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PREFACE

Methodologies for decision making with conflicting multiple
objectives have attracted increasing attention since the early
period of IIASA activity. 1In the System and Decision Sciences
area of IIASA, decision making processes with conflicting objec-
tives as well as multiobjective optimization are one of the main
projects and many techniques have been developed. This paper
intends to provide a modest approach to such a research direction

for decision sciences.

The author is thankful to Professor A. Wierzbicki, Chairman
of the System and Decision Sciences area, for providing him with
the opportunity to visit IIASA and to work for this project. The
author expresses his gratitude to Professor F. Seo, also at IIASA,
for discussions and valuable comments. The author is also indebted
to Professor Y. Sawaragi of Kyoto University for his constant en-
couragement. The numerical results have been obtained while the
author was at the Systems Engineering Department of Kobe University
in Japan and he wishes to thank Mr. H. Yano for his cooperation
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ABSTRACT

A new interactive multiobjective decision making technique,
which is called the sequential proxy optimization technique
(SPOT), has been proposed by the author. Using this technique,
the preferred solution for the decision maker can be derived
efficiently from among a Pareto optimal solution set by assessing
his marginal rates of substitution and maximizing the local proxy

preference functions sequentially.

In this paper, based on the algorithm of SPOT, a computer
program for multiobjective decision making with interactive pro-
cedures is presented and called ISPOT. The program is especially
designed to facilitate the interactive processes for computer-
aided decision making. After a brief description of the theoret-
ical framework of SPOT, the computer program ISPOT is presented.
The commands in this program and major prompt messages are also
explained. An illustrative numerical example for the interactive

processes is demonstrated and numerous insights are obtained.
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A COMPUTER PROGRAM FOR MULTIOBJECTIVE
DECISION MAKING BY THE INTERACTIVE
SEQUENTIAL PROXY OPTIMIZATION TECHNIQUE

M. Sakawa

1. INTRODUCTION

The analysis of multiobjective optimization problems has
evolved rapidly during the last few years. There have been more
than 100 papers, dealing with multiobjective optimization prob-
lems and at least 20 different solution techniques have been
proposed. The excellent survey paper of Cohn and Marks (1979)
and, more recently, that of Wierzbicki (1979) are devoted to a
comparative evaluation of existing techniques. Multiobjective
optimization problems are concerned with decision making problems
in which there are several conflicting objectives. The main aim
of decision making under multiple conflicting objectives is to
select as the preferred solution the best compromise among Pareto

optimal solutions.

The development of decision making methodologies under mul-
tiple conflicting objectives has been one of the most active areas
of research in recent years. Several techniques have been de-
veloped; among them two rival methods, namely, the multiattribute
utility function (MUF) method (Keeney and Raiffa, 1976) and the
surrogate worth trade-off (SWT) method (Haimes et al., 1975, and
Haimes, 1977) use global and local utility (preference) modelling

respectively.



The MUF method developed by Keeney et al., global utility
function modelling, uses two assumptions of preference indepen-
dence and utility independence to limit the utility function to
specialized forms--additive or multiplicative. These global
functions are mathematically simple and convenient, but they have
disadvantages. Their assumptions are reasonable locally, but
when assumed globally, they are very restrictive and may force
the decision maker (DM) to fit a function not truly representing

his or her preferences.

The SWT method developed by Haimes et al., local utility
function modelling, provides an alternative approach that avoids
restrictive assumptions. Instead of specifying the utility func-
tion globally, their procedures construct a sequence of local

preference approximations of it.

The SWT method uses the e-constraint problem as a means of
generating Pareto optimal solutions. Objective trade-offs, whose
values can be easily obtained from the values of some strictly
positive Lagrange multipliers are used as the information carrier
and the DM responds by expressing his degree of preference over
the prescribed trade-offs by assigning numerical values to each
surrogate worth function. However, the original version of the
SWT method is noninteractive and some improvement, particularly

in the way the information from the DM is utilized, must be made.

Recently, Chankong and Haimes (1977, 1979) and Simizu et al.
(1978) independently proposed an interactive version of the SWT
method on the basis of the SWT method. Their methods follow all
the steps of the SWT method up to the point where all the surro-
gate worth values corresponding to the Pareto optimal solution
are obtained from the DM. An interactive on-line scheme was con-
structed in such a way that the values of either the surrogate
worth function or the MRS are used to determine the direction in
which the utility function, although unknown, increases most
rapidly. In their method, however, the DM must assess his pref-
erence at each trial solution in order to determine the step size.
Such a requirement is very difficult for the DM, since he does

not know the explicit form of his utility function.



On the other hand, in 1978, Oppenheimer proposed a proxy
approach to multiobjective decision making. In his procedure
the local proxy preference function is updated at each iteration
by assessing a new MRS vector. Then the proxy is maximized to
find a better point. Unfortunately, this method does not guaran-
tee the generated solution in each iteration to be Pareto optimal.
Furthermore, the systematic procedure to maximize the proxies is
not mentioned, so it seems to be very difficult to do so in

practice.

In order to overcome the drawbacks of the conventionai methods,
Sakawa (1980) has proposed a new interactive multiobjective de-
cision making technique, which was called the sequential proxy
optimization technique (SPOT), by incorporating the desirable
features of the conventional multiobjective decision making methods.
In his interactive on-line scheme, after solving the e-constraint
problem, the values of MRS assessed by the DM are used to deter-
mine the direction in which the utility function increases most
rapidly and the local proxy preference function is updated to
determine the optimal step size and Pareto optimality of the gen-

erated solution is guaranteed.

In this paper, based on the algorithm of SPOT, a computer
program for multiobjective decision making by the interactive
sequential proxy optimization technique, which we call ISPOT, is
designed to facilitate the interactive processes for computer-aided
decision making. Section 2 summarizes the theoretical development
of SPOT on which the computer program ISPOT is based. A descrip-
tion of ISPOT is presented in Section 3. ISPOT utilizes the gen-
eralized reduced gradient (GRG) method (Lasdon et al., 1974, 1975)
in order to solve the e-constraint problems. The main part of
interactive processes together with major commands and prompt
messages are explained. 1In Section 4, the interaction processes
of ISPOT are demonstrated by means of an illustrative example
under the assumption of an ideal DM (i.e. consistent, rational
with a well-defined structure of preference as represented by a
utility function.) Several initial values of epsilons are se-
lected and the corresponding computer outputs, which are obtained
by adopting not only the sum-~-of-exponentials proxy but also two

other types of proxy are listed in the appendices.



2. MULTIOBJECTIVE DECISION MAKING PROBLEM
The Multiobjective Optimization Problem (MOP) is represented

as MOP

min (£,(0), £,(x), .., £ (%)) AE(x) (1)

subject to

X EX {x!erN,gi(x);O,i=1,2,...,m} (2)

where x is an N-dimensional vector of decision variables, f1’“"fn
are n district objective functions of the decision vector x,
9qre--r9, are a set of inequality constraints and X is the con-
strained set of feasible decisions. Fundamental to the MOP is
the Pareto optimal concept, also known as a noninferior solution.
Qualitatively, a Pareto optimal solution of the MOP is one where
any improvement of one objective function can be achieved only

at the expense of another.

Usually, Pareto optimal solutions consist of an infinite
number of points, and some kinds of subjective judgment should
be added to the gquantitative analyses by the DM. The DM must

select his preferred solution from among Pareto optimal solutions.

The multiobjective decision making problem (MDMP) we wish

to solve
MDMP

mix U(f1(x),f2(x),...,fn(x)) (3)
subject to

x €X' (4)

where XP is the set of Pareto optimal solutions of the MOP and
U(+) is the DM's overall utility function defined on.F‘Q{f(x)lerEN}
and is assumed to exist and is known only implicitly to the DM.

One way of obtaining Pareto optimal solutions to the MOP is
to solve e-constraint problem Pk(e_k)(wierzbicki, 1979, and Keeney
and Raiffa, 1976).



P (e_y)

min fk(x) (5)
subject to

x €XNX (e_y) (6)

k

where

E_ké(€1’oo-’Ek_1l€k+1l°°°len) (8)

X, (e_y) Q{xlfj(X):iej »3=1,...,n,3#k} (9)

By Afey Xy (e ) #0) (10)

Let us assume that x* (¢ an optimal solution to the

),
-k
Pk(e_k), be unique for the given €_x- And let AEk be a set of

€_k such that all the e-constraint (9) is active, that is
* = ] = 1
BB, Afe_yle €B L £5(x*(e_p)) =e5 3 =1,...,n, 37k}, (11)
If the Kuhn-Tucker condition for problem Pk(e_k) is satis-

fied, the Lagrange multiplier X k) associated with the jth

kj(E_
active constraint can be represented as follows:

A = -{afk(e_k)}/{afj(e_j)} j=1,...,n, §J #%k . (12)

When all the e-constraints are active, substituting the
optimal solutions of Pk(e_k), x*(e_k), given desired levels of
the secondary objectives, ej, j=1,...,n, j # k, the MODM can be

restated as follows:

2ax U(€1r---lek_1lfk[x*(€_k)]I€k+1l--°l€ ) - (13)
-k




Throughout this paper we do the following.

Assumption 1: U :F »R exists and is known only implicitly to
the DM. Moreover, it is assumed to be concave,
a strictly decreasing and continuously differen-

tiable function on F.

Assumption 2: All fi’ i=1,...,n and all gj, j=1,...,m are
convex and twice continuously differentiable in
their respective domains and constraint set X is

compact.

Assumption 3: For every feasible e_y €AE, the solution to AP, (e_,)

exists and is finite.

Under Assumptions 1-3, the following theorem holds (Haimes
and Chankong, 1979).

