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Assessing	uncertainties	in	land	cover	projections	
	

Abstract	
Understanding	uncertainties	in	land	cover	projections	is	critical	to	investigating	
land-based	climate	mitigation	policies,	assessing	the	potential	of	climate	
adaptation	strategies,	and	quantifying	the	impacts	of	land	cover	change	on	the	
climate	system.		Here	we	identify	and	quantify	uncertainties	in	global	and	
European	land	cover	projections	over	a	diverse	range	of	model	types	and	
scenarios,	extending	the	analysis	beyond	the	agro-economic	models	included	in	
previous	comparisons.		The	results	show	a	large	range	in	future	land	cover	area	
projections,	with	the	highest	variability	occurring	in	cropland	areas.		We	
demonstrate	a	significant,	systematic	difference	in	land	cover	areas	arising	from	
the	characteristics	of	the	modelling	approach,	which	is	at	least	as	great	as	the	
differences	between	scenarios.		This	leads	us	to	conclude	that	a	diverse	set	of	
models	and	approaches	is	required	in	order	to	account	for	model	uncertainty	
when	assessing	the	potential	impacts	of	land	cover	change	on	future	climate.			

1 Introduction	
Land	use	and	land	cover	(LULC)	change	plays	an	important	role	in	climate	
change.		LULC	change	is	believed	to	be	responsible	for	a	substantial	proportion	
of	total	carbon	dioxide	(CO2)	emissions,	10-20%	since	19901,2	and	
approximately	a	third	since	pre-industrial	times2,	while	land-based,	climate	
mitigation	measures	could	contribute	substantially	to	the	abatement	of	future	
greenhouse	gas	emissions3.		Climate	change	also	impacts	LULC,	both	through	
direct	effects	on	crops	and	natural	vegetation	and	through	land	management	
and	land	use	changes	implemented	as	adaptation	responses4,5.		LULC	is	not	only	
influenced	by	climate	change,	but	also	by	socio-economic	factors,	such	as	
population	dynamics,	wealth	and	urbanisation,	which	are	important	for	
determining	demand	for	agricultural	and	forestry	commodities6–8.			
	
Modelling	at	a	range	of	spatial	scales	has	been	applied	to	understand	the	LULC	
response	to	climatic	and	socio-economic	drivers,	and	to	assess	the	potential	for	
mitigation	and	adaptation	to	climate	change9–14.		However,	different	modelling	
approaches	can	produce	different	outcomes.		Uncertainty	also	arises	due	to	the	
range	of	potential	socio-economic	and	climate	futures.		Attempts	have	been	
made	to	characterise	the	uncertainty	in	socio-economic	drivers	through	
scenarios,	including	the	IPCC’s	special	report	on	emissions	scenarios	(SRES)15,	
and	more	recently,	shared	socio-economic	pathways	(SSPs)16	in	combination	
with	representative	concentration	pathways	(RCPs)17.		Model	inter-comparison	
studies,	drawing	together	the	findings	of	many	different	modelling	approaches,	
have	previously	considered	aspects	of	LULC	including	the	agricultural	model	
inter-comparison	and	improvement	project	(AgMIP)18,19,	the	inter-sectoral	
impact	model	inter-comparison	project	(ISI-MIP)20,	and	the	coupled	model	
inter-comparison	project	(CMIP)21.		CMIP	deals	primarily	with	the	impact	of	land	
use	on	climate,	and	AgMIP,	which	is	closely	linked	to	the	agricultural	sector	of	
ISI-MIP,	has	a	broad	focus	on	various	aspects	of	agricultural	models.		AgMIP	
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compared	the	results	from	10	global	agro-economic	models	to	2050,	
demonstrating	significant	LULC	change	differences,	even	within	the	same	
scenario,	due	to	differences	in	model	assumptions	and	parameterisation19,22.		
However,	there	has	been	no	previous	model	inter-comparison	of	LULC	
projections	which	examines	uncertainty	over	the	breadth	of	relevant	model	
types.		Further	knowledge	gaps	exist	in	understanding	the	relative	role	of	model	
and	scenario	uncertainty,	as	well	as	the	influence	of	model	spatial	extent,	i.e.	do	
global	and	regional	results	systemically	differ.		Understanding	uncertainties	in	
LULC	projections	is	critical	to	investigating	the	effectiveness	of	land-based	
climate	mitigation	policies,	in	assessing	the	potential	of	climate	adaptation	
strategies,	and	in	quantifying	the	impacts	of	land	cover	change	on	the	climate	
system.			
	
