption 1, every loan has a time to maturity of S periods. The interbank

system at time t is therefore the accumulation of loans formed at any time t′ ≤ t and with
any remaining time to maturity. This can be represented by a network

Gt =
(
Gt−1 \ {ij : t′ + S = t}

)⋃
Mt (5)

where G0 = M0 and Mt is the directed bipartite graph induced by the stable matching µ∗t
at time t. A loan is a bilateral agreement between i and j that remains in place until its
maturity. A directed edge ij thus remains in place until its maturity t = t′ + S, at which
point it is removed from the graph. In graph-theoretical terms, Gt is a directed multigraph,
i.e. a network in which several edges can exist between any nodes i and j. These represent
the different loans that have been made during previous periods and that have not reached
their maturities. As discussed earlier, each directed edge has weight 1, since this is the
nominal amount of each loan. This is illustrated in Fig. 2.

We label by Āt the matrix of net interbank exposures at time t. The ij’th entry in this
matrix, Āijt , represents the net exposure of bank i to bank j, i.e. Āijt = Aij,IBt −Aji,IBt . Since
each exposure (loan) has value one, Āijt is simply the number of directed edges from i to j
minus the number of directed edges from j to i. In Eq. (6) below, we show the net exposure
matrix corresponding to the interbank network in Fig. 2.
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Āt =



0 −2 −1 0 0 0 0 0 0 0 0
2 0 0 −1 0 0 0 −1 0 0 0
1 0 0 0 −1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 −1 0 1 1
0 1 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0


(6)

2.3.3 Exogenous Default Probabilities

In the previous section, we saw that a bank j’s equity has a particularly simple form, i.e.
Ej
t = Y j

t −Z. A bank can thus go bankrupt exogenously if its equity becomes negative (i.e.
if Ei

t < 0) as a result of a negative shock to the risky asset price Y i
t . The exogenous default

probability of a bank thus has a simple form, expressed in the following lemma.

Lemma 2 (Exogenous Default Probability). The probability that bank j defaults exogenously

over the next S periods is ρ̄jS =
(
1 − e−γagg ·S

)
γi

γagg
, where γagg =

∑
j∈N γ

j is the sum of all
hazard rates.

In the above lemma, ρ̄jS is really the probability12 that bank j is the first to go bankrupt
as a result of an exogenous shock to its risky asset. In the simple economy that we are
studying, this first default then triggers the terminal time T and thus any other bank that
goes bankrupt will do so as a result of an insolvency cascade, which we will study in the
next section.

3 Systemic Risk, Information and Incentives

In this section, we examine the externalities created by the formation of the interbank market
and we introduce a mechanism that allows a regulator to pin down a unique, systemic risk-
efficient equilibrium.

3.1 Quantifying Systemic Risk

A bilateral transaction may generate a negative externality in the form of systemic risk.
Indeed, when a lending bank i enters into a loan agreement with a borrowing bank j, it not
only exposes itself to the default risk of bank j, but it also exposes its own creditors to it.
Indeed, in the event of the default of bank j, the loss to bank i’s assets may cause it to
become insolvent as well (if Āijt > Ei

t). This will cause bank i to default on its own loans to

12Note that ignore the time subscript, i.e. we write ρ̄jS instead of ρ̄jt,S because this exogenous default

probability is constant through time. This follows from the equity having the simple form Ejt = Y jt − Z.
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other banks (its creditors), which can potentially cause them to become insolvent as well.
This cascade of insolvencies can then propagate further throughout the network.

Using the net exposure matrix, Āt, we can compute the effect of any initial set of ex-
ogenously bankrupt banks on the system. This can be done with the following recursive
dynamics, for all i ∈ N . We introduce δ to denote the number of iterative steps in the
cascading dynamics that takes place at the terminal time t = T .

Ei
t(δ) = max

(
0, Ei

t(δ − 1)−
∑

j:σj(δ−1)=F and Āij>0

Āijt

)
(7)

σi(δ) =


F (failing) if Ei

t(δ) = 0 and σi(δ − 1) = H

H (healthy) if Ei
t(δ) > 0

I (inactive) if σi(δ − 1) = F or σi(δ − 1) = I

and
θit(δ) = 1 if σi(δ) = F or θit(δ − 1) = 1, (8)

setting the initial conditions σi(0) = H and θit(0) = 0 for all banks i ∈ N and Ej
t (0) = 0 for

any j part of the set of exogenously defaulted banks.
Since the exogenous default of any bank triggers the terminal time T , we may write t = T

in the above recursions. This recursive dynamics will stop after a finite number of steps δ̄
and any bank i will either be in state θiT = θiT (δ̄) = 1 (bankrupt) or θiT = θiT (δ̄) = 0 (not
bankrupt). This can be seen as a reduced version of the DebtRank mechanism introduced
in Battiston et al. (2012) and used in Thurner and Poledna (2013).

For simplicity, the above cascade mechanism assumes no recovery on defaulted loans and
that a bank defaults on its loans only if it is in state ‘bankrupt’ (i.e. θiT (δ) = 1). Thus as
long as a bank has positive equity Ei

T (δ), it can pay back its loans in full. This is in the
spirit of Eisenberg and Noe (2001). These assumptions, however do not affect the nature of
our results13. This recursion avoids reverberations across the financial network in the sense
that a bank can only transmit an insolvency shock once, i.e. when it is in state σi(δ) = F
(failing). It then becomes ’inactive’ (i.e., σi(δ + 1) = I) and no longer transmits defaults.

We can now define the impact of the bankruptcy of bank i on the system.

Definition 3. The systemic impact of bank i at time t is defined as

SI i(Āt, ~Et) =
∑
j 6=i

1{θjt (δ̄)=1|θit(1)=1}E
j
t . (9)

SI i(Āt, ~Et) thus represents the value of the total loss to the interbank system (as measured
by the total equity lost by bankrupt banks14) following the bankruptcy of i. This quantity
obviously depends on the topology of the interbank network, as shown by the dependence

13Other variations on this insolvency cascade mechanism can be used and it does not affect the nature of
our results. An alternative default mechanism is that of Battiston et al. (2012), in which a bank pays back
a reduced amount to its claimants, if one of its own claimants has defaulted on a loan.

14SIi thus ignores the equity that may be lost by non-bankrupt banks. This simple choice of systemic
impact measure however does not affect the nature of our results.
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on Āt, the matrix of net exposures. It also naturally depends on the vector of equities of all
banks ~Et = [E1

t , E
2
t , ..., E

n
t ]>. We thus define a measure of systemic risk as follows.

Definition 4 (Expected Systemic Loss).

ESL(Āt, ~Et) =
n∑
j=1

ρ̄j1 · SIj(Āt, ~Et) (10)

where ρ̄j1 is the probability that bank j is the first to go bankrupt exogenously over the next
period.

Equation (10) is the one-period-ahead expected systemic loss at time t. It is a convenient
definition15 of systemic risk because it allows to separate the exogenous effects (i.e. ρ̄j1) asso-

ciate with external business risk from the network effects (i.e., SIj(Āt, ~Et)) associated with

contagion externalities. Using Lemma 2 with S = 1, we can express ρ̄j1 as
(
1 − e−γagg

)
γi

γagg
,

where γagg =
∑

j∈N γ
j is the sum of all hazard rates.