Theorem 1. Under Assumptions 1-3, the utility function
% : .
U(e1,...,sk_1,fk[x (e_k)],€k+1,...,en) is concave with respect
to e_, €AE,.

Now, before formulating the gradient, 3U(-)/3e, of utility
function U, we introduce the concept of marginal rates of sub-
stitution (MRS) of the DM.

Definition 1. At any f, the amount of fi that the DM is willing
to sacrifice to acquire an additional unit of fj is called the
MRS. Mathematically, the MRS is the negative slope of the in-

difference curve at f:

mij(f) = [BU(f)/ij]/[BU(F)/Bfi] = -dfi/dfj dU=0,dfr=0,r#i,j

(14)

where each indifference curve is a locus of points among which

the DM is indifferent.

The decision analyst assesses MRS by presenting the following

prospects to the DM



£f=(f yEiveeaifl, oo £), £ = (£

1,... i J n 1,.p-,fi—Afi,.oo,fj+Afj,-..,fn)

for a small fixed Af., small enough so the indifference curve is
approximately linear but large enough so the increment is meaning-
ful, the analyst varies Afi until the DM is indifferent between

f and f'. At this level, mij(f) o~ Afi/Afj.

Now, we can formulate the gradient BU(-)/Bej of utility

function U(+). Applying the chain rule

8U(°)/8€j = 8U(°)/8£—:j + [8U(°)/8fk][8fk/8€j] j=1,...,n, j#k .

(15)
Using the relations (12) and (14), we have the following

8U(-)/8€j = [BU(-)/Bfk](mkj -Akj) j=1,...,n, J#k . (16)

From the strict monotonicity of U with respect to fk' k=1,...,n,
BU(-)/afk is always negative. Therefore —(mkj —Akj) (3 =1,...,n,
j #k) decide a direction improving the values of U(:) at a current

point.

Under the assumptions 1-3, the optimality conditions for a

maximization point €_y are BU(-)/ae_k = 0, that is
m . = A, . j=1,...,n, J #k . (17)

This is a well known result that at the optimum of MRS of
the DM must be equal to the trade-off rate.

If the optimality condition (17) is not satisfied at the g¢th
iteration, the optimal direction of search s% and the corresponding

direction of Afi are given by:

L L

- _ - 2 . .
sj = (mkj Akj) Aej j 1,...,n, J #XK (18)
) 2 ) ) L]
Afy = [3fy (e2))/3e 10el, = —j;1x Ae” . (19)

i7k



Then, we must determine the optimal step size o which

maximizes U(e2 -+aAez £ -+aAfﬁ) along the direction Af2 =

-k -k’ 7"k
L L L L L L L
(Belseenybey 4, AE Ay gy nnybE ) A (he_y ,Af)) .

To solve this linear search problem, the following two prob-

lems arise.

Problem 1. The DM must assess his preference at each trial so-

(82 L
-k -k’

to determine the best step size. Such requirement is very

lution + ale fﬁ-+aAfﬁ) for several values of o, in order
difficult for the DM, since he does not know the explicit form

of his utility function.

Problem 2. Even if it is possible for the DM to assess the utility
value, there remains a problem. The new trial point f2-+aAfl,
where AfZ is a direction vector, may be neither a Pareto optimal

solution nor infeasible.

In order to resolve Problem 2, we adopt (e%k-+aAe%k,fk
(e%k-+aAeEk)) as a trial point in the process of linear search
. 2 L 2 2
instead of (e_k-+aAe_k,fk-+aAfk).

Concerning Problem 1, it is necessary to construct some kind
of utility (preference) function, therefore we introduce the fol-
lowing three types of local proxy preference functions like
Oppenheimer's method (1978) in order to determine the optimal step

size.

(1) sum-of-exponentials

If
[-3m; 5 (£) /3E1/my 5 (£) = w,
then

P(f) = -Ja, exp (o, £.) . (20)

(2) sum-of-powers (aj #0)
If



then
%5
P(f) = -Ja,f. . . (21)

(3) sum-of-logarithms
If
then

P(f) = Zaizn(M-—fi) , (22)

where M is a sufficiently large positive number.

SPOT requires the MRS of the DM, but it is a guestion whether
the DM can respond precise and consistent values of MRS through
the whole searching process. So two types of consistency tests
are employed in our technique following Oppenheimer (1978); the
first testing MRS consistency at a single point, and the second

testing consistency at successive points.

The single point test requires a second set 0f assessments
at each point and checks whether the MRS of the DM satisfies the
mkj = mkimij i,j=1,...,n, 1#k, k#i, k#7.
Since only n-1 unique MRS among the objectives exist at any point,

chain rule, i.e.
the second set can be used to measure the discrepancy E:
E = [(Afk/Afj) —(Afk/Afi)(Afi/Afj)]/(Afk/Afj) (%) (23)

We set a reasonable tolerance level and if the discrepancy exceeds
the tolerance, the analyst should explain the inconsistency to

the DM and reassess the MRS until the discrepancy is resolved.

The second test checks for decreasing marginal rates of sub-
stitution of the proxy, which is based on the following theorem.
Theorem 2.

(1) The sum-of-exponentials proxy P(f) is strictly decreasing
and concave if and only if all the parameters a; and Wy

are strictly positive, i.e.,

a; > 0 and Wy >0, i=1,...,n (24)
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(2) The sum-of-powers proxy P(f) is strictly decreasing and

and concave if and only if

a, > 0; a, >1 i=1,...,n . (25)

(3) The sum-of-logarithms proxy P(f) is strictly decreasing
and concave if and only if

a. >0 i=1,...,n . (26)
i

Following the above discussions, we can now describe the
algorithm of the sequential proxy optimization technigque (SPOT)
in order to obtain the preferred solution of the DM for the MDMP.

Step 1 Choose initial point e%kEEEk and set & = 1.

2 . L
K € _yr solve an £-constraint problem Pk(e_k)

and obtain a Pareto optimal solution x*(e%k),

Step 2 Set e_, =

for e%k

a Pareto optimal value £2 = (egk,fi[x*(egk)]) and

L

corresponding Lagrange multiplier Akj(j =1,...,n,j#k) .

Step 3 If all the g-constraints are active, go to the next
L

-k
until all the e€-constraints become active and obtain

step. Otherwise, change ¢ for inactive constraints

the corresponding Lagrange multipliers.

Step 4 Assess the MRS of the DM at le where Afj(j =1,...,n,
j #k) must be fixed small enough that the indifference
curve is approximately linear but large enough that

the increment is meaningful.

Step 5 For MRS at fl, evaluate discrepancy E. If E < 62 go

to Step 6, where the tolerance §, is a prescribed

2
sufficiency small positive number. If E exceeds the
tolerance, the DM reassesses the MRS until the toler-

ance condition is satisfied.
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Step 6 1If |mﬁj-xﬁj| <§, for j=1,...,n, j#k, stop, where
the tolerance 61 is a prescribed sufficiency small

positive number. Then a Pareto optimal solution

(s%k,fﬁ[x*(s%k)]) is the preferred solution of the
DM. Otherwise, determine the direction vector
As2 b
-k Y
£ 2 £ 2 . .
s, = =(m . - A = Ael. =1,...,n, k
3 (kJ kj) 3 (3 Jj #k)

Step 7 For the prescribed initial step size Y change the

step size to be ag and 2a0 and obtain the corresponding

two Pareto optimal points 1f2 and 2f2 in the neigh-

borhood of f2 and assess n-1 MRS mﬁj at a point 1f2

plus a single MRS at a third point 2fg. If the
consistency check at Step 5 is passed, select the form
of the proxy function that will be used at each iter-
ation by the measure about MRS variation. If the
parameter value conditions of Theorem 2 are passed go
to the next step. Otherwise, the DM reassesses the

MRS until the parameter value conditions are satisfied.

Step 8 Determine the step size o which maximizes the proxy
. '3 ) Lokt 2
preference function P(s_k-+aAs_k,fk[x (s_k-+aAs_k)])QP(a)

as follows. Change the step size, obtain corresponding
Pareto optimal values and search for three a values

a, and o, which satisfy

%ar %p C

This step operates either doubling or halfing the step
size until the maximum is bracketed. If the maximum

is not bracketed change the initial step size.

Then a local maximum of P(q) is in the neighborhood

of o = ap- Ask the DM whether U(f2+1) > U(fg) or not
2+1 ') L. 2 [ 2 L. 2
= *
where £ (e_y taghe £ [x* (e +oaghe ()]1), set
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2 = 2+1 and return to Step 2. Otherwise reduce o

to be %, % ... until improvement is achieved.

3. A COMPUTER PROGRAM FOR MULTIOBJECTIVE DECISION MAKING: ISPOT

Our computer program ISPOT is composed of a main program and
a number of subroutines, which are arranged in a hierarchical
structure. Here, we give a brief explanation of the current
version of ISPOT. At present, some of the subroutines in ISPOT

may be rather crude which will be revised in the near future.

ISPOT has three COMMANDS, i.e., GRG, DECOMP, and SPOT, and
the user can select one of them in accordance with his purposes.

The functions of each COMMAND are:

(1) GRG: solves nonlinear programming problems with a single
objective function using the generalized reduced
gradient (GRG) method proposed by Lasdon et al. (1974,
1975) .

(ii) DECOMP: solves the nonlinear programming problems of a
block angular structure in a two-level scheme using

the dual decomposition method (Lasdon, 1970).

(iii) SPOT: solves the multiobjective decision making problems
interactively by our proposed method, SPOT (Sakawa,
1980).

In the following, we explain the major subroutines which

appear when SPOT is selected as a COMMAND.

Subroutine SMAIN

This subroutine is called when the command word SPOT is
specified. The user can choose whether to use the dual decom-
position method or not in order to solve the e-constraint prob-
lems. The prompt message

WHICH DO YOU SELECT?

