
ravel benefits from orientation-fixed points by which

to navigate. Our aim is to provide some fixed points

derived from a technical analysis of transport systems

that enables us to understand past travel and prepare for

its future. Along the way, the lunacy of popu-

lar ideas such as car pooling, telecommuting,

and the revival of traditional railroads will

become clear. Instead, we will offer something

far more beautiful: a transport system emit-

ting zero pollutants and sparing the surface

landscape, while people on average range

hundreds of kilometers daily on a system of

“green” mobility.

In a spatially inhomogeneous system, living things are

much favored by mobility. A couple of billion years ago

bacteria were already equipped with rotating flagella,

stirred by electric micromotors of the kind physicists call

step motors, and even capable of traveling in reverse.

When a sufficient level of oxygen permitted multicel-

lular architecture, mobility was assured with specialized

structures, the muscles. Coordination of the distant

muscles of an animal requires a central processing unit

and fast wires to carry sensory inputs as well as opera-

tional orders. Predators develop in every ecosystem,

including that of the monocellular organisms. The evolu-

tion of the nervous system, thus, responds to the need

for management at a distance. The gazelle must be faster

than the lion and have the chance to run. Human prima-

cy in the biosphere is tied to the nervous system, and

our development shows how much we owe to the neces-

sity of mobility.

Human mobility stems from four basic instincts.

These instincts permit analysts to create a simple model

for the complex use that humans make of transport.

The first travel instinct is to stick to the budget of time

dedicated to mobility (Figure 1). Humans reside in a pro-

tected base, be it a cave, a castle, or a high-rise apart-

ment. Like all animals who have a protected base, we

carefully measure the time in which we expose ourselves

to the dangers of the external world, be they bears or

d r u n ken drivers.

The late Yacov Zahavi measured travel time in the

1970s. The results were invariant, about one hour per

d a y, measured over the year and the entire adult popula-

tion. Recent measures give the same result from Au s t r a l i a

to Zambia. California is higher than the U.S. average

because Californians spend more time doing other things

in their cars, including eating. Interestingly, the travel-

time budget was also about one hour 5,000 years ago.

Telecommuting fails to save energy or reduce traffic

because when we travel fewer minutes to work, we travel

equally more minutes to shop or pursue leisure activities.

The second instinct is to return to the lair in the

evening. When people depart from the home, the center

of the human world, they use the best means of trans-

port. The homing instinct lies at the core of the success

of airlines. Airbus Industries found that about 60% of air

passengers in Europe do their business and return on

the same day, notwithstanding the higher fare. Shuttles

operating from New York and Los Angeles carry a similar

proportion of day-trippers. Revived and sustained at

great cost, the trains between Boston, New York, and
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Washington still fail to accommodate a round trip within

one day for most travelers. Thus the airlines, barely chal -

lenged, extract a high fare between New York and either

of the other two cities.

The third instinct is to spend within the travel-money

budget. Families everywhere spend about 12–15% of

their disposable income for mobility. Zahavi measured

the phenomenon 30 years ago, and data recently gath-

ered show the same narrow range.

The fourth instinct originates in the fact that humans

are territorial animals. The objective of territorial animals

is to have as large a territory as possible within the natur-

al limits of the possibilities to acquire and manage it.

Most of human history is a bloody testimony to the

instinct to maximize range.

For humans, a large accessible territory means greater

liberty in choosing the three points of gravity of our lives:

the home, the workplace, and the school. Four-fifths of

all travel ends in this ambit.

Interpreting movement
With this framework, we can begin to interpret the

world of movement and the geography that forms its

substrate. A person traveling by foot covers about 5 km

in an hour. With a 1-hour travel budget to go and return

home, a pedestrian’s territory would have a radius of 2.5

km and, thus, an area of about 20 km2. We can define

this area as the territorial cell of the individual on foot.

Topographic maps until about 1800 (and for much of the

world today) showed territory that is tiled with cells of

about 20 km2, often with a village at the center.