A loan extended from i to j at time t (i.e. the addition of a directed edge ij in the
network) will thus have the following effect on systemic risk:

∆ESL(ij) = ESL(Ā′t−1 + 1ij − 1ji, ~Et)− ESL(Ā′t−1,
~Et−1) (11)

where 1ij is a matrix of zeros with a 1 in position (i, j) and Ā′t−1 is the net exposure matrix
at time t− 1 after removing the loans that will reach their maturity at time t. This quantity
can be positive or negative: certain transactions can increase systemic risk (e.g. by adding
cycles of exposures in the network) while others can decrease it (e.g. by breaking cycles
of exposures in the network through bilateral netting). More generally, a matching µt will
generate a variation in the expected systemic loss as follows

∆ESL(µt) = ESL(Āt, ~Et)− ESL(Ā′t−1,
~Et−1) (12)

where Āt = Ā′t−1 +
∑

i:i∈Lt,i 6=µt(i) 1{i,µt(i)} −
∑

j:j∈Bt,j 6=µt(j) 1{j,µt(j)}. In other words, Āt is the
net exposure matrix formed by the matching µt.

3.2 Banks’ Beliefs on Total Failure Probabilities

The endogenous default probability qjt,S of borrower j at time t on a S-period loan is the
probability that it defaults as a result of an insolvency cascade. It is not simple to pin down
this probability. Indeed, it depends on the evolution of the network topology over the next S
periods. It is not reasonable to expect banks to be able to anticipate that. A more realistic
way to assess this default probability is to assume that the network topology remains fixed
over the next S periods. We can thus write

qjt,S =
∑
k 6=j

1{θjt (δ̄) = 1|θkt (1) = 1, Āt−1, ~Et−1}ρ̄kS (13)

15This definition of systemic risk is that of Poledna and Thurner (2016). It is derived on combinatorial
arguments based on all possible combinations of initial defaults of institutions.
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In Eq. (13), we see that the indicator function 1{θjt (δ̄) = 1|θkt (1) = 1, Āt−1, ~Et−1} for the
event that bank j fails in a cascade caused by the exogenous failure of k is conditioned on
the net exposure matrix in the previous period, Āt−1, and on the vector of equities ~Et−1.

Hence the (total) probability of failure of borrower j at time t on a S-period loan is
conveniently expressed as

ρjt,S = ρ̄jS + (1− ρ̄jS)qjt,S (14)

It is the probability that a borrowing bank either defaults exogenously or as a result of an
insolvency cascade. This expression conveniently separates the exogenous effects (intrinsic
business risk related to the risky external assets banks invest in) from the contagion effects
related to the network of interbank loans. In an ideal system free of systemic risk, a lender
would thus only be concerned with the risk that a borrower fails exogenously, i.e. ρ̄jS.

3.3 Inefficiency of Equilibrium Matchings

We will now illustrate how a bilateral contracting mechanism fails to internalize the systemic
risk externality that it generates. Indeed, in a bilateral contract, a lender only considers the
default risk of a borrower, while a borrower is only concerned with the interest rate that it
pays. Neither party have incentives to internalize the systemic risk externality created by
the transaction. Let us consider the example in Fig. 3. Here we assume that all banks fail
exogenously with the same probability ρ̄S. Assuming Ei

t = $50 million for all banks and each
edge is a $60-million loan, then the exogenous failure of any bank triggers the failures of all
banks down its path. Then the total probabilities of failure thus follow ρ6

t,S > ρ5
t,S > ρ4

t,S.
We assume r3 < r2 < r1 so that borrowers prefer lending bank 3 over bank 2 over bank 1.
The networks in (a) and (b) are the only two possible equilibria. Note that lending bank
1 remains unmatched because it offers the highest lending rate, whereas borrowing bank
6 remains unmatched because the borrowing rates offered by all lending banks exceed its
reservation rate (i.e. r̄6 < r3,6 < r2,6 < r1,6). In Fig. 3(a), we see that the transaction
between lending bank 3 and borrowing bank 5 creates a substantial amount of systemic risk.
Indeed, systemic risk spreads by lending. To see this, note that bank 3 has a high systemic
impact: if bank 3 defaults, it triggers the bankruptcies of banks 7, 8 and 9. The loan from
bank 3 to bank 5 then causes bank 5 to inherit this high systemic impact. Indeed, bank 5’s
failure now triggers the bankruptcies of banks 3, as well as banks 7, 8 and 9. Bank 3 is also
part of the equilibrium matching in the other equilibrium configuration in Fig. 3(b), with
similar consequences.

The network configuration in Fig. 3(c), on the other hand, creates considerably less
systemic risk. Indeed, in this equilibrium matching, the lending banks 1 and 2 have low sys-
temic impact (in this example, SI1 = 0 and SI2 = 0). The bilateral contracting mechanism
however does not allow this matching to arise in equilibrium. Indeed, bank 3 offers the lowest
rate of all lending banks and the risk premia it offers are not high enough to deter banks 4
and 5 from borrowing from it. The risk premium indeed only considers the borrowing banks’
default probability and not the systemic risk created by a transaction with a high systemic
impact bank. Lending bank 3 is thus necessarily part of any equilibrium matching.

The multiple equilibria that may emerge under a bilateral contracting mechanism (cf.
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Figure 3: A toy example: Equilibrium multiplicity. Assume all banks fail exogenously with
the same probability ρ̄S. Assuming Ei

t = $50 million for all banks and each edge is a $60-
million loan, then the exogenous failure of any bank triggers the failures of all banks down
its path. Then the total probabilities of failure thus follow ρ6

t,S > ρ5
t,S > ρ4

t,S. We assume
r3 < r2 < r1 so that borrowers prefer lending bank 3 over bank 2 over bank 1. We also
assume r3,4 < r2,4 < r1,4 < r̄4 and r3,5 < r2,5 < r1,5 < r̄5 so that borrowing banks 4 and 5
are willing to borrow from any lending bank while r̄6 < r3,6 < r2,6 < r1,6 so that bank 6’s
higher default risk makes borrowing too expansive. Parts (a) and (b) show the two possible
equilibria. Both equilibria have high ESL. ESL in (a) is ρ̄1 · 16 · 50 $million while in (b) it
is ρ̄1 · 13 · 50 $ million. Part (c) shows a low-ELS matching, achieving the same transaction
volume, but this matching cannot be sustained in equilibrium. Its ESL is just ρ̄1 · 10 · 50 $
million.
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Proposition 1) have different effects on systemic risk. Given a certain transaction volume,

the ideal matching µt is the one that minimizes systemic risk ESL(Āt, ~Et). To help us
characterize the different equilibria that may emerge, the following definition will be useful.

Definition 5 (Systemic Risk-Efficient Equilibrium). Suppose Āt−1 is a net exposure matrix
at time t − 1. Given a market for liquidity (Bt,Lt,P) at time t, let Ā∗t be the net exposure
matrix formed by the equilibrium matching µ∗t . For any trading volume v, an equilibrium
µ∗,efft is systemic risk-efficient if

µ∗,efft ∈ argmin
{µt∈EQt: V ol(µt)=ν}

ESL(Āt, ~Et) (15)

where EQt denotes the set of matchings µt such that rij < r̄j for all µt(i) = j, for i ∈ Lt and
j ∈ Bt.