This	study	seeks	to	address	these	knowledge	gaps,	and	identify	and	analyse	
uncertainties	in	global	and	European	LULC,	by	comparing	projections	from	a	
diverse	range	of	models	and	scenarios.		The	aim	is	to	quantify	the	potential	
range	of	future	LULC	and	to	better	understand	the	associated	sources	and	levels	
of	uncertainty.		The	study	goes	beyond	existing	comparisons	in	a	number	of	
ways.	Firstly,	it	incorporates	a	wider	range	of	model	types,	including	process	or	
rule-based	models	in	addition	to	the	computable-general	equilibrium	(CGE)	and	
partial	equilibrium	(PE)	models	evaluated	in	AgMIP.		Secondly,	it	compares	
models	from	different	spatial	extents,	including	both	global	and	regional-scale	
models	for	the	European	continent.		Europe	was	chosen	for	this	comparison	
because	of	the	availability	of	a	large	number	of	regional	models.		Finally,	it	
incorporates	a	broader	range	of	socio-economic	and	climate	scenarios.		Rather	
than	using	a	small	set	of	common	scenarios18,19,	model	teams	were	invited	to	
submit	multiple,	potentially	dissimilar	scenarios,	which	allows	the	potential	
extent	of	scenario	space	to	be	more	fully	covered.		This	approach	also	supports	
the	inclusion	of	a	greater	diversity	of	scenarios	and	models.		For	example,	
without	the	requirement	to	implement	particular	scenarios,	models	that	have	
been	developed	for	different	purposes,	and	thus	have	implemented	different	
scenarios,	can	still	be	included.		Consequently	a	better	representation	of	the	
range	of	uncertainty	in	projected	LULC	change	can	be	achieved.			
	
Data	from	17	models	and	70	scenarios	were	considered	(Table	1).		Statistical	
methods	were	used	to	augment	qualitative	insights	from	comparing	differences	
between	the	model	results.		To	quantify	the	relative	importance	of	factors	
associated	with	the	components	of	the	variability,	a	multiple	linear	regression	
and	analysis	of	variance	(ANOVA)23,24	were	used,	with	variables	for	the	initial	
condition,	model	and	scenario	(climate	and	socio-economic)	factors,	and	
residual	or	unexplained	variability.		The	robustness	of	the	analysis	and	
completeness	of	the	scenario	and	model	variables	were	assessed,	including	
through	the	use	of	linear	mixed	effects	modelling25.	
	
The	analysis	identifies	and	draws	inference	from	the	variability	between	the	
LULC	projections,	and	separates	the	factors	driving	future	LULC	uncertainty	
between	the	impacts	of	model-related	factors	(model	type,	resolution	and	
extents)	and	the	scenario	characteristics.		It	is	not	the	intention	to	identify	which	
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model	or	scenario	is	more	plausible,	or	to	indicate	which	model	or	approach	
could	be	considered	more	accurate.	
	

2 Variations	in	modelled	land	cover	areas		
Future	LULC	projections	are	uncertain,	and	the	results	display	a	wide	variation	
for	all	assessed	land	cover	types.		The	global	and	European	land	cover	over	time	
are	shown	in	Figures	1	and	2,	plotted	both	as	absolute	areas	and	scaled	to	match	
the	FAOSTAT	areas	at	201026.		Global	cropland	areas	follow	what	might	be	the	
anticipated	pattern,	with	relatively	small	initial	differences	between	scenarios	
(1290-1650	Mha,	95%	interval	at	2010),	which	diverge	over	time	across	a	range	
of	scenarios	(930-2670	Mha	at	2100).		However,	the	global	pasture	and	forest	
areas	do	not	fit	this	pattern.		They	demonstrate	a	relatively	large	initial	
variation,	which	does	not	change	substantially	over	time.		The	main	reasons	for	
these	discrepancies	in	initial	conditions	are	due	to	uncertainty	in	current	areas,	
and	differences	in	the	definition	of	land	cover	(both	in	models	and	in	
observations).		There	is	a	lack	agreement	particularly	over	what	constitutes	
pasture	and	forest,	e.g.	how	to	categorise	grazed	forest	land	or	semiarid	
grazing27.		Scaling	to	a	common	starting	value	allows	the	model	trends	without	
these	differences	to	be	observed,	and	this	shows	the	expected	pattern	of	
increasing	variability	over	time	(Figures	1&2-ii).		FAO	data26	was	used	to	display	
historic	values,	and	is	a	commonly	used	source	for	such	data.		A	small	number	of	
scenarios	suggest	rapid	changes	in	some	types	of	land	cover.		For	example,	by	
2050	FALAFEL	under	SSP1	gives	a	reduction	in	global	cropland	of	43%,	and	
LandSHIFT	an	increase	of	76-107%	compared	to	present-day	depending	on	the	
scenario.	
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Figure	1.		Global	modelled	land	cover	areas	for	cropland	(a),	pasture	(b),	and	forest	
(c),	from	12	models	and	a	total	of	49	scenarios.		A	historical	dataset26	is	shown	as	a	
solid	black	lines,	and	the	95%	interval	of	model	results	in	as	grey	shading.		The	
absolute	areas	are	shown	in	i)	and	the	areas	scaled	to	match	the	historical	data	in	
2010	are	shown	in	ii).		See	Table	1	for	model	and	scenario	information.	
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Figure	2.		European	land	cover	for	15	models	over	a	total	of	59	scenarios	based	on	
the	EU27	member	states.		Legend	and	format	consistent	with	Figure	1.		

