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A bstract: The mathemati cal model of portfolio optimi zat ion 
is usua lly represented as a bi criteri a optimizaLio 11 probl t' tn where 
a reasonable trade- off betweeu ex pcc t.ed rate of return <l nd ri sk is 
sought . Tn a classical Markowitz model the ri sk is measured by a 
variance, thus resul t ing iu a qu adrat ic programm ing rnoc.le l. i\s a n 
alternative, the MAD model was proposed where ri sk is rn ca.su n~cl by 
(mean) absolute deviation instead of a vari a nce. The MAD rnoclel 
is computationally attractive, since it is tra nsformed into an easy 
to solve linear programming program. Tn this pa per we present a 
recursive procedure whi ch a llows to ident ify optimal portfo li o o f t he 
MAD model depending on investor' s downsi de ri sk aversion. 

Keywords: portfoli o opt imi zation , down side ri sk mrersiott , lin ­
ear programming 

1. Introduction 

Since the advent of the Modern Portfoli o Tlteory (MPT) a rising frorn the work 
of Markowi tz (1952), t he notion of investing in divers ifi ed portfolios has be­
come one of t he most fundamental concepts of portfolio ma nagement. While 
developed a.s a. fin ancial econom ic. t heory in condit.i ona.l-uonna t ivc frmn ework , 
the MPT bas spawned a. variety of a ppli cations and provided background for 
further theoretical models. The origina l l\llarkowitz model was de ri ved using 
a representati ve investor belonging to the norm ative utility fra rn ework , whi ch 
m anifested in portfolio optimi zation techniques based on t he rn ean-v<~ri an ce rul e. 
This framework proved to be sufli cienLl y ri ch to provide t it (' main t heoreti cal 
I... .... ..... l p .... --. . · ·~ .J .[' __ L- L __ -- _ l ___ ! L' : •• 
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to asset pricing models for security pricing, t he most known among them being 
the Capital Asset Pricing Model (CA PM ) (Elton and Gruber, 1987). A rel iance 
on the MPT let to the notion that the best managed portfolio is the one which 
is most widely diversified and such a portfolio may be created through passive 
buy-and-hold investment strategy. 

Following the seminal work by M a.rkowitz (1952), this portfolio opLi rni za­
tion problem is usually modeled as a. bicriteria optimizat ion problem where a 
reasonable trade- off between expected rate of return and ri sk is sought. Tn t he 
Markowitz model the risk is measured by a. variance from mean rate of return , 
thus resulting in a formulation of a quadratic programming model. ~allow­

ing Sharpe (1971), many a ttempts have been made to lineari ze Lhe portfoli o 
optimization (see Speranza, '1993, and references th erein ). Late ly, Konno and 
Yamazaki (1991) proposed the MAD portfolio optimi zation model wh ere ri sk is 
measured by (mean) absolute deviation instead of variance. The model is com­
putationally attractive as (for discrete random variabl es) iL results in solving 
linear programming (LP) probl ems. 

The Markowitz model has been criti cized as not being consistent with ax­
iomatic models of preferences for choi ce under ri sk because it does not rely 
on a. relation of stochastic dominance (see \iVhitrnore and Findlay, I D78; Levy, 
1992) . On the other hand , the MAD model is consistent with the second degree 
stochastic dominance, provided that the trade-off coeffi cieut between ri sk and 
return is bounded by a. certain constant (Ogryczak and Ruszczy1l.sk i, 1999). The 
proposed extension of the MAD model retains consistency with th e stochas tic 
dominance. 

The paper is organized as follows. Tn the next section we discuss the original 
MAD model. Section 3 deals with proposed procedure of recursive identification 
of optimal solution of the MAD model, such that (downside) ri sk avers ion of an 
investor is accounted for. The paper concludes with a discussion. 