Thus an equilibrium matching is systemic risk-efficient if it minimizes systemic risk given
a certain transaction volume. Note that a systemic risk-efficient matching may not always be
part of the set of possible equilibria EQt. In such a case, an equilibrium may be inefficient.
This was the case in Fig. 3. The two possible equilibria in Fig. 3(a)-(b) are inefficient.
Indeed, the matching in Fig. 3(c) is systemic risk-efficient for a transaction volume ν = 2,
but it cannot be sustained in equilibrium. However, in cases where EQt = EQt, then a
systemic risk-efficient matching may arise in equilibrium.

In the next section, we introduce a tax mechanism that allows a prudent regulator to
select a unique systemic risk-efficient equilibrium.

3.4 Systemic Risk Tax (SRT)

3.4.1 Definition and Theoretical Results

At any (discrete) decision time t ∈ {0, 1, 2, ...}, a regulator (e.g. a Central Bank) possessing
information about the current credit topology of the interbank system (i.e. knowing Āt)
would like to control the formation of the interbank network by influencing the matching
between the sets of potential lenders Lt and borrowers Bt so as to achieve a desired level
of systemic risk. The question is thus how can she incentivize the banks so that they form
a desired equilibrium matching µ̂∗t ? She can do this by means of a transation-specific tax,
which will have the effect of reordering the borrowers’ preferences for the lenders.

Let T = {τij}, where i ∈ Lt and j ∈ Bt. T is thus a |Lt| × |Bt| matrix of transaction-
specific taxes. We assume τij ≥ 0. τij is the mark-up that is applied to the interest rate paid
by bank j when it borrows from bank i. The borrowing bank j then pays rTij = ri + hij + τij
instead of just rij = ri + hij. Under T , a borrower’s expected payoff (cf. Eq. (2)) becomes

Πj
β,T (i) = 1− 1

(1 + rj)S
(1 + ri + hij + τij)

S. (16)

A lender’s expected payoff (cf. Eq. (1)) is left unchanged as the tax τij is collected by the
regulator. Thus T effectively re-orders the preferences of each borrower16 over the set of

16Note also that since a lender is indifferent to who it lends to, or if it lends at all, the actions of the
regulator (i.e. the tax τij) do not affect the lenders’ equilibrium behavior. The tax only affects the borrowers’
equilibrium behavior.
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lenders. This allows a regulator to create heterogeneous preferences, i.e. each borrower can
now have a different preference list P j

β .
Note that since all information about the system is common knowledge, the borrowers’

default probabilities ρjt,S and the lenders’ baseline lending rates ri, for all i, j ∈ N , are known
to the regulator as well. The latter can compute the risk premia hij. We also assume that the
reservation rates r̄j, for all j ∈ N , are known to the regulator. The banks’ payoffs are thus
known to the regulator. We will show that by properly choosing T , the regulator can reorder
each borrower j’s preference list P j

β such that any desired matching µ̂t ∈ EQt is sustained
as the unique equilibrium. Since this tax allows her to pin down a systemic risk-efficient
equilibrium, we will label this tax a systemic risk tax (SRT).

Theorem 1 (Equilibrium Uniqueness under Systemic Risk Tax). Let (Lt,Bt,P) be any
market for liquidity at time t and let i ∈ Lt and j ∈ Bt. For any possible matching µt such
that rij < r̄j for all µt(i) = j, there exists a SRT T such that µ∗,Tt = µt is the unique stable
matching. The set of possible stable matchings that can be sustained as a unique equilibrium
is a superset of the set of possible stable matchings that can arise without the SRT, i.e.
EQt ⊇ EQt.

Theorem 1 states that an appropriate choice of SRT T can select any of the multiple
equilibria that can arise under a bilateral contracting mechanism. It can also select certain
matchings that could not be sustained in equilibrium without the tax. Moreover, under
the SRT, this equilibrium is unique. The intuition is that the preferences of the borrowers
can be arbitrarily reshuffled and this is sufficient to create any desired stable matching,
irrespectively of the preferences of the lenders. Under this unique equilibrium selected by
the tax, there is no coalition of banks that can agree to reshuffle their matched partners
so that they all benefit from doing so. Indeed, under the tax, each borrower chooses to
trade with its preferred counter-party. Even if we assume limited communication between
the borrowing banks, this unique equilibrium can credibly arise from a system in which
borrowing banks solicit the regulator (e.g. Central Bank) for quotes on the lending banks.
These quotes are the rates rTij at which they can borrow from each lender. Under the SRT
T , they will choose to borrow from the bank offering the lowest rate rTij and this corresponds
to the unique equilibrium outcome. Note also that the set of equilibria that can be uniquely
sustained under the tax is larger than the original set.

Note that in the special case when Tij = κ, for all i, j, then T reduces to a Tobin-like tax.
A Tobin-like tax, on the other hand does not allow a regulator to induce equilibrium unique-
ness, nor to increase the set of candidate matchings that can be sustained in equilibrium. It
merely reduces the set of possible high-transaction volume equilibria. This is formalized in
the next proposition.

Proposition 2 (Tobin-like tax). Let (Bt,Lt,P) be a market for liquidity at time t and let
i ∈ Lt and j ∈ Bt. Let κ be a Tobin-like tax, i.e. rκij = ri + hij + κ. Then, under a bilateral
contracting mechanism:

(i) Any matching µt such that rκij < r̄j for any µt(i) = j and rκij < rκmj for any m ∈ Lt such
that µt(m) = m is stable, i.e. µ∗,κt = µt. We denote by EQκt the set of such equilibria;
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(ii) The trading volume at time t is bounded as follows:

max
µ∗,κt ∈EQκt

V ol(µ∗,κt ) ≤ max
µ∗t∈EQt

V ol(µ∗t ).

A Tobin-like tax does not allow a regulator to re-order the preference lists of the borrow-
ers. Indeed all borrowers have homogenous preferences, but some transactions become too
expensive and thus not sustainable in equilibrium, hence the possible reduction in transac-
tion volume. A Tobin tax therefore cannot allow a regulator to pin down a unique systemic
risk-efficient equilibrium. An appropriate choice of the SRT T however can achieve this.

The next result has important implications. It states that a regulator can always choose a
transaction-specific tax T so as to achieve lower systemic risk without sacrificing transaction
volume. The intuition behind this result is that the transaction-specific tax has the effect of
reordering each borrower’s preferences for lenders and this is sufficient to achieve effectively
any possible matching between lenders and borrowers. This can lead to matchings with lower
systemic risk and/or higher trading volume. A Tobin tax, on the other hand, indiscriminately
taxes every transaction equally. This has the effect of reducing the set of lenders with which
a borrower is willing to trade, without reordering the preferences of these borrowers. It
therefore simply reduces transaction volume by reducing the set of possible matchings.

