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Abstract

Municipal water systems provide crucial services for human well-being, and will un-

dergo a major transformation this century following global technological, socioeconomic

and environmental changes. Future demand scenarios integrating these drivers over multi-

decadal planning horizons are needed to develop effective adaptation strategy. This pa-

per presents a new long-term scenario modeling framework that projects future daily mu-

nicipal water demand at a 1/8◦ global spatial resolution. The methodology incorporates

improved representations of important demand drivers such as urbanization and climate

change. The framework is applied across multiple future socioeconomic and climate sce-

narios to explore municipal water demand uncertainties over the 21st century. The scenario

analysis reveals that achieving a low-carbon development pathway can potentially reduce

global municipal water demands in 2060 by 2 to 4 %, although the timing and scale of

impacts vary significantly with geographic location.
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1. Introduction1

Global hydrological models (GHM) provide a virtual environment to explore the im-2

pacts of long-term development pathways on water resources and the effectiveness of pol-3

icy [1–6]. As the quality and magnitude of water resources varies with geography, GHMs4

incorporating spatially-resolved water demand projections have been crucial in the assess-5

ment of future water challenges, such as resource scarcity and ecosystem quality [7, 8].6

Municipal water systems extract and distribute water for direct use by the population and7

play an important role in the global hydrological cycle, representing 12 to 14 % of total8

water withdrawn globally for human purposes in 2010 [9, 10]. Most GHMs incorporat-9

ing municipal water demand estimate average per capita trends at the national-level, and10

then downscale to a finer resolution by assuming national trends hold within countries11

[4, 6, 9, 11]. Yet, historical observations suggest that per capita municipal water demand12

within countries varies spatially, mostly due to a combination of local climate conditions,13

economic status and urban form [12–15]. Furthermore, global models applied for future14

projections assume a static population distribution and are therefore unable to represent15

the sub-national spatial demand variability that will accompany projected urbanization.16

Also less explored at the global-scale are the potential impacts of future climate change17

on municipal water demand. The direct climate sensitivity arises in the municipal sector18

from the freshwater used for municipal irrigation [12, 16–21]. Municipal irrigation in-19

cludes water to support household and municipal landscaping (e.g., turf grass and gardens),20

and outdoor water features (e.g., swimming pools and fountains). Municipal irrigation rep-21

resents more than 50 % of total municipal water demand in many regions of the United22

States [13], and could play a key role in meeting future urban food requirements [22] and23
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mitigating urban heat island effects [23]. Future variations in urban climate will affect24

water requirements of vegetation as well as the rate of evaporation from outdoor water25

features. Understanding the scale of climate change impacts on municipal water demand26

will provide insight into suitable adaptation strategy and the potential water co-benefits of27

global climate change mitigation policy.28

The objective of this paper is to provide a new approach to developing long-term global29

municipal water demand scenarios. A spatially-explicit modeling framework is proposed30

that incorporates enhanced representations of human migration, economic development31

and climate sensitivity. The framework is applied across multiple future human develop-32

ment and climate scenarios to explore the impact of coupled climate-development trajec-33

tories on municipal water demand uncertainties over the 21st century. The results provide34

important insight into model formulation and the potential water co-benefits in the munic-35

ipal sector of policy targeting climate change mitigation.36

2. Methods37

2.1. Overview38

Combined impacts of climate change and human development on municipal water de-39

mand are assessed at the global-level with the computational framework depicted in figure40

(1). The approach involves mapping per capita demand on a gridded representation of the41

earth’s surface (i.e., a raster). The per capita water demand in each grid-cell is modeled42

as a function of a number of spatially-explicit indicators including projected income, pop-43

ulation density, climate and historical observations. Per capita demand is then multiplied44

by spatial projections of population to estimate aggregate municipal water requirements45

in each grid-cell. The methodology utilizes spatially-explicit, quantitative interpretations46

of the most recent global change scenarios as a basis for the projections: the Shared So-47
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cioeconomic Pathways (SSP) [24], and the Representative Concentration Pathways (RCP)48

[25].49

Per-capita GDP 

Gini coefficient Municipal water 
demand Urbanization  

Annual historical country-level data 

Country-level GDP scenarios and SSP narratives 

P
er

-c
ap

ita
 G

D
P 

2000 - 2100 

Spatial population and climate scenarios 
( 0.125 o

Input Data 

Urban-rural population Temperature, precipitation 

SSP RCP 

Daily municipal sector freshwater demand and return-flow  

Output and Analysis 
Multi-scale impacts analysis  

2000 - 2100 

Demand Return-flow 

Spatially-explicit scenarios  
( 0.125 o global resolution )  

2000 - 2100 

Urban-rural GDP 
decomposition 

Income-level 

Fr
eq

ue
nc

y 

Global Municipal Water Simulation 

Gridded per capita demand 

( 0.125 o global resolution )  

Gridded daily moisture 
deficit calculation 

RCP 

SSP 

Per capita demand 
curve identification 

Income-level 

W
ith

dr
aw

al
 

Gridded population 

FAO WBI 

WBI 

SSP 
RCP 

SSP 

SSP1 A
da

pt
at

io
n 

C
ha

lle
ng

es
 

Mitigation 
Challenges 

SSP2 

SSP3 

SSP4 

SSP5 

Figure 1: Framework for assessing global impacts of human development and climate change on municipal
water demand. FAO = Food & Agriculture Organization of the United Nations [26]. WBI = World Bank
Indicators [27]. SSP = Shared Socioeconomic Pathway. RCP = Representative Concentration Pathway.