	
The	European	land	cover	areas	(Figure	2)	show	some	of	the	same	patterns	of	
variations	as	the	global	areas	(Figure	1),	e.g.	lower	initial	variation	for	cropland	
than	for	pasture	or	forest.		Some	of	the	European	regional	models	produce	many	
of	the	more	extreme	area	changes,	with	CLIMSAVE-IAP,	CRAFTY	and	EcoChange	
all	producing	the	highest	or	lowest	scaled	areas	for	multiple	cover	types,	
although	most	of	the	European	regional	models	do	not	extend	past	2050.		
CLIMSAVE-IAP	has	a	relatively	high	initial	value	for	pasture,	which	in	the	SRES	
A1	and	B1	scenarios	decreases	rapidly,	while	forest	is	lower	and	decreases	
substantially	in	all	scenarios,	in	contrast	to	the	majority	of	other	model	results.		
CRAFTY	and	EcoChange	also	have	some	results	in	which	the	direction	of	change	
varies	through	time,	while	other	models	tend	to	show	a	more	consistent	
direction	of	change	over	time	for	each	scenario.	
	
The	coefficient	of	variation,	the	ratio	of	the	standard	deviation	to	the	mean,	was	
used	to	provide	a	comparative	measure	of	dispersion	across	model	runs	
between	the	global	and	European	areas	and	the	land	cover	types	considered	
(Figures	3&4-i).		This	illustrates	again	that	the	initial	variation	is	relatively	low	
for	cropland,	but	increases	over	time.		Pasture	and	forest	areas	do	not	exhibit	
this	pattern	with	global	forest	area	variability	decreasing	over	time,	and	pasture	
area	variability	remaining	relatively	constant	over	time;	both	show	a	minimum	
in	2050.		The	coefficient	of	variation	is	generally	higher	at	a	European	than	a	
global	level,	particularly	for	pasture	and	forest	areas.			
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To	analyse	the	source	of	these	variations,	an	ANOVA	approach	was	used	to	show	
the	relative	importance	of	different	sources	of	variance	for	each	land	cover	type	
and	decadal	end	year	(Figures	3&4-ii).		The	decomposition	was	based	on	10	
variables	(Table	S3)	plus	a	residual,	for	the	variation	not	captured	by	these	
variables.		Higher	variance	fractions	imply	that	a	variable	has	a	higher	
significance	in	the	regression,	and	the	greater	ability	to	explain	the	total	
variance.		The	initial	condition	delta	has	been	calculated	based	on	the	2010	
baseline	area,	and	therefore	100%	of	the	fraction	of	variance	is	associated	with	
it	at	that	point.		The	significance	of	the	initial	condition,	in	general,	decreases	
over	time.		For	global	pasture	and	forest	areas	the	initial	condition	remains	the	
most	important	factor	over	all	time	periods.	
	
There	is	a	discontinuity	in	the	results	between	2050	and	2060	(Figures	3&4)	
because	a	number	of	models	end	at	2050.		A	similar	but	less	substantial	effect	
also	occurs	between	2080	and	2090	for	European	data.		These	effect	were	
removed	by	rerunning	the	analysis	using	only	results	that	extend	to	2100	
(Figures	S5&6),	but	at	the	expense	of	removing	approximately	half	(36	of	70)	of	
the	available	scenarios.		The	model	results	dataset	and	therefore	the	analysis	do	
not	change	for	the	period	2060-2100	for	global	areas,	and	from	2080	in	the	
European	data.		In	the	period	prior	to	2050,	cropland	and	European	forest	all	
have	more	variance	associated	with	scenario	variables.	
	
	

	
Figure	3.		Coefficient	of	variation	(i)	and	relative	importance	of	different	variance	
components	(ii)	for	global	land	cover	areas	between	2010	and	2100.		The	shaded	
area	between	2050	and	2060	indicates	that	between	these	points	the	set	of	model	
results	substantially	change	after	2050.		In	(ii)	variance	due	to	model	
characteristics	is	shown	in	different	shades	of	green	and	due	to	scenario	
characteristics	in	different	shades	of	red.		Figures	S5	and	S6	show	the	results	from	
an	alternative	analysis	using	only	model	result	that	extend	to	2100.	
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Figure	4.		Total	coefficient	of	variation	(a)	and	relative	importance	of	different	
variance	components	(b)	for	European	(EU27),	format	as	per	Figure	3.	

