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Abstract: The mathematical model of portfolio optimization
is usually represented as a bicriteria optimization problem where
a reasonable trade-off between expected rate of return and risk is
sought. In a classical Markowitz model the risk is measured by a
variance, thus resulting in a quadratic programming model. As an
alternative, the MAD model was proposed where risk is measured by
(mean) absolute deviation instead of a variance. The MAD model
is computationally attractive, since it is transformed into an easy
to solve linear programming program. In this paper we present a
recursive procedure which allows to identify optimal portfolio of the
MAD model depending on investor's downside risk aversion.
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1. Introduction

Since the advent of the Modern Portfolio Theory (MPT) arising from the work
of Markowitz (1952), the notion of investing in diversified portfolios has be-
come one of the most fundamental concepts of portfolio management. While
developed as a financial economic theory in conditional-normative framework,
the MPT has spawned a variety of applications and provided background for
further theoretical models. The original Markowitz model was derived using
a representative investor belonging to the normative utility hamework, which
manifested in portfolio optimization techniques based on the mean-variance rule.

This framework proved to be sufficiently rich to provide the
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to asset pricing models for security pricing, the most known among them being
the Capital Asset Pricing Model (CAPM) (Elton and Gruber, 1987). A reliance
on the MPT let to the notion that the best managed portfolio is the one which
is most widely diversified and such a portfolio may be created through passive
buy-and-hold investment strategy.

Following the seminal work by Markowitz (1952), this portfolio optimiza-
tion problem is usually modeled as a bicriteria optimization problem where a
reasonable trade-off between expected rate of return and risk is sought. In the
Markowitz model the risk is measured by a variance [rom mean rate of return,
thus resulting in a formulation of a quadratic programming model. Follow-
ing Sharpe (1971), many attempts have been made to linearize the portfolio
optimization (see Speranza, 1993, and references therein). Lately, Konmo and
Yamazaki (1991) proposed the MAD portfolio optimization model where risk is
measured by (mean) absolute deviation instead of variance. The model is com-
putationally attractive as (for discrete random variables) it results in solving
linear programming (LP) problems.

The Markowitz model has been criticized as not being consistent with ax-
iomatic models of preferences for choice under risk because it does not rely
on a relation of stochastic dominance (see Whitmore and Findlay, 1978; Levy,
1992). On the other hand, the MAD model is consistent with the second degree
stochastic dominance, provided that the trade-off coefficient between risk and
return is bounded by a certain constant (Ogryczak and Ruszezynski, 1999). The
proposed extension of the MAD model retains consistency with the stochastic
dominance.

The paper is organized as follows. In the next section we discuss the original
MAD model. Section 3 deals with proposed procedure of recursive identification
of optimal solution of the MAD model, such that (downside) risk aversion of an
investor is accounted for. The paper concludes with a discussion.

2. The MAD model

The portfolio optimization problem considered in this paper follows the original
Markowitz formulation and is based on a single period model of investment.
At the beginning of a period, an investor allocates capital among various se-
curities, which is equivalent to assigning a nonnegative weight to each variable
representing a security. During the investment period, a security generates a
certain (random) rate of return, so that at the end of the period, the change of
capital invested is measured by the weighted average of the returns. In mathe-
matical terms, for selecting security weights, an investor needs to solve a model
consisting of a set of linear constraints, one of which states that the weights
must sum to one.

Let J = {1,2,...,n} denote a set of securities considered for an investment.
For each security j € J, its rate of return is represented by a random variable
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Further, let x = () =12,...» denote a vector of securities” weights (decision
variables) defining a portfolio. To represent a portfolio, the weights must satisfy
a set of constraints which form a feasible set Q. The simplest way of defining a
feasible set is by a requirement that the weights must sum to one, i.e.:

{x = (z1,22,...,2,)7 : ij:l, gy 20 forg =1saml (1)
j

1

An investor usually needs to consider some other requirements expressed as a
set of additional side constraints. Hereafter, it is assumed that @ is a general
LP feasible set given in a canonical form as a system of linear equations with
nonnegative variables:

Q={x=(21,22,...,2,)7 : Ax=b, xZ0}, (2)

where A is a given p x n matrix and b = (by,...,b,)" is a given RHS vector.
A vector x € @ is called a portfolio.