A key output of the analysis is therefore a new harmonized dataset well-suited for50

further application in global integrated assessment models (IAMs). Increasingly, global51

IAMs are being adapted with GHMs to examine the interplay between long-term economic52

development, water constraints and climate change mitigation [6, 28]. Global IAMs incor-53

porating future water constraints must project the scale of demand from different end-use54
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sectors in order to devise economic responses at scales relevant to water system transfor-55

mations. The simulated water demands from the municipal sector will aid in the quantifi-56

cation of constraints on water availability for land-use and energy, which are the historical57

focus of global IAMs used to study climate change mitigation [29].58

Demand scenarios are computed at a 1/8◦ spatial resolution (grid cells approximately59

14 km x 14 km near the equator) and out to the year 2100 to align with the downscaled60

SSP and RCP datasets. The spatial resolution also ensures that parameterized demand61

sensitivities to population density are captured. Urban and rural populations are mod-62

eled separately in the framework to feature diversity in per capita demand stemming from63

differences in economic status, urban form and local climate conditions. A temporal down-64

scaling approach enables generation of the demand scenarios at a daily time-scale. The65

daily time-scale is investigated to capture anticipated effects of changing socioeconomic66

and climatic conditions on extreme (peak) demand events important to water supply reli-67

ability [30]. Spatially-explicit validation of the modeling framework is currently limited68

due to the absence of suitable historical data. We alternatively calibrate the model to ob-69

served national data and use demand projections from other global models to evaluate the70

reliability of model results.71

We use the term municipal water demand in this paper to refer to the volume of water72

that is needed in a particular location to fulfill useful end-use services in the municipal73

sector. We emphasize the definition here to differentiate the modeled water volumes from74

withdrawals, which often occur at locations other than end-use due to the reach of urban75

water infrastructure [8]. A separate analysis is required to parameterize corresponding76

scenarios for water supply e.g., with a hydro-economic model including investment deci-77

sions for alternative water supply options (reservoirs, wastewater recycling, desalination,78

etc.) [31, 32]. Hydro-economic models are able to quantify economic tradeoffs between79

upstream and downstream users, as well as economic impacts of conjunctive management80
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of different sources. Future water prices can be simulated with a hydro-economic model81

and used to parameterize an expected response from municipal consumers [33]. In this82

context, the demand scenarios presented in this paper provide a useful reference point for83

analysis of additional responses to future water availability.84

2.2. Per capita demand85

2.2.1. Income effects86

Previous studies highlight that as household income increases, demand for water from87

the municipal sector increases because part of this new income is spent on increasingly88

water-intensive end-uses [12, 15, 34]. However, as income continues to rise, per capita de-89

mand for water increases less proportionally, due to eventual saturation of useful services90

[2]. This suggests a non-linear relationship between household income and municipal91

sector water demand, and we propose an empirical model capturing these characteristics.92

The lack of comprehensive consumer income and water use data makes identifying93

household-level models on a global-scale impractical. At the national-level, the Food94

& Agriculture Organization of the United Nations (FAO) provides estimates of aggregate95

municipal sector water demand [26]. Concurrent observations of GDP are further available96

from organizations such as the World Bank [27]. Consequently, per capita GDP has been97

widely applied as a surrogate for average income in national-level municipal sector water98

demand models [2, 9, 11, 35–38]. Yet, the non-linear demand response to income changes99

expected at the household-level means consumers respond differently depending on their100

current income-level. Therefore, aggregating the response of households following non-101

linear demand curves to average income changes should involve treatment of the income102

distribution [39].103

The effects of income inequality are included in the demand model applied in this104

paper following the formulation proposed in [39]. The approach takes advantage of the105
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observation that income distributions typically follow a log-normal shape [40]. Under the106

assumption of log-normality it is possible to consider average annual per capita demand107

Ω as a function of both per capita GDP g and the variance of the income distribution ν, by108

replacing the assumed arithmetic mean income (i.e., per capita GDP) with the geometric109

mean in a conventional semi-logarithmic demand model [39]:110

Ω(y) = α(y) + β(y) ·
[

ln g(y) −
ν(y)

2

]
(1)

where α and β are model coefficients, and y denotes year. The Gini coefficient can be used111

to estimate the variance of the income distribution under the assumption of log-normality112

[41], and historical values are available for most countries [27]. A similar approach for113

municipal energy consumption utilized the Gini coefficient to project demands associated114

with different income quintiles [42]. In the approach applied here, when two countries with115

the same average per capita GDP are compared, the country with less income inequality116

will have the higher per capita water demand (i.e., aggregate demand elasticity with respect117

to income inequality is less than one). Previous analysis suggests the inclusion of the118

income inequality term has a relatively minor impact on demand levels; however, for long-119

term projections the effects of income inequality are likely important because of impacts120

on the rate of demand growth and interplay with long-term technological progress [39].121

All parameters in (1) can be estimated for a number of countries in the base-year, mak-122

ing it possible to calculate the model coefficients at the national-scale using e.g., regres-123

sion. Figure (2) depicts the results of a least-squares cross-sectional regression analysis124

utilizing data from 2000 and 2005 for 105 countries. The r-squared values are 0.56 and125

0.55 respectively, and compare well with similar analysis of this dataset [37, 43]. Dif-126

ferences in the socioeconomic standing and consumption characteristics between urban127

and rural populations within countries are ubiquitous [44], and suggests the model should128
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distinguish between population groups. We assume that in the base-year urban and ru-129

ral populations within countries display different average income-levels but follow similar130

national demand curves (i.e., equivalent α and β). The national urban and rural demand131

curves are then calibrated based on gridded socioeconomic and climate indicators (section132

2.3.1).133
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Figure 2: FAO Aquastat data for 105 countries, the results of the least-squares cross-sectional regression
analysis for 2000 and 2005, and decile demand curves fit to the FAO Aquastat data for the year 2005. LR =

least-squares regression; QR = quantile regression.