1 SPOT

2 SPOT BY DECOMP
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is shown and the user must input either 1 or 2 according to his

choice. It follows that when 1 is input to select SPOT in order

to solve the multiobjective decision making problem interactively,

the main part of the interaction processes is explained with the

major prompt messages.

(1)

(2)

(3)

(4)

DO YOU USE DEFAULT VALUES IN GRG?

GRG contains a number bf tolerance parameters which must
be specified when certain iterative processes should stop
or when certain quantities are zero. If the user wishes
to set all of them to default values, he must input YES.
Otherwise, after inputting NO, desirable values for toler-

ance parameters are input.

DO YOU USE IDEAL DM?

The values of the MRS of an ideal DM can be simulated by

the explicit form of the global form of the DM. If the

user wishes to test the feasibility and efficiency of the
iteration processes of ISPOT under the assumption of an

ideal DM, YES is input. In this case, calling the subroutine
UTILITY the values of MRS are simulated by equation (14).

In the case of NO, the real DM must assess his MRS by re-
sponding the amount of Afi that he is willing to sacrifice

to acquire Af1 for the prescribed value of Af1.

CORRECT VALUES OF EPSILONS

Determine the direction vector at each iteration, if at
least one of the Lagrange multipliers for the corresponding
ge-constraint problem becomes zero, and change the corre-
sponding € values in order to get the nonzero Lagrange

multipliers.

INPUT TOLERANCE DELTAI1

If |m1j —A1i| < DELTA1 for all i = 2,...,n, the preferred
solution of the DM as well as the necessary informations
are listed, then the program terminates. Otherwise, go

to the next iteration.
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(5) INPUT INITIAL STEP SIZE

Choose an initial step size ag along the optimal direction
of seach. Then the Pareto optimal solutions corresponding
to o = 0, ag and 2a0 are calculated by GRG. The values
fi(i.=2,...,n), which are calculated by substituting the
optimal values of the decision variable x, are adopted as
Pareto optimal values instead of the values of epsilon.
For that purpose subroutine SUBG is called. To list the

values of fi (i=1,...,n), €4 (i=2,...,n), A (i=2,...,n),

1i
subroutine LAGS is also called.

(6) SELECT LOCAL PROXY PREFERENCE FUNCTION FROM AMONG THE
FOLLOWING

1 SUM OF EXPONENTIALS
2 SUM OF POWERS-1

3 SUM OF POWERS-2

As a local proxy preference function, the user must select
one of the three types of proxies. Then, the parameter
values are determined by calling the subroutine PARAM1,
PARAM2 or PARAM3 respectively.

In the case where the sum-of-exponentials proxy is selected,

if at least one of the values of parameters aj, Wy (i=1,...,n)

becomes nonpositive, the program displays the following
prompt message:
A(I) OR W(I) IS NEGATIVE
1 GO ON
2 CHANGE INITIAL STEP IN ORDER TO FIT PROXY
3 YOUR MRS IS INCONSISTENT WITH DMR.
INPUT AGAIN YOUR MRS!
In the case of an ideal DM, the third message does not appear.

The DM must select whether to reassess his MRS or to change

the initial step size or to continue.



(7)

(8)

4.
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For the other two types of proxies, similar prompt

messages are prepared.

DO YOU FIT QUADRATIC INTERPOLATION?

For the three values A, B, and C which satisfy both A <B<C
and P(A) < P(B) > P(C), ask the DM whether to fit quadratic
interpolation in order to obtain a more precise point or not.
If YES is input, by fitting quadratic interpolation, obtain
the maximization point for P(f) and calculate the corre-

sponding Pareto optimal solution. In the case of NO, adopt
a step size corresponding to a point B as a near optimal

step size.

ADOPT PREVIOUS POINT

If P1(€_1) becomes infeasible in the search of the optimal
step size, the program adopts the previous point as the

starting point of the next iteration.

AN ILLUSTRATIVE EXAMPLE

We now demonstrate the interaction processes of the ISPOT

by means of an illustrative example which is designed to test

ISPOT under the assumption of an ideal DM.

Consider the following multiobjective decision making

problem.

min £(x) = (£, (x),f,(x),£5(x)) (27)
X

subject to

where

XxEX = {x|xf+x§+x§;1oo,o;x1,x2,x3;1o} (28)
2 2 2
f1(x) = X] + (x2+5) + (x3—60) (29)
_ 2 2 2
Fo(x) = (x.+40)% + (x.-220)2 + (x.+40) (30)
2 1 2 3
Fo(x) = (x,-228)2 + (x.+80)2 + (x.+40)2 (31)
3 1 2 3



-16-

For illustrative purposes, we shall assume that the DM's
structure of preference can be accurately represented by the
utility function U(f1,f2,f3) where

U(f) = -101700£, - (fz—UOOOO)2 - (f3—l45000)2 . (32)

1
However, it should be stressed that the explicit form of utility

function as in (35) is used in this example purely for simulating
values of MRS. To be more specific, mkj will be obtained through

the following expression:
mkj(f) = [3u(f)/afj]/[3U(f)/8fk] j=1,2,3, j#k (33)

mkj obtained this way are as if they had been obtained from the

ideal DM directly.

Let us now choose f1(x) as our primary objective and form-

ulate the corresponding e-constraint problem P1(e_1).

P,(e_q)
min f1(x) : (34)
X
subject to
X €EXNX,(e_q) (35)
where
X (e_q) = {x|ej —fj(x):io ,j=2,3} . " (36)

In this example, we set the values if the initial step size to
be 1000, and the values of the tolerance parameters to be 1.
Starting the initial values of x = (7,7,0), the optimal values
of x corresponding to the previous ¢ are set automatically here-

after.

In the following, the case where the initial wvalues of
€l1 = (eé,eé) = (52000,52000) are selected and the sum-of-expon-
entials are adopted as a proxy are explained especially for

iteration 1 with some of the computer outputs.
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The following serial numbers correspond with those in the output

of Appendix 1.

In the case where two other types of proxies are adopted

.

with the same initial value €, the corresponding computer out-
puts are also listed in Appendices 2 and 3 and the interactive

processes may be understood similarly.

(1) Select SPOT as a command and initiate the interactive multi-

objective optimization processes.
(2) Input 3 as a number of objective functions (in this example).
(3) Input (52000,52000) as initial values of ¢’,.

(4) Utilizing SPOT without the dual decomposition method,

1 is input.

(5) To solve the e-constraint problem from phase 1 of GRG
ICOUNT = 0 is input.

(6) Set the initial wvalues of x = (x1,x2,x3,xu,x5,x6) =
(7,7,0,0,0,0) including the slack variables Xy Xg and

X, corresponding to the e-constraints because GRG is

6
started from phase 1.

(7) To use the default values in GRG, YES is input.

(8) Upper bound constraint 100 is shown whereas ¢ constraints

30

have no upper bound so 1.0 - 10 is set as +w.

(9) In GRG there are two optimality tests, i.e.:
(i) to satisfy the Kuhn-Tucker optimality conditions

(ii) to satisfy the fractional change, which means if

the condition
|FM - OBJTST| < EPSTOPX |OBJTST |

is satisfied for NSTOP consecutive iterations where
FM is the current objective value and OBJTST is the

objective value at the start of the previous one




(10)

(11)

(12)

(13)

(14)

(15)

(16)

-18-

dimensional search. NSTOP has a default value of 3.
In this example it is shown that the Kuhn-Tucker

optimality conditions are satisfied.

To test the iteration processes using an ideal DM, YES is
input.

For €l1 = (52000,52000), the calculation results from GRG
are shown by calling subroutine LAGS. The values of F(1),
F(2) and F(3) are the obtained values of objectives and the

values of EP(2) and EP(3) are selected ¢ values.

The values of F(2) and F(3) coincide with the values of
EP(2) and EP(3) which means the e-constraints become active
so the corresponding values of Lagrange multipliers are also

shown.

The Pareto optimal solution is (f£,,f,,f = (3006.5,52000,

52000).

1’ 2’ 3)

The values of tolerance parameter 61 are input. In this

example 0.001 is set for 6§ the preferred solution is

17
obtained if the conditions |A1j —m1j) <0.001 (j=2,3) are

satisfied.

These conditions are not satisfied, ITERATION 1 is begun.

Direction vector, Sj = A1j -m1j (j = 2,3) to update ¢ is
shown, which also means the stopping criteria are not

satisfied.

It is requested to input the initial step size. Here,

1000 is input.

When the ¢ values are updated to be € = (52000 + 1000'82,
52000 + 1000-83) by the direction vector and initial step
size, the corresponding e-constraint problem is solved by

GRG and the results are shown.

The results for the e-constraint problem with the doubling

initial step size is shown.
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(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

-19-

The values of MRS of an ideal DM for three points corre-
sponding to the Pareto optimal solutions for the step size
0, 1000 and 2000 are shown which are calculated by calling
subroutine UTILITY.

In order to determine the local proxy it is required to
select the form of proxies. In this example 1 is input

to adopt the sum-of-exponentials.

The parameter values for the sum-of-exponentials proxy

are calculated and listed.

It is required to input the admissible maximum step size

while determining the optimal step size and 100000 is set.

For o« = 0, 1000 and 2000, it is shown that the values of

proxy P(f) become larger.

The results for further doubled step size, i.e., € =
(52000 + 4000-S2 , 52000 + 4000-83) are shown.

P(f) becomes larger, the step size is further doubled.

The results for e = (52000 + 8000-S2 » 52000 + 8000-S3)

are shown.

The step size is further doubled, and the corresponding
results for € = (52000 + 16000-S, , 52000 + 16000-S3) are

shown.