Each portfolio x defines a corresponding random variable Bx = Z;.l;l Ry
which represents portfolio’s rate of return. The mean rate of return for portfolio

X is given as:

%) = E{Bx} = Z i
j=1

j=

Following Markowitz (1952), the portfolio optimization problem is modeled
as a mean-risk optimization problem where p(x) is maximized and some risk
measure o(x) is minimized. An important advantage of mean—risk approaches
is a possibility of trade-off analysis. Having assumed a trade-off coetficient A
between the risk and the mean, one may directly compare real values p(x) —
Ao(x) and find the best portfolio by solving the optimization problem:

max {p(x) — Ao(x) : x € Q}. (3)

This analysis is conducted with a so-called critical line approach (Markowitz,
1987), by solving parametric problem (3) with changing values of trade-off co-
efficient A > 0. Such an approach allows to select appropriate value of the
trade-off coeflicient A and the corresponding optimal portfolio through a graph-
ical analysis in the mean-risk image space.
It is clear that if the risk is measured by variance:
n

a*(x) = B{(u(x) — Rx)*} = Z Z Tijlili j,

i=1 j=1

where o3; = E{(R; — pt;)(R; — ;) } is the covariance of securities i and j. then
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One may consider an alternative risk measure defined as the (mean) absolute
deviation from a mean:
+o0

3() = B{Rx ~n60l} = [ lutx) ~ €] Px(ae) ()
—00

where Px denotes a probability measure induced by the random variable Ry
(Pratt et al., 1995). The absolute deviation was used in the portfolio analy-
sis (Sharpe, 1971a, and relerences therein) and has been given oflicial status
as a recommended measure of dispersion by the Bank Administration Institute
(1968). Konno and Yamazaki (1991) presented the complete portfolio optimiza-
tion model based on the absolute deviation as a risk measure, so-called MAD
model, and they validated it by experiments on the Tokyo stock market. The
MAD model does not require any specific type of return distributions, which
enabled its application to portfolio optimization for mortgage-backed securities
(Zenios and Kang, 1993) and other classes of investments where distribution of
rate of return is known to be not symmetric.

Many authors pointed out that the MAD model opens up opportunities for
more specific modeling of the downside risk (KKonno, 1990; Feinstein and Thapa,
1993), because absolute deviation may be considered as a measure of the down-
side risk (observe that §(x) equals twice the (downside) absolute semideviation):

5(x) E{max{yu(x) — Rx,0}} (5)
E{u(x) — Rx|Rx < p(x)} P{Bx < p(x)}

1(X)
] (u(x) ~ €) Px(dé).

—00

Hence, taking into account (5), the following parametric optimization problem
will be called the MAD model:

max {u(x) —\(x) : x€Q}. (6)

Simplicity and computational robustness are perceived as the most impor-
tant advantages of the MAD model.

Following Konno and Yamazaki (1991), rj, is the realization of random vari-
able R; during period t (where t = 1,...,T’), whose values are available from
the historical data or from some future projection. It is also assumed that
the expected value of the random variable can be approximated by the average
derived from these data. Therefore:

s
Ky = T Z Tjty

t=1

and, according to (5),

1 i
3(3{]::?‘ d;.



Recursive MAD Model 729

where d; (t =1,...,T) is the downside deviation for the realization of portfolio
x during period t, i.e.:

d; = max {Zujwj = er,wj ¢ B} = max {Z(/.LJ —vrales, 0F (7
j=1 5=1 3=1
Hence, the MAD model (6) can be rewritten (Feinstein and Thapa, 1993) as
the following LP:
n T

A :
max Z sty ~ T Z dy (8)
g=1 t=1
subject to
xeqQ (9)
dtZZ(,uj*rjt)a:j ford=1,m:.57 (10)
j=1
di>0 fort=1,...,T, (11)

where inequalities (10)-(11) guarantee that the optimal values of variables d;
satisfy (7).