Cultural preferences and existing water policies (e.g., water price) represent other key134

determinants of municipal water demand [15], but are difficult to include in the modeling135

framework due to a lack of comprehensive global data. Previous analysis at the household136

level used agent-based models to integrate behavioral and social drivers of water demand137

[45]. Other global modeling approaches have incorporated water prices into the analysis138

8



by combining a number of separate country-level data sources [37]. These data sources139

often cover only part of a country’s population, and include costs for wastewater treat-140

ment. Instead, the model in this study emphasizes a combination of path-dependency and141

long-term convergence at the national-scale to reflect inertia of the existing systems and142

associated policies and behaviors that impact long-term municipal water use, such as water143

pricing and cultural preferences.144

The model accounts for path-dependency and the wide-range in observed historical per145

capita demands at the national-scale by identifying an ensemble of demand curves. The146

curves are estimated using quantile regression with (1). The quantile regression analysis147

specifies ten unique demand curves (or decile curves) representing the best fit solutions to148

ten equal increments of the cross-sectional data ordered from lowest to highest [46]. The149

decile curves fit to the FAO data for the year 2005 are also depicted in Figure (2). In the150

initial simulation year, countries are associated with a best-fit decile curve based on his-151

torical FAO data trends from 2000 to 2010. Countries lacking historical data are assumed152

to follow a regional average, with the regionalization following the breakdown used in153

similar previous global scenario modeling [47]. Convergence towards the identified decile154

curve is assumed over time using the following scaling factor:155

γ(y) = 1 + γo · e−λ·y (2)

where γo is the fractional difference between the base year observation, and the best-fit156

decile curve estimated with (1). The parameter λ governs the convergence speed. By ex-157

ploring the response to different convergence speeds and levels, as well convergence to158

alternative decile curves, the simulation framework can incorporate scenario-specific as-159

sumptions surrounding behavior and policy. For example, behavioral changes implicit in160

the scenario narrative (section 2.4) that are expected to reduce long-term water use inten-161
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sity are represented in the framework by selecting a lower decile curve for convergence.162

The use of decile curves bounds the projections to lie within the historically-observed163

range of per capita demand intensities. Combining this constraint with the convergence164

rules enables a diverse number of plausible demand trajectories to be generated. The decile165

curves do not cover all possible future policy regimes, and therefore alternative demand166

trajectories outside the simulated range are a possibility.167

2.3. Technological change168

Technological change is a dynamic effect apparent in the long-term development of169

municipal water systems [9], and refers to the observed improvements in the efficiency of170

resource use caused by long-term technological innovation [48]. The emergence of tech-171

nological change is represented in the demand curves by scaling the model coefficients α172

and β in (9) by an annual improvement factor, with assumptions embedded in the scenario173

narratives (section 2.4). It is expected that technological change will occur most rapidly in174

countries that spend more on technology research, and historical spending levels typically175

correlate with income-level [27]. We reflect this quality using the sigmoid curve depicted176

in figure (3) to model accelerated technological change as an annual improvement in wa-177

ter intensity ε that increases with average income. The frontier technological change rate178

(εmax) is interpreted from previous long-term scenario studies [2, 9, 37], with the mini-179

mum rate (εmin) assumed to be half the frontier value. Curve parameters are updated in180

each simulation year to reflect changes in the global GDP distribution. Scenarios involv-181

ing a reduction in between country income inequality therefore lead to harmonization of182

technological change rates in the model.183

Technological change is calculated at the national-scale in each simulated year using184
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Figure 3: Graphical depiction of the implemented technology frontier approach to technological change,
where ε is the compound annual efficiency increase and g is per capita GDP.

the projected intensity improvements:185

η(y) =

y∏
t=1

[
1 − ε(y)

]
(3)

where η is the cumulative intensity improvement. Combining the path-dependency and186

technological change parameters yields the following form for the model coefficients:187

α(y) = αo · γ(y) · η(y) (4)

188

β(y) = βo · γ(y) · η(y) (5)

where αo and βo denote the coefficients identified in the base year using quantile regression189

with (1).190

2.3.1. Climate and population density191

Local climate conditions affect the amount of moisture needed to sustain vegetation192

grown in urban environments. Evaporative losses from swimming pools and fountains are193
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also enhanced under increasingly arid conditions. The soil moisture deficit is an empirical194

hydro-climatic indicator describing the amount of freshwater needed to sustain moisture195

levels in a particular location, and is routinely applied to estimate irrigation requirements196

under data limitations [49, 50]. Previous studies investigating the linkage between local197

climate and municipal water demand highlight the relationship between observed munic-198

ipal irrigation and the calculated soil moisture deficit [12, 13, 16, 17, 51, 52]. Following199

the results of these previous studies, we integrate climate sensitivity into the global model200

by accounting for changes in the moisture deficit under alternative climate scenarios.201

Initially, municipal irrigation demands Ωi are disaggregated from the national demands202

estimated by (1). A parameter µ representing the fraction of total demand used for munic-203

ipal irrigation is defined:204

Ωi(y) = µi(y) ·Ω(y) (6)

Previous observations suggest that µ increases with household income [12, 13, 53]. For205

example, survey of households in Eastern Africa show that municipal irrigation makes up206

a small fraction (about 1%) of total water demand in very low-income rural households,207

whereas nearby urban areas able to afford piped access apply an average of 10 % of to-208

tal demand towards municipal irrigation [14]. Previous research in China and Brazil also209

identifies similar differences between the fraction of total demand used for municipal ir-210

rigation and income-level [54, 55]. We model the observed income effect on municipal211

irrigation penetration with the sigmoid curve ψ depicted in Figure (4a). The stylized curve212

increases from a minimum of 1 %, which occurs at the average per capita GDP estimated213

for rural Sub-Saharan Africa in 2010, to a saturation level at an average per capita GDP214

equivalent to the United States in 2010. The saturation level is calibrated based on geo-215

graphical sensitivities to the moisture deficit observed in North America [13]. Specifically,216

we fit a linear function φ between the estimated annual average moisture deficit ma and ob-217
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served municipal irrigation (Figure (4b)), and results compare well with similar analysis218

in Mayer et al (1999) [13]. Combining the income and climate sensitivity terms yields the219

estimated fraction of total demand used for municipal irrigation (i.e., µ = ψ · φ).220