2

Since the values of P(f) at the point in (25) become
smaller than that of (24), select whether to fit quadratic
interpolation or not. In this example, in order not to
fit quadratic interpolation NO is input. Then the point
in (24) is adopted as a maximization point of P(f) for

the direction vector in (13), i.e., the optimal step size

becomes 1600.

The e-~-constraint problem with € = (52000 + 8000-82,
52000 + 8000-83) is solved using the saved values of x

in (24) and the results are shown.
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(28) Test whether the obtained trial point at ITERATION 1 is

optimal or not.

(29) The optimality condition is not satisfied, the direction
vector is determined, and the ITERATION 2 begins.

The same procedure continues in this manner. In this
example, at the 3rd iteration the optimality condition
is satisfied and the preferred values of objectives and
decision variables as well as the direction vector are

shown.

All the iteration processes are listed in Appendix 1.

The obtained results compare favorably with the results

obtained by solving directly max U(f1,f2,f3) using GRG, which is
xeX

(f1,f2,f3) = (2960-5487,51586-845,52783+616)

(x1,x2,x3) (3-870271,6+136885,6-881835) .
In Appendices 2 and 3, it is also listed in the case where the
other two types of proxies are selected with the same initial

€ value.

Appendix 4 summarizes the obtained results for three types
of proxy functions with several € values. Although the number
of iterations is different depending on the initial € values,
the obtained preferred solutions compare favorably with the true

optima.

Concerning the computational study in this example, we can
conclude that ISPOT will always converge to the preferred solution
of the DM under the assumption that he is consistent, rational

and has a well-defined structure of preference.
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5. CONCLUSION

In this paper a computer program for multiobjective decision
making by the interactive sequential proxy optimization technique,
which we call ISPOT, is designed to facilitate interactive pro-

cesses for computer-aided decision making.

The interaction processes are demonstrated by means of an
illustrative example under the assumption of an ideal decision
maker. In the hypothetical numerical example of this paper, the
assessments of the MRS are simulated by an ideal decision maker,

so the consistency check of the MRS becomes unnecessary.

It is necessary to apply our computer program ISPOT to real-
world case studies by a real-world decision maker by incorporating
consistency checks of his MRS assessment. From such experiences

ISPOT must be revised.

An attempt to apply ISPOT to real-world environmental prob-

lems is now under consideration and will be reported elsewhere.

Furthermore, extensions of ISPOT to the nonconvex and/or

non-smooth Pareto surface cases will be done in the near future.



APPENDIX 1: OUTPUT LIST USING THE
SUM-OF-EXPONENTIALS PROXY WITH
e = (52000,52000)
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COoMMAND?

el erhd

3

JPUT INITIAL VALUES GF EPSIRONS
52000.

52000.

o=
—

WHICH DO YoOU SELECT 7
SPOT
SPOT Y DECOMP
1
INPUT ICOUNT (= © OR 2 *MEANS START PHASE 1 OR 20
=0
X IS
7 .000000E+00 7.000000E+00 O. 0. 0.

(U SO

DO YOU USE DEFAULT VALUES IN GRG 7 (YES QR NOJ
= YES

UPPER BOUNDS ON INEQUALITY CONSTRAINTS ARE

¢ 1» 1.000G00E+0Z ¢ 2 1.000000E+30 ¢ 3

KUHN=-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00GCCGCE-03
Do YOU USE IDEAL DM 7?7 (YES OR NO)» ¢

= YES
1 Fi1) = 0.30064934E+04
2 F{2y» = 0.52000000E+03
EPC2) = 0.5200C000E+05
LAGRANGIAN MULTIPLIER = 0.22011973E+00
3 F<3y» = 0.5:2000000E+05
" EP(3> = 0.5z00000CE+03

LAGRANGIAN MULTIPLIER = 0.20118035E+00

INPUT TOLERANCE DELTA1
i STOPPING CRITERIA 1S AESCRAMOA-MRSI £ DELTA1 O
= 0.001

ITERATION= 1
S¢ 2y = -0.15368455E-01
St 33 = 0.563220568E-01
INPUT INITIAL STEP SIZE
= 1000.
INPUT ICOUNT (= 0 OR 2 :MEANS START PHASE 1 CGR I
=0

KUMN-TUCKER CONDITIONS SATISFIED TQ WITHIN 1.0000CE-33

Fr1) = 0.299735S3E+04
z Fe2y = 0.51984133E+05

EPC2) = 0.51984133E+05

LAGRANGIAN MULTIPLIER = 3.21900438E+0C
3 Fi3r = 0.32063518E+05

EP(3) = 0.3Z053%18E+0S

LAGRAMGIAN MULTIPLIER = 0.19627331E+00

INPUT ICOUNT (= 0 0R I MEaNE START PHASE 1 0OR 20

= Q

(1)
(2)

(3)

(4)
(5)

..D. .

(7)

ooooooe+3a  (8)

(9)
(10)

(11)

(12)

(13)

(14)

(15)
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FUHN-TUCRER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 FC1 = 0.2988=Z076E+04
Z Fozn = 0.319882461E+05
EP{Zy = 0.2194&8261E+05
LAGRANGIAN MULTIPLIER = 0.21794420E+00
3 F¢3) = 0.5212704zZE+05
ERPC3) = 0.5212704ZE+05
LAGRANGIAN MULTIPLIER = 0.191446771E+00
POINT= 1
M(C1s20= 0.23598820E+00
M(1+430= 0.1376&5978E+00
POINT= 2
MC1y20= 0.23567613E+00
M(1430= 0.13890895E+00
POINT= 3
MC1:.20= 0.23536407E+00
M(1+.30= 0.14015813E+00
SELECT LOCAL PROXY PREFERENCE FUNCTION FROM AMONG THE FOLLOWINGS
1 SUM QF EXPONENTIALS
Z  SUM OF POWERS-1
3 SUM OF POWERS-Z

-

LO2CAL PROXY PREFERENCE FUNCTION
PCFI=
- 0.10000000E+01*£EXPC 0.60379048E-05%F (13
- 0.18243257E-03%EXP( 0.8568565489E-04%F (Z))
- 0.38483759E-05S#*EXP( 0.14134425E-03%#F(3))
INPUT THE MAXIMUM STEP SIZE C(ALFMAX)
= 100000.
FA<LFR
INPUT ICOUNT (= 0 OR Z :MEANS START PHASE 1 OR 20
= 0

RUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-Q3

1 Fe1) = 0.29716648E+04
Z FiZry = 0.51936527E+05
EP(Z) = 0.5193&527E+05
LAGRANGIAN MULTIPLIER = 0.2159753ZE+00
3 F(33y = 0.52254080E+05
EP(3) = 0.52254080E+05S
LAGRANGIAN MULTIPLIER = 0.18213T64E+00
FA<FR ' '
INPUT ICOUNT (= 0 OR 2 :MEANS START PHASE 1 OR o0
=0

WUHN-TUCKER CONDITIONS SATISFIED 7O WITHIN 1.000C0E-GC3

1 Fely = D.2941:2617E+04
2 Fezy = 0.51873054E+05

EP(ZY = 02.51873054E+05

LAGRAMNGIAN MULTIPLIER = Q0.21258%4%E+00
3 Fc3) = 0.525081485E+05

EP:3y = DO.SIE08155E+05

LAGRANGIAN MULTIPLIER = 0.1&440332E+G0

(16)

17

(18)

19)

(20)
(21)

(22)

(23)

(24)
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Fa<Fe

INPUT ICOUNT (= 0 OR & iMEANS START PHASE 1 OR 2
=0

RUHN-TUCKER CONDITIOMS SATISFIED TO WITHIN 1.0000CE-03

Foly = 0.289:28113E+04
2 FcZ) = 0.51746104E+05

EP(Zz: = 0.517446104E+05

LAGRANGIAN MULTIPLIER = 0.20763423E+00
3 F(3) = 0.53016330E+05

EP(3) = 0.530146330E+05

LAGRANGIAN MULTIPLIER = 0.1316532Z1E+00

DO YOU FIT QUADRATIC INTERPOLATION ? (YES ©OR NO»

= NGO

INPUT ICOUNT (= 0 OR ¥ :MEANS START_PHASE 1 OR 2
- D - - . N .o

RUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.000CCE-Q03

F(1) = 0.29412617E+04
o FiZy = 0.51873054E+05
ER(Z) = 0.518730%45+05 )
LAGRANGIAN MULTIPLIER = 0.X1258549E+00
3 Fi3) = 0.535081&5E+03
EP(3) = 0.52508165E+05
LAGRANGIAN MULTIPLIER = 0.1644035ZE+00

INPUT TOLERANCE DELTA1
{ STOPPING CRITERIA IS ABSCRAMDA-MRSI < DELTA1 O
= 0.001 '

ITERATION=

S¢ 2y = -0.20906200E-01
St 3y = 0.16730337E-01
INPUT INITIAL STEP SIZE
= 100d0.
INPUT ICOUNT (= 0 OR & iMEANS START PHASE 1 OR 2
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 Fi1y = 0.294296753E+04
2 Firzy = 0.51852144E+05

EP(Z) = 0.51852144E+35

LAGRANGIAN MULTIPLIER = 0.32137464%1E+00
3 Fc3y = O8.5252491ZE+0S

EP(3) = O0.529524912E+05

LAGRANGIAN MULTIPLIER = 0.146381678E+CC

INPUT ICOUNT (= 0 OR 2 iMEANS START PHASE 1 OR 2D

=0

RUHN-TUCKER CONOITIONS SATISFIED TO WITHIN 1.00000E-03

1 Eod = 0.29447117=5+04
z Fezry o= 0.91831239E+05

EPCZY = (0.51821239E+0S

LAGRANGIAN MULTIFPLIER = 0Q.21437S128E+00
3 FiZ2r = 0.92%41&83E+05

ERP(Zy = 0.52541665E+05

LAGRANGIAN MULTIFLIER =

(W]
.
Iy
(8]
i)
(W]
b
Fa
0l
i
T
(o]
[w]