2. The MAD model 

The portfolio optimization problem considered in this paper foll ows the orig in al 
Markowitz formulation and is based on a single period model of i nvcstment. 
At the beginning of a period, an investor allocates ca pital among various se­
curities, which is equivalent to assigning a nonnegative weight to each variable 
representing a security. During the investment period, a security generates a 
certain (random) rate of return , so th at at the end of the period, the change of 
capital invested is measured by the weighted average of the returns. Tn mathe­
matical terms, for selecting security weights , an investor needs to sol ve a model 
consisting of a set of linear constraints, one of which sta tes that the weight.s 
must sum to one. 

Let J = {l, 2, ... , n} denote a set of securities considered for an i nvestrnent . 
For each security j E J, its ra te of return is represented by a randorn variable 
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Further, let x = (x j ),i = l ,2, .. . ,n denote a vector of sec uri ti es' weights (decision 
variables) defining a portfolio. To represent a portfolio, the weights must sati sfy 
a set of constraints which form a feasible set Q. Th e simples t way of def-ining a 
feasible set is by a requirement tbat the weights must sum to one, i. e. : 

n 

{x=(:rl ,X2,···,xnf: LX.i = l , Xj20 forj = l , ... ,n}. (1) 
j = l 

An investor usually needs to consider some other requirem ents expressed as a 
set of additional side constraints. Hereafter, it is assumed that Q is a general 
LP feasible set given in a canonical form as a system of li near eq uations with 
nonnegative variables: 

A x = b, x ~ O}, (2) 

where A is a given p x n matrix and b = (6 1 , ••• , bTJfl' is a given HHS vector. 
A vector x E Q is called a porf:lol'io. 

Each portfolio x defines a corresponding random variabl e Rx = L.;'=l Rp:.i 
which represents portfolio's rate of return. T he mean rate of retum for portfolio 
x is given as : 

n 

~t(x) = E{Rx} = L flr': .i . 
.i = l 

Following Markowitz ( I 952), the portfolio optimi zation probkrn is modeled 
as a mean- risk optimi zat ion probl em where fi(x) is max imi zed and some ri sk 
measure Q(x) is min imi zed . An irnportant advantage of rnea n-ri sk a pproaches 
is a possibility of trade-off analysis. Having assumed a trade-off coeffici ent A 
between the risk and ihe mean, one may directly compare rea l values p.(x) -
,\ Q(x) and find tbe best portfolio by solving t he optimi zation problem : 

max {~t (x) - Au(x) : x E Q}. (3) 

Th is ana lysis is conducted with a so-call ed critical line aprnoru:h (;\il cukowi tz, 
J 987), by solving parametric problem (3) wit h changing values of tnHle-off co­
effici ent A > 0. Such an approach a ll ows to select a ppropri a te vcdtte of Lit e 
trade-off coefficient A and t he correspondin g opt.irnal por!Joli o through a graph­
ical ana lysis in the m ea n-risk image space. 

Jt is clear that if the r isk is measured by vari ance: 

n 

o-
2 (x) = E{(~t(x)- Rx) 2

} = L ~ !T irr;.a;J, 

·i = l :i - 1 

where D"ij = E{(Ri- p;)(R1 - P':i)} is t lt e cova ri ance of securi t ies i <mel j, then 
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One may consider an alternat ive risk measure def-i ned as the (mean) ab:iolu.tc 
deviation from a mean: 

l
+oo 

o(x) = E{!Rx - J-L(x) !} = - oo !Jt(x) - ~~ Px(d0, (4) 

where Px denotes a probability meas ure in duced by the random variable Rx 
(Pratt et al., 1 995). The absolute devia tiou was used in the porlfoli o analy­
sis (Sharpe, 197la, and referen ces therein) and has been given ofFicial status 
as a recommended measure of dispersion by the Bank Administration Institute 
(1968). Konno and Yamazaki (1991) presented the complete portfolio optimiza­
tion model based on the absolute deviation as a risk measure , so-call ed MAD 
model, and they validated it by experiments on the Tokyo stock market. T he 
MAD model does not require any specific type of return distributions, which 
enabled its application to portfolio optimizat ion for mortgage-backed securities 
(Zenios and Kang, 1993) and other classes of investments where distribution of 
rate of return is known to be not symmetric. 