Further spatial and temporal downscaling of the municipal irrigation demands is achieved221

by assuming proportionality with changes in the simulated daily moisture deficit. A similar222

approach to temporal disaggregation was proposed in [4], but was based on the monthly223

temperature distribution. A proportional relationship between changes in irrigation vol-224

umes and the moisture deficit was also previously used to estimate the impact of climate225

change on agricultural systems in the United States [20] and globally [50]. As the demand226

curves applied in this paper are calibrated from national-level averages, spatial variations227

in municipal irrigation due to climate are taken relative to the population-weighted mean228

annual moisture deficit Mo:229

Mo =
1
Nc
·
∑

c

[
p̂ (c, yo) · ma(c, yo)

]
(7)

where c denotes grid-cell, Nc is the number of grid-cells, p̂ is the normalized population230

(i.e., grid-cell population divided by total national population), and yo is the first year in231

the simulation horizon. The population-weighted moisture deficit in the initial year is232

also used to estimate the maximum penetration of municipal irrigation (i.e., φ = φ(Mo) ).233

This choice ensures a consistent representation of non-irrigation demands under varying234

climate. Spatial and temporal variations in municipal irrigation due to climate variability235

are reflected by the fractional change in the moisture deficit δm:236

δm (c, y, t) = χ(c, y) ·
[

m (c, y, t)
Mo

− 1
]

(8)

where m represents the daily moisture deficit, and t represents the sub-annual time-slicing237
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(daily). A scaling factor χ is applied to the gridded daily moisture deficit to reflect reduced238

per capita irrigable area with increasing population density. This urban form effect has239

been observed e.g., in China, where municipal irrigation plays a minor role in dense urban240

areas [56], but is prevalent in lower income rural municipalities [54]. These observations241

contradict the assumed relationship between income and municipal irrigation, and follow242

from reduced availability of outdoor area in dense urban cities. We estimated an inverse243

sigmoid function χ = ξ(d), where d is population density, to reflect the anticipated impacts244

of urban form on municipal irrigable area. The stylized curve is depicted in Figure (4c).245

Population density is calculated as the total grid-cell population divided by the raster grid-246

cell area. Assuming the non-irrigation demand is spread evenly across the population and247

year, the following functional form for per capita municipal water demand ω is obtained248

at the grid-scale:249

ω (c, y, t) = Ω(y) ·
[
1 + µi (y) · δm (c, y, t)

]
(9)

We calculate the moisture deficit at the daily time-scale as the difference between po-250

tential evapotranspiration v and effective precipitation e :251

m(c, y, t) = v(c, y, t) − e(c, y, t) (10)

Effective precipitation is calculated following the methodology described in [49] and [50],252

and the modified daily Hargreaves method is used to calculate potential evapotranspiration253

[57]. Evapotranspiration rates vary across vegetation types, although we currently assume254

a constant vegetation index due to a lack of historical urban vegetation data at the global-255

scale.256

The proposed methodology represents a simplified way of modeling climate and urban257

form sensitivities. Basing the response of municipal irrigation on changes in the moisture258
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deficit is somewhat analogous to the use of heating and cooling degree days in the estima-259

tion of climate change impacts on the municipal energy sector [58]. There are a number260

of limitations, including uncertainties surrounding assumptions that municipal irrigation261

demands scale linearly with changes in the moisture deficit. Detailed physical modeling262

will provide a more accurate representation of the water impacts of urban form [59], but263

is currently too data intensive to consider in global-scale analysis. The lack of irrigated264

vegetation in dense urban areas is also a contributor to the urban heat island effect [23],265

and the current version of the model does not account for impacts of urban irrigation on266

local climate conditions.267

2.3.2. Return-flow268

The return-flow from the municipal water sector provides an indication of the poten-269

tial wastewater volume produced over a given timeframe. Following previous studies [9]270

the return flow is quantified by subtracting consumptive demand (the amount of water de-271

manded that will not be returned to the source) from total demand. Consumptive demand272

is estimated with country-level efficiencies taken from the WaterGAP model [9]. The con-273

sumption efficiencies are then assumed to converge towards a maximum of 92 % under the274

process of long-term technological change. The maximum possible efficiency is meant to275

represent constraints on the amount of municipal water that must be consumed (e.g., for276

transpiration and other evaporative losses), and is selected based on the highest observed277

historical level [9]. Convergence rates align with assumptions for supply efficiency, and278

are described in greater detail in the following section.279

2.4. Human development scenarios280

The shared socioeconomic pathways (SSP) represent the most recent socioeconomic281

scenarios implemented in long-term global change modeling. The scenarios consist of282

qualitative narratives and quantitative projections for economic growth, technology, and283
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demographic characteristics, and are specifically tailored to span the range of expected284

challenges faced when mitigating and adapting to climate change [24]. The five SSP285

narratives are briefly described below, with a detailed description provided in [60].286

• SSP1 (Sustainability): The world transitions towards a more sustainable path, with287

specific focus on the environment. Population growth is low, economic development288

is high, and inequalities decrease both between and within countries.289

• SSP2 (Business-as-usual): Countries proceed on a social, economic, and techno-290

logical pathway that follows historical patterns. Population growth and economic291

development is in the mid-range of the projections.292

• SSP3 (Regional rivalry): Countries increasingly focus on domestic and regional293

issues. Economic development is slow, consumption is material-intensive, and in-294

equalities persist or worsen over time. Population growth is low in high-income295

countries and high in emerging countries.296

• SSP4 (Inequality): Inequality worsens both within and between countries. Eco-297

nomic growth is moderate in high-income and middle-income countries, while low-298

income countries lag behind. Global population growth is moderate, driven by high299

fertility in emerging countries.300

• SSP5 (Fossil fueled development): The world transitions toward a more fossil fuel301

intensive path, with relatively little action on avoiding potential global environmen-302

tal impacts, due to a perceived tradeoff with economic development. Global popu-303

lation growth is low, driven by reduced fertility in the developing world, economic304

development is high, and inequalities reduce both between and within countries.305