(25)

(26)

(27)

(28)

(29)
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POINT= 1
M1y = 0.233491£2E+00
M(1,3)= 0.14765315E+00
POINT= 2
M(1s2= 0.23308022E+C0O
M(1+,3)= 0.14793257E+00C
PGINT= 3
M(1220= 0.23266941E+00
M(1,3)= 0.14831200E+00
SELECT LOCAL PROXY PREFERENCE FUNCTION FROM AMONG THE FOLLOWINGS
1 SUM OF EXPONENTIALS
2 SUM OF POWERS-1
3 SUM OF POWERS-Z

-

LOCAL PROXY PREFERENCE FUNCTION
P(F=
- 0.10000000E+01*EXPt 0.90381286E~-Q4%#F (1))
- 0.65224747E-QZ+EXPC 0.756915507E-04%F (2
- D.69778974E-04*EXPC 0.14225485E-03%F (33 )
INPUT THE MAXIMUM STEP SIZE C(ALFMAX:
= 100000.
FALFE
INPUT ICOUNT (= 0 OR 2 iMEANS START PHASE 1 OR 23
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.0000CE-03

1 F(1) = 0.29483003E+34
= F(2) = 0.517894Z9E+05
EP(Z) = 0.517894Z9E+35 7
LAGRANGIAN MULTIPLIER = 0.21734549E+00
3 F(3) = 0.32575163E+05
EP(3) = 0.S5I575165E+5
LAGRANGIAN MULTIPLIER = 0.16206%903E+00
FA<FE
INPUT ICOUNT (= 0O OR I fMEANS START PHASE 1 OR 7
=0

KUHN-TUCKER CONDITICNS SATISFIED TO WITHIN 1.C0C0QE-G3

1 Fi1) = (Q.29558979E+04
2 F(2) = 0.51705804E+05
EP¢CZ)» = 0.51705804E+05
LAGRANGIAN MULTIPLIER = 0Q.zZZZZZS00E+CO
3 Fe3s = 0O.ZS2642183E+05
EFPC3s = (0.S2642165E+05
LAGRANGIAN MULTIFLIER = 0.15975047E+00
FadFe
INPUT ICOUNT (= 3 QR X iMEANS START PHASE 1 OR )
=0

RUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.000CGCE-G3

1 Fc1y = §.29728013E+04
= Fo2y = 0O.51538554E+05

EPc2y = 0.212385354E+05

LAGRANGIAN MULTIPLIER = 0.23238844E+00
3 Fi3s = §.327758171E+05

EP(3) = 0.32776171E+05

LAGRAMNGIAN MULTIPLIER = 0.1592459ZE+00




Fa<LFB
INPUT ICOUNT (=
=0

KUHN-TUCKER CONDITIONS SATISFIED

1

P

DO YOU FIT QUADRATIC INTERPOLATION 7

= NO

" INPUT ICOUNT (=

=0

KUHN-TUCKER CONDITIONS SATISFIED

INPUT TOLERANCE
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O OR Z :MEANS START FHAGSE 1 OR 22

Fe1y = 0.3013763ZE+04
F(Z) = 0.51z204035E+05
EP(Z) = 0.512040S5E+05
LAGRANGIAN MULTIPLIER =
F(3» = (0.53044177E+05
EP(3> = 0.53044177E+05

LAGRANGIANM MULTIPLIER =

TO WITHIN 1.00000E-03

0.25473020E+0Q

0.14647168E+00

CYES OR N

0 OR Z :iMEANS START PHASE 1 OR =0

Fi1d = 0.29728013E+D4
Fiz2) = 0.51538554E+05
EP(Z)Y = 0.51538534E+05
LAGRANGIAN MULTIPLIER =
Fi3> = 0.32776171E+Q05
EP(3) = 0.952776171E+03

LAGRANGIAN MULTIPLIER =
DELTA1

T WITHIN 1.00000E-03

0.23238844E+00

0.153524392E+00

¢ STOPPING CRITERIA 15 AEBSCRAMDA-MRSI < DELTA1 O

= 0.001%

ITERATION= 3
o S¢ 2y =
S¢ 32

0.5474%2158E-0Z
0.23222167E-02

INPUT INITIAL STEP SIZE

= 1000.
INPUT ICOUNT (=
=0

KUHN-TUCKER CONDITIONS SATISFIED

9}

INPUT ICOUNT (=

P
8]

0 OR 2 iMEANS START PHASE 1 OR 20

F¢i = 0.29711703E+04
Fo2) = (0.51544028E+05
EP(2) = 0.31544023E+05
LAGRANGIAN MULTIPLIER =
Fi3n = 0.52778490E+05
EF¢3)» = 0.,52778490E+13S

LAGRANGIAN MULTIPLIER =

TO WITHIN 1.00000E-03

0.231819=2:2£+00

0. 15438516E+00

g0 OR 2 tMEANS START PHASE 1 OR I
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KUHN~-TUCKER CONDITIONS SATISFIED TO WITHIN 1.0000CE-03

1 Fe1d = 0.29695441E+04
= Frzy» = (0.51549501E+05
EPCZ) = 0.51549501E+0%
LAGRANGIAN MULTIPLIER = 0.23125249E+00
3 Fc3> = 0.32780815E+05
EP(3> = (0.52780815E+05
LAGRANGIAN MULTIPLIER = 0.15452559E+00
POINT= 1
Mcis2d= D.22691353E+00
MC1:3)= 0.15292369E+00
POINT= 2
MCis20= L 22702120E+Q0
M(1+30= 0.15296937E+00
POINT= 3
M(is20= D.22712887E+00

M{1+3)= 0.15301503E+00

SELECT LOCAL PROXY PREFERENCE FUNCTION FROM AMONG THE FOLLOWINGS
SUM OF EXPONENTIALS

SUM OF POWERS-1

SUM OF POWERS-Z

1
-

L P I S

LOCAL PROXY PREFERENCE FUNCTION
PLFI=
- 0.10000C0OGE+01*EXP( 0.4798922ZE-D4*F (1))
~ 0.41699363E-02*EXP( 0.72349655E-04#F (20
- D0.59680%42E-03*EXP( 0.94875566E-04%*F (31
INPUT THE MAXIMUM STEP SIZE (ALFMAX)
= 100000.
FALFR
INPUT ICOUNT (= 0 QR & :MEANS START FHASE 1 OR 2D
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.0000CE-03

1 Fel1y) = 0.296630Z1E+04
2 Fitzy = 0D.51560453E+05
EPtZ) = 0.515604533E+05
LAGRANGIAN MULTIPLIER = 0.22012344E+00
3 Fc3) = 0.327854359E+05
EP(3» = 0.5278%439E+05
LAGRANGIAM MULLTIPLIER = O.15380954E+00
FA<LFE
INMPUT ICOUNT (= O GR & iMEANS START FHASE 1 OR 2D
=0

RUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-D3

Tl = 0.29598650E+04
z F(Z) = D.51582351E+05

EP(Z) = (0.51382351E+05

LAGRANGIAN MULTIPLIZER = 0.I227&%8337E+00
3 FiZ: = 0.92794744E+05

EP(3) = G.52774744E+05

LAGRANGIAN MULTIPI_IER = .15239030E+10
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FA<LFR
INFUT ICOUNT (= O OR Z :MEANS START PHASE 1 OR 2
=3

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

Fody = 0.29471747E+04
P F(z) = 0.51626152E+05

EPCZy = 0.516Z26152E+05

"LAGRANGIAN MULTIPLIER = 0.32348971E+Q0
3 F(3» = 0.528133:7E+05

EP(3y = 0.528133:7E+05

LAGRANGIAN MULTIPLIER = 0.1496009%E+00

DO YOU FIT QUADRATIC INTERPOLATION 7 (YES QR NO) @
= NO

INPUT ICOUNT (= 0 QR & :MEANS START PHASE 1 OR 20
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 Fe1) = 0.293984650E+04
2 Fe2y = 0.51582351E+05 h B
EP(Z) = 0.515382351E+05
LAGRANGIAN MULTIPLIER = Q.227885%87E+00
3 F(33 = 0.22794746E+05
EPC3) = 0.52794746E+05
LAGRANGIAN MULTIPLIER = Q.1523%030E+30

INPUT TOLERANCE DELTA1
{ BTGPPING CRITERIA IS ABRSCRAMDA-MRS] < DELTA1
= 0.001

THE FOLLOWING VALUES ARE YOUR PREFERRED SOLUTION

PREFERRED VALUES OF OBJECTIVES :

Fili= 0.29598630E+04
F{2y= 0.51582351E+035
F(3)= 527947 46E+D5

PREFERRED VALUES OF VARIABLES :

X 1i= 0.38478084E+01
X0 2= 0.61440117E+01
X( 3= 0.68880&840E+01

DIRECTION VECTOR IS @

Sc2y= 0.111000Q94E-03

i

(2= -0.89873817E-03

ABSOLUTE VALUES OF WHICH ARE LESS THAN TOLERANCE DELTA1 =

@]

a
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COMMAND?
= SPOT
INPUT NUMBER OF OBRJECTIVES
= 3
INPUT INITIAL VALUES OF EPSIRONS
= 52000.
= 52000.
"WHICH DO YOU SELECT 7
1 SPOT
2 SPOT BY DECOMP
=1
INPUT ICOUNT (= O OR I :MEANS START PHASE 1 OR
=0
s e - _ e .
7 .000000E+00 7.000000E+00 O. 0. a.

