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FOREWORD

The eventual aim of health care research at IIASA is to
develop a family of submodels replicating components of the
health care system in a meaningful way. These models - in the
contexts which they are applied - are for use by health planners
to assist them in taking rational decisions in what is an ex-
tremely complex operating environment. The models developed
thus far deal with population, disease prevalence, resource
need, resource allocation,and resource supply.

The model presented in this paper comes into the resource
allocation category. Known as RAMOS (Resource Allocation Model
Over Space), it provides a simple method for choosing between
different resource configurations on congested regions (very
large urban areas, industrial agglomerations, etc.) when the
population size and structure, and the resource availability
are changing simultaneously in space and time.

Related publications in the Health Care Systems Task are
listed at the end of this report.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

This paper sets out the background and initial results of
a resource allocation model called RAMOS. It was developed to
explore the consequences on hospitalization rates resulting
from one or more of the following: hospital building programs,
treatment trends in in-patient care, population changes, or
transport developments affecting the accessibility of the popu-
lation to health care supply. For decision makers the control
variables in the model are principally the resource levels in
each geographical area of in-patient treatment. A typical
question as asked of the model might be: what rearrangement
of health care facilities would redress the regional imbalance
in health care provision? RAMOS takes as inputs the current
or projected morbidity in each area of the region (based on
the sex and age structure of the population), a 'test' config-
uration of health care facilities, and data on patient accessi-
bility. It then outputs the anticipated hospitalization rates
by area of residence (admissions per 1000), and other information,
so enabling the evaluation of many different allocation plans by
the decision maker.

RAMOS is a behavioral model based on extensive data relating
to southeast England, an area containing 13.5 million people.
It represents a continuation of the work begun in the Department
of Health and Social Security in 1979. RAMOS is especially suited
to applications in rapidly changing regions, crowded urban settle-
ments, and wherever the locations of health care facilities or of
other types of service provision is an important issue.
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RAMOS: A MODEL OF HEALTH CARE RESOURCE
ALLOCATION IN SPACE

1. INTRODUCTION AND BACKGROUND

The Health Care Task at IIASA is developing a range of
models, each dealing with substantially independent portions
of the Health Care System (HCS). These models are designed
for use by decision makers and health planners in different

countries and at different levels in the decision making process.

One theme developed at IIASA, in conjunction with the
Operational Research Service of the Department of Health and
Social Security in England, concerns the health care resource
allocation process and the interactions which occur between
different patient categories and modes of care. This research
gave rise to the model DRAM (Gibbs 1978; Hughes and Wierzbicki
1978). The objective of this study is to present the initial
findings of another model, which like DRAM, considers the inter-
actions between resource supply and demand, but at a geographical
level. More specifically, this model, called RAMOS (Resource
Allocation Model Over Space), has been designed to explore the
effects between hospitalization rates and patient flow patterns

in a region or a country resulting from changes in:



- The number and location of hospital beds in various
specialities which result from hospital closures, new

developments, or other forms of reorganization
- The population size and structure
- The relative morbidity of the population

~ The 'throughput' per bed (i.e., the rate at which hospitals
are able to treat patients)

- The availability and efficiency of transport services

and car travel over time

Although the model—developed at the Department of Health and
Social Security (Mayhew and Taket 1979)-—is applied in a United
Kingdom context, it is believed that the results will be of much
wider interest, as it is known that similar work is being conduc-

ted in other IIASA countries both in health and in other fields.

The impetus for this study came as a result of our earlier
work on behalf of the London Health Planning Consortium (LHPC
1979). The aim of this work was to identify and quantify in broad
terms the level of acute hospital services likely to be needed in
various parts of the four Thames Regional Health Authorities
(RHAs) which serve London and much of southeast England. The
results showed that relative to the remainder of England and
Wales, London is over-provided with acute hospital beds. 1In the
report of the Resource Allocation Working Party (RAWP 1976) it
is also shown that these four regions are relatively over-provided
with financial resources. Furthermore, the population of the
inner and outer parts of London has been declining and is expected
to decline further, while the population of the counties in the
Thames Regions surrounding London is expected to increase. Thus,
there is considerable pressure on the London Health Authorities
to reduce the level of acute services, and to develop instead
services in the counties and services for other groups such as the

elderly and mentally handicapped.

In meeting the challenge of providing an efficient hospital
system in the 1980s, the four Thames RHAs are obviously concerned

that patients do not suffer in the interim and that the costs of



implementing plans are kept within resource constraints. The
problem facing the RHAs, however, is that it is extremely diffi-
cult to know beforehand precisely what effects implementing such
measures as hopsital closure or capital developments will have

in an area comprising some 13.5 million people. This paper ex-
amines whether a model can be developed for the RHAs to deal

with these and related problems and if such methodologies can be
applied in other countries. The type of model (RAMOS) which has
been considered, emerges from a family of gravity models developed

elsewhere over many years and is of the singly-constrained kind.

The emphasis is on the specification, calibration,and vali-
dation of RAMOS rather than its theoretical basis, since the
latter is already well documented (Wilson 1967, 1970, 1971). Two
distinct variants are developed and tested using a purpose-written
computer program, the details of which will be set out in another
paper to be produced at IIASA. The first variant (Model 1) covers
southeast England in an area served by the four Thames RHAs (NE,
SE, NW, SW); the second (Model 2) covers only the greater London
portion of the southeast Thames RHA. This comprises the adminis-
trative boroughs of Lambeth, Lewisham, Southwark, Bexley, Green-
wich, and Bromley, which form part of the Greater London Council
(GLC) region. Following some introductory background in section
2 to the factors affecting hospitalization rates and flow patterns,
the model is presented in section 3 and the zoning systems are
discussed. 1In section 4 the variables are defined in detail
and certain refinements are made. The calibration procedures,
results, and validation of the models are the subjectsof sections

5 and 6, while in section 7 some conclusions are drawn.

2. DISCUSSION OF THE FACTORS AFFECTING HOSPITALIZATION RATES
AND FLOW PATTERNS IN THE REGION OF INTEREST
The London region is probably unique in having several hun-
dred hospitals dealing to greater or lesser extent with acute
medical services as well as playing a very important role in the
field of medical education. Figure 1 shows the location of
London's acute hospitals within 50 kms of the city center in the

period 1901 to 1971. Partly because of their proximity to each
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Figure 1.

The locations of acute hospitals in London:

1901

1971

{Source:

Mayhew, 1979).




other and partly because of the sophistication of London's trans-
port system, the hospitals are highly interdependent in terms of
the services they provide and the areas they serve. For example,
a change in the population of one locality tends not only to af-
fect patient flows to the neighborhood hospital, but also it af-
fects flows to other hospitals nearby and these in turn affect

others farther afield, so creating an interaction effect through

the system,

While it is probably impossible to know all the reasons why
individuals choose or are referred by their general practitioners
to particular hospitals, our analysis showed that in the London
region (and probably for the UK system as a whole) the bulk of
observed patient flows from one area to another could be explained
on the basis of three factors: the capacity of hospitals in an
area to treat patients, the relative morbidity of the population,
and the accessibility of the population to supply. The first
factor reflects a generally held view—particularly in countries
with free health care services (Feldstein 1965)—that supply fuels
demand: whatever is provided gets used. The second factor is
determined mostly by the age and sex structure of the population,
although certain socioeconomic and environmental considerations
are known also to be important (LHPC 1979). The third factor,
accessibility, is the tendency for usage to reflect geographical
availability. Substantial variations in hospitalization rates
exist both regionally and nationally which cannot be accounted

for in any other way.

Two empirical illustrations of geographical dependency are
shown in Figqures 2 and 3. Contained in Figure 2 is a plot of dis-
charge rates against hospital bed availability for the London re-
gion in 1977. The correlation between hospital usage and local
bed availability is clearly very strong (r = 0.85). 1In Figure 3
a histogram is shown of the percentage variation with distance
of patient journey origins to a sample of 14 London hospitals
for general medical and surgical specialities. Although it is
seen that some patients do travel long distances,it is plain from
this diagram that the great majority reside within only a few

kilometers of the hospital they use.
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Figure 2. Relationship between hospitalization rate
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When a new hospital opens therefore we would expect local
hospitalization rates to rise. This presumption is borne out by
the experience at Northwick Park Hospital, Harrow, a large acute
hospital built on a 'greenfield' site near the periphery of the
city which opened in 1969. The main effect of this hospital,
whose construction created a seven-fold increase in the caseload
capacity of Harrow between 1967 and 1977, was to increase the hos-
pitalization rate in this borough and Brent by almost 50 percent
as compared with increases averaging only 20 percent for other
boroughs in northwest London over the same period of time. One
suitable test for the model presented here therefore is to try
to 'back-forecast', using the model,the impact of Northwick Park
Hospital on hospitalization rates and to compare that 'backcast'

with what actually happened, taking into account the substantial



changes in population and other hospital caseloads in the study
region which have occurred in the last ten years. This exercise
is carried out in section 6. If the impact of these changes on
Brent, Harrow and neighboring areas can be predicted over this
period with reasonable accuracy, then the model may be applied
with more confidence to events expected to take place in the

future.

The importance of geographical availability in determining
hospitalization rates is thus apparent from these examples. 1In
under-provided areas it must be accepted that patients who would
otherwise be admitted to hospital must seek treatment in some
other form or not at all. 1In this study only the in-patient and
day-patient sectors of the health caré services are considered.
Parallel facilities for obtaining treatment are to some extent
available in the community (mostly in general practice, health
centers, or clinics), in the out-patient departments of hospitals,
or in the private medical sector. These alternatives and the
interactions between them are not considered in this study, but
they are clearly important in determining the overall balance of
care (McDonald, Cuddeford, and Beale 1974) ., Nevertheless, it
may be possible to incorporate into the scheme these parts of

the health care system at a later date.

3. THE BASIC MODEL

The model used is a behavioral one and is of the singly-
constrained gravity kind. It argues that patient flows from an
area are in proportion to the morbidity in that area, and to hos-
pital bed availability in all areas, but are in inverse proportion
to the difficulty of geographical access in terms of travel time
or distance. In order that the ability of hospitals to treat
patients is not exceeded, a single constraint is included so that
hospitals can treat up to their caseload capacities and no more.
Realistically, some fluctuation, say %5 percent, is likely in the
caseloads either through higher throughput or because of slack
in the system. This can be built into forecasts as desired, but
basically the model assumes that resources are always used to

capacity.



The use of the gravitational analogy is well-known and dates
back many years (Carrothers 1956). A significant advance in the
theoretical basis of gravity models was published by Wilson in
1967. Published applications in health care systems are, however,
extremely rare in the UK. Similar models have been developed in
the United States (e.g., Morrill and Kelley 1970), but they are
generally unsuited for use in a UK context because of the totally
different approach in the former to the provision of health ser-
vices. Nevertheless, there is scope for unifying these separate
perspectives to produce versions of the same model that can be
applied in both market and planned health care systems. Some

additional comments on this are made in section VI.

Mathematically, the basic model used here is as follows:

T.. = B. D. W, exp (-Bc.. 1
13 Jj 3 1 P " l]) s
where
Tij = the patient flow from zone i to treatment zone j
Dj = the caseload capacity in j for treating patients
in a specialty or group of specialties
Wi = a patient generating factor (PGF) which is an index
of the propensity of an area to generate patients in
the same group of specialties
cij = the time-cost or distance of travel between i and j
and

-1
Bj = [; Wi exp (—BcijJ

This is a constraint which ensures that,
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that is, flows from all i to j exactly equal the case
capacity in j
B = a parameter to be determined

The model operates in two distinct modes: the first is
the calibration mode, which consists of finding a value of g
such that predicted patient flows {Tij} match the observed
flows {Nij} as well as possible; the second is the forecasting
mode which examines the flow consequences of changes in the in-
put variables assuming B is unchanged. This assumption is the

behavioral basis of the model.