The SSP narratives provide important guidance on assumptions surrounding techno-306

logical change, behavior and income inequality. For example, the conditions expected in307
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SSP1 are likely to translate into sustainable and inclusive water development strategies.308

The focus on sustainability is expected to drive rapid technological change that combined309

with long-term behavioral shifts, would lead to long-term reductions in per capita munic-310

ipal water demand. Conversely, limited concern and action on issues in SSP5 is expected311

to correlate with widespread increases in per capita intensity, although rapid technological312

change accompanying high-income levels will help to offset increased supply require-313

ments.314

Table (1) summarizes the translation of the SSP narratives to the model parameteriza-315

tion. Convergence towards different demand curves is stipulated to reflect the differences316

in behavior and policies implicit in the SSP narratives. For example, sustainable end-317

use behavior and policies assumed in SSP1 are simulated by having countries converge318

towards one of the lower decile curves. Following [47], we further utilize the scenario319

narratives to disaggregate urban-rural average income trajectories, by assuming income320

convergence to different levels at different rates (Appendix A). For instance, to reflect in-321

equalities implicit in the narratives, urban-rural incomes in SSP3 and 4 are assumed to322

converge the slowest.323

The quantitative SSP data applied in this work includes the GDP and population pro-324

jections for 184 countries. Population projections come from the Wittengenstein Centre325

for Demography’s long-term population model, which generates national-level population326

estimates out to 2100 based on assumptions surrounding future age, sex and educational327

composition [61]. Urbanization dynamics have also been estimated under SSP-specific as-328

sumptions surrounding urbanization rates [62]. National-level GDP scenarios (in purchas-329

ing power parity) come from the Organization for Economic Co-operation and Develop-330

ment’s (OECD) Environmental Growth model, which is based on a convergence process331

and places emphasis on the following key drivers: population, total factor productivity,332

physical capital, employment and human capital, and energy resources [63].333
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Parameter Socioeconomic Scenario
SSP1 SSP2 SSP3 SSP4 SSP5

Per capita demand decile curve 30th 30-70th 50-90th 40-90th 90th
Frontier technological change rate 1.00 % 0.50 % 0.25 % 0.25 % 1.00 %
Urban-rural IR convergence level 5 % 10 % 20 % 20 % 5 %
National Gini convergence level 0.25 - 0.60 0.60 0.25
Convergence year 2110 2120 2130 2130 2110

Table 1: Translation of the qualitative SSP narratives to the quantitative water modeling parameterization.
For per capita demand decile curves, entries with a range in values indicate divergence across countries.
For example, in SSP4 developing economies converge to a lower decile curve, with advanced economies
converging to higher levels. Technological change rates are estimated from [9] and [37]. Urban-rural income
ratio (IR) convergence modeled after [47]. Decile curve and Gini convergence are interpreted from the SSP
narratives. For SSP2, the Gini coefficients remain at the estimated 2010 level over the projections.

Spatial population scenarios are a key component of the analysis, and we apply the334

dataset described in [64] to represent the national-level urban and rural population pro-335

jections at a 1/8◦ spatial-scale. The downscaling approach applied in [64] utilizes a336

gravity-based population model to capture important spatial effects of urbanization, in-337

cluding densification and urban sprawl. Further improvements over previous approaches338

include refined treatment of protected areas and boundary effects [65]. The spatial popula-339

tion scenarios are a potential source of uncertainty, as small area (grid-cell) projections of340

long-term population change are subject to a variety of assumptions regarding vital rates,341

migration, as well as population response to the socio-economic drivers of spatial change.342

The GDP pathways are also broken into urban and rural components and downscaled to343

the corresponding 1/8◦ spatial-scale following the procedures described in Appendix A.344

2.5. Climate scenarios345

For climate, we utilize the most recent scenarios applied in the global climate modeling346

community, the RCPs [25]. Downscaled, bias-corrected ensemble results from five global347
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climate models participating in the Coupled Model Intercomparison 5 (CMIP5) project are348

included in our analysis [66, 67]: MIROC-ESM-CHEM, IPSL-CM5A-LR, HadGEM2-349

ES, NorESM1-M and GFDL-ESM2M. The downscaled data was obtained from the Inter-350

sectoral Impacts Model Intercomparison Project (ISI-MIP) database1 [68]. These data are351

generated at a 1/2◦ spatial-scale, and we downscale to 1/8◦ using bi-linear interpolation.352

We decided to utilize this simple downscaling approach to enable better treatment of the353

effects of population density at the 1/8◦ spatial scale, which would be less pronounced if354

the population data was aggregated to 1/2◦. Challenges associated with developing higher355

resolution downscaled climate parameters for projecting hydrologic indicators is discussed356

recently in [69], and overcoming these challenges is beyond the scope of this paper.357

3. Results358

This section presents key results of the global assessment, with specific focus on spa-359

tial, temporal, and scenario-specific dimensions of the analysis. We initially assess the360

relative importance of socioeconomic drivers by exploring results sensitivity to the SSPs.361

Effects of non-stationary climate conditions are then incorporated by examining results362

under SSP-RCP scenario combinations.363

3.1. National-level364

Figure (5) depicts the modeled urban and rural demand curves obtained at the national-365

level under stationary base-year climate for a sample of eight representative countries.366

The national demand curves trace the per capita water demand as a function of per capita367

GDP (income) over the simulation horizon (2000 to 2100). Municipal water demand in368

emerging economies (China, India, Egypt, Nigeria and Brazil) initially increases rapidly369

1The data is produced up to 2099, and to simplify the modeling we assume these conditions hold in the
year 2100.
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across all scenarios due to high elasticity at low-incomes. The model projects relatively370

steady per capita demand in developed economies (Germany, US, and Japan) across most371

scenarios due to the assumed saturation of useful water services at high-income levels.372

Base year per capita demand in Germany is relatively low compared to other advanced373

economies, and as the SSP5 scenario is parameterized to converge towards the 90th per-374

centile global trend curve, significant demand growth occurs in Germany in this scenario.375