DO YOU USE DEFAULT VALUES IN GRG 7 (YES OR NO)
= YES

UPPER BOUNDS ON INEQUALITY CONSTRAINTS ARE
¢ 1) 1.000CAO0E+02 ¢ 2 1.000000E+30 32

RUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00CO0E-C3
DO YOU USE IDEAL DM 7 (YES OR NO)»

= YES
1 Fd1) = 0.30064934E+04
2 Fizy = 0.52000000E+05
EP(Z» = 0.52000000E+05
LAGRANGIAN MULTIPLIER = 0.2:011975E+00
3 Fi3y = 0.52000000E+05
EP(3) = 0.52000000£+05
LAGRANGIAN MULTIPLIER = 0.Z0118035%E+00

INPUT TOLERANCE DELTA1
{ STOPPING CRITERIA IS AEBSCRAMDA-MRSI < DELTA1l
= 0.001

ITERATION= 1

SC -0.158468455E-01
St 2 0.63520568E-01
INPUT INITIAL STEP SIZE
= 1003.
INPUT ICOUNT (= 0 QR T iMEANS START PHASE 1 OR 2)

=0
KUHN-TUCKRER CONDITICMS SATISFIED Ta WITHIN 1.3500C2E-03

1 Fely = 0.29973552E+04
< Fizy = 0.519841335+05

EPCZ) = 0.51984133E+05

LAGRANGIAN MULTIPLIER = Q.21900438&5+00
3 Fe2y = 0.52083518e+05

EP(3y = 0.3Z06351&E+05

LAGRANGIAN MULTIPLIER = QO.19527351E+00

INPUT ICOUNT (= 0 OR 2 :MEANS START PHASE 1 OR I

=0

1.000000E+30
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WUHN-TUCKER CONDITIGNS SATISFIED TO WITHIN 1.90000E-03

Fi1) = (0.Z988S07&LE+04
e Fezy) = 0.519682461E+05
EP(2) = (0.519682461E+0S
LAGRANGIAN MULTIPLIER = 0.21794420E+00
3 F{3D = 0.52127042E+05
EP(3) = 0.52127042ZE+05
LAGRANGIAN MULTIPLIER = 0.191446771E+00
POINT= 1
M(1e2)= 0.23598820E+0Q0
M(14302= 0.13765%978E+00
POINT= 2
Mi{ls2)= 0.23567612E+Q0
M(1+43)= 0.138%0895E+00
POINT= 3
MC1s2)= . 23536407E+00
M({1430= 0.14013813E+00

SELECT LOCAL PROXY PREFERENCE FUNCTION FROM AMONG THE FOLLOWINGS
SUM OF EXPOMENTIALS

SUM OF POWERS-1

SUM OF POWERS-2Z

(L N I S

<

LOCAL PROXY PREFERENCE FUNCTION
P(Fa=
" - 0.10000000E+01#(F(1)#*({ 0.10151939E+01) Y
- 0.34029880E-22#(F(Z)%**( 0.54870799E+01))
- 0.36150294E-36* (F(3)#*( 0.83616983E+013?
INPUT THE MAXIMUM STEP SIZE (ALFMAX)
= 100000.
FA<LFB
INPUT ICOUNT (= 0 OR T IMEANS START PHASE 1 OR ¥
=0

RUHN=TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 F(1) = 0.29716648E+04
b Fczy = 0.51936527E+05
EP(Z) = 0.519365z7E+05
LAGRANGIAN MULTIPLIER = 0.21597532E+00
3 F(3) = 0.52254D80E+05
EP(3) = 0.92254080E+0S
LAGRANGIAN MULTIPLIER = 0.18213264E+00
"FALFER o S
INPUT ICOUNT (= O OR & :MEANS START PHASE 1 0OR 29
=0

RKUHN-TUCKER CONDITIONS SATISFIED TG WITHIN 1.0000CE-03
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1 Filn = J0.29412617E+04
= F¢zy = 0.51873054E+05
EPCZ) = 0.51873054E+05S
LAGRANGIAN MULTIPLIER = 0.2125854%E+00
3 F(3)» = 0.52508165E+05
EP(3) = 0.5Z508165E+0GS
LAGRANGIAN MULTIPLIER = 0.1644035ZE+00
FALFB
INPUT ICOUNT (= 0 OR 2 sMEANS START PHASE 1 OR )
=0

"KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 Fc1y ="~ 0.28928113E+04
2 Fezy = 0.51746104E+0S
-EP(Z) = 0.51746104E+05
LAGRANGIAN MULTIPLIER = 0.20763425E+00
3 - Fi3) = 0.53016330E+05 )
EP(3> = 0.533016330E+05
LAGRANGIAN MULTIPLIER = 0.131635Z1E+00
FALFB
INPUT ICOUNT (= 0 OR 2 :MEANS START PHASE 1 OR 20

=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.0000CE-03

1 Fi1) = 0.284:21184E+04
2 CFCZY = 0.5149Z208E+05

EP(ZY = 0.51492208E+05

LAGRANGIAN MULTIPLIER = 0.20330934E+C0
3 - F(3) = 0.54032660E+05

EP({3) = 0.54032660E+05

LAGRANGIAN MULTIPLIER = 0.709258%0E-01

DO YOU FIT QUADRATIC INTERPOLATION 7 (YES OR NO) @
= NGO ! T

INPUT ICOUNT (= 0 OR X iMEANS START PHASE 1 OQOR 2
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 Fi1y = 0.28928113E+04
2 Fczy = 0.51746104E+05

EPCZY = 0.51746104E+05

LAGRANGIAN MULTIPLIER = 0.20763425E8+00
3 Fe3y = 0.53016330E+05

EP¢(3) = 0.53016330E+05

LAGRANGIAN MULTIPLIER = 0.13145321E+20

INPUT TOLERANCE DELTA1
( STOPPING CRITERIA IS AESCRAMDA-MRSI < DELTA1
= 0.001

ITERATION= =Z
S¢ ) = -0.233460922E-01
St 3y = -0.23991379E~-T1
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INPUT INITIAL STEP SIZE

= 1000. '

INPUT ICOUNT (= 0O OR 2 :MEANS START PHASE 1 OR 20
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00C00E-03

1 Fc1y = 0.29011456E+04
2 Fez2y = 0.51722741E+05

EP(Z) = (0.31722741E+05

LAGRANGIAN MULTIPLIER = 0.21021423E+00
3 Fc3y = 0.52990335E+05

EP(3) = 0.52990336E+05

LAGRANGIAN MULTIPLIER = (0.13409635ZE+0C

INPUT ICOUNT (= 0 OR 2 iMEANS START PHASE 1 OR 2)

=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

. 1 Fie1y = 0.29096C40E+04
2 F(2) = 0.51699384E+05
EP(Z) = 0.51699384E+0S
LAGRANGIAN MULTIPLIER = 0.21283214E+00
3 Fc3» = 0.52964346E+05
EP(3) = 0.52954346E+05
LAGRANGIAN MULTIPLIER = (Q,13656845E+00
PGINT= 1
MC1s2)= 0.23099517E+00
M(1:3)= 0.15764659E+00
POINT= 2
M{1,2)= 0.230535746E+00
MC1,3)= 0.15713545E+00
POINT= 3
Mi1s20= 0.23007636E+00
M(1,3)= 0.15662431E+00

SELECT LOCAL PROXY PREFERENCE FUNCTION FROM AMONG THE FOLLOWINGS
SUM OF EXPONENTIALS

SUM OF POWERS-1

SUM OF POWERS-Z

[N S

e

LOCAL PROXY PREFERENCE FUNCTION

P(FI=
— 0.10000C00E+01*(F(1>%*%( 0,109Z27863E+31)")
- 0.11082917E-18#(F(ZH)*%( D.4817524SE+01))

- 0.97958036E-30% (F(3)4%( 0.70783073E+01))
INPUT THE MAXIMUM STEP SIZE (ALFMAX)
= 100000.
FALFER _
INPUT ICOUNT (= 0 OR & :MEANS START PHASE 1 OR I
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00CCCE-C3
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1 Fc1y = 0.292690:9E+04
P FC2y = 0.516524539E+05
EP(Z) = 0.51652659E+05
LAGRANGIAN MULTIPLIER = 0.2181954Z2E+00
3 Fi3y = 0.529123463E+05
EP(3) = (0.352912363E+05
LAGRANGIAN MULTIPLIER = 0.141561044E+00
FA<FE
INPUT ICOUNT ¢= 0 QR 2 :MEANS START PHASE 1 OR 2
=0

RUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 F(1> = 0.29630772E+04
Z Fiz) = 0.51559219E+0S
ERP(Z) = 0.51559219E+05
LAGRANGIAN MULTIPLIER = Q.I22947213E+00
3 F(3» = 0.52808396E+05
EP(3) = 0.52808394E+05
LAGRANGIAN MULTIPLIER = 0O.15213292E+00
FA<FE
INPUT ICQUNT (= 0 OR 2 :MEANS START PHASE 1 OR 20
=0

RUMN-TUCKER CONDITIONS SATISFIED 7O WITHIN 1.00000E-03

1 Fc1y = 0.30422567E+04
2 F(2y = 0.313723Z8E+05

EP(2) = 0.51372328E+35

LAGRANGIAN MULTIPLIER = 0.235478762E+00
3 F(3y = 0.52600458E+05

EP(3) = 0.52600468E+0S

LAGRANGIAN MULTIPLIER = 0.175339427E+00

DO YOU FIT QUADRATIC INTERPOLATION 7 (YES OR NO) =
= NO

INPUT ICOUNT (= 0 OR 2 :MEANS START PHASE 1 OR 23
=0

KUHN=TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 Fi1y = 0.29630772E+04 o
2 Fcz) = 0.51559219E+05S

EP(2) = 0.5133921%E+0S

LAGRANGIAN MULTIPLIER = 0$.I2Z2947Z213E+00
3 F¢3y = 0.52808395E+0S

EP(3» = 0,52808395e+0%

LAGRANGIAN MULTIPLIER = 0.15Z13292E+0C

INPUT TOLERANCE DELTA1
{ STOPPING CRITERIA IS ABSCRAMUA-MRSZ < DELTA1
= 0.001

ITERATION= 3
Sc 2y = Q.21S22287E-0Z
S¢ 3y = -C.14245% 44502
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INPUT INITIAL STEP SIZE

= 1Q000.