Proposition 3 (Systemic Risk under Systemic Risk Tax). Let (Bt,Lt,P) be a market for
liquidity at time t. Given a net exposure matrix Āt−1 at time t − 1, let Ā∗,Tt , Ā∗,κt and Ā∗t
be the net exposure matrices formed at time t with a SRT T , with a Tobin-like tax κ and
without tax by the equilibrium matchings µ∗,Tt , µ∗,κt and µ∗t , respectively. Then,

(i) for any µ∗t ∈ EQt, such that V ol(µ∗t ) = ν, there exists T such that ESL(Ā∗,Tt , ~Et) ≤
ESL(Ā∗t , ~Et) and V ol(µ∗,Tt ) ≥ V ol(µ∗t ); In particular, there exists T such that µ∗,Tt is sys-
temic risk efficient.

(ii) for any µ∗,κt ∈ EQκt , such that V ol(µ∗,κt ) = ν, there exists T such that ESL(Ā∗,Tt , ~Et) ≤
ESL(Ā∗,kt , ~Et) and V ol(µ∗,Tt ) ≥ V ol(µ∗,kt ).

Thus for any outcome of a market for liquidity under a bilateral contracting mechanism,
we can design a SRT that achieves lower systemic risk and potentially higher transaction
volume. The intuition is that the set of possible high-volume equilibrium matchings that an
SRT can uniquely sustain is greater than the set of equilibria under a Tobin tax or no tax
at all.

Proposition 3 implies that a SRT can pin down a systemic risk-efficient equilibrium for
any given transaction volume. While a Tobin tax sacrifices transaction volume without
having an optimal impact on network topology, SRT allows to minimize systemic risk given
a desired transaction volume.

Fig. 4 provides a simple illustration of Theorem 1 and Propositions 2 and 3. We make
the same assumptions on model parameters as in Fig. 3: Parts (a) and (b) show the two
possible equilibria without tax (as in Fig. 3a-b). Parts (c) and (d) show the equilibria under
a Tobin-like tax κ that causes rκ15 > rκ25 > r̄5 and rκ35 < r̄5 so that the transaction between
lending bank 2 and borrowing bank 5 becomes too expensive, since the rate charged now
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exceeds bank 5’s reservation rate. The Tobin-like tax κ however leaves rκ24 < r̄4 due to bank
4 lower default probability. A Tobin tax thus leaves the first equilibrium unchanged ((c)
vs (a)), while it reduces the volume of the second equilibrium ((d) vs (b)). Part (e), on
the other hand, shows the unique equilibrium matching that can be achieved with a proper
choice of SRT T . This unique equilibrium is systemic risk-efficient for a transaction volume
of two loans. One simple choice of T is simply to set τ14 = 0, τ15 = τ16 >> 0, while τ25 = 0,
τ24 = τ26 >> 0 and τ36 >> 0. The desired matches are left untaxed, whereas the undesired
ones are taxed (in this simple example, arbitrarily). This guarantees that the desired lenders
are on top of each borrower’s preference lists and allows this systemic risk-efficient matching
to be sustained as a unique equilibrium, without reduction in volume.

One way to make use of Proposition 3 in an optimization problem is to minimize systemic
risk given a target level of transaction volume. This is done in the next section.

3.4.2 Numerical Investigation

As a transaction-specific tax, the SRT allows a regulator (e.g. Central Bank) to minimize
systemic risk, while achieving a certain transaction volume. Suppose that she wishes to
achieve transaction volume ν. Then at time t, she can set the SRT T̂ by solving the following
one-period-ahead optimization problem.

T̂ ∈ argmin
T :V ol(µ∗,Tt )=ν

ESL(Ā∗,Tt , ~Et) (17)

where
Ā∗,Tt = Ā′t−1 +

∑
i:i∈Lt,i 6=µ∗,Tt (i)

1{i,µ∗,Tt (i)} −
∑

j:j∈Bt,j 6=µ∗,Tt (j)

1{j,µ∗,Tt (j)} (18)

is the net exposure matrix formed with the equilibrium matching µ∗,Tt at time t, and ESL(·)
is the one-period-ahead expected systemic loss at time t, as defined in Definition 4. Ā′t−1 is
the net exposure matrix at time t−1 after removing the loans that will reach their maturity
at time t.

The regulator will thus choose T̂ such that a desired systemic risk-efficient matching µ̂t
will be sustained in equilibrium, i.e. µ∗,T̂t = µ̂t. Note that there can be many T yielding the
same µ∗,Tt = µ̂t. An economically meaningful way to design this SRT is to tax any deviation
from the desired equilibrium matching µ̂t proportionally to the amount of systemic risk that
it generates17. The desired equilibrium itself remains untaxed. Thus ∀j ∈ Bt, set Tµ̂t(j),j = 0
and set

Tij = rµ̂t(j),j − rij + ε+ ζmax(0,∆ESL(ij)) (19)

where ε > 0 and ζ is some scaling parameter. This has the effect of re-ordering a borrower’s
preferences in decreasing order of their contribution to systemic risk. Thus rTij now reorders
the preferences of the borrowers with the desired match on top and taxes the other matches
proportionally to the risk they create.

17This was studied with an agent-based model in Poledna and Thurner (2016).
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Figure 4: A toy example: Systemic risk tax (SRT) leads to systemic risk-efficient equilibrium.
We make the same assumptions on model parameters as in Fig. 3: Parts (a) and (b) show the
two possible equilibria without tax (as in Fig. 3a-b). Parts (c) and (d) show the equilibria
under a Tobin-like tax κ that causes rκ15 > rκ25 > r̄5 and rκ35 < r̄5 so that the transaction
between lending bank 2 and borrowing bank 5 becomes too expensive, since the rate charged
now exceeds bank 5’s reservation rate. The Tobin-like tax κ however leaves rκ24 < r̄4 due to
bank 4 lower default probability. A Tobin tax thus leaves the first equilibrium unchanged ((c)
vs (a)), while it reduces the volume of the second equilibrium ((d) vs (b)). Part (e), on the
other hand, shows the unique equilibrium matching that can be achieved with a proper choice
of SRT T . This unique equilibrium is systemic risk-efficient for a transaction volume of two
loans. One simple choice of T is simply to set τ14 = 0, τ15 = τ16 >> 0, while τ25 = 0,
τ24 = τ26 >> 0 and τ36 >> 0. The desired matches are left untaxed, whereas the undesired
ones are taxed (in this simple example, arbitrarily). This guarantees that the desired lenders
are on top of each borrower’s preference lists and allows this systemic risk-efficient matching
to be sustained as a unique equilibrium, without reduction in volume.
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The minimization problem in Eqs. (17)-(18) has a solution18, since it is just a combi-
natorial optimization problem over a finite set of possible matchings between the finite sets
Lt and Bt. To provide an illustration, we now solve this problem on a dynamically evolving
complex network. Figure 5 shows the evolution of the expected systemic loss and the cu-
mulative transaction volume in 3 different scenarios: (i) without tax; (ii) with a Tobin-like
tax; and (iii) with the SRT. In the latter case, the regulator finds the SRT T̂ by solving
the optimization problem in Eqs. (17)-(18) at each time t. The interbank system in this
example is composed of |N | = 10 banks.