The first stage of study in both versions of the model in-
volves the definition of zones. There are basically three types
of patient flows which must be represented: those from zones in
the external world to zones in the internal study region and vice
versa; those between zones in the study region, and between zones
in the external world; and those within individual zones. Data
availability is a major constraint on the suitable geographical
delimitation of zones. In the first model (model 1) origin zones
are in fact different from destination zones for this reason.
Accordingly, there are 44 origin zones and 69 destination zones
(see Figures 4 and 5). Four of these zones (Oxford RHA, East
Anglia RHA, Wessex RHA, and the rest of England) are outside
the four Thames RHAs and these are regarded as the external
zones in this model. The internal study region thus has 40
origins (London administrative boroughs and counties outside
the GLC in the Thames Regions) and 65 destinations (the Health

Districts in the four Thames Regions) .*

In the second model (model 2) there are 46 internal zones
based on traffic districts used for planning purposes by the GLC
(Crawford et al, 1975), and 13 external zones based partly on
Area Health Authorities (AHAs) covering the remainder of Thames
regions (see Figure 6). Traffic districts are divisions of boroughs, but with
suitable adjustment they can be readily aggregated to the Health District (HD)

*
For administrative use England is divided into 14 Regional Health
Authorities (RHAs), 40 Area Health Authorities (AHAs), many of which

in turn are divided into Health Districts (HDs).









Key to Figures 4 and 5

Origin Destination Destination
1 Barnet 1 N Bedfordshire 45 Bexley
2 Brent 2 S Bedfordshire 46 Greenwich
3 Harrow 3 N Hertfordshire 47 Bromley
4 Ealing 4 E Hertfordshire 48 St Thomas'+
5 Hammersmith 5 NW Hertfordshire 49 Kings'
6 Hounslow 6 SW Hertfordshire 50 Guys'
7 Hillingdon 7 Barnet * 51 Lewisham
8 Kens + Chelsea 8 Edgware * 52 N Surrey
9 Westminster 9 Brent 53 NW Surrey
10 Barking 10 Harrow 54 W Surrey
11 Havering 11 Hounslow 55 SW Surrey
12 Camden 12 S Hammersmith 56 Mid Surrey
13 Islington 13 N Hammersmith 57 E Surrey
14 City 14 Ealing 58 Chichester
15 Hackney 15 Hillingdon 59 Crawley
16 Newham 16 K/C/W NW * 60 Worthing
17 Tower Hamlets 17 K/C/W NE 61 Croydon
18 Enfield 18 K/C/W S 62 Kingston
19 Haringey 19 Basildon 63 Roehampton
20 Redbridge 20 Chelmsford 64 Wandsworth
21 Waltham Forest 21 Colchester 65 Sutton
22 Bexley 22 Harlow 66 Oxford
23 Greenwich 23 Southend 67 E Anglia
24 Bromley 24 Barking 68 Wessex
25 Lambeth 25 Havering 69 Other RHAs
26 Lewisham 26 N Camden
27 Southwark 27 S Camden
28 Croydon 28 Islington
29 Kingston 29 City
30 Richmond 30 Newham
31 Merton 31 Tower Hamlets
32 Sutton 32 Enfield
33 Wandsworth 33 Haringey
34 Bedfordshire 34 E Roding
35 Hertfordshire 35 W Roding
36 Essex 36 Brighton
37 E Sussex 37 Eastbourne
28 Kent 38 Hastings
39 Surrey 39 SE Kent
40 W Sussex 40 Thanet
41 Ooxford 41 Dartford
42 E Anglia 42 Maidstone
43 Wessex 43 Medway
44 Other 44 Tunbridge

*
K/C/W = Xensington, Chelsea, and Westminster

+ Destinations 48, 49, 50 are named after teaching hospitals within
the districts.
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A) Southeast England

B) Southeast GLC

Figure 6. The zoning system for model 2. There are 59 origin
and destination zones, 46 within the southeast GLC
and 13 in the rest of the four Thames RHAs.
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administrative level. Health Districts serving the second study
region are Kings, Guys, St. Thomas, Lewisham, Bromley, Bexley,
and Greenwich, the first three of which are also teaching dis-
tricts. Traffic districts are also aggregations of census wards,

and for the southeast only patient flows at ward level are known.

All zones in both studies were each allocated a centroid
from which distance or travel time could be measured. The cen-
troids in the first model, which uses distance, were defined in-
itially either as weighted centers of population or, if available,
by other suitable nodal points. In the second model, which uses
time, the centroids were already defined by the GLC for each traf-
fic district, but for external zones weighted mean centers of

population were used.

4. VARIABLE SPECIFICATION

4.1. Caseloads

Caseloads (Dj) are defined as the combined case capacities
of hospitals in each zone to treat patients in particular groups
of specialties. For calibration purposes the data were obtained
from patient flow information in the Hospital Activity Analysis
(a comprehensive statistical annual review of in-patients by RHAs).
For example, if Nij is the observed flow from i to j, then the

caseload of j is defined as

D. = Z Nij (2)
1

Caseloads for both models were based on 1977 data. The list of
specialties considered in each is shown in Table 1. This list
combines both regional and sub-regional specialties: that is no
distinction is drawn between them in terms of their differential
geographical availability. For some applications of the model,

it makes sense to disaggregate on these lines. This was done in
the case of model 1, to produce a regional and sub-regional model.
(Regional specialties service much larger populations and are
indicated by an *.) The results of the all-specialty and dis-
aggregated models are compared in section 6.
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Table 1. Specialties list in models

1 and 2.

Four Thames Regions Model

Specialties included:

Southeast Model

General Medicine
Paediatrics
Infectious Diseases
Chest Diseases
Dermatology
Neurology*
Cardiology*
Rehabilitation/Physical Medicine
STD

Rheumatology
General Surgery

ENT

Traumatic and Orthopaedic
Surgery

Ophthalmology
Radiotherapy*
Urology

Plastic Surgery*
Thoracic Surgery*

Dental Surgery (including
Orthodontics)

Neurosurgery*
Gynaecology
GP Medicine

osu*

As for model one plus:
Geriatrics

Special care babies
Staff wards
Convalescent

Acute mental illness

* Regional Specialties
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In the forecasting mode case capacities can be determined
from trends in treatment patterns over longer periods, and from
proposed developments such as hospital construction. For example,
many specialties—because of improving treatment and a better
organization of resources—are experiencing falling lengths of
stay, enabling more cases to be treated in one year with the
same given number of beds. Similarly the average length of time
between successive bed occupants can be reduced, thus enabling
more cases to be treated. These effects can be built into fore-

casts using the following formula as an example:

Brm(t+n) [Im(t) + tm(t)]
“Bm(t) ¥ TIm(t+n) + tm(t+n)]

Cm(t+n) = X Cm(t)

where
Cm(t) = cases treated in specialty m in year t
Bm(t) = available beds in specialty m in year t
Im(t) = length of stay in specialty m in year t
tm(t) = turnover interval in specialty m in year t
4.2. Patient Generating Factors (PGFs)

PGFs are an index of a zone's ability to generate patients
in the specialties of interest., Ideally, we would need an assess-
ment of the morbidity in a population; however, accurate and un-
disputed measures of this are hard, if not impossible to come by.
IIASA is developing some morbidity models that offer potential (Kitsul, 1980),
and they may be used in future work but for the present the method
used in this study relies on the relative national pattern of
hospital usage by specialty by persons of different age and sex.
Thus, if U o is the national discharge rate in age/sex category

1

1, and specialty m and Pi is population in i, also in age/sex

1
category 1, then
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defines the PGF for zone i. This index takes no account of socio-
economic and environmental factors likely to influence patient
generating potential. These could be incorporated by an appropri-
ate weighting of the Wis. Standardized mortality ratios (SMRs),*
for example, may be used as measures of relative need. The use

of SMRs in obtaining patient generating factors has been investi-
gated and the results are discussed in section 6. These attempts
at devising suitable PGFs do not exhaust the possibilities however.
Improvements to include more factors can be made as experience

with the model grows.

For forecasting purposes, PGFs are dependent on population
change and trends in relative hospital utilization rates. For the
former population projection can be used; for the latter trends
national patterns over time are the best indication (e.g., LHPC
1979).

4.3. Travel Costs

Two measures of travel cost were used: simple distance in
models 1 and 2, and travel time in model 2. Simple distance is

defined as:

ey =Wk - xD2 4 (yy - y))? (4)
where Xir ¥y and Xj’ yj are the centroids of zones i and j, and
cij is the cost-distance between them in kilometers. For intra-
zonal distances (i.e., when i = j), a formula based on the prox-
imity of the next nearest centroid was used. A drawback with
distance is that it is not always a reliable measure of accessi-
bility, particularly in urban areas where travel is affected by

a variety of factors. One prominent hindrance to travel, for
instance, is the River Thames, and it was found necessary to weight

inter-zonal distances which crossed it.

*SMR. = % My / % r) P;; where M.; is the actual number of deaths

in i in age/sex category 1, P is the population in i in category

il
l, and ry is the national age/sex specific death rate.
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Model 2 uses travel times in addition to distance in an at-
tempt to overcome these features. Inter-district travel times
were supplied by the Greater London Council from the 1972 Greater
London Travel Survey (GLTS) for public and private transport. In
using two measures of cost for each origin~destination pair it
becomes necessary to decide what proportion of the patient popu-
lation will travel by each form of transport. People live in
households, and the number of households with one or more cars is
generally known. This information is used to split the PGFs into
two streams: (a) those patients with potential car access, and
(b) those without. Not everyone in a household will be qualified
to drive, or have access to a car for a given hospital journey,
however. This further reduces the first stream by a factor as-
sumed to lie between 50 and 75 percent. Those with access and
contemplating car travel will then weigh the advantage of travel-
ing by private or public transport. The actual number of persons

involved is then determined within the model as follows.

4.4, Modal split

Restating the basic model, we have

kn _ n _n kK

Tij = Bj Dj W, exp ( Bcij) (5)
where

n k -1
B. =) ) L W, exp (-Bc..) (6)
J i n key(n) ]

ensures

DRI (7)

i n k€y(n) ] ]

Here n is the class of traveler who has available a set of modes

given by yv{(n), while k is the mode of travel. 1In our case there
are two modes and two classes. If we consider car-owners (n = 1)
the proportion who use public transport (k = 2) hetween i and j

is determined by calculating the patient flows generated by each

mode individually and dividing out, i.e.,



2 |
—_tJ (8)
T 21 3 3
T,. + T.. - -
i3 s 1 + exp { B(cij cij)}

The key factor from equation (8) in determining the proportion

is hence the difference in journey times by each mode. This pro-
portion determines the modal split, and the results were checked
for validity against a sample hospital travel survey carried out
in London. The details are given later in section V but a graph

of the relationship in equation (8) is shown in Figure 7.

In the forecasting mode, distance does not change but time
might because of changes in the transport system. These will
normally be slight over a typical forecasting period. The car
ownership factor will be more important, however, and any expected
changes can be incorporated once forecasts for Wi have been es-
tablished. A greater access to cars, for example, implies more
mobility, and one consequence of this in model 2 is that patients
will travel longer distances. This may eventually permit the

provision of fewer, though larger, hospitals.

4.5. Other Considerations

4.5.1. Hospitalization Rates and Elasticities

The criterion health administrators will be most interested

in is the effect a particular plan of action will have on hospi-

talization rates. These are defined for each origin zone as,
Ti.
= J 0
Ry Z iz (%)
j i

That is, the row total of predicted flows divided by the total
population of i. This compares the actual hospitalization rates

which are defined in terms of Nij'

Elasticity, by contrast, is an index of hospitalization
rates' sensitivity to a change in caseload. It is useful as a
measure of a zone's reliance on a group of hospitals. The hospi-
talization rate in equation (9) can be re-written using equation

(1) thus,
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T. W.
I Rt _
Ry = I 5, p, L By Dy exp (=Bc,y) (10)
j ti i
therefore, defining
D3 T
Biy = ', 30, ~ Ti57% Tis (1)
i %P3 j

where Eij is the required elasticity. Eij varies from 0 to 1
and is the ratio of the predicted flow to the row total. It
expresses the proportionate change in the hospitalization rate
expected in 1 following a small change in the caseload of j.