3 Sources	of	variability	
The	variables	used	to	characterise	the	scenarios	were	shown	to	have	a	relatively	
low	fraction	of	variance	for	all	land	cover	types,	particularly	for	the	global	
projections	(Figures	3&4-ii).		The	fraction	of	variance	for	the	model	
characteristics	was	similar	to,	or	higher	than,	that	for	the	variables	used	to	
characterise	the	scenarios	in	most	cases	for	global	areas.		This	suggests	that	
given	only	knowledge	of	the	scenario,	based	on	the	scenario	typologies	used,	one	
would	only	be	able	to	predict	a	small	percentage	of	the	total	variation	in	the	
results.		European	data	overall	has	a	greater	proportion	of	variance	associated	
with	the	scenario	variables,	but	still	shows	a	fraction	associated	with	variables	
used	to	characterise	the	models.		This	indicates	that	models	of	a	similar	type	
have	a	level	of	commonality	in	behaviour.	This	may	arise	because	similar	model	
types	are	more	likely	to	have	similar	implicit	or	explicit	assumptions,	or	other	
commonalities	such	as	the	data	used	to	derive	model	parameter	values.		Some,	
albeit	lower,	association	occurred	with	model	resolution,	represented	as	the	
number	of	grid	cells,	which	again	may	be	due	to	model	similarities.		Model	extent	
for	the	European	data	does	not	have	a	substantial	association,	i.e.	only	limited	
systemic	differences	were	detected	between	regional	and	global	model	results.				
	
The	residual	component	quantifies	the	variation	that	is	not	associated	with	any	
of	the	regression	variables	(Table	S3),	or	interactions	between	them.		Thus,	if	
key	explanatory	variables	are	not	included	in	the	scenario	or	model	typologies	
then	the	residual	will	tend	to	increase.		To	check	that	important	variables	were	
not	overlooked,	a	mixed	model	analysis	was	conducted25,	a	statistical	technique	
which	combines	fixed	effects,	based	on	explanatory	variables,	and	random	
effects.		The	mixed	model	used	the	regression	model	as	fixed	effects,	and	random	
effects	for	the	model,	and	socio-economic	and	climate	scenario	(Figures	S1&2).		
This	showed	that	the	random	effect	variances	associated	with	the	model	were,	in	
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some	cases,	high	in	comparison	to	the	residual,	suggesting	that	some	unknown	
variables	may	be	missing	from	the	model	typology,	which	if	included	could	
improve	the	fit	and	reduce	the	residual,	and	potentially	alter	the	relative	
importance	of	the	existing	variables.		The	random	effects	variances	associated	
with	the	scenario	were	however	relatively	small	in	most	cases	for	the	global	and	
European	extents,	with	global	cropland	in	2050	and	an	initial	period	for	
European	forest	data	being	the	exceptions.		This	suggests	that	the	scenario	
characterisation	was	sufficient	for	the	purpose	of	the	analysis.		Although	
alternative	sets	of	variables	could	be	equally	valid	in	describing	the	scenarios	
and	models,	due	to	correlations	in	the	model	inputs	and	the	variables	selected,	
overall	the	mixed	model	results	provide	support	for	the	chosen	scenario,	as	well	
as	some	support	for	the	model	typologies.	
	
Cropland	areas	have	an	initial,	relatively	low	level	of	variability	in	the	initial	
condition	with	a	‘cone	of	uncertainty’	increasing	with	time	(Figures	1&2).		
However,	this	is	not	seen	in	pasture	and	forest	areas,	which	have	high	initial	
variability,	increasing	little	over	time,	with	the	variability	being	lower	than	for	
cropland	by	2100,	both	in	absolute	terms	and	relative	to	the	land	cover	area.		
There	are	uncertainties	and	issues	around	what	defines	pasture	and	forest,	
leading	to	the	potential	for	differences	in	the	areas	used	here27,28.		However,	it	is	
hard	to	justify	why	the	uncertainty	would	not	increase	over	time.		The	results	
could	suggest	therefore	that	a	larger	proportion	of	future	uncertainty	associated	
with	cropland	has	been	modelled	and	quantified.		That	is	to	say,	more	of	the	
potential	for	future	variability	in	pasture	and	forest	areas	remain	as	epistemic	
uncertainty29,	perhaps	by	models	and	scenario	exercises	giving	greater	attention	
to	croplands.	
	
The	fraction	of	variance	is	also	supportive	of	the	view	that	the	uncertainty	of	
global	cropland	areas	is	more	fully	represented,	and	that	this	also	applies	to	
European	areas.		This	can	be	seen	in	European	and	global	cropland	and	
European	forest	areas	showing	a	higher	fraction	of	variance	for	the	scenario	
variables,	indicating	that	under	alike	scenarios	the	models	behave,	to	some	
extent,	in	a	similar	manner.		The	variation	in	Europe	is	generally	higher	than	that	
globally	for	all	land	cover	types,	and	the	fraction	of	variance	explained	by	the	
initial	conditions	within	Europe	diminishes	more	quickly	in	comparison	to	the	
global	data.			