In the upper panel, we see that a Tobin-like tax (blue curve) only has a limited effect on
reducing the expected systemic loss. Moreover, in the lower panel we see that this comes at
the cost of a reduction in trading volume, i.e. the number of loans extended. The SRT (green
curve), on the other hand, allows to reconfigure the network of exposures in a systemic risk
efficient way. It therefore does not reduce transaction volume while drastically reducing the
expected systemic loss. Here the constraint is set to ν = V ol(µ∗t ), i.e. the regulator finds the

systemic risk-efficient equilibrium matching µ∗,T̂t that achieves the same transaction volume
as the untaxed, systemic risk-inefficient equilibrium matching µ∗t . A Tobin-like tax does not
enable the regulator to achieve this. The Tobin-like tax κ simply prevents some transactions
from taking place by making them too expensive for certain borrowers (i.e. rκij > r̄j for
certain j ∈ Bt).

With a Tobin-like tax, the reduction in systemic risk is due to the reduction in the number
of loan exposures. On the other hand, with a SRT it is due to a more efficient allocation of
those loan exposures across counter-parties. This means that the SRT incentivizes a specific
matching of counter-parties that minimizes the expected systemic loss.

4 Conclusion

In this article, we have shown that a regulator (e.g. a Central Bank) possessing information
about the topology of a financial network of assets and liabilities can design a transaction-
specific tax that incentivizes institutions (e.g. banks) to create a network more resilient to
insolvency cascades. We call this transaction-specific tax a systemic risk tax (SRT), as it
allows a regulator to select a unique equilibrium network configuration that minimizes sys-
temic risk given a target transaction volume. Without this SRT, many equilibrium networks
can arise and they are generally inefficient, i.e. they may present higher systemic risk. We
also showed that a standard financial transaction tax (FTT) (e.g. a Tobin-like tax) reduces
transaction volume while having only a marginal effect on reducing systemic risk. Indeed, a
Tobin-like tax fails to account for the fact that different transactions have different impacts
on creating systemic risk because they involve institutions of different systemic importance.

While we illustrated these results with the help of a simple interbank network formation
setup, it is important to emphasize that the concept of a SRT applies much more generally
to any credit market. Indeed, we made minimal assumptions about the reasons that push

18Note however, that for large systems, this problem may pose computational difficulties. In such cases,
approximations schemes could be used to find an approximate solution. Such a scheme consists in separating
Bt into smaller subsets and then sequentially matching those subsets to Lt. This is beyond the scope of this
article.
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Figure 5: Evolution of Expected Systemic Loss: (i) without Tax (red); (ii) with a Tobin-like
Tax (blue) and (iii) with a Systemic Risk Tax (SRT) (green). At each time t, the regulator
finds the SRT T̂ by solving the optimization problem in Eqs. (17)-(18). The target volume ν
is set to V ol(µ∗t ), the volume achieved by the un-taxed equilibrium matching. Top panel shows
the expected systemic loss supposing a default event (i.e. conditioning on t = T ). Bottom
panel shows the cumulative transaction volume (the cumulative number of loans extended over
time). Interbank system has |N | = 10 banks. There are 500 time steps and each loan has a
maturity of S = 30 periods and a value of 1 billion dollars. Model parameters are: Z = 0.5,
Y i

0 ∼ U(0.5, 2.5) (all values in billions of dollars), ri ∼ Beta(1, 30) and γi ∼ Beta(1, 2000)
are chosen randomly at time t = 0. r̄i = 12%. The Tobin-like tax is set to κ = 4.6%.
For simplicity, this simulation assumes that banks form the belief ρjt,S = ρ̄jS. This case is
discussed in Section 5.1.
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different institutions to trade with one another. The concept of a SRT is based on the
idea that the preferences of counter-parties for one another can be changed arbitrarily, thus
leading to any desired equilibrium matching between counter-parties. This systemic risk tax
was extensively simulated with an agent-based model (CRISIS macro-financial model, see
Poledna and Thurner (2016)) and was shown to perform very well under a wide range of
different conditions and parameters. The concept of a systemic risk tax was also applied to
a more complex interbank system involving derivative contracts (Leduc et al. (2016)) and
was shown to perform very well. It may be applied to other types of networked systems as
well and this is left for future research.
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5 Appendix

5.1 Limited Information

So far we have assumed that at any time t, all information about the system was common
knowledge. In other words, we assumed that the topology of the financial system, i.e. Āt−1

and ~Et−1, were known to all banks. In reality, while ~Et−1 may be inferred from publicly
available balance sheet information, the whole topology of the interbank system (i.e. Āt−1)
may not be available to all banks. There are two ways of dealing with this. One is to
assume some common prior q̄ on the contagion risk. The total probability of failure of some
borrower j would then be ρjt,S = ρ̄jS + (1 − ρ̄jS)q̄. We may also assume that banks literally
ignore contagion risk, in which case their belief about the total probability of failure of some
borrower j would simply be ρjt,S = ρ̄jS. This does not affect the results derived throughout
the paper although in the second case we can predict higher trading volume. Indeed, the
contagion risk not being taken into account when a lending bank sets the risk premium,
this necessarily results in lower risk premia and thus higher demand for loans (fewer banks’
reservation rates being exceeded).

5.2 Risk Management Strategies with Strict Preferences for Bor-
rowers

In this section, we show that our results extend naturally to the case where lenders have
strict preferences over borrowers. Here we allow lenders to manage their risk by favoring
borrowers with the lowest credit risk. We let the expected payoff of a lender i ∈ Lt that
lends to a borrower j ∈ Bt be

Πi
λ(j) =

1

(1 + ri)S
(1− ρjt,S)(1 + ri)

S − 1. (20)

Here, the lender does not charge a risk premium hij to hedge the credit risk of the borrower.
This payoff is thus strictly decreasing in ρjt,S, the borrower’s default probability. It follows
that lender i would prefer lending to the safest bank, i.e. the bank j with the lowest
probability of default ρjt,S on a loan. Thus, when the ρjt,S can be strictly ordered, lender i
has a non-empty, strictly ordered list of preferences, P i

λ, on the set of potential borrowers
Bt. Lender i’s preferences are of the form P i

λ = d, e, f, ..., indicating that its first choice is
to lend to borrower d, its second choice is to lend to borrower e, etc., where borrowers are
ordered according to their probability of default, ρdt,S < ρet,S < ρft,S < ..., on the loans they
request.

The next result states that under such a regime, there always exists a unique equilibrium.

Proposition 4 (Equilibrium Uniqueness with Strict Preferences). Given any market for
liquidity (Bt,Lt,P) where the preferences are strict, there exists a unique stable matching
µ∗t at time t. Moreover, the amount of liquidity exchanged at time t is bounded as follows:
V ol(µ∗t ) ≤ min(|Bt|, |Lt|).

This equilibrium is generally systemic risk inefficient, as will be shown later in Proposition
5. This case is similar to the classical setting of Gale and Shapley (1962), where each side of

24



the market has strictly ordered preferences. In our case, however, uniqueness follows from
homogenous preferences on both sides of the market.