It is best interpreted as the dependency of a population on a
specific destination zone. Typically it is highest when i = j,
or there is considerable overlap between the zones i and j, in-
dicating that zonal populations are generally more reliant on

their local hospitals than on hospitals in any other zones.

4.5.2. Catchment Populations

Health administrators will also be interested in the catch-
ment population of each destination zone using a measure which
takes into account the effects of cross-boundary flows. Catch-
ment populations are related to the total population of an ori-
gin zone and to the elasticity of the hospitalization rates de-

fined in section 4.5.1. Thus

C. = L E.. P, (12)
i

where Cj is the required catchment population of j and,

Eij = Tij/g Tij (13)
]
By using the predicted elasticities, therefore, the catchment

implications of changes either in caseload or population can

be determined. This measure would be particularly useful for
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instance in assessing the likely impact in terms of population

served of a new hospital.

4.5. 3. Deterrence Function

The basic model distributes hospital flows in accordance
with a negative exponential function [exp (—Bcij) in equation 1]
sometimes called the deterrence function: other functions which
are likewise monotonic-declining and asymptotic to the horizontal
axis have been used in gravity modeling. Although the present
program expects the negative exponential form, input cost matrices
{cij} can be simply transformed to obtain other functions which
may give a better fit to the observed flows. Table 2 lists some

examples that were tried in the course of this study.

Table 2. Input transformations for changing deterrence function.

Function Transformation Restrictions
exp (—Bcij) None None

..-B {c..} --» {log c..} c.. #0

ij 1] 1] 1]

-B _ I -
cij exp ( Bcij) ‘cij} > {cij+log cij} cij # 0
exp (-Bc..k) {c..} -— {c .k}(k=constant) None
ij 1] ij

The purpose of using different deterrence functions can be
appreciated from the curves in Figure 8. For instance, for the
same set of data the power function (cij_B) will give more em-
phasis to patients generated at low rather than high travel costs.
The exponential function [exp (—Bcij)] in contrast emphasizes in-
termediate travel costs, but has a negligible effect when these
costs are very high. The mixed function [cij_B exp(—Bcij)] offers
more flexibility, but raises the question of developing a two-
parameter instead of a one-parameter model of deterrence [i.e.

o
cij exp(-Bcij)].
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5. CALIBRATTON

Calibration is finding a value for 8 in equation (1) such
that predicted flows {Tij} most accurately portray observed
flows {Ni.}. Several methods of calibration exist and are
documented in the literature. They nearly all involve some
form of search procedure which stops either when a calibration
statistic assumes a particular value or when it reaches some
maximum or minimum value. The calibration statistic is calcu-
lated over some subset of the trip matrix, which is referred
to as the region of calibration. Questions concerning the
choice of region of calibration are covered in a later section.
It is disconcerting that different calibration statistics pro-
duce different values of B. However, there is no way of telling
which method or statistic is best except by exhaustive testing.
The basic calibration procedure is more or less the same irres-
pective of the calibrating statistic, and the way it is handled
by the program is shown in Figure 9. Experience reduced the
number of calibration methods to three of which the third was

generally found to be most suitable.

Calibration method [1] was based on the nrinciple of maxi-
mum likelihood (Batty and Mackie 1972). If the deterrence function is a
negative exponential,this method states that predicted flows
are most likely to be correct when the mean predicted travel

cost equals the actual mean cost, that is

cp = Cibs (14)
where
r ¥ T..c..
.. 1] 1]
c =2
R (15)
i3] 1]
and
I ¥ N..C..
_ i Vljcl]
Cobs = T I N.. (16)
A B
1]
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The program uses Hyman's linear interpolation convergence for-

mula (Hyman, 1969) for iterating towards a solution for B. If

n+1

n is the number of iterations B is found by

— — -1
(c.. ey (g"-p"""
Bn+1 - Bn + obs__f — (17)
(¢ -c )
P P

For the first iteration only,

2 - =
B™ = B cp /cobs

where 81 is the initial estimate supplied by the user. Setting

1 —
B to (cobs
only a few iterations. Accuracy is determined from a tolerance

)_‘I normally resulted in successful convergence after

value which can be set to any value by the user.

Several problems came to light in using this method in both
models 1 and 2. It was found that the value of B obtained was
sensitive to the number of zones over which calibration took
place. Ideally one would have expected little or no change in
R whether calibration was based on flows over all the RHAs for
example or just parts of them. It was further found that Eébs
was very senstive to the definition of centroids, particularly
those in external zones which are heavily weighted by large
patient flows. In model 2 an additional difficulty was in ob-
taining a value for Eobs' Clearly equation (16) is inappropri-
ate in the two-mode case because it requires prior knowledge
of the modal split by public and private transport of patients
traveling to hospital. A survey value based on travel to London
hospitals was therefore used instead (Mayhew, 1979), but this

too had its drawbacks.

The use of this method is also conditioned by the functional
form of the deterrence function. Equations 14-16 apply only to
the ordinary negative exponential deterrence function. For the
power function, for example, it is necessary to substitute in
equations (15) and (16) log cij for cij before the method will

work.
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The second method of calibration was based on maximizing
the statistic R2, which is the proportion of variance explained
by the regression of predicted on observed patient flows. It

is written

DA — 2

2 i Ty - D

R = (19)
LI g -2
i3 ij

where Tij is the expected flow (predicted by the regression),
Tij is the predicted flow by the model, and T is the mean pre-
dicted flow.

Two problems detracted from the use of this statistic:
firstly, it is insensitive to the value of B; and secondly, it
is often very close to one, the upper limit of the R2 range.
While a value of one would indicate a perfect fit, it was found
that, for model 2, calibration runs with R2 values onlyslightly

less than this could still have many undesirable properties.

The third method of calibration proved the most suitable.
This method was based on the slope of the regression of pre-
dicted on observed flows rather than on the proportion of vari-
ance explained. When the value of the slope is equal to one,
it means that on average predicted and observed flows are the

same. The regression slope b is defined in terms of Ti' and

J
N.. as
1)
Z. N..T.. - .Z. N. . .z. T. .
1,) 1J7°1) 1,] 1j 1,73 1]
N
b = - > - > (20)
- (. N..)
1,3 1] 1, 1]
N

where N is the number of cells in the matrix for which Dj # 0.
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A search technique is used to find the required value of 8,
but unlike method 1 the procedure used is not of the conver-
gence type. Experience showed however, that a good starting
value for B could be obtained using maximum likelihood, and

this greatly shortened the search by the slope method.

Accompanying the mean cost, R2 and slope statistics were
other statistics,which though lacking in calibrating potential acted as
good measures of fit. These statistics, which were output at

each iteration, are summarized in Table 3.

To illustrate the points made in this section we conclude
by showing in Table 4 an example of a typical sequence of iterations
towards a solution based on method 3. Attention is drawn to the
fact mentioned above that the statistics concerned have very di-
verse behaviors, and that extreme caution should be exercised in

selecting the appropriate one for calibration purposes.

6. IMODEL 1 RESULTS
6.1. Introduction

In this section the results obtained with model 1 are dis-
cussed and the calibrations using three different cost matrices
are compared. The first calibration uses a cost matrix consist-
ing of the unmodified straight line distances between the cen-
troids of the origin and destination zones (Matrix 1). Model 1
uses a different zoning system for origins than for destinations,
and for this reason, the crude distance matrix obtained was found
inadequate in its estimation of distances between origin and des-
tination zones where there was considerable overlap between the
zones. The distance between each such origin-destination zone
pair was altered to give a more realistic assessment of the
actual mean distance for the trip concerned and a second cost
matrix (Matrix 2) was produced incorporating these modifications.
This matrix also contained one other refinement; that is, increases
were made in the distances for trips between zones separated by the
River Thames, where some detour from a straight line path would be
necessary to reach a crossing point. This was effected by the use
of a single factor increasing all such distances by a constant pro-

portion.
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Table 3. Other statistics used in measuring goodness-of-fit.

Symbol Statistic Formula for calculation
a intercept of regression iZ' T,s = biZ. i
line of predicted flows a=2d 2J J 1)
against observed flows N
2
5 2 (N, .-T j)
X chi-squared statistic X" = L. J such that
1i,]
T, . T.. # O
1] 1]
|N..-Tij|
]el mean absolute error |el = 1. S TS
i,] N
bsolute percenta N, .-
|pe| mean abso p ge | i3 Tij| 100
error lpe| = .Z. X
i,J Nij M

such that N,, # 0
1]

where M = .Zj
1,3
Nij #0
(N, .- T..)2
i ij

RMSQ root mean square error RMSQ = i3 J N
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Table 4. An example of an iteration sequence using the power function (model 2).

calibration

iteration parameter mean cost chisquare rmsq error r square regression coeffs mean abs er mean abs po er
1 0.30000 7.40751 ©0.107140e+20 402.8 0.9668 52.86 0.8208 122.3 15S5.1
2 0.31000 7.27141  0.494569¢+20  359.3 0.9711 46.52 0.8501 113.1 147.4
3 0.32000 7.14439  0.228744e¢+21  319.8 0.9746 40.27 0.8786 104.2 140.7
4 0.33000 7.02560  0.105981e¢+22  285.2 0.9774 34.11 0.9063 95.99 134.9
S ©.34000 6.91433 0.491788e+22 257.3 0.9797 28.06 0.9331 89.15 129.8
6 0.35000 6.80935 0.228523e+23 237.5 0.9813 22.13 0.9590 84.02 125.2
7 0.36000 6.71186 ©0.106321e+24  227.5 0.9824 16.32 0.9841 80.53 121.1
8 0.37000 6.61955 ©.495211e+24 227.9 0.9830 10.64 1.008 79.47 117.4
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Results obtained with this second cost matrix indicated a
substantial improvement over those obtained with Matrix 1.
However, an examination of the calibration results continued
to show the inadequacy of using a cost matrix which was still
heavily based on straight line distance. This led to the pro-
duction of a third cost matrix (Matrix 3), incorporating a
second set of modifications designed to reflect factors such
as congestion in the GLC area, particularly in central London,
the relative ease of access from the counties to central London
health districts (compared to similar straight line distances
to other health districts outside London), and so on. The modi-
fications used are empirically derived, and consist of a set of

multiplying factors used to:

A. Decrease "distance" from origins outside London to
destinations inside the GLC (mainly central London)

B. Increase "distance" between zones in the GLC area

Results obtained using Matrix 3 showed a substantial im-
provement over those obtained with Matrix 2, both in terms of
the goodness-of-fit of the calibration to the actual 1977 data
and in terms of the accuracy obtained when the predictive abi-
lity of the model was tested using data for 1967 in the North
West Thames RHA area. In the sections that follow the results
obtained with the three cost matrices are compared, and the

results obtained with Matrix 3 are examined in particular detail.

6.2. Overall statistics

Table 5 presents a comparison of the results obtained using
the three different cost matrices in terms of some overall sta-
tistics. The results shown were all obtained using the slope
method of calibration, and the statistics referring to the trip
matrix are calculated over the region of calibration only -- in
this case all flows from origins in the GLC area to destinations
in the Thames Regions. This choice of region of calibration is
discussed later in this section. As Table 5 shows Matrix 3 pro-

duces a better value for each of the statistics considered. 1In
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Table 5. Model 1 - Comparison of overall statistics.