When a village flourishes and becomes a city, the 20-

k m2 territorial cell fills with people. However, its borders

are not breached. Numerous examples of belts or walls of

ancient cities show that they never exceeded 5 km in

d i a m e t e r. Even imperial Rome was 20 km2. Vienna started

with a small medieval wall, its Ring. Around 1700, after its

v i c t o ry against the Turks, Vienna built a second belt, the

Guertel, which had a diameter of 5 km. Pedestrian Ve n i c e

is elliptical, with a maximum diameter of about 5 km.

Ancient Beijing measured 5 × 10 km and thus seems to

break the rule. However, close observation shows that Bei-

jing was a double star—two adjacent cities, one Chinese

and the other Mongol, separated by a wall with gates.

The travel situation remained the same until about

1800. There were horses, but few in proportion to poten-

tial riders. Horses reflected personal wealth, elevated mil-

itaries, and plowed fields. They did little for human

m o b i l i t y. Around 1815, Sweden topped the world in

horse ownership with about 1 per 6 people, while Great

Britain had about 1 per 10 and Belgium about 1 per 16.

Most horses worked on farms. In the United States,

where hay was inexpensive, the number of horses per

capita peaked around 1900 at about 1 horse per 4 peo-

ple. Compare that with the ratio today of 4 motor vehi-

cles per 5 people.

Diocletian’s Rome had about 1 million inhabitants at

the beginning of the 4th century. Constantinople,

Europe’s largest city in 1700, had about 700,000. Lon-

don, which would become first in population, had only

676,000 in 1750. In 1800, the great networks of roads

created by the Romans still served much of Europe for
Christos Magganas



the administrative messengers and the movement of

troops and goods. Infantry made up the armies; cavalry

were precious and rare.

Mobile machines
Around 1800, new machines for transport entered the

field and permitted ever-higher speeds, which revolu-

tionized territorial organization. The highly successful

machines are few—train, motor vehicle, and plane—and

their diffusion slow. Each has taken from 50 to 100 years

to saturate its niche. Each machine carries a progressive

evolution of the distance traveled daily that significantly

surpasses the 5 km of mobility by foot. Collectively, their

outcome is a steady increase in mobility. For example, in

the United States, from 1800 to today, mobility has

grown an average of 2.7% per year, doubling every 25

years (Figure 2).

Since about 1920, when General Motors Corp. was

formed, the auto has had an average speed in most coun-

tries of 35 to 40 km/h, derived by dividing all the kilome-

ters that cars travel by all the hours they travel. Given

that 1 h is the daily invariant of the traveler, and that car

owners now use their autos for an average of 55 min a

day, daily mobility in Europe, for example, is little more

than 35 km/day.

The automobile and its mechanical cousins destroyed

the village and invented the megalopolis. If the auto

gives a mobility of about 35 km/h, then it affords a terri-

t o ry of about 1,000 km2, 50 times the 20 km2 of the

pedestrian city. Mexico City, based on automobility, offi-

cially houses about 30 million people. One can interpo-

late Mexico City’s development to a saturation of about

50 million around 2025. Fifty times the territory equals

50 times the population.

To d a y, in the developed countries, a motor vehicle

stands by for nearly every licensed driver. The mode of

transport is saturated. Carmakers can sell more cars, so

we each have a second car at our second home or as

fashion objects. However, adding cars will not increase

our mobility because we have already hit the limit of our

travel-time budget. Subways can flourish if they beat the

average speed of the car, the 35 km/h door-to-door inclu-

sive travel time. Surface mass transit such as buses, car

pooling, and other modes that slow our inclusive travel

time get rejected.

E n v i r o n m e n t a l l y, the one-license, one-car equation

demands that autos on average must be clean. Incremen-

tal gains in the efficiency of internal combustion engines

will not suffice. The alternative of a world fleet of 1 bil-

lion vehicles powered by huge batteries made with poi-

sonous metals such as lead or cadmium poses materials-

recycling and disposal problems.