Many authors pointed out that the MAD model opens up opportuniti es for 
more specific modeling of the downside risk (Konno, 1990; Feinstein and Thapa., 
1993), because absolute deviation may be considered as a measure of the down­
side risk (observe that o(x) equals twice the (downside) absolute sern ideviation): 

J(x) E{max{J-L(x)- Rx, 0}} (5) 

E{J-L(x) - Rx!Rx ~ J-L (x)}P{Rx ~ J-L(x)} 

1
J.1.(X) 

-oo (J-L(x) - ~) Px(d~). 

Hence, taking into account (5), the following parametric optimization problem 
will be called the MAD model: 

max {J-L(x)- .-\J(x) : x E Q}. (G) 

Simplicity and computational robustn ess are perceived as the most impor­
tant advantages of the MAD model. 

Following Konno and Yamazaki (I 991), r 11. is the realization of random vari­
able R1 during period t (where t = l, ... , T), whose values are avail abl e from 
the historical data or from some future projection. Tt is also assmned that 
the expected value of the random vari abl e can be approximated by t he average 
derived from these data. Therefore: 

1 T 
J-lj = T L Tjt, 

t = l 

and , according to (5), 

- 1 T 
Mx) = ~) d,, 
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where dt (t = 1, ... , T) is the downside deviation for the realization of portfolio 
x during period t, i.e.: 

n n n 

j = l j = l j = l 

Hence, the MAD model (6) can be rewriLten (Feinstein aud Thapa, 1 093) as 
the following LP: 

n ,\ 'T 

max "" 11. x · - - "" d ~ rJ J T ~ t 

.i = l t = l 

subject to 

xEQ 

n 

dt~L(p,j-Tjt)xj fort =l, ... ,T 
j = l 

dt ~ 0 for t = 1 , ... , T, 

(8) 

(9) 

(1 0) 

( 11 ) 

where inequalities (10)- (1 I) guarantee that the optimal values of var iables dt 
satisfy (7). 

The LP formulation (8)- (1 1) can be efl'ectively solved even for la rge number 
of securities . Moreover, a number of securities included in t he optimal portfolio 
(i .e. the number of weights with nonzero values) is controll ed by the number 
T. In the case when Q is given by (1 ), no more than T + 1 securities wi ll be 
included in the optimal portfolio. 

Recently, the MAD model was further validated by Ogryczak and Rusz­
czyriski (1999) who demonstrated that if the trade-oil coefficient /\ is bounded 
by 1, then the model is partia lly consistent with the second degree stochastic 
dominance (Whitmore and Findlay, 1978). Origins of sLochast.ic dorn i JJance <He 
in an axiomatic model of risk-averse preferences (Fishburn, 1964; H mwc:h aJ 1d 
Levy, 1969; Rothschild and Stiglitz, 1 970). Since that tirnc this concept has been 
widely used in economics and finance (see Levy, 1992 for nmnemus references) . 
Detai led and comprehensive discussion of a stochastic dominance and its relation 
to the downside risk measures is given iu Ogryczak and Ruszczy11ski (1998, 
1999). 

In the stochastic dominance approach uncertain prospects (random var i­
ables) are compared by pointwise comparison of some performance fnnctions 
constructed from their distribution functions. Let Rx be a randorn vari able 
which represents the rate of return for portfolio x and Px clenot.e the induced 

probability measure. The first performance function F~1 ) is cl efinecl as !.he ri ght­
continuous cumulative distribution function itself: 

11\ 
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The second performance fun ction F~2 ) is derived from the distribution fu nction 
Fx as: 

F~2\TJ) = [~ Fx(O d~ for real uurnbers 7], 

and defines the weak relation of the second degree stochastic domina·nce (SSD): 

Rx' ~sso Rx" F (2)( ) < L' (2)( ) 
X ' TJ - rx" 7] for all TJ. 

The corresponding strict dominance rela tion >--ssD is defined as 

Thus, we say that portfolio x ' dom·inatcs x" 1mder the SSD T"ules (Rx' >-- s so 

Rx" ), if F~~)(TJ) :::; F~~f(TJ) for all TJ, with at least one inequa li ty stri ct. A feasible 
portfolio x 0 E Q is called efficient 1mder the SSD ndes if there is uo x E Q such 
that Rx >-- sso Rxo. 