Conversely, the sustainability-oriented behavioral and policy changes assumed implicit in376

the SSP1 narrative lead to significant reductions in per capita water demand across all377

nations (convergence towards the 30th percentile global trend curve), with the results par-378

ticularly prevalent in the US, which currently experiences some of the highest per capita379

demand levels globally.380

Technological change is included in the results depicted in Figure (5), and helps off-381

set increases in water demand with increasing incomes. The impacts are most prevalent382

in SSP1 and 5, where a reduction in water demand intensity can be seen as countries383

transition to higher income-levels. Lower technological change rates occur in SSP3 and384

4. These differences affect the long-term trajectory in the US, where per capita demands385

excluding technological change in SSP4 and 5 are similar but diverge significantly when386

technological change is considered. The GDP downscaling procedure places more wealth387

in urban areas, with the effects observed in the results as a difference between the urban388

and rural trajectories in the base year. Rural per capita demands are observed to exceed389

urban demands at similar income-levels because rural technological change lags behind390

urban areas based on the parameterized relationship with income-level. In SSP1 and 5, the391

urban-rural incomes converge more quickly, both within and between nations, leading to392

similar end-of-century per capita demands globally. Alternatively, in SSP3 and 4, where393

the most inequality is assumed, the trajectories remain more divergent over the simulation394

horizon.395
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Figure 5: Modeled urban and rural demand curves obtained at the national-scale under constant climate for a
sample of eight representative countries. The demand curves trace the per capita water demand trajectory as
a function of per capita GDP over the simulation horizon (2000 - 2100) for SSP1 - 5, and include scenario-
specific effects of technological change.
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3.2. Grid-level396

The demand curves estimated at the national-scale are downscaled to the grid-level397

with Eq.(9). Results of the spatially-explicit analysis are summarized in Figure (6). De-398

picted is the mean annual municipal water demand across the SSPs, in the years 2010, 2040399

and 2070, under stationary base-year climate conditions. The most significant growth in400

municipal sector water demand is anticipated to occur between 2010 and 2060, and to take401

place mainly in South Asia, China, and Sub-Saharan Africa. Economic growth is pro-402

jected in these regions across many of the SSPs [63], which under the identified demand403

model (high elasticity at low-incomes), significantly increases per capita water demand.404

Concurrent to the economic development is an increasing population, which is expected to405

peak in these regions across most scenarios (excluding SSP3) around 2070 [61]. A com-406

bination of reduced fertility rates and saturation of useful municipal water services occurs407

as urban areas transition towards higher income-levels, and leads to long-term reductions408

in per capita demand.409

Further mapped in Figure (7) is the coefficient of variation (CoV) calculated across410

the SSPs as the maximum range divided by the mean. The spatial distribution largely fol-411

lows country delineation due to the parameterized national demand curves. The largest412

variability occurs in locations with a combination of uncertainties surrounding both de-413

mand intensity and population. For example, variability is particularly prevalent in the414

Tibetan Plateau region of Southwest China mainly due to uncertainties surrounding ur-415

banization levels and its effect on the distributed rural population in this region. Most416

locations display a range of results across the SSPs that is greater than the ensemble mean417

value (i.e., CoV > 1), indicating a high-degree of sensitivity to socioeconomic uncertain-418

ties. As expected, much more uncertainty surrounds end-of-century conditions compared419

to mid-century conditions.420

Scenario-specific results are highlighted for Nigeria in Figure (7). The economic421
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Figure 6: Mean and coefficient of variation (CoV) of the spatially-explicit global municipal water demands
obtained across the SSPs. In the calculation of the CoV, we utilize the maximum range across the scenarios
divided by the mean value.
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growth and urbanization projected for this emerging African economy across the SSPs422

results in rapid growth in urban water demands across all scenarios. The SSP5 scenario423

displays the most growth due to the assumed transition towards water-intensive societies424

and the scale of the projected GDP expansion relative to the other SSPs. Conversely, the425

sustainability-oriented policy and behavioral measures expected in SSP1 lead to signifi-426

cantly lower water requirements. SSP2 and 3 display somewhat similar demand patterns,427

but the per capita demand in SSP3 is less due to slower income growth. In the end, the428

reduced per capita usage in SSP3 ends up being offset by increased population. Similar429

results are obtained for other emerging economies throughout Sub-Saharan Africa, as well430

as in Latin America and Asia.431

3.3. Global432

Aggregating the water requirements at the grid-scale yields an estimate of total global433

municipal water demand. Annual results are presented in Figure (8), along with the calcu-434

lations for consumption and return-flow. In SSP1 we find that by 2070, global municipal435

water use reduces compared to current levels. The largest reductions are expected in con-436

sumptive demand due to a combination of improved supply and end-use efficiencies. At437

the high-end of the projections, we find that SSP3 and 5 lead to end-of-century require-438

ments more than doubling from the current level. Peak water demand is expected to occur439

in SSP5 in the year 2070, and represents a municipal water requirement nearly three times440

the current level. Results from three similar models for the SSP2 socioeconomic scenario441

are also depicted in Figure (8). Our assessment appears to yield a global estimate for SSP2442

that compares well with the H08 model [11, 70], but is lower than the WaterGAP [70] and443

PCR-GLOBWB [4] models, as well as a similar business-as-usual scenario explored with444

the GCAM model [37].445
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Figure 8: Annual results aggregated to the global-scale for: a. Demand; b Consumptive demand; and
c. Return-flow. For comparison, global results from similar models [H08 [11], PCR-GLOBWB [4] and
WaterGAP [70]] available for the SSP2 socioeconomic scenario are included in the results for demand. Also
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3.4. Impacts of climate change446