With strict preferences on both sides of the market, a stable matching can naturally
emerge from a process of repeated negotiations. Each borrower solicits lenders in decreasing
order of their preferences, i.e. they first solicit the lender who offers the lowest interest rate
and so on. The solicited lender gives provisory approval if the borrower is safer (i.e. has a
smaller default probability) than the ones who have solicited him earlier. This process leads,
in a finite number of iterations, to the unique stable matching µ∗t .

This uniqueness result also applies to the case of a Tobin-like tax κ, since the latter does
not affect the ordering of preferences19. By an argument similar to that of Theorem 1, it also
follows that under an appropriately chosen SRT T , any feasible matching such that ri < r̄j
can be sustained as a unique equilibrium.

The next proposition is analogous to Proposition 3, however for the strict preferences
setting.

Proposition 5 (Systemic Risk under Systemic Risk Tax with Strict Preferences). Let
(Bt,Lt,P) be a market for liquidity at time t. Given a net exposure matrix Āt−1 at time
t−1, let Ā∗,Tt , Ā∗,κt and Ā∗t be the net exposure matrices formed at time t with a systemic risk
transaction tax matrix T , with a Tobin-like tax κ, and without tax by the unique equilibrium
matchings µ∗,Tt , µ∗,κt and µ∗t , respectively. Then,

(i) If V ol(µ∗t ) = ν, there exists T such that ESL(Ā∗,Tt , ~Et) ≤ ESL(Ā∗t , ~Et) and V ol(µ∗,Tt ) ≥
V ol(µ∗t ); In particular, there exists T such that µ∗,Tt is systemic risk efficient.

(ii) If V ol(µ∗,κt ) = ν, there exists T such that ESL(Ā∗,Tt , ~Et) ≤ ESL(Ā∗,kt , ~Et) and V ol(µ∗,Tt ) ≥
V ol(µ∗,kt ).

5.3 Additional Numerical Results

We now present additional network statistics for the interbank system simulated in Section
3.4.2.

5.3.1 Degree Distribution

Figure 6 shows the empirical in- and out-degree distributions of the interbank network.
The in-degree is the number of counter-parties from which a bank has borrowed money
(irrespectively of the size of the exposure) and the out-degree is the number of counter-
parties to which a bank has lent money (irrespectively of the size of the exposure)20. We see
that, although the number of counter-parties under a SRT appears to decrease on average,
the distributions in the three scenarios are not strikingly different. The number of counter-
parties is thus not a useful measure to understand how a SRT reshapes the interbank network.

19It only makes certain borrowing rates too high for some borrowers (i.e. rκi > r̄j , for some i ∈ Lt and
some j ∈ Bt).

20This however takes the bilateral netting of exposures into account in the sense that if two banks have
loaned an equivalent amount of money to each other, then the exposure is cancelled.
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Figure 6: Empirical distributions of in-degrees and out-degrees in the unweighted adjacency
matrix of the interbank network simulated in Section 3.4.2. The in-degree represents the
number of counter-parties from which a bank has borrowed money. The out-degree represents
the number of counter-parties to which a bank has lent money.

5.3.2 Systemic Impact SI i

To understand what properties of the network change under the three different scenarios, we
must look at different statistics. The most relevant statistic is SI i, the systemic impact of
a bank, as defined in Definition 3. This is truly a centrality measure since it measures how
many other banks are affected by the bankruptcy of a bank i. The empirical distribution
of SI i is shown in Fig. 7. We clearly see that the SRT drastically shifts the distribution
of systemic impacts towards lower values. A Tobin-like tax on the other hand, only has a
marginal impact on it.

5.3.3 Clustering Coefficient and Spectral Radius

Other more standard network statistics may provide useful insights into how a SRT reshapes
the interbank network. Figure 8 shows the distribution of the average local clustering co-
efficient. The local clustering coefficient measures how close the neighbors of a bank are
to being a clique (being all connected) and also indirectly provides information about the
presence of cycles of exposures. Such cycles of exposures can create substantial levels of
systemic risk because the insolvency of a bank may render other banks in the cycle insolvent
(see for example, Duffie and Zhu (2011)). The local clustering coefficient for a bank is then
given by the proportion of links between the banks within its neighborhood divided by the
number of links that could possibly exist between them. For the purpose of this calculation,
we ignore the weights of the links (the size of the exposures). The average is then taken
over all nodes in the network. Since we have 500 time steps (and thus 500 networks), we
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Figure 7: Empirical distributions of the systemic impact SI i of a bank in the interbank
network simulated in Section 3.4.2.

can compute a distribution of the average clustering coefficient. It is clear from Fig. 8 that
the SRT lowers the clustering coefficient of the interbank network, whereas the Tobin-like
tax only marginally lowers it. Figures 7 and 8 indicate that a SRT has the effect of cutting
cycles of exposures. Such cycles of exposures can cause the bankruptcies of several banks
following the default of one of them.

In Fig. 9, we look at the spectral radius. This is the magnitude of the largest eigenvalue
of the unweighted, undirected adjacency matrix of the interbank network. Again we see how
the SRT lowers the spectral radius whereas the Tobin-like tax has no noticeable impact on
it.

5.4 A Note on Cycles of Exposures

A pattern of exposures that creates high systemic risk is a cycle (see for example, Duffie
and Zhu (2011)). We can see this from Fig. 10, in the case of a circular network. In Fig.
10(a), the transaction between bank 10 and bank 1 closes a cycle. This increases not only
the systemic impact of bank 1, but also the systemic impact of all other banks in the cycle.
Bank 2, for instance, sees its systemic impact rise from $50 million to $450 million, since its
default now triggers the default of all banks in the cycle. A SRT here allows a regulator to
prevent this cycle-closing transaction.
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Figure 8: Empirical distributions of the average clustering coefficient in the unweighted,
undirected adjacency matrix of the interbank network simulated in Section 3.4.2.
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Figure 9: Empirical distributions of the spectral radius in the unweighted, undirected adja-
cency matrix of the interbank network simulated in Section 3.4.2.
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Figure 10: A toy example on a circular network: existence of two equilibria (systemic risk-
efficient and systemic risk-inefficient). Banks 10 and 11 are the lenders and banks 1 and 12
are the borrowers at time t. We assume that r10,1 < r11,1 < r̄1 and r10,12 < r11,12 < r̄12 so that
borrowers prefer lender 10 to lender 11. The one-period-ahead exogenous default probability
is set to ρ̄i1 = 0.01 and Ei

t = $50 million for all banks and each edge is a $100-million loan.
The dotted edges represent the loans formed by the equilibrium matching µ∗t . In equilibrium
(a), we see that lender 10 is matched with borrower 1, thus creating a cycle of exposures.
The expected systemic loss is ESLt = $45.5 million. In equilibrium (b), we see that lender
10 is matched with borrower 12, thus preventing the cycle of exposures from being created.
The expected systemic loss is reduced to ESLt = $33 million. Both equilibria allow banks to
exchange the same transaction volume, but under different matchings, thus creating different
network structures.
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5.5 Proofs

Proof of Lemma 1. A lender i’s expected payoff is

Πi
λ(j) =

1

(1 + ri)S
(1− ρjt,S)(1 + ri + hij)

S − 1. (21)

If ρkt,S = 0 (a risk-free loan), then the risk premium is hik = 0. Lender i will hedge its
risk by charging a risk premium hij such that the loan has an expected value as high as that
of a risk-free loan. Then for any borrower j with a default probability ρjt,S > 0, we have that

Πi
λ(j) = Πi

λ(k). Solving this yields hij = 1+ri
(1−ρjt,S)1/S

− 1− ri.