COST MATRIX USED

Matrix 1 Matrix 2 Matrix 3

Parameter 0.428 0.434 0.367
i. Trip matrix statistics

R 0.724 0.850 0.983

slope of regression line, b 1.0001 1.0013 1.0010

intercept of regression line,a 111.88 62.26 12.30

root mean square error 1063.2 724.3 226.4

mean absolute error 283.3 186.1 79.3

mean absolute % error 424.6% 159.5% 118.5%
ii. Hospitalization rate statistics

mean absolute error 38.8 31.5 5.7

mean absolute % error 33.8% 26.8% 5.0%

number of areas of residence 14 14 36

with <10% error

particular the value of R2, the percentage of variation in the
observed flows explained by the model, is 0.98 using Matrix 3,
a great improvement over the values of 0.85 obtained with
Matrix 2 and 0.72 with Matrix 1.

The other statistics relating to the predicted trip Matrix,
(root mean square error, mean absolute error,and mean absolute
percentage error) all suffer from defects when used as an over-
all measure of goodness-of-fit, due to the fact that there is
an enormous variation in the range of cell values in the trip
matrix (from 0 to 30,000). The values of root mean square error
and mean absolute error are dominated by cells with large flows.
Although some of these have large absolute errors, the percen-
tage error is often small. On the other hand, the mean absolute

percentage error is dominated by cells with small flows for which
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a small absolute error is obtained, but in percentage terms this
can be very large. In the case of model 1 this second defect is
likely to be the most serious. Thus, too much significance should
not be attached to the actual values of these statistics shown in
Table 5, but it is important to notice that they all show a con-
siderable improvement using cost Matrix 3 over Matrix 1 and

Matrix 2.

No values for the chi-squared statistic are shown in Table
5. This is because experience during the calibration of the
model showed that this statistic was very misleading as a mea-
sure of goodness-of-fit. 1In cases where the actual trip matrix
is fairly sparse (in the sense that the number of trips in many
of the cells is very small), and the predicted trip matrix un-
derestimates these values, very large values of chi-squared can
easily be obtained, even though the fit of the predicted matrix
in cells with a significant number of trips may be excellent.
As the trip matrix for model 1 is one in which abcut 75% of the
cells have values less than 100, and the model typically under-
estimates these flows, the values of this statistic were con-

sidered unlikely to be helpful in any way.

Perhaps the most important statistics shown in the table
are those relating to the model's prediction of the actual hos-
pitalization rates (see section III) in the various areas of
residence, as one of the main uses of the model is likely to
be in predicting change in hospitalization rates consequent
upon change in any of the input variables of the model. With
both Matrix 1 and 2 the values of the mean absolute error and
mean absolute percentage error obtained are unsatisfactorily
high. Matrix 2 does, however, show a clear improvement over
Matrix 1. Matrix 3 shows a much better performance in repro-
ducing the actual hospitalization rates, with a mean absolute
error of 5.7 (on rates in the range 80 to 140 roughly) and a mean
absolute percentage error of 5%. This aspect of the modei's

performance is also discussed in greater detail later.
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6.3. Reproduction of Actual Trip Hatrix

This section examines the performance of the model in re-
producing the actual flow matrix observed in 1977. Figures
10 to 12 show graphically for each of the three cost matrices,
a plot of the predicted flow for each cell in the Thames Regions
against the actual flow in that cell. The large number of cells
with only a small number of trips associated are not distinguish-
able on the scale of the graph. The graphs clearly demonstrate the
better performance of Matrix 3 to Matrix 2 and Matrix 2 to Matrix
1. The final graph shows a much closer clustering of points around
one line at 45° to each axis, demonstrating a much better repli-
cation of the actual trip matrix than that obtained with the two

other matrices.

The cells that are badly predicted using Matrix 2 (those
lying far away from the diagonal line in Figure 11) consist of
elements from three distinct types of flows. Firstly flows from
the counties into London health districts (all underestimated
using Matrix 2), secondly flows from the inner London boroughs
to health districts in the GLC (all over-estimated using the
model), and lastly flows from outer London boroughs to neigh-
boring counties (overestimated using the model). 1In Figure 10
these features are also present, as well as additional elements
which are estimated badly; these consist of flows between zones
with considerable overlap. These aspects of the performance of
the model using matrices 1 and 2 are not present to any great
extent in Figure 12, where there are no longer any particular

types of flows which are being consistently over- or underestimated.

6.4. Patterns of Patient Flow to Health Districts

Figures 13 to 15 show in more detail the model's performance
in reproducing actual patterns of patient flow. Three different
health districts have been chosen and the actual percentage dis-
tribution of area of residence for patients treated in each dis-
trict is compared to that produced by the model using (a) Matrix 1 -
the crude distance matrix and (b) Matrix 3 - the final modified

distance matrix. In each of the figures on the column representing
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the actual pattern of patient flow,only areas of residence con-
tributing at least 2% of the health district's patients are
shown. The other columns then show each origin shown in the
first column plus any others with predicted contribution of
over 2%. The three health districts have been chosen to de-
monstrate the variability which exists in the pattern of

patient flow.

At one extreme is Brighton Health District (Figure 13)
treating a total of 28,081 cases in 1977, where there are
only two areas contributing more than 2% of the patients.
Furthermore, a clear majority (85%) of patients come from
one of these zones, East Sussex. The model using Matrix 1
greatly misrepresents this pattern, predicting that East
Sussex contributes 25% and West Sussex 75% (compared with
an actual figure of 11%). This result is clearly due to
the use of crude distances between centroids and does not
appear with either Matrix 2 (not shown in the figure) or Matrix 3,
where (as the last column in the figure shows) the split be-

tween West and East Sussex is accurately reproduced.

The other two health districts shown, Bexley and Kings,
exhibit a more complex pattern of patient flow. (This is partly
a consequence of the smaller scale of the zoning system in this
part of the study region as compared with the Brighton area).
In Bexley (Figure 14) where total cases were 13,162 in 1977,
the majority of patients (56%) came from the immediate surround-
ing origin zone, the London borough of Bexley, with remaining
contributions from the three neighboring =zones on the south
side of the River Thames - Bromley, Greenwich,and Xent. This
pattern is considerably distorted in the predictions using
Matrix 1. Firstly, the contribution of Bexley is grossly over-
estimated. This is due to problems associated with the use of
different, overlapping zoning systems for areas of residence
and places of treatment (see Figures 4 and 5). The centroids
of Bexley health district and Bexley borough were separated by
a distance of only 0.5 kilometers, a substantial underestimate
of the mean distance of Bexley residents from hospitals in the

health district. When this distance was modified in Matrices 2 and 3
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the figure for Bexley residents was much closer to the actual
value. Matrix 1 also seriously underestimates the flow from
Kent to Bexley; Matrix 2 is no better in this respect; while

as can be seen, the use of Matrix 3 gives improved results.

The third health district, Kings' (Figure 15), with a
total of 33,096 cases in 1977, shows the most complex pattern
of actual flows, with 8 zones each contributing over 2% of the
patients treated in Kings. Of these, three are outside the RHA
in which the Kings' health district is situated. Kings shows most
dependence for its patients on the local areas of residence of
Southwark (36%) and Lambeth (28%), but treats a considerable
number of patients from distant localities - zones such as
Surrey.(2%), Kent (3%) and rest of England (3%). Although
the contributions from Southwark, Lambeth and Lewisham are
reproduced very well by Matrix 1, the remaining areas shown
in the "actual" column are all underpredicted, with zero value
for Surrey, Kent,and rest of England. Instead, this version
of the model produces flows from Wandsworth, Westminister, and
Tower Hamlets, places which in terms of distance are close to
Kings'but which in fact each contribute less than 1% of Kings'
patients. The use of Matrix 3 avoids these problems: predic-
tions for Lambeth and Southwark are improved and contributions
from other zones are better represented, particularly those
from the more distant locations. Matrix 3 is still unable,
however, to reproduce the flow from the rest of England. This
problem was found generally in all those health districts for
which large numbers of patients came from the "rest of England”.
Generally such health districts were teaching districts, or had

postgraduate hospitals in them.

6.5. Hospitalization Rates

This final section on the performance of model 1 in repro-
ducing the calibration year data examines the prediction of
hospitalization rates predicted by the model for each origin
zone which were obtained using equation 4.9. Hospitalization rates
were also calculated for larger areas of aggregation. Nine in

all, these consisted of two areas for each of the four Thames
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Regions (namely,that part of each region lying in the GLC and
then the rest of the region itself), and finally all the ex-
ternal zones together (Oxford, East Anglia, Wessex,and rest

of England).

Table 6 compares the performance of the model using each
of the three matrices in reproducing the actual hospitalization
rates in each of the nine aggregate zones. With each of the
matrices the hospitalization rate of the external zones is
slightly underpredicted. The results for Matrix 1 and Matrix
2 both show a clear pattern of overestimation in each of the
four GLC zones and underestimation in each of the four non-GLC
zones. This is a consequence of the flows from the county zones
being generally underestimated as described earlier. The re-
sults produced by Matrix 2 are a definite improvement over
Matrix 1, while as expected the predicted hospitalization rates
associated with Matrix 3 are much closer to the actual values
observed. Inthe latter casé, there is no longer any consistent
underestimation of hospitalization rates in the zones outside
the GLC although each of the 4 quarters of the GLC is still
slightly overestimated.

Examination of the results for individual origin zones
shows a more complicated pattern. With Matrices 1 and 2, al-
though each of the county zones is underestimated, not all
of the London boroughs are overestimated. The boroughs in
the center of London are all overestimated (by as much as
double in some cases), while of the remaining boroughs, some
are predicted fairly accurately, but others are underestimated
by as much as the county zones. As the statistics in Table 5 show,
the level of accuracy obtained with the first two matrices is
generally bad. The results obtained with Matrix 3 meanwhile
are shown in Figure 16 and Table 7. The figure shows a graph
of the predicted against the actual hospitalization rates for
each of the origin zones. Also plotted on the graph are the
bands corresponding to ¥ 10% error in the predictions. As is
seen, most of the predictions fall within 10% of the actual
value, but as Table 7 indicates, there is still a tendency to

overestimate the hospitalization rates in the center of London.
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Table 6. Model 1 - Performance in reproducing actual
hospitalization rates.

Area of residence

Actual 1977

Model 1 predictions

Matrix 1 Matrix 2 Matrix 3
GLC Area
North West Thames RHA 119.1 153.9 139.9 122.7
North East Thames RHA 1144 154.3 135.1 119.0
South East Thames RHA 116.8 148.5 135.3 118.6
South West Thames RHA 106.8 128.5 117.9 108.3
Outside GLC
North West Thames RHA 87.4 53.8 58.2 91.4
North East Thames RHA 91.6 48.0 79.1 85.3
South East Thames RHA 94.8 67.4 90.3 95.0
South West Thames RHA 97.7 67.5 81.0 1034
Rest of England 84.7 83.8 83.7 83.3

(external zones)
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Figure 16. Model 1 - Graph of predicted hospitalization
rates (Matrix 3) against actual hospitalization
rates.



-47-

Table 7. Model 1, Matrix 3, Replication of hospitalization rates.