4 Limitations	and	robustness	
The	inclusion	of	17	models	(from	the	23	known	suitable	models),	covering	a	
wide	range	of	modelling	approaches	and	research	institutions,	provides	a	good	
representation	of	the	diversity	of	the	LULC	modelling	community.		The	inclusion	
of	further	models	or	scenarios	could	alter	the	outcome	of	the	analysis	if	the	
sample	used	here	is	not	representative.		Higher	numbers	of	scenarios	or	models	
would	tend	to	increase	the	significance	of	the	results	and	provide	greater	
confidence	in	the	conclusions.			The	scenarios	included	are	dominated	by	SRES15	
and	SSP16	based	scenarios,	as	much	of	the	existing	land-use	modelling	effort	is	
based	on	these	scenario	frameworks,	with	the	result	that	more	extreme	changes	
may	fall	outside	the	range	of	the	land	cover	projections	used	here.		
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Consequently,	the	true	range	of	outcomes	due	to	scenario	uncertainty	could	be	
greater	than	represented	here.	
	
The	dataset	is	unbalanced,	as	models	or	scenarios	may	be	represented	by	
different	numbers	of	results.		However,	as	each	model	scenario	is	given	equal	
weight,	models	with	a	larger	number	of	scenarios	have	a	greater	impact	on	the	
outcome	of	the	analysis.		The	number	of	scenarios	per	model	ranges	from	1	to	8.	
To	assess	the	possible	impact	of	this	on	the	results,	an	analysis	was	undertaken	
based	on	each	model	having	an	equal	weight,	i.e.	the	weight	was	the	reciprocal	of	
the	number	of	scenarios	for	that	model.		This	creates	a	different	bias	towards	the	
scenarios	from	models	that	have	fewer	scenarios	overall.		The	results	were	only	
slightly	different	from	those	for	which	each	scenario	had	an	equal	weight	
(Figures	S3&4),	suggesting	that	the	biases	are	small	in	both	cases.		The	equal	
weighting	approach	was	preferred	due	to	its	relative	simplicity,	and	each	
scenario	should	be	viewed	as	equally	likely.		The	analysis	was	also	run	with	the	
outlying	(>1.96	standard	deviation	from	the	mean	in	the	last	year	of	the	model	
run)	results	removed.		The	outcome	showed	a	greater	fraction	of	variance	
associated	with	scenario	variables	for	forest,	at	a	European	and	global	extent,	
and	also	for	European	pasture	(Figures	S7&8).		Although	some	level	of	variation	
in	the	outcomes	was	noted	in	all	of	the	variants	(Figure	S3-8),	the	outcomes	
were	sufficiently	consistent	for	the	inferences	drawn	to	remain	valid	and	to	
provide	a	level	of	confidence	in	their	robustness.		The	approach	of	using	
unaligned	scenarios	has	the	drawback	of	requiring	additional	complexity	in	the	
analysis,	and	makes	it	more	difficult	to	determine	differences	between	models,	
as	the	scenarios	are	not	directly	comparable.		The	most	suitable	approach	is	
therefore	dependent	on	the	research	question.		The	design	of	this	study	was	
governed	by	the	objective	to	explore	results	from	a	diversity	of	models	over	a	
wide	scenario	parameter	space.	
Implications	for	land	use	and	land	cover	uncertaintyThe	results	suggests	that	
there	are	systematic	differences	in	future	land	cover	areas	based	on	the	
modelling	approach.		To	determine	which	model	or	model	type	is	‘better’,	or	to	
obtain	a	set	of	modelling	assumptions	that	could	be	considered	definitively	
accurate	is	likely	to	be	highly	problematic,	or	even	impossible.		Such	a	
determination	would	require	choosing	between	alternative	assumptions	and	the	
resultant	model	behaviour,	based	on	some	conditions.		Although	evaluation	
using	historic	time	series	of	land	cover	might	appear	to	offer	a	potential	for	such	
criteria,	practical	and	theoretical	issues	arise.		Firstly,	there	is	a	lack	of	a	
consistent	historic	time	series	of	land	cover	data	that	can	be	used	as	a	reference,	
which	is	itself	an	output	of	other	models	and	therefore	subject	to	a	range	of	
uncertainties31.			Secondly,	even	the	ability	to	reproduce	historic	land	use	change	
does	not	ensure	that	future	conditions	will	be	adequately	represented.		Finally,	
given	a	single	limited	series	of	historic	data	this	may	be	implicitly	or	explicitly	
used	to	calibrated	and	tune	the	model,	therefore	greatly	diminish	any	inference	
that	can	be	drawn	from	reproducing	it.		The	situation	contrasts	with	the	
modelling	of	some	other	systems	(e.g.	weather	forecasting)	where	models	can	be	
repeatedly	confronted	with	unseen	data,	to	allow	a	measure	of	model	efficacy	to	
be	determined.	
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A	potential	interpretation	consistent	with	the	results	is	that	cropland	and	
European	land	cover	have	received	greater	research	focus,	leading	to	lower	
variance	in	initial	areas,	greater	consistency	between	models,	and	a	higher	
degree	of	uncertainty	represented	in	the	projections.		For	example,	many	LULC	
models	derive	forest	area	change	from	changes	in	agricultural	area,	and	do	not	
consider	factors	such	as	demand	for	forest	products	or	non-market	ecosystem	
services19.		Such	an	asymmetry	in	focus	would	be	hard	to	justify	as	forests	cover	
31%	of	the	global	land	surface,	and	pasture	26%,	but	cropland	only	11%26.		The	
focus	on	cropland	may	be	due	to	the	importance	of	food	production,	as	crops	
provide	90%	of	the	global	calories	consumed	by	human30.		However	in	the	
context	of	climate	change	other	land	covers	are	of	importance,	reinforced	by	the	
changes	over	the	past	50	years	with	pasture	accounting	for	60%	of	the	
expansion	in	agricultural	land26.			Furthermore,	if	other	land	covers	have	
received	less	attention	in	the	models,	then	cropland	areas	may	inadequately	
account	for	the	interactions	between	demands	for	other	uses	such	as	timber	
production	or	other	ecosystem	services.	
	