The LP formulation (8)-(11) can be effectively solved even for large number
of securities. Moreover, a number of securities included in the optimal portfolio
(i.e. the number of weights with nonzero values) is controlled by the number
T. In the case when Q is given by (1), no more than T+ 1 securities will be
included in the optimal portfolio.

Recently, the MAD model was further validated by Ogryczak and Rusz-
czyniski (1999) who demonstrated that if the trade-off coefficient A is bounded
by 1, then the model is partially consistent with the second degree stochastic
dominance (Whitmore and Findlay, 1978). Origins of stochastic dominance are
in an axiomatic model of risk-averse preferences (IFishburn, 1964; Hanoch and
Levy, 1969; Rothschild and Stiglitz, 1970). Since that time this concept has been
widely used in economics and finance (see Levy, 1992 for numerous references).
Detailed and comprehensive discussion of a stochastic dominance and its relation
to the downside risk measures is given in Ogryczak and Ruszezynski (1998,
1999).

In the stochastic dominance approach uncertain prospects (random vari-
ables) are compared by pointwise comparison of some performance functions
constructed from their distribution functions. Let Rx be a random variable
which represents the rate of return for portfolio x and Px denote the induced
probability measure. The first performance function F)((]) is defined as the right-
continuous cumulative distribution function itself:

M\
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The second performance function F)(c?} is derived from the distribution function
Fx as:

7
F(z)( = / Fx(&) d¢  for real numbers 7.
—00
and defines the weak relation of the second degree stochastic dominance (SSD):
Ry roop Rxr & F&n) < F2n) forall .
The corresponding strict dominance relation -, is defined as
Ry »=g4op Rx» ® Rx =g, Bxr and Rx» #.., Bx.

Thus, we say that portfolio X' dominates x"” under the SSD rules (Rx: ..,
Ryxr), if F(%)(n) < F,(g,)(n) for all 7, with at least one inequality strict. A feasible
portfolio x)% € Q is called efficient under the SSD rules if there is no x € @ such
that Rx ».p Rxo.

The SSD relation is crucial for decision making under risk. If Rxs = .., Bx~,
then Ry is preferred to Ry within all risk-averse preference models where
larger outcomes are preferred. It is therefore a matter of primary impor-
tance that a model for portfolio optimization be consistent with the SSD re-
lation, which implies that the optimal portfolio is efficient under the SSD rules.
Ogryczak and Ruszezyniski (1999) showed partial consistency of the MAD model
with the SSD relation in the sense that, except for portfolios with identical
mean and absolute semideviation, every portfolio x € @ that is maximal by
p(x) = A(x) with 0 < X < 1 is efficient under the SSD rules. This implies
that the unique optimal solution of the MAD problem (model (6)) with the
trade-off coefficient 0 < A < 1 is efficient under the SSD rules. In the case of
multiple optimal solutions of model (G), some of them may be SSD dominated.
Exactly, an optimal portfolio x” € @ can be SSD dominated only by another
optimal portfolio x” € @ such that u(x") = pu(x’) and §(x”’) = 6(x’). Although,
the MAD model is consistent with the SSD for bounded trade-ofls, it requires
additional specification if one wants to maintain the SSD efficiency for every
optimal portfolio. The recursive extension of the MAD model presented in this
paper provides such a specification.

3. Recursive optimization with the MAD model

The MAD model (6) measures downside risk but it does not properly account
for risk aversion attitude. Absolute semideviation (according to definition (5))
averages deviations and treats as equivalent a situation with low probability
large deviation and a situation with high probability small deviation. This can
be illustrated with two finite random variables By and Ry defined as:

{05, £€=-20
P{Rx =&} = 05, €=20 (12)
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and
0.01, &= —1000
o9 e=0 ,
P{Rx=€}=19 001, £=1000 (13)
0, otherwise.