Proof of Proposition 1. Let j ∈ Bt and i ∈ Lt and let µt be a matching in which rij < r̄j for
any µt(i) = j and rij < rmj for any m ∈ Lt such that µt(m) = m. We will verify that it
fulfills all the conditions of a stable matching (cf. Definition 2):

Condition (I) is trivially satisfied since lenders are indifferent P i
λ(k) ∼ P i

λ(j). The absence
of strict preferences means they have no incentive to change the bank to which they lend.

Condition (II) is satisfied since all borrowers have homogenous preferences and thus it

cannot be that a given subset of borrowers ~b ∈ Bt would agree to swap the lenders to which
they are matched. Indeed for any j ∈ Bt and i, l ∈ Lt, if ri < rl then rij < rlj (since risk
premia hij and hlj do not affect the ordering of the lending banks in a borrower’s preference
list, they are determined only by the ri’s).

Condition (III) is satisfied since we have assumed µt was a matching in which rij < r̄j
and thus P j

β(j) ≺ P j
β(µt(j)) = P j

β(i). Moreover, since we have assumed that rij < rkj for

any k ∈ Lt such that µt(k) = k, P j
β(k) ≺ P j

β(µt(j)).
Hence µt is a stable matching and we may denote it by µ∗t .
The upper bound on V ol(µ∗t ) can be explained as follows: Suppose all banks in the smaller

set (either Bt or Lt) are matched to a counter-party in the larger set, such that rij < r̄j. In
such a case, V ol(µ∗t ) = min(|Bt|, |Lt|). On the other hand, if the smaller set is Bt and some
borrowers are unable to find available lenders with rij < r̄j, then they will remain unmatched,
in which case V ol(µ∗t ) < min(|Bt|, |Lt|). Hence, in general V ol(µ∗t ) ≤ min(|Bt|, |Lt|).

Proof of Lemma 2. Let Nagg
t =

∑
j∈N N

j
t be the sum of all counting processes and let T

be the first jump time of Nagg
t . It follows immediately that T ∼ exp(γagg), where γagg =∑

j∈N γ
j. Let ti be the first jump time of N i

t . Then the probability that bank i is the first

to fail exogenously in the S periods ahead, ρ̄iS, can be expressed as

ρ̄iS = P{T = ti, T ≤ S} (22)

= P{T ≤ S} ·P{T = ti|T ≤ S} (23)

=

∫ S

0

γagge−γ
agg ·tdt · γ

i

γagg
(24)

=
(
1− e−γagg ·S

) γi
γagg

(25)
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Proof of Theorem 1. We now introduce a definition that will be useful to prove this result.

Definition 6. For each j ∈ Bt, let Ljt be the reduced set of lenders from whom j is willing
to borrow, i.e. Ljt = {i : rij < r̄j}. We denote by EQt be the set of feasible matchings (not
necessarily stable) between the set of borrowers Bt and the reduced sets of lenders

∏
j∈Bt L

j
t ,

i.e. the set of one-to-one correspondences µ such that: (I) ∀j ∈ Bt, µ(j) = i, where i ∈ Ljt
(if µ(j) 6= j). (II) ∀i ∈ Lt, µ(i) = j, where j ∈ Bt (if µ(i) 6= i).

In the above definition, EQt is the set of feasible matchings, i.e. those in which a borrower
j pays a rate rij below its reservation rate r̄j. Note that, by definition, EQt ⊇ EQt. We
now show that any matching µ ∈ EQt can be made stable under an appropriate choice of
transaction-specific tax T .

For any j ∈ Bt and i ∈ Ljt , let τij ∈ R+ be the tax imposed on a loan extended by lender
i to borrower j. Since rTij = ri + hij + τij, an appropriate choice of τij’s for all i ∈ Ljt can

reorder borrower j’s preference list P j
β arbitrarily.

Now given a desired matching µ̂t ∈ EQt, we can construct preferences P̃ j
β for all borrowers

j ∈ Bt so that the resulting stable matching will be µ∗t = µ̂t. To see this, let τµ̂t(j)j be such

that rTµ̂t(j)j < rTkj, ∀k ∈ L
j
t s.t. k 6= µ̂t(j) and such that rTµ̂t(j)j < r̄j (if j is to be matched) and

rTk,j > r̄j ∀k ∈ Ljt if µ̂t(j) = j (if j is to remain unmatched). Then, P̃ j
β = {µ̂t(j), π(Ljt\µ̂t(j))},

where π(Ljt \ µ̂t(j)) is some permutation of j’s reduced set of lenders Ljt excluding the desired
counter-party µ̂t(j). This results in preferences {P̃ j

β}j∈Bt , such that the desired counter-party
µ̂t(j) is on top of each borrower j’s preference list.

We now show that, under those tax-induced preferences {P̃ j
β}j∈Bt , the matching µ̂t is

stable.
Let all borrowers solicit the lender on top of their preference lists, then all lenders will

accept to extend a loan since they are indifferent as to which borrowers they trade with. We
will verify that each condition of Definition 2 is satisfied.

Condition (I) is trivially satisfied since the lenders preferences are not strict, i.e. P i
λ(k) ∼

P i
λ(j) for all i ∈ Lt and k, j ∈ Bt.

Condition (II) is satisfied since no borrower can improve his expected payoff by changing
his counter-party. Doing so would force him to pay a higher rate rTij . So it follows that no

group of borrowers ~b ⊂ Bt would agree to swap counter-parties.
Condition (III) is satisfied since for any matched borrower j, rTµ̂t(j)j < r̄j, and rTµ̂t(j)j < rTmj

for any other m ∈ Lt.
We now prove uniqueness:
Suppose there exists another stable matching µ

′∗
t 6= µ∗t . Then, by the construction of

T , a set ~b ⊂ Bt of borrowers are not matched to the lenders on top of their respective
taxed-induced preference lists. If the tax-induced preference of some borrower j is to remain
alone (i.e. rTij > r̄j), then condition (III) is violated and µ

′∗
t cannot be stable. Otherwise,

the members of ~b can agree to swap counter-parties so that they are matched with their
top choices and thus condition (II) is violated. Thus µ

′∗
t cannot be stable and we conclude

that there exists a unique stable matching µ∗t , in which each borrower is matched with its
(tax-induced) preferred lender or with itself (i.e. remains unmatched).
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EQt is thus the set of matchings that can be sustained as a unique equilibrium under an
appropriate choice of the tax.