A	diverse	set	of	LULC	models	and	approaches	is	required	to	explore	model	
uncertainty	and	to	ensure	that	biases	in	outcomes	from	a	particular	approach	do	
not	dominate.		This	is	analogous	to	the	situation	regarding	model	uncertainty	in	
climate	projections	within	the	IPCC	process,	which	uses	results	from	multiple	
earth	system	models	developed	at	different	modelling	centres32.		Further	
research,	including	model	development	and	more	detailed	comparisons,	are	
required	in	an	attempt	to	identify,	understand	and	if	appropriate	update	models	
to	address	the	sources	of	these	differences.		However,	uncertainty	in	future	LULC	
is	likely	to	remain,	and	possible	even	increase,	as	more	processes	are	
represented,	and	scenario	and	parameter	uncertainty	is	more	fully	captured.		
This	has	implications	for	assessing	future	climate	change,	and	the	success	of	
land-based	mitigation	and	adaptation	options.		Currently	some	of	the	models	do	
not	consider	the	impact	of	climate	change,	further	supporting	the	view	that	work	
remains	to	better	evaluate	future	LULC	uncertainty.		Similarly,	the	impact	from	
the	level	of	future	uncertainty	in	LULC	demonstrated	here	may	not	be	fully	
explored	within	the	parameterisation	of	many	current	earth	system	models33.		
Uncertainties	in	the	coupled	LULC	and	earth	system	need	to	be	considered,	due	
to	the	feedback	effects	that	may	dampen	or	amplify	responses.		Therefore	LULC	
models,	as	well	as	earth	system	models,	need	to	be	studied	in	a	way	that	allows	
formal	uncertainty	analysis	of	the	coupled	system.		
	

5 Methods	
5.1 Models	of	land	use	or	land	cover	
Modelled	data	were	obtained	from	17	models	able	to	provide	scenario	results	
for	land	use	or	land	cover	areas,	with	either	a	global	or	European	geographic	
extent.		Research	groups	covering	a	further	6	models	were	approached,	but	did	
not	submit	data.		Table	1	gives	details	for	each	of	the	models	included	in	the	
analysis.		No	attempt	was	made	to	align	the	scenarios	definitions,	initial	
conditions	or	other	model	parameterisation.		The	land	use	or	cover	types	from	
each	model	were	used	to	provide	the	areas	of	cropland,	pasture	and	forest.		The	
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definition	of	these	types	was	based	on	FAOSTAT26,	e.g.	pasture	is	land	used	to	
grow	herbaceous	forage	crops,	either	cultivated	or	growing	wild,	and	therefore	
ranges	from	intensively	managed	grassland	through	to	savannahs	and	prairies.		
All	models	were	able	to	provide	these	three	types,	in	some	cases	by	aggregating	
more	detailed	types,	except	CAPS	and	MAGNET	that	provided	only	cropland	and	
pasture	areas.		The	categorisation	was	selected	to	avoid	some	of	the	definitional	
issues,	e.g.	between	managed	and	unmanaged	forest,	and	to	maximise	the	model	
coverage.		Urban	and	other	natural	vegetation	or	unmanaged	areas	were	not	
analysed	due	to	the	lower	numbers	of	models	able	to	provide	these	types.	
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Table	1.		Summary	of	models	and	scenarios	data	included	in	the	analysis	of	land	cover	results.	
Model	name	and	
key	publication	

Spatial	resolution	data	
(model,	if	different)	

Spatial	extent+	
Temporal	resolution	data	
(model,	if	different)	

Model	type	(classification)	 Scenario	descriptions	(number	of	scenarios)	