We focus on the municipal water implications of the RCP2.6 and 8.5 climate scenarios447

to capture the largest range of uncertainties in radiative forcing under future greenhouse448

gas emissions. The RCP8.5 scenario represents a fossil fuel intensive global development449

pathway that results in an increase in end-of-century radiative forcing of 8.5 W/m2 relative450

to pre-industrial levels and extreme climate change [71]. The RCP2.6 scenario represents a451

low-carbon development pathway associated with a 2.6 W/m2 increase in radiative forcing452

and a high probability of limiting global mean temperature change over the 21st century to453

2◦C [72]. The use of the extreme climate scenarios restricts the socioeconomic scenarios454

that can be explored to SSP3 and 5, as these are the only cases likely to produce emission455

pathways consistent with a 2.6 and 8.5 W/m2 radiative forcing. Even SSP3 may be inca-456

pable of providing the economic input commensurate with a 8.5 W/m2 world; nonetheless,457

we decided to analyze the pathway to explore the different challenges to adaptation with458

SSP5.459

3.4.1. Average and peak demand460

To highlight the vulnerability of municipal water supply systems to climate change, we461

examined impacts to both average and peak daily demand requirements. The peak daily462

requirements are closely related to the required capacity of water supply and distribution463

infrastructure, and are therefore an important aspect of long-term planning. We estimated464

the peak daily water demand in each grid-cell as the 95th percentile of the annual time-465

series. The long-term response of the climate to different emission pathways means the466

climate scenarios vary little until mid-century [25], and to capture these longer-term effects467

while accommodating uncertainties surrounding the long-term evolution of the climate468

system, we focus on the average impacts obtained over the 2050 to 2080 period.469

Figure (9) depicts the mapped difference in global municipal water demand between470
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RCP8.5 and RCP2.6. In most locations, RCP8.5 (extreme climate change) results in rel-471

atively modest increases in average annual municipal water demand, although in some472

instances (e.g., Indonesia), demand in fact decreases. This decrease is due to wetter condi-473

tions in RCP8.5 reducing the need for municipal irrigation. Spatial precipitation patterns474

vary significantly across climate models, and will affect the results depending on the se-475

lected model (in this case we used the ensemble). The analysis suggests that achieving the476

RCP2.6 scenario (minimum climate change) would reduce aggregate annual global mu-477

nicipal water demand in comparison to the RCP8.5 scenario (maximum climate change)478

by 2 % in the SSP3 scenario, and by 4 % in the SSP5 scenario.479
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Figure 9: Mapped change in municipal water demand in RCP8.5 relative to RCP2.6. The changes are
averaged over the 2050 to 2080 period. a. Annual average demand; and b. Peak daily demand.

Benefits of climate change mitigation (i.e., achieving RCP2.6 opposed to RCP8.5)480
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differ spatially. Figure (10) depicts the percent change in average and peak demand for481

SSP3 and 5 as a cumulative spatial distribution calculated across inhabited grid-cells. The482

change is calculated relative to results obtained under static base-year climate conditions.483

We find that in the RCP8.5 scenario that 95% of locations experience a change in average484

demand between -1 to 10 %, and a change in peak demand between 0 to 12 %. More than485

half of inhabited grid-cells in the RCP8.5 scenario see an increase in peak daily demand486

of 4 %. The range in climate impacts is reduced substantially in the SSP3 scenario: 95%487

of locations experience both peak and average demand increases of only 0 to 6%, with a488

mean value of less than 1%. Similar distributions are obtained when the gridded impacts489

are weighted by population.490

4. Discussion and conclusion491

The municipal water sector provides crucial services for human well-being and will492

experience significant growth under the projected socioeconomic change in many regions493

globally. The municipal water sector is also directly vulnerable to the effects of climate494

change due to the large volumes of water used for municipal irrigation. This paper has495

assessed, for the first time, coupled climate-development impacts on global municipal wa-496

ter demand. A new modeling framework incorporating enhanced representations of human497

migration, income inequality, population density and climate sensitivity was developed for498

this task. The framework was applied to generate global municipal water demand scenar-499

ios over the 21st century aligned with the most recent global change scenarios at a 0.125◦500

spatial resolution.501

Model results suggest that socioeconomic changes will be the most important driver of502

shifts in future municipal water demand, with a wide range in outcomes obtained across503

the scenarios investigated. The least water-intensive scenario (SSP1) results in global mu-504

nicipal water demand decreasing at an average rate of 0.1 % per year over the 21st century,505
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whereas the most water-intensive case (SSP5) results in demands increasing at a rate of506

0.9 % annually. All scenarios investigated involve rapid demand growth in urban areas507

of emerging economies (0.7 to 1.7 % increase per year), whereas demand-levels in high-508

income regions remain relatively constant or decrease (-0.7 to 0.5 % increase per year).509

The scale of growth and levels of uncertainty observed across the results for emerging510

economies suggest a critical need for infrastructure development strategies that incorpo-511

rate long-term flexibility.512

Climate sensitivities were incorporated into the global modeling framework using513

an empirical hydro-climatic metric encapsulating local water availability (the moisture514

deficit). Results obtained under non-stationary climate conditions suggest that half of all515

inhabited locations may experience peak municipal water demands 2 to 4 % higher under a516

fossil fuel intensive global emission scenario (RCP8.5) relative to demand consistent with517

the emission scenario displaying a high probability of stabilizing global mean temperature518

change over the 21st century at 2◦C (RCP2.6). The outcome means there are moderate519

freshwater co-benefits of climate change mitigation policy anticipated in the municipal520

sector that are additional to estimates from previous integrated assessments.521

Comparing the non-stationary climate results across the SSP3 and 5 socioeconomic522

scenarios indicates that in terms of municipal water demands, SSP5 is much more vul-523

nerable to the effects of climate change. Differences between the scenarios are largest in524

Sub-Saharan Africa and India. These results follow from the assumptions surrounding sen-525

sitivity of municipal irrigation to both changes in climate and socioeconomic development.526