Proof of Proposition 2. Let κ > 0 be a Tobin-like tax, i.e.

rκij = ri + hij + κ (26)

for some lender i ∈ Lt and some borrower j ∈ Bt.
Part (i):
This proof is identical to that or Proposition 1(i), but with µt being a matching in which

rκij < r̄j and rκij < rκmj for any m ∈ Lt such that µt(m) = m.
Part (ii):
Moreover, for each j ∈ Bt, we can define a reduced set of lenders Lj,κt = {i : rκij < r̄j}. It

follows immediately that Lj,κt ⊂ L
j
t , where Ljt = {i : rij < r̄j}. Preference lists over lenders,

however, remain unchanged. Let v̄ be the highest volume achievable by some matching in EQt
and let EQt(v̄) be the set of equilibria achieving this volume. Then EQκt (v̄) ⊆ ∅

⋃
EQt(v̄),

noting that EQκt (v̄) may be empty. It thus follows that max
µ∗,κt ∈EQκt

V ol(µ∗,κt ) ≤ max
µ∗t∈EQt

V ol(µ∗t )

Proof of Proposition 3.

Part (i):
Consider the set {µt ∈ EQt : V ol(µt) ≥ V ol(µ∗t )}, where EQt is the set of feasible

matchings defined in the proof of Theorem 1 (Definition 6). Since µ∗t ∈ EQt, this set is not
empty. Let us now write

µ̂t ∈ argmin
{µt∈EQt:V ol(µt)≥V ol(µ∗t )}

ESL(At(µt)) (27)

where At(µt) is the net exposure matrix formed at time t with the matching µt (not neces-
sarily stable).

There exists at least one such minimizer µ̂t, since there can only be finitely many match-
ings µt ∈ EQt and {µt ∈ EQt : V ol(µt) ≥ V ol(µ∗t )} ⊆ EQt.

Now from Theorem 1, there exists T such that µ∗,Tt = µ̂t. It follows that there exists T
such that ESL(A∗,Tt ) ≤ ESL(A∗t ) and V ol(µ∗,Tt ) ≥ V ol(µ∗t ).

Part (ii):
Let κ > 0 be a Tobin-like tax, i.e.

rκij = ri + hij + κ (28)

for some lender i ∈ Lt and some borrower j ∈ Bt. As in the proof of Proposition 2 (ii),
we can then define EQκt as the set of possible matchings (not necessarily stable) under a
Tobin-like tax κ and EQκt ⊆ EQt since κ is a particular case of T .

Let µ∗,κt ∈ EQκt be the equilibrium matching under the Tobin-like tax κ. Then µ∗,κt ∈
EQκt ⊆ EQt. Since from Theorem 1, we can design T such that µ̂∗,Tt = µt, for any µt ∈ EQt,
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it then follows by an argument analogous to that of Part (i) that we can find a T such that
ESL(A∗,Tt ) ≤ ESL(A∗,κt ) and V ol(µ∗,Tt ) ≥ V ol(µ∗,κt ).

Proof of Proposition 4. We will first construct an equilibrium matching µ∗t and then show
that it is unique.

Each borrower j ∈ Bt has preferences strictly decreasing in the lenders’ rates ri, for i ∈ Lt.
Each lender i ∈ Lt has preferences strictly decreasing in the borrowers’ default probabilities
ρjt,S, for j ∈ Bt.

Let i1 ∈ Lt denote the lender offering the lowest rate ri1 . Let all borrowers (with ri1 < r̄j)
solicit this preferred lender i1 for a loan. Then i1 will respond by choosing the borrower
j1 ∈ Bt with the lowest default probability ρj1t,S. This match of j1 to i1 is stable: it fulfills
Condition (I) of Definition 2, since both j1 and i1 are matched to their preferred counter-
party and would not want to deviate. It also satisfies Condition (III) since we assumed
ri1 < r̄j1 . Condition II does not apply here since lenders’ preferences are strict.

Let us now deal with the remaining unmatched members of the sets Bt and Lt. Let
i2 ∈ Lt denote the lender offering the second lowest rate ri2 . Let all unmatched borrowers
(with ri2 < r̄j) solicit this second preferred lender i2 for a loan. Then i2 will respond by
choosing the borrower j2 ∈ Bt with the second lowest default probability ρj2t,S. As for the
previous case, this match of j2 to i2 is stable, as it fulfills the conditions of Definition 2.
Proceeding iteratively until jN and iN , where N = min(|Bt|, |Lt|) is the size of the smaller
of the sets of borrowers and lenders, we have found a stable matching µ∗t in which each
bank is matched to its preferred available counter-party (or remains unmatched if there is
no suitable available counter-party).

We will now show that µ∗t is the unique stable matching.
Let µ′t be any matching in which j1 is not matched to i1. Then both j1 and i1 would

benefit from giving up their currently-assigned counter-parties (under the matching µ′t) and
trading together instead. Thus Condition (I) is violated and µ′t is not stable.

Let µ′′t now be any matching in which j1 is matched to i1, but in which j2 is not matched to
i2. Then again both j2 and i2 would benefit from giving up their currently-assigned counter-
parties (under the matching µ′′t ) and trading together instead. Thus Condition (I) is violated
and µ′′t is not stable. Proceeding iteratively until jN and iN , where N = min(|Bt|, |Lt|) is the
size of the smaller of the sets of borrowers and lenders, we find at every step that Condition
(I) is violated and thus that any matching different from µ∗t is not stable. Since this covers
all the possible matchings, we have shown that µ∗t is the unique stable matching.

Proof of Proposition 5. We first prove that, as in Theorem 1, any feasible matching can be
sustained as the unique equilibrium under an appropriate choice of the SRT T .

As in the proof of Theorem 1, given any desired feasible matching µt ∈ EQt, we can
construct T so as to put the desired lender i = µ(j) on top of each borrower j’s preference
list. Calling this matching µ∗,Tt , we now show that it is the unique stable matching.

To show stability, we use the same intuition as in the proof of Proposition 4. Let j1 ∈ Bt
be the borrower with the lowest default probability ρj1t,S. Then the match of borrower j1 with

lender i1 = µ∗,Tt (j1) is stable since both j1 and i1 are on top of each other’s preference lists.
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We can now apply the same logic to show that the match of j2 ∈ Bt, the borrower with the
second lowest default probability ρj2t,S, to lender i2 = µ∗,Tt (j2) is stable. Proceeding iteratively

until jN and iN , where N = min(|Bt|, |Lt|), we show that µ∗,Tt is a stable matching in which
each bank is matched to its preferred available counter-party under the SRT T (or remains
unmatched if there is no suitable available counter-party).

Applying the exact same logic as for the uniqueness proof of Proposition 4, we conclude
that µ∗,Tt is the unique stable matching under the SRT T .

We now prove Parts (i) and (ii) of the proposition.
Part (i): The proof is identical to that of Proposition 3 (i), since any feasible matching

in EQt can be sustained as a unique equilibrium by an appropriate choice of the SRT.
Part (ii): The borrowing rate under a Tobin-like tax κ here is simply defined as rκij = ri+κ.

The uniqueness result of Proposition 4 holds under a Tobin-like tax κ since it does not affect
the preferences of the lenders, nor the ordering of the preferences of the borrowers. It only
reduces the set of lenders with which a borrower would accept to trade (since rκij may be
greater than r̄j for some lenders i ∈ Lt).

The proof is then identical to that of Proposition 3 (ii).
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