AIM/CGE	14		 17	regions	 Global	
2005,	2010,	2030,	2050	and	

2100	(annual)	
CGE	 SSP1,	SSP2	and	SSP3.	(3)	

CAPS	12	 0.5	x	0.5	degree	grid	 Global	 2005,	2030,	2050	and	2100	
Allocation	model	using	demand	

from	CGE	or	PE	model	(Hybrid)		

SSP3,	SSP5,	RCP	4.5	and	RCP	8.5,	each	under	estimated	model	

parameters	from	historical	data	from	Ramankutty	et	al.
27
	and	

HYDE
34
.	(8)	

CLIMSAVE-IAP	9	 	10	x	10	arc-minute	grid	 Europe	(EU27+2)	 2010	and	2050	 Rule-based	
SRES	A1,	A2,	B1	and	B2,	each	under	current	baseline	and	the	socio-

economic	factors	for	the	SRES	scenario*.	(8)		

CLUMondo	35	 9,25	x	9,25	km	grid	 Global	 2000	-	2040;	decadal	(yearly)	
Allocation	model	using	demand	

from	CGE	or	PE	model	(Hybrid)		
OECD	scenario.	(1)	

CRAFTY	36	 1	x	1	km	grid	 Europe	(EU27)	 2010	-	2040;	decadal	
Agent-based	model	(Rule-

based)	
SRES	A1	and	B1.	(2)	

DynaCLUE	10	 1	x	1	km	grid	 Europe	(EU27)	 2000-2040;	decadal	
Allocation	model	using	demand	

from	CGE	or	PE	model	(Hybrid)	
SRES	A1,	A2,	B1	and	B2.	(4)	

EcoChange	37	 250	x	250m	grid	 Europe	(EU25+2)	 2010,	2020,	2050,	2080	 Rule-based	

Three	core	socio-economic	scenarios,	growth	and	globalisation,	

BAU,	and	sustainable	development,	and	three	shock	scenarios,	

climate,	energy	price	and	pandemic	shocks.	(6)	

FABLE	38	 Global	 Global	 2005-2105;	annual	 PE	

Baseline	consistent	with	SRES	A1B	and	RCP	2.6,	with	other	scenarios	

adjusting	population,	climate	to	RCP	8.5,	oil	prices,	economic	

growth,	and	more	stringent	GHG	emission	regulations	(6)	

FALAFEL	39	 Global	 Global	 2000	-	2050;	decadal		 Rule-based	 SSP1,	SSP2,	SSP3,	SSP4	and	SSP5.	(5)	

FARM	40	 13	regions	 Global	 2005	-	2050;	five	year	steps	 CGE	
SSP1,	SSP2	and	SSP3,	each	under	the	current	climate	and	climate	

scenario	RCP	4.5,	RCP	6.0	and	RCP	8.5,	respectively*.	(6)	

GCAM	
11
	 32	regions	 Global	 2010	-	2100;	decadal	 PE	 SSP1,	SSP2,	SSP3,	SSP4	and	SSP5.	(5)	

IMAGE	13	
0.5	x	0.5	degree	grid		

(5	x	5	arc-minute)	
Global	

2010,	2030,	2050	and	2100	

(annual)	

Allocation	model	using	demand	

from	CGE	model	(Hybrid)	

SSP2	reference	and	high	bio-energy	demand	scenario	under	RCP	2.6.	

(2)	

LandSHIFT	41	 	5	x	5	arc-minute	grid	 Global	 2005-2050;	five	year	steps	 Rule-based	
Fuel	and	heat	scenarios,	with	both	BAU	and	regulation	assumptions	

for	each.	(4)	

LUISA	42	 100	x	100m	grid	 Europe	(EU28)	 2010	-	2050;	decadal	(annual)	
Cellular-automata	and	

statistical	model	(Rule-based)	
Reference	scenario.	(1)	

MAGNET	43	 26	regions	 Global	
2007,	2010,	2020,	2030,	2050	

and	2100	
CGE	 SSP1,	SSP2	and	SSP3.	(3)	

MAgPIE	44	 0.5	x	0.5	degree	grid	 Global	 1995-2100,	five	year	steps	 PE		 Scenarios	based	on	SSP2,	with	and	without	bioenergy	CCS.	(2)	

PLUM	45	 157	countries	 Global	 1990-2100;	annual	 Rule-based	 SRES	A1,	A2,	B1	and	B2	(4)	

Notes:	
+		
EU27	is	current	28	European	Union	members	(EU28)	less	Croatia.		EU25+2	additionally	excludes	member	states	of	Romania	and	Bulgaria,	i.e.	EU25,	but	includes	Norway	and	Switzerland.	