The SSD relation is crucial for decision makiug under risk. If Rx' >-- sso Rx", 
then Rx' is preferred to Rx" withi n a ll risk-averse preference models where 
larger outcomes are preferred. It is therefore a matter of primary impor­
tance that a model for portfolio optimi zation be co11sist.ent with the SSD re­
lation, which implies t hat the optimal portfolio is effi cient under t he SSD rul es. 
Ogryczak and Ruszczyr]ski (1999) showed part ial consistency of the MA D model 
with the SSD relation in t he sense that, except for portfolios with identi cal 
mean and absolute semidevia tion, every portfolio x E Q that is maximal by 
p,(x) - AJ(x) with 0 < A :::; l is effici ent under the SSD rules. Thi s implies 
that the unique optimal solution of t he MAD problem (model (G)) with th e 
trade-off coefficient 0 < A :::; 1 is effi cient under the SSD rules . Jn the case of 
multiple optimal solutions of model (G), some of them may be SSD domina ted. 
Exactly, an optimal portfolio x' E Q ca n be SSD dom inated only by another 
optimal portfolio x" E Q such that ~t(x") = ~t(x') and J(x") = J(x'). Although, 
the MAD model is consistent with the SSD for bounded trade-ofl's, i L requires 
additional specification if one wants to main tain t he SSD effi ciencv fo r every 
optimal portfolio. The recursive extension of the J\!fA D model present.ccl in thi s 
paper provides such a spec ificat ion . 

3. Recursive optimization with the MAD model 

The MAD model (6) measures downside ri sk but it does not ])J'OIWrl y account 
for risk aversion attitude. Absolute semideviation (accord ing to defini t ion (5)) 
averages deviations and treats as equivalent a situa tion with low probability 
large deviation and a situation with hi gh probability small devi at ion. This can 
be illustrated with two fini te random vari ables Rx' a nd R.x" defin ed ns: 

( 0. 5, ~ = - 20 
P{Rx' = 0 = { 0. 5, ~ = 20 (12) 
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and 

{ 

0.01, ~ = - 1000 
0.98, ~ = 0 

P{Rx" = 0 = O.Dl, ~ = 1000 

0, otherwise. 

731 

(13) 

Note that f..L(x') = f..L(x") = 0 and tS(x' ) = tS(x" ) = 10. Hence, two random 
variables are identical from the view point of the MAD model. Never theless, 
Rx' >-- ssv Rx" and Rx' is stri ct ly preferred to Rx" within all ri sk-averse pre­
ference models. 

In order to account for downside ri sk aversion attit ude, one needs to difi"eren­
ti a te between different levels of devi ations, and to penali ze "larger" on es . Lets 
start with the original MAD model (6) assuming tha t the Lrade-oif coefficient 
(>.) has value T 1 . Since the mean devi at ion is already considered in (6) , it is 
quite na tural to focus on this part. of large deviations whi ch exceed the mea.u 
deviation (later referred Lo as "surplus devia ti ons") . Mean surp lus deviation 
E{max{f..L(x) - tS(x) - Rx , 0}} needs to be penalized by a va lue, say T2, of a 
t rade-off between surplus devia tion and a mean deviation which leads to the 
maximi zation of: 

{t(x) - TJ (tS(x) + T2E{ max{rt (x) - tS(x )- Rx , 0}} ). 

Consequently, because surplus deviations are again measured by their mean , 
one may wish to penalize the "second level" surplus deviations exceeding that 
mean. This can be formali zed as follows: 

m 

max {f..L(x) - ~ (IT Tk)tS; (x ) : x E Q} , (14) 
i = l k= l 

where T1 > 0, ... , Trn > 0 are the assumed to be known lrade-off coeffi cients 
and 

81 (x) J(x) = E{rnax{Jt (x) - Rx , 0}} 
i- 1 

tS; (x) E{max{Jt(x )-~ tSk(x ) - Rx , 0}} fori = 2, ... , m. 
k= l 

By substitution 

Ai = IT Tk for i = 1 , ... , m 
k = l 

one gets the model: 

m 

X E Q} , 

(15) 

(16) 
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where A1 > 0, .. . , Am > 0 are the model parameters. Hereafter, we will refer to 
the problem (16) as the recursive m - level MAD model (or m.--MA D for shor t) . 