The obvious answer is the zero-pollutant fuel cell, in

which compressed hydrogen gas mixes with oxygen from

the air to give off electric current in a low-temperature

chemical reaction that also makes water. When refiners

direct their skills to making hydrogen, its cost should

resemble that of gasoline. Moreover, the electrochemical

process of the fuel cell is potentially 20–30% more effi-

Figure 2. Passenger travel distance per capita per day in the U.S.

by all modes shows a decline for horses, walking, and trains; an

increase for cars, buses, and motorcyles; and a much more rapid

increase for air transportation.
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Figure 1. Studies indicate that people all over the world spend

about one hour a day traveling. Californians eat, bank, and conduct

other activities in their cars. Peruvians travel in unreliable buses
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cient than the thermodynamic process of today’s internal

combustion engines. Ford and other manufacturers plan

to produce 100,000 fuel-cell-powered autos annually

within 10 years. Fuel-cell cars will take two to three

decades to dominate the fleet because of the large invest-

ments in plants required, the 10-year average lifetime of

cars, and gradual public acceptance. City air, now fouled

mostly by cars, could be pristine by 2050.

Air time
Cars will become cleaner but not faster. The state of

technology permits a serious rise in mobility—that is, our

average speed—only by augmenting time spent in the air.

For all the hoopla about railroads, intercity trains move

s l o w l y. A good system, such as Germany’s railroad, aver-

ages about 65 km/h and peaks at about 95 km/h mea-

sured as the distance between terminal points (as the fal-

con flies). The supreme trains, such as the French TGV,

average about 150 km/h. Including the time to reach the

station and board, trains are about as speedy as cars but

lack the infinite frequency that car owners enjoy.

The mean speed of an airplane is 600 km/h, more

than an order of magnitude faster than an auto, and

planes are rapidly approaching cars in intercity passen-

g e r-kilometers transported. Still, in the United States,

daily air time per person is only about 70 s, and Euro-

peans average a scant 20 s daily.

Given that the authors travel on average about 30 min

per day on airplanes, huge average increases can clearly

occur without harming human health. However, the

already inadequate air infrastructures would be violently

stressed by a 25-fold rise in traffic in the United States or

a 90-fold rise in Europe. 

Until recently, the system evolved well by increasing,

in proportion to the traffic, the productivity of planes—

that is, the number of passenger-kilometers of flight, or

the capacity per velocity. By replacing old planes with

larger and faster ones, the commercial fleet long

remained constant at around 4,000 planes, while pas-

senger-kilometers increased 50-fold. In the past 15 years,

however, the builders of airframes have feared to market

superjumbo jets, which would cost perhaps $10 billion

for the first plane, because of the capital investment.

Thus, the airlines make do with smaller craft, and the

system has grown abruptly to about 9,000 planes and

become horribly congested.

For the currently configured airports, the inevitable

growth of high-speed transport will be hard. Looking out

to 2050, our objective would be an airport that, without

choking, handles 1 million passengers per day—8 to 10

times that of Los Angeles International Airport today. A

drastic rethinking of passenger logistics can shrink the

mess. Still, even with more efficient airports, environ-

mental and safety problems loom.

In our outlook, airplanes will consume most of the fuel

of the future transport system, a fact of interest to both

fuel providers and environmentalists. Kerosene, today’ s

jet fuel, will not pass current environmental tests at future

a i r-traffic volumes. More hydrogen needs to enter the fuel

mix, and it will, consistent with the gradual decarboniza-

tion of the energy system (see The Industrial Physicist, Fe b-

r u a ry 2000, pp. 16–19). Still, the transport system clearly

needs a high-density mode having the performance char-

acteristic of top airplanes without the  problems.

New travel mode
The key is a new kind of transport. In the past 200

years, the system has embraced a new means of trans-

port every 50 years or so: barges, trains, autos, planes

(Figure 3). One can view these vehicles and their infra-

structures as products competing for market share. The

secular evolution is beautiful. Clearly, air will be the big

winner for several decades. But the beginning of the mil-

lennium must also give birth to a new mode of transport.

According to our studies, all bets are on magnetically lev-

itated systems, or maglevs, a “train” with magnetic sus-

pension and propulsion (see The Industrial Physicist,

December 1998, pp. 12–13).

The maglev is a vehicle without a motor—thus, with-

out combustibles aboard—and without wings and

wheels, which is suspended magnetically between two

guardrails that resemble an open stator of an electric

motor. It is propelled by a magnetic field that, let’s say,

runs in front and drags it. The maglev is the perfect ana-

Figure 3. Smoothed historical rates of growth of the major com-

ponents of the U.S. transport infrastructure, showing the peak

year and the time for the system to grow from 10% to 90% of its

extent (conjecture shown by dashed curves).
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log of a bunch of particles in an accelerator. 