Hospitalisation Rates*® Hospitalisaticn Rates*
Central London Actual Model % Other London Actual Model %
Borougns 1977 1977 error |Borousghs 1977 1977 error
Tower Hamlets 139.4 141.8 1.7 |Brent 132.2 141.8 73
Westminster 136.6 151.1 10.6 |Greenwich 131.1 130.3 =0.6
Hemmersmith 136.2 124.9 -8.3 |Harrow 120.7 111.0 =8.0
Islington 136.1 152.2 11.8 |Waltham Forest 115.1 124.3 8.0
Kensington and Chelsea 134.1 150.5 12.2 |Merton 114.7  119.6 4,3
Wandsworth 130.7 135.3 3.5 |Barking 113.7 107.7 =5.3
Southwark 127.7 126.3 -1.1 |Barnet 111.5 119.9 7.5
City and Hackney 126.6 145.9 15.2 |Bromley 110.7 110.3 0.l
Haringey 125.2 139.2 1ll.2 |Ealing 10%.6 118.3 7.9
Lewisham 118.9 121.2 1.9 |Hounslow 108.2 109.4 1.1
Newhan 115.1 119,1 3.5 | Enfield 107.8 108.4 0.6
Camden 111.5 1l16.1 L,1 |Bexley 106.8 115.3 8.0
Lambeth 109,9 113.1 2.9 | Sutton 103.2 10S5.6 2.3
Richmond 99.2 104,0 5.1
Havering 95.9 86.2 =-10.1
Hillingdon 95.6 85.3 -10.8
Croydon 93.5 88.1 =5.8
Thames Region Kingston 93.3 .l 1.9
Counties Redbridge 88.8 86.9 -2.1
Surrey 103.2 1ll.h4 7.9
Kent 95.1 95.6 0.5 | Externral zones
East Sussex 94.2 92.9 ~l.i&
Bertfordshire 91.9 97.7 6.3 | Wessex 92.9 935.3 O.b
Zssex 91.6 85.8 =6.3 |Zast Anglia 37.1 87.4 .3
West Sussex 88.9 90.7 2.0 | Oxford 85.8 83.9 =2.2
Bedfordshire 78.9 79.1 0.3 g:_giagg 83.6 82.6 -l.2

*Cases per 10CO resident population.
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Five of the seven zones where the percentage error is greater
than 10% lie in the center of London, and in each of these five

the model prediction is not wholly satisfactory.

6.6. Other Aspects of Calibration Using Model 1
6.6.1. The Regtion of Calibration

The region of calibration employed in the main series of
results consisted of all flows with origins in the GLC area
and destinations in the four Thames Regions. This region in-
cludes 2145 origin-destination zone pairs, just over two-thirds
of the total number (3036) of cells in the trip matrix. This
particular region was chosen because it is the largest area
over which the straight line distance measures could be judged
reasonably accurate, and because it omits all the very large
origin and destination zones where the choice of centroid was
imprecise. It is necessary, however, to ensure that the fit
of the calibrated model in areas outside the region of cali-
bration is adequate, if the model is to be used in these areas.
The trip matrix statistics were therefore calculated for (a)
trips lying within the Thames Regions (2600 cells) and (b) the whole
trip matrix, using the calibrated version of the model with
cost Matrix 3. These statistics are compared in Table 8 and
as can be seen there is no evidence that the model is performing

significantly worse in the areas outside the region of calibration.
6.6.2. The Use of Different Deterrence Functions

The performances of three alternate forms of deterrence
functions were investigated. These are noted in Table 2 and
consist of a power function, a mixed (exponential and power)
function, and a modified exponential function. (In the last
case the value k=2 was used.) The use of these functions was
explored using cost Matrix 2, as the modifications incorporated
in Matrix 3 were derived especially for the exponential deter-
rence function and hence were considered inappropriate for other
functions. Both the power function and the modified exponential
function gave substantially worse fits to the calibration data

than that obtained with the exponential function. It is interesting
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Table 8. Model 1 - Comparison of trip matrix statistics over
various sections of the trip matrix using Matrix 3.

Section of the trip matrix:

Statistic Calibration region Thames regions Whole matrix
R® 0.983 0.989 0.999
slope of regression line b 1.0001 1.0082 1.0024
intercept of regression line a 12.30 13.97 - 3,34
root mean square error 226.4 246.8 335.1
mean absolute error 79.3 9l.1 108.4

mean absolute % error 118.5% 134.6% 129.2%
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to note that this result for the power function is in exact con-

trast to that found with model 2 discussed below.

The fit obtained with the mixed exponential was very similar
to that of the straight-forward exponential, giving a slightly
better performance on some statistics, but slightly worse on
others. As there was no indication that the mixed function
could significantly improve the overall performance of the
model, its use was not investigated any further. In the case
of both the mixed and the modified exponential function these

might better be used in the model as two parameter functions,i.e.:

a —
iy exp ( Bcij) (21)
and
exp (—Bcgj)

where now both parameters o and B must be determined during the
calibration process. The disadvantage of using such two para-
meter versions of the model is that the calibration process be-
comes much more complex (see Batty and Mackie, 1972) and with-
out further investigation it remains uncertain whether any sig-
nificant improvements would be obtained.
6.6.3. The Use of Standardized Mortality Ratios in the
Calculation of Patient Generating Factors

The patient generating factors (PGFs) used in ‘the earlier
results did not make allowance for factors (other than the size
and age/sex structure of resident populations ) which may influ-
ence an area's propensity to generate patients. Other factors
arguably ought to be included to reflect, for instance, the im-
pact of environmental and socio-economic conditions on health
care needs. Standardized mortality ratios (SMRs) of various
kinds have often been used as measures of such relative need
between residents of different areas (LHPC, 1979), and it was
decided that their inclusion in the calculation of the PGFs

could lead to an improvement in the performance of the model.
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This approach was investigated using cost Matrix 2. Two diffe-
rent types of SMR were tried - overall SMRs and aggregated SMRs
(which consist of an average of condition-specific SMRs, each

weighted by the national bed usage in the clinical specialty).

The results obtained showed a slight improvement in the
majority of the statistics with the use of overall SMRs, but
a slight worsening in all of the statistics with the use of
aggregated SMRs. While the changes in goodness-of-fit were
not large enough for any definite conclusions to be drawn, the
use of overall SMRs seemed to offer the greatest possibility
of improvement, but this conclusion would need to be confirmed
by further investigation. The set of modifications incorporated
into cost Matrix 3 is dependent not only on the deterrence func-
tion used but also on the set of patient generating factors and
thus a new set of modifications should be derived for use when
any SMRs are included in the PGFs and this recalibrated version

then compared with the Matrix 3 calibration with no SMRs.
6.6.4. Disaggregation of the Model

Model 1 has given results for all the acute specialties
together. For many possible uses of the model results may be
required for smaller groups of specialties or even for indivi-
dual specialties. 1In particular, the regional specialties,
such as radiotherapy and neurosurgery, which are provided in
only a small subset of the health districts, generate a very
different pattern of patient flow compared with other special-
ties such as general medicine which is provided in every health
district. The acute specialties included in model 1 were split
into two groups, regional specialties and subregional special-
ties (the precise division is indicated in Table 1) and cali-

brations for each group obtained using cost Matrices 1 and 2.

The new parameter values for each group were, as expected,
higher than the all-specialty parameter for the subregional
groups, and lower for the regional group, indicating that in
general, patients are drawn from a much wider area for the latter
group of specialties. The fit obtained for the subregicnal

specialties was good, with higher R2 values than those in the
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corresponding all-specialties model. On the other hand, the
fit obtained with the regional specialties was much worse,

with an R2 value of 0.57 obtained with Matrix 2 (compared

with 0.85 for all specialties and 0.87 for subregional special-
ties with the same cost matrix). It is likely that the reason
for this bad result is that each regional specialty is provided
in a different subset of health districts as opposed to the
situation for the subregional specialties where the majority

of districts provide services in all such specialties. This
point may be clarified by investigating the use of the model

for each regional specialty on its own.

6.7. Model 1 vValidation - Back-Predictions for 1967

The three calibrated versions of model 1 were each used to
back-predict hospitalization rates and patterns of patient flow
for the year 1967 in the GLC part of the North West Thames
Regional Health Authority. Considerable changes in population
structure and the availability of beds took place in this area
between 1967 and 1977, the greatest change to beds being the
opening of a large new hospital, Northwick Park, in Harrow
Health District. Caseload capacities and patient generating
factors were recalculated for 1967, and it was assumed that
the 1977 values of the other input variables of the model
(namely, model parameter and elements of the cost matrix) would
be appropriate for 1967. The predictions obtained were then

compared to actual data available for the year 1968.

Figure 17 compares the model predictions using cost Matrix
3 with the actual changes occurring. Of the nine boroughs for
which 1968 data were available, the model predicts both the 1967
hospitalization rate and the percentage change to 1977 satis-
factorily in six boroughs. Of the remaining three boroughs,
Hammersmith and Harrow both have predicted 1967 hospitalization
rates which are very low in comparison with the actual figures
for 1968 and this causes the predicted percentage changes to
be over twice as large as those which actually occurred. In

the final borough (Kensington and Chelsea), the percentage



LL6L O3 L96| wOII sd3ex uorjzezrlejzTdsoy uTt ssbueyd

a L'1s1 S°0S1 €68 v'601 61l £8ll
d 9'9¢€L L'vel 9'66 2’80l el 9'601
g LeLL : 811 S'0L t'ee6 t'sL 0'v6
v L'L6 2oLl 0z8 9°26 8'601 06

saWey] "M'N sybnoiog uopuoy

IISUIIISIM,  BBS]BYD/SURY  UOPSUIIIH  MOJSUNOY  ylwisiawwey  Bupe3

* (L Tsopow)

Ul m:%lmz R

q € xuiel 1503 fuisn g
TS_ X mﬂ& LLG) 03 £961 38ueyd % pard1pasd &

TS_ X qlulL LLGL 01 8951 abueya % jemae

*Ll SaInbtg
0Ll gLyl 6'6LL L6l 300N
Lozt Tzel SLLL 261 VNLDV
9'€s 690l 866 L96l T3AOW
018 £'l6 606 8961 IVNLIV

S31vY NOILVZITVLIdSOH
MOLIEH juag 1auleg
w Jos
w A
W -1 001

d%

-53-



-54-

change is again over double the actual change; this, however,

is due mainly to the poor replication of the 1977 hospitalization
rate in the borough at the calibration stage, as the rate for
1967 is predicted accurately. This set of predictions is ob-
viously not entirely satisfactory. 1In particular, the results
for the two boroughs associated with the largest changes in
local caseload capacity, Harrow and Hammersmith, are very poor
and generally the predictions get worse as the amount of change
in local capacity increases. Results obtained with cost Matrices
1 and 2 showed only a slightly lower level of accuracy with re-
gard to the percentage change from 1967 to 1977, but were con-

siderably worse in reproducing actual rates for 1967.

Data for 1968 were also available showing the percentage
distribution of place of treatment for residents of Brent and
Harrow. This, and the actual 1977 distributions, are compared
with those predicted by the model using Matrix 3 in Figure 18.
As the figure shows, the predicted distributions are close to
those actually observed and the changes in the distributions
from j967/1968 to 1977 are in general very well represented
by the model. 1In contrast, results obtained with !Matrices 1
and 2 (not shown) considerably misrepresented the actual dis-

tributions in many places.

The results obtained, despite being very good in places,
do not fully validate the model and several issues remain to
be settled. Although the actual data for 1968 is based on a
sample survey and is thus subject to some error, it seems un-
likely that the results obtained could be entirely due to this,
particularly since the mismatch is so large in two of the boroughs,
Harrow and Hammersmith. One possibility is that parts of the
model may not be correctly specified; for example, the use of
alternate forms of deterrence function and the inclusion of
SMRs in the calculation of PGFs have already been partially
investigated. The use of other deterrence functions gave no
improvement in the back predictions obtained, however (and as
discussed earlier, the other functions also. gave worse fits to the

calibration year data). In contrast, the modification of the
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Figure 18. Percentage distribution of place of treat-
ment for residents of Brent and Barrow.
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patient generating factors using overall SMRs showed encouraging
initial results. There are still refinements necessary, however,
since any change in deterrence function or method of calculation
of PGFs will affect the modifications to the distance matrix
needed to obtain a final calibration. Further improvement may
also be obtained by using 1967 SMR values for the 1967 prediction
runs, rather than the 1977 values that have been used in the pre-

liminary tests.