Note that u(x’) = p(x”) = 0 and §(x’) = §(x”) = 10. Hence, two random
variables are identical from the viewpoint of the MAD model. Nevertheless,
Ryt = .sp Fxr» and Rx: is strictly preferred to REx~ within all risk-averse pre-
ference models.

In order to account for downside risk aversion attitude, one needs to differen-
tiate between different levels of deviations, and to penalize “larger™ ones. Lets
start with the original MAD model (6) assuming that the trade-off coefficient
(A) has value 77. Since the mean deviation is already considered in (6), it is
quite natural to focus on this part of large deviations which exceed the mean
deviation (later referred to as “surplus deviations”). Mean surplus deviation
E{max{u(x) — 6(x) — Rx,0}} needs to be penalized by a value, say 74, of a
trade-off between surplus deviation and a mean deviation which leads to the
maximization of:

w(x) — 71 (6(x) + T E{max{u(x) — §(x) — Rx,0}}).

Consequently, because surplus deviations are again measured by their mean,
one may wish to penalize the “second level” surplus deviations exceeding that
mean. This can be formalized as follows:

max {u(x) — Z (H m)0i(x) © x€Q}. (14)
=1 k=1

where 71 > 0, ..., 7,n > 0 are the assumed to be known trade-ofl’ coefficients
and

S(x) = 6(x)= E{max{u(x)— Rx.0}}

i—1
6:(x) = E{max{u(x)- Z ok(x) — Rx,0}} fori=2.....m.
k=1
By substitution
)\,-zH'rk fori=1,...,m (15)
k=1

one gets the model:

max {u(x) — i Midi(x) : x €QY}, (16)
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where Ay >0, ..., A, > 0 are the model parameters. Hereafter, we will refer to
the problem (16) as the recursive m-level MAD model (or m-~MAD for short).

Note that two random variables (12) and (13), which were identical from
the viewpoint of the original MAD model. are no longer identical from the
perspective of the m-MAD model (for any m > 1).

The parameters A; in the m-~-MAD model represent. corresponding trade-olls
for different perceptions of downside risk. Using formula (15). they can be easily
derived from known trade-off coefficients 7;. If specific value of A is selected in
the MAD model, then it is quite natural to use the same value for the whole
m-MAD model, thus assuming 7; = A for 7 = 1....,m. This gives A\; = A,
Ag = /\2,..., Xy =AY

Recall that the MAD model is consistent with the SSD relation provided
that the trade-off coefficient is positive and not greater than 1. Imposing this
restriction on coefficients 7;, due to formula (15), one gets:

1221 2.2 A >0, (17)

Vice versa, having defined coeflicients A; satisfving (17), due to lormula (15),
onegets 0 <7 <1fori=1,...,m. Thus the m~MAD model is consistent with
the SSD relation provided that the coefficients A; satisfy the condition (17). The
issues of SSD efficiency of the m~MAD solutions are discussed in Michalowski
and Ogryczak (1998).

Lets consider the case when the mean rates of return of securities are derived
from a finite set of (historical) data rj, (for j = 1,...,nandt = 1,...,T). Then,
assuming that the coeflicients A; satisfy the condition (17). the m-MAD model
can be formulated as an LP problem. For instance, 2-MAD model (i.e. in-NMAD
model with m = 2) is given as:

n A a° X 13

max Z BiT; = -%Z dyy T > di (18)
=1 t=1 =1

subject to

x€Q (19)

dyy > Z (=) Tort= bewsl (20)
i=1

n T
dis = Z (25 = 13e)25 — %Z dy fort=1,....T (21)
j=1

=1

— Py
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The above formulation differs from (8)—(11) by having an additional group of
T deviational variables ds (while the original d; are renamed to dy;) and corre-
sponding additional group of 7" inequalities (21) linking these variables together
(similar to equations (10) in the MAD model).