	

*	CLIMSAVE-IAP	and	FARM	provided	results	for	multiple	climate	models	under	otherwise	the	same	scenario,	the	mean	figure	for	each	scenario/model	combination	was	used.	
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5.2 Processing	of	model	results	
To	provide	a	consistent	dataset:	points	for	missing	decadal	end	years	were	
linearly	interpolated	between	the	result-years	provided	to	decadal	end	years	
from	2010	to	2100;	the	aggregate	land	cover	areas	for	global	and	European	
(taken	as	EU27)	extents	were	extracted;	and	the	areas	scaled	to	match	historic	
data	from	FAOSTAT26	at		2010.		Further	details	are	available	in	the	SI.	
	
5.3 Scenarios	
Research	groups	submitted	results	for	multiple	scenarios,	to	explore	the	
possible	space	of	potential	land	cover	results.		A	total	of	70	scenarios	were	used	
(Table	1),	including	business-as-usual	and	those	with	mitigation	measures.		No	
attempt	was	made	to	align	the	inputs	between	models,	and	consequentially	the	
results	are	not	based	on	the	same	set	of	scenarios	or	parameterisation	data.		The	
majority	of	the	scenarios	were	either	SSP	or	SRES	based,	however	in	some	cases	
parameters	were	adjusted	away	from	the	scenario	baseline	values,	e.g.	FABLE.		
Alternatively,	some	models	have	conducted	experiments	where	either	the	socio-
economic	or	climate	scenario	was	held	at	current	baseline	levels,	within	an	
otherwise	SSP	or	SRES	scenario,	e.g.	FARM	and	CLIMSAVE-IAP.		It	is	therefore	
not	possible	to	fully	describe	the	scenarios	by	mapping	them	onto	a	small	
number	of	similar	categories	(as	done	by	Busch,	200646).		Additionally,	there	are	
difficulties	in	mapping	between	SRES	and	SSP/RCP47.		Consequently,	scenarios	
were	described	by	a	series	of	values,	with	default	values	obtainable	for	both	
SRES	and	SSP15,48	(Table	S1).		The	aim	was	to	characterise	the	scenarios	in	a	way	
that	is	consistent	with	the	scenario,	rather	than	specify	the	exact	inputs	used.		
Where	a	parameter	differs	from	the	default,	the	adjusted	figure	was	used	for	that	
scenario.		Table	S2	gives	the	resultant	characterisation.		
	
5.4 Statistical	analysis	of	model	results	
The	aim	of	the	statistical	analysis	of	the	model	results	was	to	identify	the	sources	
of	variance	associated	with	aspects	of	the	models	or	scenarios.		The	analysis	
identified	the	significant	variables	with	a	multiple	linear	regression	of	the	areas	
for	each	land	cover	type,	year	and	spatial	extent.		The	observed	variance	was	
then	partitioned	into	components	attributed	to	the	selected	variables	in	an	
analysis	of	variance	approach	(ANOVA),	to	quantify	the	sources	of	variability	in	
the	results.	
	
The	modelled	area	for	each	land	cover	type	and	year	was	assumed	to	be	a	
multiple	linear	function	of	10	variables	(Table	S3).		The	factors	used	can	be	
classified	into	three	groups,	those	associated	with	the	model,	the	scenario	or	the	
initial	conditions.		The	models	were	described	by	3	variables;	model	type,	
number	of	cells,	and	the	model	extent.		The	scenarios	were	described	by	5	socio-
economic	variables	and	the	CO2	concentration,	as	a	proxy	to	the	climate	
scenario.		The	initial	condition	delta	represents	the	difference	between	the	
model	result	and	historic	baseline	in	201026.		The	regression	fitting	process	was	
conducted	for	the	three	land	cover	types	considered	at	the	decadal	end	years	
2010-2100.		To	avoid	over-fitting,	and	to	identify	the	predictive	variables	of	the	
modelled	areas,	an	Akaike	information	criterion	(AIC)	approach	was	used49.			
The	least	significant	variables	in	the	candidate	regression	model	were	iteratively	
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reduced,	to	minimize	the	AIC	score.		This	accounts	for	the	trade-off	between	
goodness	of	fit	and	the	model	complexity,	and	selects	variables	for	the	
regression	that	are	of	higher	significance.		The	regression	results	for	global	
cropland	at	2050	and	2100	are	given	as	an	example	(Tables	S4-5)	and	discussed	
in	the	SI.	
	
ANOVA	was	used	on	the	regression	model	to	decompose	the	variability	of	the	
model23,24.		The	type	II	sum	of	squares	values	were	calculated	for	each	variable	
in	the	fitted	regression	model.		This	approach	has	the	important	advantage	that,	
unlike	Type	I	sums	of	squares,	they	do	not	depend	on	the	order	in	which	
variables	are	considered,	and	has	been	suggested	to	be	suitable	for	use	with	
unbalanced	data50,	although	they	are	not	constrained	to	sum	to	the	total	
variance	in	the	raw	data.		The	interaction	terms	were	not	determined23,	and	the	
variance	associated	with	such	interactions	would	be	incorporated	within	the	
residual.	
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