A basic assumption made for the purposes of prediction is
that the cost matrix remains unchanged. This is certainly
questionable, particularly in the case of Harrow Health District
where the building of a completely new hospital, together with
the changes in the public transport system and the ambulance
services that accompanied it, seem unlikely to have left the
'cost' of receiving care in Harrow unaltered. However, as
model 1 uses a cost matrix based on distance there exists no
readily apparent method for systematic modification to reflect
such changes. If a cost matrix based instead on travel time
were used, then such modifications, based perhaps on surveyed
changes in travel time, could be incorporated for use in pre-

diction runs.

If none of the suggested alterations in the formulation of
the model removes the large prediction errors obtained, there
remains the possibility that the model is unable to reproduce
changes of great magnitude or that there are time lags between
the introduction of a new resource and its full utilization.

The fact that the prediction errors are worse for areas where
there have been large changes in the local input variables
through investments, certainly seems to support this idea. The
level of change occurring in Harrow Health District in particular
was very high with a sevenfold increase in the case capacity of
the district over the period 1967 to 1977. 1If this is so, then
it might be possible to determine limits to the amount of change
in the input variables, within which the model will reasonably
predict the consequences of such change, but outside of which

the predictions will be subject to uncertainly large errors.
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Alternatively, it may be possible to define time lags, which

have the objective of dampening down the effects of very large
changes such as these. However, considerable further testing
against actual data would be needed before any such procedures

could be determined.

6.8. Results lModel 2

Model 2 differs form model 1 in two ways: the zones in
the area of interest are smaller and travel time is used as
well as distance as measures of accessibility. Of particular
interest therefore, is whether travel time predicts patient

flows better than distance.

Before examining the results in detail the main findings
can be summarized as follows. Firstly, the versions of model 2
which used travel time predicted patient flows better than the
model 2 version based on distance. Secondly, unlike mcdel 1
which used a negative exponential deterrence function, model 2
operated better with a simple power function. This finding was
probably due to the finer =zoning system used for this study
area (see Figure 6). Thirdly, patient flows in the finer zoning
system employed in model 2 are generally much harder to predict
than in the zoning system in model 1. Finally, the proportions
of patients predicted to travel to hospital by public and pri-
vate transport were plausible, and fairly consistent with the

limited data available for hospital trips in the London area.

In more detail, Figure 19 compares the observed flows from
one representative health district ( Kings' HD) with those pre-
dicted by four calibrated versions of model 2. Xings Health
District generated 23,525 patients in all specialties (see
Table 1) in 1977 of whom 20,216 were treated in hospitals in
the southeast GLC. It is the GLC component only which is broken
down in the diagram. As is seen the majority of patients sought
treatment in Kings Health District with the remainder going to
hospitals in the neighboring health districts of Guys' and
St. Thomas'. From the calibration versions of model 2, it is

plain that the only one able to portray this pattern with any
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accuracy is the fourth, which uses the power function (versions 4).
This version is especially successful in predicting the propor-
tion as there is a strong tendency in all health districts in

the study area for the largest proportion of patients to use
locally available facilities. The reason why the power function
predicts this better than the other function presented is that

it gives more weight to flows over short distances. This can

be seen from the graphical comparison of deterrence functions

presented in Figure 8.

The distance version of model 2 uses unmodified distances
and, from the experience of calibrating model 1, the results
presented in Figure 19 could undoubtedly be improved upon by
making similar assumptions about the effects on travel of traffic
congestion and so forth. One modification that was made to this
version, however, involved the redefinition of destination cen-
troids, based not on the weighted center of population, but on
centers defined by the weighted average caseloads of the hospi-
tals. Although more testing is required, initial results were
mixed, showing improved results in same zones and worse results in
others. However, a combination of modifications similar to
those used in model 1 would greatly increase the predictive

accuracy of this version.

The interesting feature of versions 2 and 3 was their abi-
lity to portray accurately the total number of patients generated
by a health district. Unfortunately, both failed in correctly
apportioning the resultant flows among the various destinations.
The impression gained, however, was that "travel time" is a signi-
ficant improvement on "crude distance" used in version 1 in several
aspects of the model 2's performance. Journey time to and from
external zones outside the GLC could not be determined from avail-
able data in the Greater London Traffic Survey (GLTS), and so had to
be estimated from public transport time tables and other sources.
Thus, small modifications to these times (1—L 10 - 15 minutes, say)
were allowed in order to improve predictions between external and internal
zones, In the longer run, however, a detailed travel survey
would be the best answer to this problem. The effect of using

the deterrence function in version 3 was to generate patients
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from farther afield, mostly at the expense of patients living
in or near a destination zone. Thus, unlike version 4, this
version regularly underestimated the flow of patients to neigh-

borhood hospitals.

A comparison of the calibration statistics for all four

versions is shown in Table 9.

Table 9. Model 2 - A comparison of calibration statistics for
for different versions of model 2 using southeast GLC

data.
Model Distance (kms) Travel (hours) Travel time Travel time
. 2 -B
Det £ - . -Bec. . -B, . .
eterrence function exp ( Bcij) exp ( Bclj) exp ( BlJ ) clj
Calibration method max.like max.like slope slope
0.11 5.72 1.665 2.25
< 12.11 0.75 0.87 -1.03%
2 6
X (x107) 6.24 12.79 2.84 1.10
RMSQ error (xlO3) 4,32 1.99 1.35 0.92
R2 0.94 0.97 0.96 0.99
Intercept -52.85 -87.29 -1.00 -7.89
Slope 0.99 1.13 1.00 1.01
Mean abs.err.(xloz) 1.31 2.86 2.91 2.25
Mean abs.% err.(xlOz) 6.47 6.17 10.90 6.83
a
; ; T.. log c,.
i3j "ij3 ij
LIy
i3 "ij

A close examination of the results further underlines the warnings
expressed in the sections on calibration (see section 4). For

2 . . .
example, R” is consistently high, and yet the above discussion

has shown that substantial variations exist in the predictive
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abilities of each version. Furthermore, the mean predicted
time of travel is clearly related in versions 3 and 4 to the
form of the deterrence function. 1In version 1 and 2, cali-
brated using method 1 (section 1IV), the observed mean distance,
c (calculated), and mean travel time (estimated) were supplied
as is necessary for this form of calibration. As for the para-
meter B, this varies with the units of cij (i.e. kilometers or
hours), with the form of the deterrence function, and with the

value of ¢ which increases as B decreases.

The advantages of the slope calibration over maximum like-
lihood are also brought out by this table. The expected value
of the intercept term should ideally be zero, and in this res-
pect versions 3 and 4 come closer than either versions 1 or 2,
which use maximum likelihood. Slope estimates using maximum
likelihood likewise depart from one, but are still close enough
to raise problems of deciding which calibration method is best.
A diagram showing the predicted versus observed flows is con-
tained in Figure 20 for version 4. The more condensed scatter
of observations compared with model 1 (Figures 10 to 12) is due
to the substantial transition in zonal area between the inter-

nal and external study region (Figure 6).

A further characteristic of versions calibrated using
travel time is that output with all the other statistics are
estimates of the proportion of patients traveling by public
and private transport. To some extent these estimates are
a side-issue, arising only because of the necessity of using
two sets of journey times. However, a broad check for accu-
racy can be obtained by comparing predictions with results
obtained by Mayhew (1979) in a travel survey conducted at
14 hospitals in the London area - not just southeast
GLC considered here.

Table 10 compares the mean proportions obtained in the
survey with those predicted in the versions 2, 3, and 4 of
model 2 for car travelers. In the table London is divided
into three rings: the inner, the suburban,and the outer suburban.

The conclusions are that all three versions give broadly
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Table 10. Percentage of patients traveling to hospital by
private transport: Observed and predicted (model 2).

Ring Survey Version 2 Version 3 Version 4§
Inner 27.5 51.69 29.0 40.0
Suburban 38.9 65.31 41.5 51.3
Outer Suburban 58.1 81.52 56.2 60.1

similar results which at this level are in the correct relation

with the survey.
A smaller proportion use cars in central London because

(a) The general availability of public transport is
higher

(b) The proportion of car-owning households is smaller

(c) The congestion and parking charges are an added

inconvenience

The opposite is true of the outer suburbs, and so it is encou-

raging that the model correctly predicts this trend.

None of the versions shown assumes parking charges (in the
form of a time penalty). This could be used to correct the
tendency of the model to overpredict inner ILondon car flows.

A second method of reducing mobility, if too many are predicted
to travel by car, is to lower the percentage car availability
in households. 1In the above table, this is assumed to be 25%
among car-owning households (see section III). A smaller value
(say 20%) would probably suffice to overcome the overprediction
apparent in version 4. Better data are necessary, however, to

make a fuller evaluation of the 'modal split submodel' (section 3).

Table 11 compares the observed and predicted hospitalization

rates for health districts in the internal study area. The
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results at this level of aggregation seem reasonable; but split
down to the level of the Traffic district the predictions are

far less satisfactory.

Table 11. Comparison of observed and predicted hospitalization
rates (model 2).

Observed Predicted
Bromley 116.2 116.5
Greenwich 142.4 135.2
Bexley 112.4 103.2
St. Thomas 117.2 106.8
Kings 114.9 130.7
Guys 131.7 142.9
Lewisham 121.7 118.1
Externals 111.2 111.4

This is due to the greater difficulty the model has in correctly
predicting small flows. One of the least satisfactory results
in the table is for Kings' Health District where hospitalization
rates are over-predicted. The reason for this is apparent from
Figure 19 which shows under version 4 that far too many patients
are allocated to areas not in the Kings', St. Thomas' or Guys'
health districts.
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7. GENERAL CONCLUSIONS AND OTHER CONSIDERATIONS

In this paper we have presented an analysis of the initial
results obtained using the model, RAMOS, to predict trips to
hospital for acute in-patient treatment. These results were
in general very good, particularly in terms of the ability of
the model to replicate the observed flows for the calibration
year. Nevertheless, there are several issues which remain
unresolved or need clarification, and so warrant further re-
search. These relate to the specification of the input vari-
ables and whether they can be improved in anyway. For instance,
it may be possible to find more appropriate measures for the
patient generating factors, such as composite health indices
or aggregate morbidity estimates, which are able to perform
better than the approach used here based on relative utilization
rates and SMRs. Also it was shown that simple distance acts as
a poor distributor of trips unless it is substantially modified.
The use of travel time indicated an improvement but raised the
level of model complexity. The eventual solution to this pro-
blem is uncertain but it may involve a form of generalized cost
which takes into account not only time and distance, but also
the opportunity costs involved in entering hospital. The latter

will depend on patient income and other factors.

In the validation experiment, the model was able to fore-
cast correctly the direction of change in hospitalization rates
in all the zones considered. 1In addition, the patient flows
were apportioned to each destination with reasonable accuracy.
In the case of the two zones where caseloads changed most, the
model over-predicted the resultant charges in hoépitalization
rates to a significant degree. Several reasons were suggested
for this earlier, including the incorrect specification of some
of the variables. The lesson from this validation exercise is
that it pays to give very careful consideration to the results
which are forecast frama given set of measures, and to the ex-
tent to which all these measures change in time (for example,
no consideration was given to possible changes in travel cost

during the back-predicting exercise).
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How will the model be used in a planning context? RAMOS
acts in the input variables; namely, the patient generating
factors, the caseload capacities,and the cost matrix, to produce
the basic output of the model - a matrix of patient flows be-
tween origin-destination pairs. The output matrix can be
manipulated in a large variety of ways to produce information
of considerable value to decision makers. Thus by varying the
assumptions concerning population structure, resource avail-
ability,and transport services, it is possible to gauge the
likely impact of change on such diverse indices as the hospitali-
zation rates in individual zones of residence or the catchment
populations of particular destinations, and to measure the
effects on patient flows due to the opening or closure of faci-
lities in the region of interest. It is envisaged that the
assumptions concerning change which are put into the model
will be provided by other submodels concerned with either re-

source supply, demographic change, or morbidity.