INPUT ICOUNT (= 0 OR & :MEANS START PHASE 1 OR 2
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 F(1) = 0.296Z8003E+04
2 FcZy = 0.51561346%9E+05
’ EP(2) = 0.51561369E+05
LAGRANGIAN MULTIPLIER = 0.22932912E+00
3 Fi3» = 0.52806972E+05

EP(3) = 0.52806973E+05
LAGRANGIAN MULTIPLIER = 0.1521683ZE+00
INPUT ICOUNT (= O OR 2 :MEANS START PHASE 1 OR IV
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 Fr1y = 0.29625236E+04
2 F(Z) = 0.851563520E+05
EPCZ) = 0.51563520E+05
LAGRANGIAN MULTIPLIER = 0.22918623E+00
3 Fc3o = 0.52805%50E+05
EP(3)> = 0.52805550E+05
LAGRANGIAN MULTIPLIER = 0.15220374E+00
POINT= 1
M(1:2)= 0.22731990E+Q00
M(1:3)= 0.15355748z+00
POINT= 2
M(1+y20= 0.2273&223E+00
M(1,3)= 0.133529446E+00
POINT= 3
M(1s20= 0.22740455E+00
M(1.30= 0.15350145E+00

SELECT LOCAL PROXY PREFERENCE FUNCTION FROM AMONG THE FOLLOWINGS
SUM OF EXPONENTIALS

SUM OF POWERS-1

SUM OF POWERS-Z

W~

s

LOCAL PROXY PREFERENCE FUNCTION
P(F)=
- 0.10000000E+01*(F(1)*%¢ 0.1Z2622024E+C1)D
~ D.27818301E-18#*(F(Z)#**( 0,48707072E+01))
- 0.10329376E-36#(F (31#%( 0.%675S08ZE+01)
INPUT THE MAXIMUM STEP SIZE (ALFMAX)
= 100000.
FALFR
INPUT ICOQUNT (= 0O OR Z IMEANS START PHASE 1 OR 0
= 0

KUHN-TUCKER CONDITIONS SATISFIEDR TO WITHIN 1.30000E-03
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1 Fi1y = 0.29419715E+04
2 Fezy = D.51567825E+05
EPCZ) = 0.51567825E+05
LAGRANGIAN MULTIPLIER = 0.22890074E+00
3 Fi3) = 0.5280:598E+05
EP¢3) = 0.5Z80:4698E+0S
LAGRANGIAN MULTIPLIER =  0.13227460E+00
FA<LFB
INPUT ICOUNT (= 0 OR T :MEANS START PHASE 1 OR 0
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.0000CE-Q3

1 Fc1dy = 0.29608714E+04
2 F(zy = 0.51576432E+05
EPt2) = 0.51576437E+05
LAGRANGIAN MULTIPLIER = 0.XZ833104E+00
3 T Ft3y = 0.52796999E+05S
EP(3) = 0.52796999E+0S
LAGRANGIAN MULTIPLIER = 0.15241656E+00
FA<LFE
INPUT ICOUNT (= 0 OR & tMEANS START PHASE 1 OR 20
=0

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00000E-03

1 Fii1d) = 0.29586884E+04
2 F(Zy = 0.51593651E+05
EP(Z) = 0.515934651E+05
LAGRANGIAN MULTIPLIER = 0.22719674E+00
3 Fc3) = 0.52785607E+05
EP(3) = 0.52785607E+0S
LAGRANGIAN MULTIPLIER = 0.15270131E+020
FA<FE
INPUT ICOUNT (= 0 OR 2 iMEANE START PHASE 1 OR 2
= ’ ’

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.0000CE-03

1 Fe1y = 0.29543904E+04
2 Fezy = 0.51628083E+05

EP(2Y = 0.51628088E+05

LAGRANGIAN MULTIPLIER = 0.2I494791E+0C
3 Fi(3)> = 0.52762813E+0S

EP(3) = Q.5276Z813E+05

LAGRANGIAN MULTIPLIER = 0.153:27422E+00
0O YOU FIT QUADRATIC INTERPOLATION ? ¢YES OR NOi
= NO
INPUT ICOUNT (= 3 OR & :MEANS START PHASE 1 OR &
=0

RUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.0C000E-03
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1 FC1) = 0.:29586884E+04
2 FO2d = 0.515934651E+05
EP(Z) = 0.51593451E+05 .
LAGRANGIAN MULTIPLIER = 0.2Z719674E+00
3 Fi3> = 0.52785607E+05
EP(33 = (0.5Z785607E+05
LAGRANGIAN MULTIPLIER = 0.15270131E+00

INPUT TOLERANCE DELTA1
¢ STOPPING CRITERIA 1S5 ABSCRAMDA-MRSI <€ DELTA1
= 0.001

THE FOLLOWING VALUES ARE YOUR PREFERRED SOLUTION

PREFERRED VALUES OF OBJECTIVES :

Flla= 0.29586884E+04
Fiza= 0.51593651E+05
F(3)= 0.52785607E+05

PREFERRED VALUES OF VARIABLES :

XC 1)= 0.38659955E+01
Xt 2= 0.61234810E+01

X< 3?? 0.68961587E+01“
DIRECTION VECTOR IS

Siz2o= -0.80036551E-03
Sct3)= -0.40793175E-03

ARSOLUTE VALUES OF WHICH ARE LESS THAN TOLERANCE DELTALl = 0.J0100



APPENDIX 3: OUTPUT LIST USING THE
SUM-OF-LOGARITHMS PROXY WITH
e = (52000,52000)
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ajllmE ey ST
MUMEe A T

INPUT INITIAL VALUES OF SPSIRGNS
= S2000
= 5100G.

WHICH 70 Yo SZLECT 7
SPOHT
SPOT 2Y ZEChMP

o

4 O Qs

C) U3

Lo
]
(5]
Q
.
=
=1
]
(w3
T
3%
:é
m
>
i
[}
-
>
R}
-
a
o
>
47}
m
-
.-I
ta

F O I | I U

7 .000C0OCE~+CC 7.SGCCC0E+20 O, 0. 0. 3.

DOOYOU USE DEFAULT VALUES IN GRG 7 (YES DR NGY

- o) -
- e

.
IIPRER

sl

WITHIN 1.50000E-03

0.30064934E~-C4

= = 3.5Z000C30CE+CS
EP2y = T,52000053E+45
LAGRANGIAN MULTIRLIER =
3 Fi3y =

J.SZCCCCooE~CS
EP 3" = §.S200000CE~D3
LAGQRANGIAN MULTIPLITFR




-4~

! = ¢ 2

s sz = 3
=20y =0
LAGRANGIAN

= T(3 = o,
ERP(32) = 3
LAGRANGIAN

D.23E62820T+C0
0.237&59782+00

C.23557513E+00
J.1239CE92E+00

D.23536407E+50
0.14015813E+00

SEMNCE FUNCTION FROM aMdRk3

=

3
NPUT ValUE JF MoeI) SUCH THAT MiIxX-F{Is>
1

15600,
23
100000.

-

1DDDDD.

W T e

> 0

W

FUNCTION

LOCAL PROXY
BiTy=

QE(MC1HY-F 1))
LOG(M(Z3=-F iz
LES(MO3I=F (3
EIZE (ALF™MAX)

I.
=2
1,

£
e
;

i oL A
b - v oA =
s .z =5
5.2 &S
= oM TLE 0LIISPTSILEADT
- 2 c. A
=~ = o
~AE T L ISZITIEAEIT
FALFE
INPUT =3 0= T OR T
= 3
: -t T oWIT=IN




-2~

! = C.I¥a1ZsiTIele
= 2 0=
( 7305
LAG MULTISUIER = 0L 140585495+00
- —— +==
= [N ] M- S -2
EPf3) = C.523031655+4C3
CAGRANGIAN MULTIFLIER = 0. 1444703525400

ICOUNT (= 0 OR 2 sMEANS START #HASES 1 ORI

HUHN-TUCKER CONDITIONS SATISFIED 7O WITHIN 1.00350CE-03

[y

0.28528413E+24
D.5317451042+05

0.51746104E+03
AN MULTIPLIER = D.I07&3455E-C0
3 .3301633C5+53

S3IRMS3IZ0ELTE
1AM MULTIPLIER = D.43145521E400

CONDITIONS SATISFIZD TO WITHIN +.300

1 Fotn
ERcZy =
LAG'A'GIAN “UL—‘- = CFa4E+00
2 F2) = S4L03 )
EP(3: = J,‘AU 'ug_E*d
LAGRANGIAN MULTISLIZR C.70R25850E8~01
TERPOGLATION ? « : :

30 VO FIT SUADRATIC IN

[

FUT ICOUNT (= 0 OR I 1MTANS START FRAZE
= 3

RUHN=TUCKER CONDITIONS SATISF

iy e
(i}
Y RV ]

ol Conora i3]
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-3, 23356552280
-0.3375413795-01

Ir ZTEP 512=2

Ih {= 0 SR Z MEANE START PHAZE 1 (R o0

HURN-TUCKER CONDITIONS SATISFIED T WITHIN 1.00CEGCE-C3

)
]