Note that two random vari ables (12) and (13), whi ch were identi cal from 
the viewpoint of the original MAD model, are no longer identi cal from the 
perspective of t hem- MAD model (for any m > 1 ) . 

The parameters A; in them--MAD model represent con espomling Lrnde-ofl's 
for different perceptions of downside ri sk. Using formul a ( 15 ), t hey ca11 be easil y 
derived from known trade-off coefficients T;.. Tf specific value of A is selected iu 
t he MAD model, then it is quite na.L ural t.o use the same va lue for the whole 
m- MAD model, thus assuming T; = A for i = I, ... , m. T hi s gives AJ = A, 
A2 = A2, ... , Am= Am. 

Recall that the MAD model is consistent. with the SSD relat ion provided 
that the trade-off coefficient is posit ive and no t grea ter than I. Imposing th is 
restriction on coefficients T;, due to formul a (15), one gets: 

l ;::: AJ ;::: ... ;::: Am > 0. (:17) 

Vice versa, having defin ed coefficients A;. sa t isfying (17), clue to formul a (15), 
one gets 0 < T; ::; 1 fori = I , ... , m . Tbus the Tn- MA D model is consistent with 
the SSD relation provided that t he coefficients A; sati sfy t he conditi on ( 17). T he 
issues of SSD effici ency of the m- MAD solu t ions are di scussed in Michalowski 
and Ogryczak (1998). 

Lets consider the case when t he mean rates of return of securiti es are der ived 
from a finite set of (hi storical) data rj1• (for j = 1, . .. , nand t = I, ... , T). Th en, 
assuming that the coeffici ents A-; sat isfy the condi tion ( 17), t il e 1n.-.lVTJ\D model 
can be formulated as an LP proh lem. For instance, 2-·MAD model (i. e. m- NfAD 
model with m = 2) is given as: 

subject to 

x E Q 

n 

dn ;::: L (J.Lj - Tjt)Xj for t = I , ... , T 
j = l 

n l T 

dt2 2 L (J.Lj - rjt)Xj - T L clli fort = l , ... , T 
j = l 1= 1 

( 18) 

(19) 

(20) 

(21) 
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The above form ulation differs from (8)- (11) by having an additional group of 
T deviational variables dt2 (while the origina l dt are renamed to dtl) and cone­
sponding additional group ofT inequali ties (21) linking these variables together 
(similar to equations (10) in the MAD model). 

A general m- MAD model can be formu lated with mT deviational var iab les 
and mT inequalities linking them. Tn order to maintain sparsity of its LP 
formulation (which is convenient in the search for t he solu t ions of large scale 
LPs), it is better to write them- MAD as: 

m 

max zo + L Aizi 

i = l 

subject to 

xEQ 

n 

zo - L /.LjXj = 0 
j=l 

T 

T Zi + L dti = 0 for i = 1 , . . . , m 
t = l 

i-1 n 

(23) 

(24) 

(25) 

(26) 

dti - L Zk + L 7"jtXj 2 0 fort = 1, . .. , T; i = I , ... , m (27) 
k=O j = l 

dti 2 0 for t = 1, .. . , T; i = 1 , ... , m. (28) 

In the above formulation {t(x) and cSi(x) ('i = 1, .. . , m) are exp li cit.l y represented 
using additional variables zo and - zi (i = 1, ... , m), respect ive ly. T herefore, 
additional m + 1 constrain ts (25)- (26) need to be introd uced to define these 
variables. A number of nonzero coefficients in (27) ca n be fur ther reduced if 
repetitions of coefficients 7"jt in severa l groups of inequa li ties (27) for various 
t are avoided. This can be accompl ished by in troducing addit ional var iables 
Yt = 2:::7=1 7"jtXj, however, it would increase Lhe size of th e LP problem to be 
solved. 