In the Health Care Task at IIASA there have been developed
a number of models which are admirably suited to these purposes
(Shigan et al., 1979). On the output side, it should be a sim-
ple matter to transform, if necessary, the results into finan-
cial terms. Currently the model is designed for application in
health care systems in which service availability is free. It
can be argued that rationing in these systems takes place not
through any market mechanism, but principally through factors
such as accessibility to supply. Even so, the model as presented
considers only one layer in the multitude of interactions that
take place. It ignores, for example, the trade-offs which occur
by treating patients in different ways and with different resources,
or the interactions which arise between patient categories, re-
sources, and modes of care (Gibbs, 1978; Hughes, 1978) due to
hospital admissions policies. It may, however, be possible for

these shortcomings to be remedied at a later date.

A question which arises is whether this approach can be
used in different types of health care systems. The signs are
that it can, but that changes will be needed depending on-the
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system. While the gravity formulation would remain essentially
intact, it is considered probable that variables will need to

be respecified in order to reflect the different motivational
apsects associated with, for example, market-based health care
systems as compared with planned systems. In the former, in-
come is known to be an important determinant in the consumption
of certain types of health care services, and it would be appro-
priate to incorporate this fact, for instance, in the definition
of patient generating factors. Also it is possible that the
constraint on resources would have to be taken off supply, and
put instead on demand. The resultant model would then be simi-
lar to that applied, for example, by Morrill and Kelley in the
United States (Morrill and Kelley, 1970). In sum, therefore,
the gravity model approach is thought to have considerable
potential both in decision making and forecasting the resulting
demands on health care services when resource supply and popu-

lation structure are changing simultaneously over space.



APPENDIX

The following sections give an overview of the RAMOS com-
puter program and an example of the output obtained in a typical
run. The data in this print-out refer to model 1; while cali-
bration is by the slope method (see page 28). Not all the print-
out is included as the matrices (when all the options are em-
ployed) are extremely large. The program was written for use on
a CDC 7600 machine and is capable of handling systems with up to
80 zones. The PDP 11/70 at IIASA is a smaller machine and so the
program had to be adjusted accordingly*. Currently the maximum
size of system accepted at IIASA is 45 x 70 zones, data space
being the main limitation. Two types of singly constrained

gravity models may be run using the program.

A. Attraction Constrained Model

This is the model investigated in this paper. Trips to
destination zones are constrained so that the capacity of each
zone is not exceeded. A supply driven model, it is formulated

as follows:

*
The authors are extremely grateful to Peer Just, IIASA, for
making the required conversion.
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.. = B. D. W, f .
le BJ DJ W (B, cl])
where

Tij = predicted trips between zones i and j

D. = caseload capacity of zone j

Wi = patient generating factor for zone i (in an
index of propensity of residents of i to
generate patients)

f (8, Cij) = deterrence function. This is a function of
some measure of the cost of travel, cij’ from
zone 1 to j. Usually, it is the negative ex-
ponential [exp (—Bcij)].

B. = 1
bz
which ensures,
z .. =D
i 13 J

B. Production Constrained Model

Here, trips are constrained so that the demand arising from
each zone is met exactly. This is a demand driven model of the
'shopping' type (see for instance, 'Urban and Regional Models in
Geography and Planning', by A.G. Wilson, 1974). It is written,

Tij = A; W, Dj f(g, cij)
where Tij’ f(g, cij) are as 1in (i) but now,
Dj = attractiveness factor for hospitals in zone i
Wi = demand from zone i in terms of the number of

cases requiring treatment



-70-

With each model, using different assumptions about the cost-
distances in the system, a variety of versions can be developed.

For the CDC program, the full range is shown in Table A1.

Table A1. Model versions available using RAMOS program.
Type Version
1 2 3 4

A. Production single mode single mode single mode two modes

constrained cost=distance cost=private cost=public public and private
(centroids transport transport transport times

B. Attraction supplied) time time (matrices

constrained (matrix (matrix supplied)
supplied) supplied)

For the IIASA program, only versions 1 to 3 are available.

In addition to this program which can be used for both
calibration and forecasting runs, another program has been
developed and tested at IIASA that is used only for forecasting
purposes. The main difference is that it simply takes a para-
meterized model, and then tests the flow consequences of changes
on the input variables. The print-out is more detailed, however,
with estimates of catchment populations, catchment areas,and the

average costs of travel between zones.
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Data Requirements

all versions set out in Table A1.

The following table summarizes data requirements for the

Table A2. RAMOS: the data requirements.
Variable Description versions for
which required
{N,.} Actual patient flows between All
1] i and j in specialties of
interest
Wi Patient generating factors All
Wi1 PGF for car-owners (i.e. W, disaggregated) a4, BU
Wi2 PGF for non-car-owners AlL, BU
D. Case capacities in j (i.e. All
] resource levels)
{ci.l} Cost Matrix 1 (distance, time A2,A4,B2, BU
] by mode 1 or some equivalent
measure)
{ci.z} Cost Matrix 2 (time by mode 2 A3, A4, B3, BU4
] or some equivalent measure)
{x,y} Centroids A1, B1
c Average cost of travel in All (maximum
same units as for S likelihood cali-
) bration but not
slope calibration)
Pi Origin populations All
P Destination populations All
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Description of Sample Output

The sample output overleaf is structured in the following
way. Page Al is a summary of the run parameters and options
desired in the run. A one-zero variable is a switch control-
ling the level of detail required in the output. Page A2 is a
typical iteration sequence using the slope calibration proce-
dure. It stops when the slope of the regression of prediction
on observed patient flows is within the desired degree of accuracy
of one (column 8). Page A3 shows the results for origin zones;
and page A4 the results for destinations. As this output on
page A4 is for model 1 no breakdown of flows by public and
private transport is produced. On page A6 the results are
aggregated into larger areas for ease of reference. This
aggregation can be in any desired form. The next three pages
provide sample outputs from three matrices: the actual flow
matrix, the predicted flow matrix, and the cost matrix. Only
30 x 15 of the 44 x 69 zones are shown. The final page is a
scattergram of observed and predicted flows here within the
region of calibration (33 x 65 observations). The numbers

refer to superimposed data points (X >10).
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Sample Output

run

n o 238388

details‘of run
title Resource allocation model over space: a trial run
using the siope calibration. Data are for the four
thames regions model (model ).Cost matrix is "matrix 3",
n number of origin zones
m aumber of destination zones
nz no of origins used in calibration
mxz no of destinations used ia calibration
ad no of districts after aggregation
ioc type of model 1 single mode cost=distance (centroids supplied)
2 single mode cost=distance (matrix supplied) or cost=mprivate transport times
3 single mode cost=public transporttimes
4 two modes,public and private,cost=transport times
type of model l=attraction constrained,2=production constrained
type of run 1l=calibration,2=prediction
kpa ouvtput of actual trip matrix
kpt outpot of predicted trip matrix
kpe output of cost matrix(s)
jp output of results for origins and destinations

is statistics required for every step in calibration

é;stats required only for final step in calibration
js final gtatistics for predioction run

j& graphics

je elasticities

jq tij to perm file
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Kesource allocation model over space: a trial run

using the slope calibration. Data

thames regions model

a

itera

1

W N 0O L A W N

ctual mean cost

calibration

tion paramecter

0.30000
9.31000
0.32000
0.33000
9.34000
0.35000
0.36000
0.37000

(model

1) .Cost matrix is

5.83660

mean cost

7.
7.
. 14439
.02560
.91433
. 80995
.71186
.61955

O O 0 O N N

40751
27141

chisquare
0.107140e+20
0.494569e+20
0.228744e+21
0.105981e+22
0.491788e+22
0.228523¢+23
0.106321e+24
0.495211e+24

are for the four

"matrix 3".

rmsq error
402.8
359.3
319.8
285.2
257.3
237.5
227.5
227.9

r square
0.9668
0.9711
0.9746
0.9774
0.9797
9.9813
0.9824
0.9830

52.86
46.52
40,27
34.11
28.06
22.13
16.32
10.64

regression coeffs

0.8208
9.8501
0.8786
0.9063
0.9331
0.9590
0.984]

1.008

mean abs er

122.3
113.1
104.2
95.99
89.15
84.02
80.53
79.47

mean abs po er

155.1
147.4
140.7
134.9
129.8
125.2
121.1
117.4
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Resource allocation model over space: a trial run
using the slope calibration., Data are for the four

thames regions model (model 1).Cost matrix is "matrix 3".

destination caseload capaoity focal population balancing faotor oages pcr hcad of per ocent by private per cent by publie

local population transport transport
lewisham 20626 .00000 188800.0 6.0171 109.2479 0.00 0.00
n surrey 11912.00000 134300.0 17.5087 88.3024 0.00 0.00
nwsurrey 18741.00000 202200.0 15.53-10 92.6397 0.00 0.00
W surrey 19449, 00000 260200.0 10,2008 74.7463 0.00 0.00
swsurrey 19403.60000 177600.0 12.9990 109.2S511 0.00 0.00
midsurry 13791.00000 167300.0 13. 1900 82.5808 0.00 0.60
e surrey 15971 .00000 185300.0 18.90020 86. 1900 9.00 0.00
chiestr 14637 .00000 158300.0 31.4240 92.4637 0.00 0.00
crawley 17291.60000 240700.0 25.6302 71.8363 9.00 0.00
worthing 14669. 00000 226100.0 33.9226 64.8784 9.00 0.00
croydon 19558.00000 321900.0 4,2353 60.7580 0.00 0.00
kingston 18176.00000 244100.0 7.9272 74.4613 0.00 ©.00
roehampn 13758.00000 108500.0 15.0704 126.8018 0.00 0.00
wans+em 43573.00000 248500.0 10.5800 175.3441 0.00 0.00
suttonew 34012.00000 288500.90 13.2328 117.8926 ©.00 0.00
oxford 187625.00000 2237100.0 3.5097 83.8697 0.00 0.00
e anglia 159730.00000 1827400.0 4.1887 87.4083 0.00 0.00
wesseXx 233939.00000 2661000.0 2.8782 87.9139 0.00 0.00
others. 2154148.00000 24079700.0 0.2942 89,4591 0.00 0.00
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actuel trip metrix (semple only)

1
2.0
2.0
2.0
3.0
2.9
1.0
2.0
1.0
4.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
9.9
1.0
0.0
0.0
2.0
0.0
1.0
3.0
1.0
0.0
1.0
2.0
2.0
1.0

2
4.0
4.0
4.0
3.0
1.0
2.0
5.0
1.0
3.0
0.0
3.0
0.0
0.0
0.0
1.0
3.8
9.0
8.0
3.9
3.0
1.0
9.0
0.0
5.0
1.0
1.0
0.9
3.0
0.0
2.9

3
10.0
4.0
2.0
8.0
0.0
0.0
1.0
0.0
0.0
1.0
2.0
1.0
3.0
0.0
0.0
0.0
3.0
3.0
7.0
0.0
2.0
1.0
2.9
1.0
3.0
0.0
4.0
1.0
0.0
0.0

4
20.0
3.0
5.0
8.0
2.0
1.0
3.0
7.0
8.0
1.0
0.0
8.0
3.0
2.0
1.0
1.0
1.0
28.0
2.0
7.0
2.0
0.0
1.0
2.0
3.0
3.0
0.0
0.0
0.0
1.0

S
38.0
18.0
7.0
13.0
3.0
1.0
13.0
10.0
8.0
1.0
2.0
5.0
3.0
1.0
1.0
0.0
1.0
11.9
3.0
2.0
3.0
2.9
9.0
3.0
5.0
3.0
2.0
4.0
0.0
0.0

6
46.0
23.0

183.0

35.0
7.0
15.0
20.0
33.0
13.0
3.0
3.0
2.0
32.0
0.0
9.0
0.0
0.0
7.0
5.0
3.0
7.0
1.0
3.0
5.0
1.0
12.0
2.0
5.0
0.0
1.0