Hard limits to the possible speed of maglevs do not

exist if the maglev runs in an evacuated tunnel, as the

Swiss propose for Swissmetro, their future maglev railway

system. “Evacuated” means simulating the low pressure

that an airplane encounters at 10,000 to 20,000 m of alti-

tude. Tunnels solve the problem of landscape disturbance

and can also offer the straight lines that speed needs.

The maglev could break the weight rule—the rule of

the ton—that has burdened mobility. The weight of a

horse and its gear, a train, an auto, and a jumbo jet at

takeoff are all about 1 ton of vehicle per passenger. The

maglev could slim the weight to 300 kg, significantly

dropping the energy cost of transport.

If room-temperature superconductors succeed, a

braking vehicle could also almost totally recover its

kinetic energy. The energy consumption of the trains

would then basically result from pushing air out of the

way. The aerodynamic losses of maglevs running in evac-

uated tubes, as in the Swiss plan, would decrease with

lower air pressure and make the energy efficiency of

high-speed transport zoom.

Maglevs offer the best way for electricity to further

penetrate transport, the sector from which it has been

largely excluded. French railroads, of course, are already

powered cleanly and cheaply by nuclear electricity.

Maglev speed
The maglev is similar to a plane that flies low. It can

equal the speed of any type of plane, even a hypersonic

r o c ket at 10,000 km/h. Maglevs could accommodate

high fluxes of passengers, say 100,000 per hour on a

given line. Germans, Japanese, and Americans are study-

ing and experimenting. The transport system calls for it,

and we should see a maglev in operation in the next 10

years. Shanghai has just ordered a German system to

connect its airport to the city center, a distance of 45 km,

and to serve as a test bed for a Shanghai–Beijing line.

The U.S. Federal Railroad Administration is currently

dangling the plum of construction subsidies for one pro-

ject in its Maglev Deployment Program.

Will maglevs make us sprawl? This is a legitimate fear.

In Europe, since 1950, the tripling of the average speed

of travel has extended personal area 10-fold, and so

Europe has begun to mimic Los Angeles. The car

enlarges the cities but also empties the land. In contrast,

maglevs may offer the alternative of a city of separate

neighborhoods with fast connections between them. 

In cities such as Paris, people live in their quarter and

regularly or occasionally travel to other quarters. This

behavior suggests a possible form for future human set-

tlements. Quarters could grow around a maglev station

with an area of about 1 km2 and 100,000 inhabitants, be

largely pedestrian, and—via the maglev—form part of a

network providing most city services within walking dis-

tance. The quarters could be surrounded by green land. 

Given the maglev’s potential, it could be the last in a

series of transport technologies, unless we succeed in

putting into practice some exotic devilry, such as the dis-

integrative beaming in Star Trek.

Speaking of space, it is amusing to calculate what the

maglev might do for the growing demand for transport

into that domain. A launch tunnel of a few hundred kilo-

meters and an acceleration less than 1 g, which is tolera-

ble to senior citizens, could carry a train of 1,000 tons to

orbital velocity (say 25,000 km/h) and launch it into

space by a final tunnel ramp, without creating space

debris from discarded rocket stages. A train every 5 min

could establish a system of transport with destinations

around our solar system.

Back down to Earth, let us review our picture of

m o b i l i t y. Speed matters. Humans search for speed

because, travel time being fixed, speed gives us territory,

that is, access to resources. A person on foot has 20 km2,

a person in a car has 1,000 km2, and the jet set has a

continent. As a rule, the choice is to consume both the

travel-budget hour and the disposable money budget,

maximizing the distance, that is, the speed.

The 21st century will come to be dominated by the

maglev—from the office to the moon, to offer a motto.

Consistent with basic instincts, maglevs can serve as the

pinnacle of a supersystem for green mobility: cars pow-

ered by fuel cells, airplanes powered by hydrogen, and

maglevs powered by electricity. Even the bacteria should

be impressed with the mobility humans can achieve.
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