To illustrate how t hem-MAD model in troduces downside ri sk aversion in to 
t he original MAD, consider two finite random variables Rx' and Rx" defin ed 
as (Konno, 1 990) : 

{ 

0.2, 
0.1 ' 

P{Rx' = 0 = 0.4, 
0.3, 

~ = 0 
~ = ] 

~=2 

~ = 7 
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and 

! 
0.3 , ~ = - 1 
0.4, ~ = 4 

P{Rx" = 0 = 0.1, ~ = 5 
0.2, ~ = 6 
0, otherwise. 

Note that J.L(x') = J.L(x") = 3, J(x') = J(x") = 1.2 and a 2 (x') = a 2 (x") = 7.4. 
Hence, two random variables are identical from the viewpoint of Markowitz as 
well as the MAD models. It turns out, however, that Rx" has a longer and 
"heavier" tail to the left of the mean which can be demonstrated by comparing 
third moments of the random variables or their p(Z) functions: 

and 

0.27] , ! 
0, 

F~~)(77) = 0.3(77- 1) + 0.2 , 
0.7(7]- 2) + 0.5, 
7] - 3, 

! 
0, 
0.3(7] + 1), 

(2) 
Fx" (77) = 0.7(7] - 4) + 1.5, 

0.8(7]- 5) + 2.2, 
7]- 3, 

77 E ( -oo, OJ 
7] E (0, 1] 
7J E (1 , 2] 
7] E (2, 7] 
77 E (7,oo) 

77 E (-oo, -1] 
7] E(-1,4] 
7]E(4,5] 
7] E (5, 6] 
'f) E (6, oo] . 

One may notice that neither Rx' dominates Rx" nor Rx" dominates Rx' under 
the SSD rules but F,f;)(7J) ::; F~~f(77) for all 77 ::; 3 and the inequality is strict 
for all -1 < 77 < 3. Thus Rx' is preferred to Rx" in a downside risk aversion 
context. Simple arithmetics shows that 

bz(x') = 0.44, 
b3(x') = 0.308, 
b4(x') = 0.2156, 

bz(x") = 0.84 
<Hx") = 0.588 
b4(x") = 0.4116 

i-1 i-l 

Ji(x') = 0.2(3- L Jk(x')) , Ji(x") = 0.3(4- L Jk(x")) for i 2: 5. 
k=l k= l 

Hence, Ji(x') ::; Ji(x") fori< 10 whereas Ji(x') > Ji(x") fori 2: 10. Neverthe­
less, for any m > 1 and .>-; satisfying (17), 

m m 
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The m-MAD model allows to penalize larger downside deviations, thus pro­
viding for better modeling of the risk avert preferences. Observe that the ob­
jective function of them-MAD model can be written in the form: 

m A· 
{<(x)- A1 I: f8;(x) 

i=l 1 

which explicitly shows that A1 is the basic risk to mean trade-off (denoted by 
A in the original MAD model), whereas the quotients Ad A 1 define addi tiona! 
penalties for larger deviations . Thus our extension of the MAD model is in some 
manner equivalent to introduction of a convex dis-utility function u of downside 
deviations. Specifically, the objective function in the m- MAD model takes the 
form 

{b(x) - A1 E{ u(max{{b(x) - Rx, 0})} 

where u is the (distribution dependent) piecewise linear convex function defined 
(for nonnegative arguments) by breakpoints: bo = 0, b; = b;_ 1 + J;(x) for 

i = l, ... , m - 1 and the corresponding slopes s1 = 1, s; = I:~= l Ad AJ for 
'i = 1, ... , m . The quotients A;/ A1 represent the increment of the slope of u 
at the breakpoints b;_ 1 . In particular, while assuming Am = ... = A2 = A1 

one gets the convex function u with slopes s; = i. The original MAD model 
with linear function u, may be considered as a limiting case of m- MAD with 
Am= ... = A2 = 0. 