7
8168.9
41.0
17.0
19.0
5.0
4.0
13.0
8.0
16.0
3.0
3.0
24.9
13.0
9.0
11.0
4.0
1.0
280.0
87.0
190.0
12.0
2.0
2.0
1.0
4.0
2.0
5.0
6.0
1.0
4.0

8
8105.0
3993.0
3984.0

192.0
41.0
69.0
126.0
59.0
74.0
18.0
2.0
82.0
33.0
2.0
32.0
39.0
15.0
61.0
95.0
190.0
26.9
6.9
16.0
16.0
27.0
13.0
18.0
32.0
1.0
9.0

9
283.0
11779.0
836.0
4119.0
231.0
215.0
418.0
119.0
216.0
2.0
2.0
76.0
13.0
0.0
1.0
9.0
13.0
20.0
13.0
2.0
5.0
0.0
3.0
1.0
14.0
4.0
22.0
15.0
5.0
19.0

10 1" 12
331.06 11.0 401.0
4409.0  33.0 448.0
11622.0 8.0 242.0
2321.0 3136.0 1264.0
30.0  63.0 10952.0
62.0 12075.0 1986.0
695.0 208.0 263.0
$6.0 32,0 1354.0
133.0 21.0 585.0
0.0 3.0 15.0
4.0 1.0 23.0
60.06 12.0  90.0
13.0 7.6 s2.0
0.0 0.0 1.0
17.0 4.0 32.0
17.0 5.0 34.0
7.0 3.6 19.0
23.0 6.6 37.0
44.0 9.0 S5.0
27.0 0.0  26.0
0.0 3.0 41.0
4.0 2.0 13.0
7.0 2.0 46.0
15.0 2.0 31.0
14.06 17.0  110.0
7.0 4.6 23.0
21.0  11.6  44.0
16,6 18.6 233.0
1.6 63.0 86.0
26.0 6376.0 §38.0

13
146.0
786.0
137.0
4532.0
4161.0
487.0
265.0
812.0
161.0
19.0
26.0
70.0
72.0
2.0
54.0
30.0
38.0
70.0
102.0
40.0
26.0
19.0
15.0
27.0
58.0
27.0
25.0

1 65.0
76.0
172.0

14 15
16.0  395.0
9.0 448.0
13.0 3225.0

6700.0 4721.0
21.0  43.0
142.0  346.0
77.0 17216.0

3'e  65.0
1.0 94.0
0.0 5.0
.0 11.0
0.0 61.0
0.0 17.0
0.0 2.0
9.0 14.0
0.0 16.0
0.0 9.0
1.0 79.0
0.0 39.0
.0 11.0
0.0 15.0
0.0 4.0
0.0 17.0
0.0 14.0
0.0 13.0
.06 6.0
.0  14.0
1.0 . 13.0
4.0 12.0
25.6  71.0
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predioted trip matrix (semple only)

1
0.0
9.0
9.0
0.0
9.9
0.0
9.0
0.0
9.0
2.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9.0
9.0
9.0
0.0
0.0
0.0
0.0
0.0
0.8
9.0
0.0

2
9.9
0.2
1.6
0.1
9.9
0.0
0.4
0.0
2.9
0.9
0.0
0.0
0.0
0.0
0.0
9.0
0.0
0.2
9.1
0.0
0.0
0.0
9.0
0.0
0.0
0.0
9.0
0.0
0.0
0.0

3
2.3
9.0
0.1
0.9
0.0
0.9
0.0
9.0
0.0
0.0
0.0
0.0
0.0
0.9
0.0
0.0
9.0
0.5
9.1
2.0
0.9
0.0
0.0
9.0
0.9
0.0
0.0
0.0
0.0
0.9

4
40.9
3.2
5.4
0.5
0.2
9.0
0.2
0.2
9.5
0.1
9.1
1.6
1.2
0.0
1.4
9.3
9.3
61.1
9.5
9.8
4.7
0.0
0.0
0.0
9.0
0.0
0.9
9.0
0.0
9.9

S
19.2
5.9
36.6
2.2
0.2
0.3
6.0
9.2
9.2
0.0
0.0
0.5
0.2
9.9
0.1
0.0
0.9
2.4

0.0
0.2
0.0
0.0
0.0
9.0
0.0
0.9
0.0
2.0
0.0

6
58.5
60.7

487.7
35.6
2.0
5.5
108.4
1.6
1.7
0.0
0.0
2.6
0.9
0.0
0.4
9.9
0.1
2.3
2.4
0.9
0.3
0.0
9.0
0.0
9.0
9.9
0.0
0.0
0.0
0.0

7
8l101.2
128.5
244.9
34.7
0.9
5.4
13.3
0.1
9.2
9.6
0.2
0.1
2.9
0.0
0.2
1.2
0.0
373.7
91.9
2.7
12.3
2.0
9.0
9.0
0.9
0.0
0.0
0.9
0.0
9.0

8 9
8785.4 549.1
4071.0
3984.6

654.4
0.4 183.5
81.4 586.3
179.7 166.1
1.8 163.7
2.3 59.0
0.5 9.4,
0.2 0.1
1.3 7.3
0.1 0.4
0.0 0.0
0.3 9.4
1.4 2.0
0.0 0.0
234.4 29.4
76.7 20.9
1.7 0.9
6.6 2.3
0.0 0.9
2.0 0.9
0.0 9.0
0.9 0.1
9.9 0.0
0.0 0.0
9.0 0.0
0.0 0.7
0.1 15.6

10
1193.5

12290.9 4200.9
357.9 11165.9
4249.9 2606.4

1.1
312.4
773.6

2.3

1.3

0.1

0.0
9.2
9.0
0.9
0.0
0.4
0.0
33.4
9.4
9.3

0.9

0.0

0.0

0.0

0.0

9.0
9.0
0.0
0.0
1.1

1
51.0
200.6
77.9
3814.1
34.4
11430.0
345.2
14.1
2.4
o.1
0.0
0.0
e.0
0.0
0.0
0.3
0.0
2.7
0.8
9.1
e.1
0.0
0.0
0.0
0.0
0.0
0.0
e.1
29.7
6456.2

283.4
71s5.0
98.5
2460.2
11080.1
1159.3
95.8
3126.3
488.5
1.8
8.3
12.3
1.4
9.0
1.3
9.7
9.3
30.6
23.5
2.7
4.6
0.0
0.0
0.3
12.5
2.0
9.2
14.1
206.3
1456.1

13
736.1
2619.7
255.8
3806.5
2521.8
855.8
142.8
2020.0
562. 1
1.7
2.3
46.2
3.3
2.9
2.3
9.0
9.3
61.4
54.6
3.2
7.4
0.0
0.9
9.1
1.7
2.0
0.0
2.0
27.8
362.2

14 15
33.5 264.8
173.4 318.8
44.2 3876.5

5808.7 5424.0
34.0 Q.0
780.8 1091.3
80.5 17122.9
13.9 0.0
2.6 9.0
0.9 .0
0.0 0.0
0.1 9.0
9.0 a.0
0.0 0.0
9.0 e.0
0.2 8.0
9.0 0.0
1.8 7.0
0.7 0.5
9.1 0.0
0.1 0.1
9.0 0.0
9.0 0.0
0.0 0.0
0.0 0.0
2.0 2.0
0.0 9.0
0.0 9.0
1.8 0.0
67.3 1.1
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private transport cost matrix

1
59.6
64.3
59.3
68.9
72.4
72.6
64.6
72.0
71.3
76.7
77.2
68.2
69.3
72.4
69.6
74.7
73.6
69.4
64.7
71.6
66.9

127.9
121.0
133.0
118.0
122.0
116.0
131.0
123.0
115.0

2
37.2
40.2
34.5
43.0
48.5
47.1
38.5
48.6
48.5
59.9
61.3
45.9
47.7
50.7
48.9

55.2

52.8
41.1
43.9
53.7
47.8
98.1
90.8
101.0
83.5
90.0
82.8
96.3
85.4
76.9

3
32.5
38.6
35.4
43.5
46.9
48.8
43.2
45.1
43.8
46.7
47.2
40.4
40.9
44.0
40.7
45.2
44.6
31.1
36.0
41.7
37.4
82.5
77.9
89.4
76.0
79.9
73.1
89.6
84.9
77.8

4
19.1
25.6
23.5
30.8
32.6
36.4
32.2
31.5
30.1
34.4
35.9
26.7
27.2
30.3
27.0
32.0
31.0
17.7
22.3
29.1
24.2
63.0
57.0
69.1
55.4
58.6
52.6
69.1
65.0
58.4

s
21.6
24.4
18.8
27.4
32.7
31.8
24.0
32.7
32.7
44.8
47.9
30.2
32.2
35.1
33.6
40.2
37.5
26.9
28.7
39.6
33.3
75.6
67.9
77.3
59.7
66.5
59.3
72.5
62.0
53.7

6
14.6
14,1

7.8
15.9
22.1
19.9
12.2
22.6
23.4
39.6
43.7
21.8
24.4
26.8
26.7
33.6
30.0
23.0
22.5
34.8
28.1
64.8
56.5
63.8
45.1
53.4
45.9
56.9
44,6
36.1

i

3.0
13.8
11.4
17.7
40.3
21.7
19.6
33.2
31.4
26.9
30.6
31.3
35.0
51.3
30.4
26.2
42.0
11.0
14.4
24.0
19.8
47.9
$6.4
50.3
58.1
67.2
65.2
$7.2
50.8
43.1

8
4.1
5.8
5.2
11.1
29.9
15.7
13.9
25.4
25.6
28.6
33.1
26.8
33.0
47.1
31.0
27.0
41.4
13.6
16.2
26.5
22.8
48.0
55.7
47.7
50.5
63.1
59.4
Ss1.1
41.4
32.9

19.1

1.3
10.2

4.5
11.8

8.9
12.6
11.7
15.3
27.6
33.0
20.6
28.0
36.0
28.6
24.6
35.2
17.7
18,2
26.7
24.2
42.6
47.6
38.9
33.7
49.6
43.8
37.4
26.2
18.2

10
8.8
4.9
1.6
6.6
26.2
11.3
9.2
24.0
26.4
31.6
36.5
31.0
38.3
51.3
36.2
29.9
45.5
18.1
21.1
30.3
27.4
50.6
58.9
48.2
49.6
64.8
61.2

49.0

35.6
26.2

11
17.2
13.1
15.0
s5.S
16.7
1.5
11.3
19.9
24.6
32.6
38.3
36.0
42.5
50.4
40.2
30.4
45.5
24.8
27.7
33.0
32.5
47.3
54.6
40.3
37.4

- 8§5.3

52.6
34.9
16.6

2.6

12
14.0
11.1
15.8
8.1
2.5
9.1
16.2
5.8
11.7
26.0
31.6
21.3
26.8

30.3

27.4
22.4
31.0
19.7
20.0
25.9
24.4
37.7
41.0
32.2
22.3
39.6
33.2
22.3
12.8

8.1

12.9

6.6

6.2

9.6
14.8

6.7
11.0
25.8
31.3
17.4
24.2
30.90
25.6
22.3
30.8
17.8
17.4
25.1
22.8
39.1
42.8
35.2
27.4
43.4
36.6

27.2

17.9
11.8

14
14.3
9.5
12.5
9.3
12.7
4.7
11.2
1.0
20.4
30.6
36.1
29.8
36.5
44.1
35.4
28.0
41.1
21.9
23.9
30.5
29,1
45.3
51.7
39.6
35.0
52.8
48.4
35.6
20.2
10.9

1S
17.2
16.3
8.9
9.0
41.6
12.3
5.2
39.9
42.8
40.5
45.5
52.8
60.3
76.8
54.90
40.4
64.7
26.7
33.7
40.2

39.1

63.2
76.4
59.1
67.8
84.5
85.0

.59.4

40.9
30.5
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