A general m—MAD model can be formulated with mT deviational variables
and mT inequalities linking them. In order to maintain sparsity of its LP
formulation (which is convenient in the search for the solutions of large scale
LPs), it is better to write the m-MAD as:

max 2o +Z Aizi (23)
i=1
subject to
x € Q (2/1)
20 — Z wiz; =0 (25)
j=1
T
TZH‘Z da=0 fori=ls..oom (26)
t=1
=1 n
dn”ZZk,‘FZ rigz; 20 fort=1,..., T i=1,...,m (27)
k=0 j=1
dy 20 fort=1,...T =1, 0 (28)

In the above formulation p(x) and &;(x) (i = 1,...,m) are explicitly represented
using additional variables zg and —z; (¢ = 1,...,m), respectively. Therefore,
additional m + 1 constraints (25)—(26) need to be introduced to define these
variables. A number of nonzero coefficients in (27) can be further reduced if
repetitions of coefficients r;; in several groups of inequalities (27) for various
t are avoided. This can be accomplished by introducing additional variables
iy = Z?Zl T2, however, it would increase the size of the LP problem to be
solved.

To illustrate how the m-MAD model introduces downside risk aversion into
the original MAD, consider two finite random variables Rx: and Rx~ defined
as (Konno, 1990):

I

Il
NN = O

=
P A A A
Il

P{Rx =€} ={ 04,
0
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and
03, £=-1
04, £€=14
P{R H-‘ZE}Z 0.1, £:5
02, £€=6
0, otherwise.

Note that u(x’) = p(x") =3, §(x') = §(x”) = 1.2 and ¢%(x') = o?(x") = 7.4.
Hence, two random variables are identical from the viewpoint of Markowitz as
well as the MAD models. It turns out, however, that Rx~ has a longer and
“heavier” tail to the left of the mean which can be demonstrated by comparing
third moments of the random variables or their F2) functions:

0, RS (_00$0J
0.2n, n € (0,1]
F@m ={ 03(n-1)+02, ne(1,2]
0.7(n—2)+0.5, ne (2,7
n- 3, ne (?e 00)
and
0, n € (—o0,—1]
0.3(n + 1), n € (—1,4]
F@m={ 07(n-4)+15, ne(4,5]
0.8(n—5)+22, ne€(56]
n—3, n € (6,00].

One may notice that neither Rx: dominates Ry~ nor Ry~ dominates Ry, under
the SSD rules but F](cz,)( ) < F,E-_L:,)(r;) for all n < 3 and the inequality is strict
for all =1 < < 3. Thus Rx- is preferred to Rx~ in a downside risk aversion
context. Simple arithmetics shows that

82(x') = 0.44, 8(x”) = 0.8
33(x’) = 0.308, 53(x") = 0. 588
84(x’) = 0.2156, 84(x") = 0.4116
i—-1
5i(x') =023 -) &(x)), &i(x")=034- ZJk for i > 5.
k=1

Hence, §;(x’) < §;(x") for i < 10 whereas §;(x’) > d;(x”’) for i > 10. Neverthe-
less, for any m > 1 and A; satisfying (17),

wx') = Xibi(x') > p(x") Z

-
Il
—

'MH
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The m~MAD model allows to penalize larger downside deviations, thus pro-
viding for better modeling of the risk avert preferences. Observe that the ob-
jective function of the m—MAD model can be written in the form:

MY N
1(x) = A ; N i(x)
which explicitly shows that A; is the basic risk to mean trade-off (denoted by
A in the original MAD model), whereas the quotients A;/\; define additional
penalties for larger deviations. Thus our extension of the MAD model is in some
manner equivalent to introduction of a convex dis-utility function « of downside
deviations. Specifically, the objective function in the m—MAD model takes the
form

p(x) = A1 E{u(max{u(x) — Rx,0})}

where u is the (distribution dependent) piecewise linear convex function defined
(for nonnegative arguments) by breakpoints: by = 0, b; = bi—1 + 0i(x) for

i =1,...,m—1 and the corresponding slopes s; = 1, s; = > ,_; Xi/A; for
i =1,...,m. The quotients \;/A; represent the increment of the slope of u
at the breakpoints b;_;. In particular, while assuming A\,, = ... = Ay = Ay

one gets the convex function u with slopes s; = 7. The original MAD model
with linear function u, may be considered as a limiting case of m-MAD with
A B e = Ao =0