Similar extension of the MAD model for portfolio optimization was already 
proposed by Konno (1990) who considered a convex piecewise linear function 
with breakpoints proportional to the mean of Rx. The comprehensive analysis 
of this approach is beyond the scope of this paper. However, we illustrate with a 
small example that a proper selection of slope parameters may prove to be quite 
a difficult task. Consider two finite random variables Rx' and Rx" defined as: 

and 

{ 

1/(1+E), ~=0 
P{Rx' = 0 = E/(1 +E), ( = 1 

0, otherwise 

P{R - t} - { 1' ( = 0 
X" - "' - 0 otherwise 

' ' 

(29) 

(30) 

where E is an arbitrarily small positive number. Note that Rx' >- ssD Rx" 
and {b(x') = E/(1 +E), J(x') = E/(1 + E)2 while {b(x") = J(x") = 0. Simple 
arithmetics show that Rx' is preferred to Rx" in the MAD model with any 
O< A ::; l. 

Consider function u with (one) breakpoint b1 = 0.5{b(x) as Konno (1990) 
did. This results in a model involving maximization of the objective function 

' '"F t \ \ T""1 ( (n. !""' I \ 
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where A1 > 0 is the basic trade-off parameter and A2 > 0 is an additional 
parameter (a penalty for larger deviations). Then E{ max{0.5~L(x') -Rx·, 0}} = 

(0.5E) / (1 + E ) 2 = 0.5J (x'). Hence, the objective function (31) for Rx· is JL(x') -
(A1 + 0.5A2)J(x') which means that A2 only increases the value of trade-off 
coefficient A1 . It is easy to see that in the case of A2 2: 2(1 - At+ E), Rx" has 
larger value of the objective (31) than Rx· · 

While applying the m-MAD model to compare the random variables (29) 
and (30), one gets: Ji(x') = Ei/ (1 + E)i+ 1 and Ji(x") = 0. It is easy to show 
that for any m 2': 1 and 0 < Ai ::; 1 

m m 

i=l i= l 

which is consistent with the fact that Rx· >-ssD Rx" · Jn fact, important feature 
of them- MAD model is its consistency with the SSD relation. 

4. Discussion 

Them-MAD model is well defined for any type of rate of return distribution and 
it is not sensitive to the scale shifting with regards to the mean and deviations. 
Moreover, it allows to account for investor 's (downside) risk aversion, and as 
demonstrated in the paper, it is robust considering the SSD efficiency. These 
advantages of the m- MAD model are amplified by the fact th at it maintains 
simplicity and linearity associated with the original MAD approach. 

Both the Markowitz and MAD models are powerful portfolio optimization 
tools which for a given risk/return trade-off do not impose a sign ificant infonna­
tion burden on an investor. This feature, considered as an advantage in certain 
situations, may be also viewed as a shortcoming because it does not provide 
an investor with any process control mechanism. This is not the case witb the 
m- MAD model proposed here. Application of this model allows all investor to 
control and fine-tune the portfolio optimization process through the ability Lo 
determine m trade-off parameters Ai. Thus, an investor exhibiting (downside) 
risk aversion can, to some extent, control which securities enter opt imal port­
fo lio through varying a penalty associated with "larger" (downside) deviations 
from a mean return. Within such a framework, higher risk aversion is reflec ted 
in an investor's desire to exclude from a portfolio those securities which have 
potential "large" deviations, while a more risk neutral investment att itude will 
result in accepting those securities. On the other hand, the modeling opportu­
nities of them-MAD constitute at the same time its possible drawback related 
to the selection of proper values for m and Ai parameters. It is important to 
stress here that if specific trade-off coefficient A is selected in the original MAD 
model, then it is quite natural to use t he same coefficient in the whole m- MAD 
model, which gives: A1 =A, A2 = A2, ... , Am= Am. For computational reasons 
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that there would be no reason to consider larger values of m even if it were 
computationally acceptable. For t he Lrade-off A < 1 it is very likely that small 
values of m will have the correspond ing Am close to 0. 
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