In SSP3, slower income growth in emerging economies result in less municipal irrigation527

and therefore lower climate sensitivity, whereas in SSP5, rapid income growth results in a528

higher-penetration of municipal irrigation and therefore increased climate change vulnera-529

bility. Although the population in SSP5 appears more vulnerable than in SSP3, it is better530

equipped for adaptation due to significantly higher-incomes and less inequality.531
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Systematic validation of the modeling framework is currently limited by our ability532

to test its long-term performance due to the absence of spatially-explicit historical data.533

Global results were compared with four similar modeling frameworks harmonized to sim-534

ilar national data-sets, and it was found that our calculations fall on the low-end of previous535

estimates. The reason is likely due to the semi-logarithmic form assumed in the demand536

model, and what this implies for demand elasticity at higher-incomes. Incorporation of537

income distribution effects in the model developed in this paper also leads to reduced de-538

mand projections, due to the impact on perceived average income-level in the aggregated539

household demand model. Overall, the income-demand relationship has a strong impact540

on the results, and this causal link could in fact be less pronounced. Other local drivers,541

such as institutional stability, cultural trends, policies and infrastructure could not be taken542

into account due to lack of globally comprehensive data sets. These areas are important543

for future work aiming to explain a greater range of the historical data.544

Appendix A. GDP downscaling545

National GDP projections are initially disaggregated into urban and rural average in-546

comes in the base-year (2010). We make the assumption that per capita GDP in purchas-547

ing power parity is equivalent to per capita income at the national-scale. The national548

per capita GDP is then related to the urban and rural components through the following549

relationship:550

gn = u · gu + (1 − u) · gr (A.1)

where u is the urbanization rate (fraction of national population that is urban), gn is average551

per capita GDP (income) across the national population, and gu and gr denote the urban and552

rural values respectively. The GDP projections are disaggregated into the urban and rural553

components following the procedure described in Grübler et al. (2007) [47]. The approach554
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relies on the observation that residents in urban areas typically have higher incomes [44].555

To reflect the income inequality between urban and rural populations, we take advantage556

of the fact that income is typically distributed lognormally across a population [40], and557

that in the base-year (2010) the top income quintile (i.e., top 20%) always resides in urban558

areas [47].559

We identify the average per capita GDP of the national income quintiles using the560

income Lorenz curve L. The Lorenz curve is estimated based on the shape of the log-561

normal distribution [41]:562

L (x) = Φ
[
Φ−1 (x) − σ

]
(A.2)

where x is the percentile associated with a given income quantile, σ is the standard devia-563

tion of the income distribution, and Φ denotes the cumulative normal distribution function.564

Under the assumption of lognormality, the standard deviation is estimated with the follow-565

ing relationship [41]:566

σ =
√

2 · Φ−1
(
π + 1

2

)
(A.3)

where π is the Gini coefficient. Historical observations of the Gini coefficient are available567

for most countries from the World Bank, and are applied in this study to parameterize568

income inequality in the base-year. For countries lacking historical observations, we utilize569

a regional average.570

Assuming the bottom four national income quintiles incorporating both urban and rural571

residents split the income evenly (i.e., everything but the GDP represented by the top572

quintile), we identify the average rural per capita GDP using the value of the Lorenz curve573

at the top income quintile:574

gr = gn ·
L (x)

x
(A.4)

where x = 0.8 for the top income quintile. Once calculated, the rural per capita GDP is575
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inserted into (1) to calculate the corresponding urban-level. Without further information576

on the sub-national distribution of income-levels2, we assume that the identified urban and577

rural per capita GDPs do not vary across grid-cells within countries.578

In future years, national Gini coefficients are assumed to converge or diverge towards579

the qualitative inequality trends implicit in the scenario narratives (Table 1, main text).580

For example, in SSP1 and 5, inclusive development leads to widespread reductions in in-581

equalities, and we reflect these conditions by having Gini coefficients converge towards a582

relatively low value of 0.29 by the end of the century (close to the level currently seen in583

Sweden and Denmark). Conversely, in SSP 3 and 4, which contain explicit narratives de-584

scribing increased inequality, we set convergent values to 0.6 (close to the level currently585

seen in South Africa). To account for institutional inertia, we analyzed decadal observa-586

tions for OECD countries to identify a distribution of historical rates of change and then587

set a maximum rate of inequality change to the 50th percentile value (0.15 % per year).588

The model formulation requires estimates of the urban and rural Gini coefficient. Em-589

pirical studies show that differences between urban and rural income inequality exist in590

countries such as India, where in the 90s, the rural Gini was typically about 20 % less than591

the urban Gini [74]. In China, the urban and rural Gini coefficients from 1978 to 2002592

trace a similar path [75]. Without detailed information on the historical trajectories of all593

countries we simplify the analysis by assuming that the urban and rural population groups594

display equivalent Gini coefficients, and identify a common value that ensures consistency595

with the national-level and the decomposed average income levels. The Theil index is an596

alternative inequality metric that can be readily decomposed into urban and rural com-597

2The GECON dataset provides sub-national spatial information on the distribution of GDP [73]. Calcu-
lating gridded per capita GDP with the GECON and SSP population datasets results in extreme outcomes
because some rural areas with low population have high industrial output. The spatial GDP in GECON is a
better metric for production intensity, not consumption in the municipal sector.
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ponents [76]. Under income distribution lognormality, the Theil index is approximately598

equal to half the variance ν = σ2 [77]. Based on the Theil decomposition described in599

[76], we obtain the following relationship between the national income standard deviation600

(νn) and the urban-rural value (νur):601

νur = νn + 2 · { u · ln (κ) − ln [ 1 + u · (κ − 1) ] } (A.5)

where κ is the urban-rural average income ratio. Corresponding urban-rural Gini coeffi-602

cients can be identified with (A.3). Following the analysis in [47], the urban-rural average603

income ratio is assumed to converge over time at the scenario-specific rates in Table 1604

of the main text. This feature allows the simulation framework to incorporate expected605

income effects implicit in the scenario narrative, such as inclusive development strategies606

that reduce income inequalities across a population.607
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