—~
1
|

Fily = D.2901143&E+C
7::741E+55

74 iE+03

LAGRANGIAN MULTIPLI:R = 0.2i0214232+00
2 Fe3% = 0.33990334E+05

EP(3) = 0.5299033eE+05
LAGRANGIAN MULTIPLIER = O.1340953IE+00
INPUT ICOUNT (= J OR 2 IMEANS START PHASE 1 OR )
=9

WUHN=-TUCKER LOND TISFIZED TO WITHIMN 1.00CCLE-S3

1 D.Z2F094CLO0E+D4
2 ( T.51599334E+25
EF(TY = D.S5:4A5F384E+0S
LAGRANGQIAN MULTIPLIER = D.I1XX3314LE+00
3 Fi3y = C.SI954T4£E+CS
EPI3Y = $S.E268834468+05
LAGRANGIAN ML TIRLIZR = T.1346S£8450+00
POINT= 1
M(1.20= 0.23099317=+50
M{is30= 0. 13724553 2+00
PCINT= 2
(120 = 0.2305337&2+00
Mt1,30= D127 1324352+C0
FOINT= 3
M({1,20= Q.230074&3LE+20
MCiy30= Q. 135&824312+00
SELECT LCCAL PROXY PREFERENTT FUNCTION FROM AMONG THI SOLL0nINES
4 SUM CF ZXPONENTIALS .
= SUM OF POKERT-
s SUCH TRAT Mcldx-=F:il:>2
hald
P"I [

R4

il
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+ 0.12

+ DLi%

+ G, i0aAZ83E+3 S 2
INPUT THE maXIMUM STZP SIZE TAL

1u5r00.

-
.

o+ TV
“I

ALFE
pUT ICCGUNT = Q
a
KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.00CZC=-035

0.z9z69027E+04

= = J.S 14324835

= S1652455

GIAN MULTIFLIER = C.Zi1849S4ZE+CO
3 = (C.S294123&ZE+0S

=

EP(3) = O.3ZF91Z3LEIE+CE
LAGRANGIAN MULTIFLIER = 0.141&61C044E+100

= 0 0OR 2 MEANS START PRAZE 1

Er CONDITIONS SATISFIED TO WITHIN 4.C00CC2E-C3

1 0.2543CT7IE+04
z ; = 0.51559215E+315
= = 0.3155921%E+C5
LAGFANGIAN MULT 3.
2 F(3r = 0.3283
ZP¢3) = 0.5235E3
LAZRANGIAN MULTIPLIER = 2,131.32522+0C
FagrR
INPUT ICOUNT (= 0 OR 2 MEANS START PHASE 1 03 U

RUHN-TUCKER

==

(=1

1z

et &=

2 Em
Jul=l

=

P

--T 2
-5 i

ra

INPUT IZOUNT (= 2 OR I $MEANS START PHASE
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LA TANGT C.22947212E+GT
3 Fi3 =
EP¢3y =

LAGRANGIAN MULTIPLIER
INPUT TOLERANCE uEh. i
{ STGPPING CRITERIA IS AESCRAMDA-MRS] < DELTAY 2
= 0.001

C.1521329ZE+C0

ITERATICN= 2
S 2y = 0.21522267E~-02
S 3 = —-0.142453544E-02
INFUT INITIAL STERP SIZt
= 1000.
INPUT ICOUNT (= 0 OR I iMEANS START PHAZE 1 ©R 23
=0

WURN-TUCKER CONUITIONE SATISFIED TGO WITHIN 1.30C00E-03

0.255280035+34

]

z = 0,313413652+35

) = 0.3155134FE~T3

ANGIAN MULTIPLIER = J.ZI93IZ91ZE+CD
2 = D0.,3Z80&373E+05%

i

33 =  3.5I8G&972E+0
ANGIAN MULTIPLIER 5.13218832E~00
2 MEANS START PHASE 1 GR =9

INPUT ICOUNT (=

=0

KUHN=TUCKER CONDITIONS SATISFIED TH WITHIN 4,.000GIE-T3

L Fild
= =2

Pz

LAaGRARN 0.Z2918&Z3E+00
) F3D

5:':('1‘

LAGRAN! D13 2203742+

POINT= 1

TICGN FROM AMONG THE FOLLOW

-
waiNGS



= 13C0C5.

M3z

= 100DCGC.

LOCAL PROXY PREFERENCE FUNCTION
OrFy =

+ 3.1
+ 0.1
+ 0.t

GrMe

S3E48E52E+01 ¥
INPUT THE MAXIMuM
= 1000CGC.
FaLFE

INPUT ICOUNT IMEANS

t= 3 0OR Z

]
o

CONDITIONS

n

p 1y = 0.2
= sozy o= 0.8
EP(2Y = D.S
LAGRANGI ™

3 Fe3y = D =
EP¢3) = 0.5:&

N o™

LAGRANGIA

FA<F2
INFUT

=0

ICOUNT (= G

KUFN=-TUCKER CONDITICHS

4 - oo
- TL.25siD
- m =z
< detazd
™ = Ax7
C.3157
NOMULT
- - ==
- PR g F Y
Z.527
AT L
= . =
AN T .
T gD T i i =A.
LaEUT LOOUNT SAND
= dJ
SUEN=TLOEER LT
B -~ o=
- 38 R S |
: n.3.23
2.313%
AN MUY
= - S vE
- [P e el
~ .-z
e S
o T

START PHASE

ATISFIED ToO

R RN
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DCCG”DDE+O;*L0G(M(1)—FC113
3 Zr-EO2y
3298OCDE+O;*LOthCE)—FiE}7
STEP 31IZ: (ALF

"AXD

1 GR 29

ITHIN 1.GOCOCE~-CS3

WH 4+ oA+
) 3

_I-
l
‘|

-
T

I
0]
m
o

+
[
+~

C.223331CsE+CC

x
I

a2z

3z

Ay

-

a3

P 7
_ 3.

&0
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TLOUNT = 0 R 2 O IMEANT ST ART PRASE 1 GR 2D
KUEN~-TUCKER CONDITIGNS SATISFIZD T WITSINW L, IIZZ0SZ-03
1 :(1 = {J.27343
2 Fiz = $,315CZ8
0.31&8248
Ak MLLTI D.:224%4791E+C0
3 0.32762
gP«3y = J.327&2

LAGRANGIAN MULTIP
DO YOoU FIT GUADRATIC INTEZRPOLATION
= NO
INPUT ICOUNT (= 0 CR T IMEANS START PHASE 1 OR 2)
=0

zr

IZR = D.13327422E+CD
?7 (YEE OR NOJ :

KUHN-TUCKER CONDITIONS SATISFIED TO WITHIN 1.000C0E-23

1 = J.Z738&284Z+04
2 = 32.518F3s51E+05
= 0.5159365312+C3

LA-P#NGIAN MULTIPLIER = T,.IZ274557T2+30
2 Ft3) = 0.52735507E+05

EP(3} 0.52785607E+G3

LAGRANGIAN MULTIPLIER = (,1S270131E+00
INPUT TOLERANCE DELTA1
{ STCPFING CRITERIA I3 ARSIRAMDA-MREI < DELTA1
= 0,20

TEE FOLLOWING VA&LUES ARZ YOUR FREFERREZC SOLUTION
FREFERRED VALUES 4F 92JECTIVES @

u

4]
m

]
T
P
i)
M
L]
(
L _
in
1y
mn
<Z
P
A
(%]
b
o
i
m
w

s P S TS LT T OET T A

{v 1= CLEEEISFI I~ 00
= - L4707 -z

X o= SeElLZan iz

< g LmC L A= aT— . -

¢ 3= 0.589481287=2+301

ey = - ————— =

CIRECTZION WIZIITIR IS 8

ST = . Emm LTS 4 A=

Stas= e D S LTS

SRy = —_ LoD AT e T

=1 Zi= 2L ADTRILTII-IC
pTT s iTE T =TT 3T TIT Tt - TIs.TT Tz
-z Yallz a=I12H &rZ _ZZ = JnRae [ I = _ T -




APPENDIX 4: THE PREFERRED SOLUTIONS
OF THE DM FOR THREE TYPES OF PROXY
FUNCTIONS WITH SEVERAL STARTING POINTS.
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Table A.1
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(52000,52000)

Initial value ¢

Sum-~of-

Sum-of~-powers

| 52785, 607

3.9478086

6. 1440117

6.12348 |0

6.8880640

a8§§|587

6.8961587

~%.003655] x |6*

- §.0036 55 X |5*

53

—89873817 xlo*

~4,0743)75 X 10*

~4.0743175 x 10%

Number of

Iterations




Table A.2

Initial Vvalue ¢ =

_50_

(53000,53000)

52'786 ol'7

33655ISE

61464048

61464048

6. 1432847

6.88 74055

655Thoss

68187927

21102292 x |0*

2.1102292 X Is*

2‘?06Hosx IO“

S

-49.795526] xI0*

~9.795526] x16*

—1,0825954 X 10

Number of

Iterations




Table A.3

Initial Value ¢

-51-

(54000,54000)

exponentials

Sum-of-powers

2960, 3544

2960.3544

” 52789, 340

|| 38587421

1419207

BULNEE

61419207

6.8838118

é{ééégllgw,

68538118

|.306]003 x |0*

|.306] 003 X 0%

I.306|003 X I07%

Ss

-4.375577¢6 X lo*

— 4 3755776 x 16%

—4.3755776 x |o*

Number of
"Iterations

T




Table A.4

Initial Value ¢ =

-52-

(54000,50000)

~Sum=-of- .
exponentials

3.86l0440

61449553

6144953

§.8798115

6879815

6.§963159

3.2T6416) X 10

33768161 x10°

- 6,5;3"’73 69 X10%

53

-2,8382870 x 10°*

~2.§352870 x 107%

_7.367026] X 10*

Number of
Iterations
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