Similar extension of the MAD model for portfolio optimization was already
proposed by Konno (1990) who considered a convex piecewise linear function
with breakpoints proportional to the mean of Rx. The comprehensive analysis
of this approach is beyond the scope of this paper. However, we illustrate with a
small example that a proper selection of slope parameters may prove to be quite
a difficult task. Consider two finite random variables Rx: and Rx~ defined as:

1/(14¢), €=0
P{Rx =€} ={ ¢/(1+¢), £=1 (20)

0, otherwise

and

1, £€=0

Fiftge =) = { 0, otherwise, (30

where € is an arbitrarily small positive number. Note that Rx/ >.., Rx~
and p(x') = /(1 +¢), 6(x') = /(1 + ¢)? while u(x") = §(x") = 0. Simple
arithmetics show that Ry is preferred to Ry~ in the MAD model with any
0<A< .

Consider function v with (one) breakpoint by = 0.51(x) as Konno (1990)
did. This results in a model involving maximization of the objective function

/N A TN N o fn = 7/ A ta) A 12250
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where A\; > 0 is the basic trade-off parameter and Ay > 0 is an additional
parameter (a penalty for larger deviations). Then E{max{0.5x(x") —Rx/,0}} =
(0.5¢) /(1 4€)? = 0.56(x"). Hence, the objective function (31) for Rx: is u(x’) —
(A1 + 0.5X2)8(x’) which means that Ay only increases the value of trade-off
coefficient A;. It is easy to see that in the case of Ay > 2(1 — A; + &), Rx~ has
larger value of the objective (31) than Rx:.

While applying the m-MAD model to compare the random variables (29)
and (30), one gets: &;(x’) = /(1 + &)™t and &;(x”) = 0. It is easy to show
that foranym>1land 0 < A; <1

u(x') — Z Aidi(x') > 0 = p(x") - Z Aidi(x"),
=1 =1

which is consistent with the fact that Bx: .., Rx~. In fact, important feature
of the m—MAD model is its consistency with the SSD relation.

4, Discussion

The m—MAD model is well defined for any type of rate of return distribution and
it is not sensitive to the scale shifting with regards to the mean and deviations.
Moreover, it allows to account for investor’s (downside) risk aversion, and as
demonstrated in the paper, it is robust considering the SSD efficiency. These
advantages of the m-MAD model are amplified by the fact that it maintains
simplicity and linearity associated with the original MAD approach.

Both the Markowitz and MAD models are powerful portfolio optimization
tools which for a given risk /return trade-off do not impose a significant informa-
tion burden on an investor. This feature, considered as an advantage in certain
situations, may be also viewed as a shortcoming because it does not provide
an investor with any process control mechanism. This is not the case with the
m~MAD model proposed here. Application of this model allows an investor to
control and fine-tune the portfolio optimization process through the ability to
determine m trade-off parameters A;. Thus, an investor exhibiting (downside)
risk aversion can, to some extent, control which securities enter optimal port-
folio through varying a penalty associated with “larger” (downside) deviations
from a mean return. Within such a framework, higher risk aversion is reflected
in an investor’s desire to exclude from a portfolio those securities which have
potential “large” deviations, while a more risk neutral investment attitude will
result in accepting those securities. On the other hand, the modeling opportu-
nities of the m—MAD constitute at the same time its possible drawback related
to the selection of proper values for m and A; parameters. It is important to
stress here that if specific trade-off coefficient A is selected in the original MAD
model, then it is quite natural to use the same coefficient in the whole m-MAD
model, which gives: A\; = X, Adp = A2...., A = A™. For computational reasons

- oo v T
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that there would be no reason to consider larger values of m even if it were
computationally acceptable. For the trade-off A < 1 it is very likely that small
values of m will have the corresponding A,,, close to 0.
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