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Abstract

We study the incentives that agents have to invest in costly protection against cascading
failures in networked systems. Applications include vaccination, computer security and air-
port security. Agents are connected through a network and can fail either intrinsically or as
a result of the failure of a subset of their neighbors. We characterize the equilibrium based
on an agent’s failure probability and derive conditions under which equilibrium strategies
are monotone in degree (i.e. in how connected an agent is on the network). We show that
different kinds of applications (e.g. vaccination, malware, airport/EU security) lead to very
different equilibrium patterns of investments in protection, with important welfare and risk
implications. Our equilibrium concept is flexible enough to allow for comparative statics in
terms of network properties and we show that it is also robust to the introduction of global
externalities (e.g. price feedback, congestion).
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1. Introduction

Many systems of interconnected components are exposed to the risk of cascading failures.
The latter arises from interdependencies or interlinkage, where the failure of a single entity
(or small set of entities) can result in a cascade of failures jeopardizing the whole system. This
phenomenon occurs in various kinds of systems. Well-known examples include ‘black-outs’
in power grids, where overload redistribution following the failure of a single component
can result in a cascade of failures that ripples through the entire grid (e.g. Rosas-Casals
et al. (2007), Wang et al. (2010)). The internet and computer networks also exhibit this
phenomenon—one manifestation being the spread of malware (e.g. Lelarge & Bolot (2008b),
Balthrop et al. (2004)). Likewise, human populations are exposed to the spread of contagious
diseases3.

Studying the incentives to guard against the risk of cascading failures in such intercon-
nected systems has received attention in recent years. In early 2015, a measles epidemic
spread across the western part of the United States. It was reported that one of the causes
was the unwillingness of parents to vaccinate their children (e.g. The Economist (5 February
2015), The Economist (4 February 2015), Reuters (27 August 2015)). Indeed, some people
may want to avoid the perceived risks of a vaccine’s side effects and free-ride on the “herd
immunity” provided by the vaccination of other people. This raises the following question:
what are the incentives to vaccinate against a contagious disease? The same type of question
can be asked about other systems subject to the risk of cascading failures. What are the
incentives to invest in computer security solutions to protect against the spread of malware?
A recent wave of terror attacks within the European union also illustrates the fact that the
EU is an interconnected system of many countries. Each member country is thereby exposed
to the decisions of other member countries regarding investments in security and intelligence.
Indeed, an attacker entering the EU area can reach any location within it. Likewise, what in-
centives do airports have to invest in security equipment/personnel? How does the structure
of interactions between individuals, computers, airports or countries affect those incentives?

There are mainly two streams of literature studying such strategic decisions in inter-
connected systems. One focuses on the role played by the structure through which agents
interact (e.g. a network), while the other focuses on modeling different types of attacks on
the system (e.g. random attacks, targeted attacks, strategic attacks).

In the first stream of literature, early work studying games of “interdependent security”
(e.g. Heal & Kunreuther (2004) and Heal et al. (2006)) considered a broad set of applications
ranging from airline security to supply chain management, but did not yet incorporate a com-
plex network interaction structure. More recent work has studied heterogeneous interaction
structures. For example, Galeotti & Rogers (2013) consider the problem of a social planner
attempting to eradicate an infection from a population. They consider a simple network
consisting of two types of agents interacting with others within and across their respective
social groups. They then explore the influence of assortativity on the optimal actions of a
decision maker. Other papers, like ours, explore the influence of a networked interaction
structure on the agents’ strategic decisions in more detail. This includes Lelarge & Bolot

3For different applications, such as cascading risk in financial systems, see for example Acemoglu et al.
(2015), Elliott et al. (2014).
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(2008a) studying the case of strategic immunization and Cabrales et al. (2014) exploring
the setting of interconnected firms choosing investments in risky projects. More recently,
Cerdeiro et al. (2015) explored the problem of designing the network topology that provides
the proper incentives to the agents.

In the second stream of literature, papers like Dziubiński & Goyal (2016) and Acemoglu
et al. (2013) explore strategic attack models, in which a defender chooses protection levels,
while an attacker chooses the targets in an attempt to maximize the number of affected
agents in the network.

In this paper, we develop a framework to study the incentives that agents have to invest
in protection against cascading failures in networked systems. A set of interconnected agents
can each fail exogenously (fully randomly) or as a result of a cascade of failures4 (through
infected connections). Depending on the application, failure can mean a human being con-
tracting an infectious disease, a computer being infected by a virus or an airport/country
being exposed to a security event (e.g. a suspicious luggage or passenger being checked in
or being in transit). Each agent must decide on whether to make a costly investment in
protection against cascading failures. This investment can mean vaccination, investing in
computer security solutions or airport security equipment, to name a few important exam-
ples. Strategic decisions to invest in protection are based on an agent’s intrinsic failure risk
as well as on his belief about his neighbors and their probability of failure. In a complex
networked system, forming such a belief can be challenging. For that reason, we employ a
solution concept that considerably simplifies how agents reason about the network: agents
do not observe the network, but simply know the number of connections they have. This
is similar to the equilibrium concept used in Galeotti et al. (2010), Jackson & Yariv (2007)
and Leduc et al. (2015). This equilibrium concept allows us to preserve the heterogeneity of
the networked interaction structure (each agent can have a different degree, i.e. a different
number of connections) while simplifying the computation of an equilibrium. It also con-
veniently allows for comparative statics in terms of the network structure (as captured by
the degree distribution), as well as other model parameters. This allows us to measure such
things as the effect of an increase in the level of connectedness on investments in protection.

We characterize the equilibrium for three broad classes of games: (i) games of total
protection, in which agents invest in protection against both their intrinsic failure risk and the
failure risk of their neighbors; (ii) games of self protection, in which agents invest in protection
only against their intrinsic failure risk; and (iii) games of networked-risk protection, in which
agents invest in protection only against the failure risk of their neighbors. The first and third
classes define games of strategic substitutes, in which some agents free-ride on the protection
provided by others. Applications covered by these classes of games include vaccination and
standard computer security solutions (e.g. anti-virus). The second class defines a game of
strategic complements, in which agents pool their investments in protection and this can
result in coordination failures. Applications covered by this class of games include airport
security, border security within the European union and other types of computer security
solutions (e.g. two-factor authentication (2FA)).

4Similar random failure mechanisms are studied in Lelarge & Bolot (2008b), Goyal & Vigier (2015),
Aspnes et al. (2005), Blume et al. (2013) and Acemoglu et al. (2013).
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Another of our contributions is to analyze the effect of the network structure on equilib-
rium behavior in those three classes of games. For example, in the case of vaccination, it is
the agents who have more neighbors than a certain threshold who choose to vaccinate and
the agents who are less connected who free-ride. The more connected agents thus bear the
burden of vaccination, which can be seen as a positive outcome. In the case of airport secu-
rity, on the other hand, it is agents who have fewer neighbors than a certain threshold who
choose to invest in security equipment/personnel. Since the less connected airports are less
likely to act as hubs that can transmit failures, this can be seen as an inefficient outcome.
To our knowledge, we are the first to explicitly characterize such features, which are the
consequence of network structure and can have important policy and welfare implications.

Finally, we study the case when the cost of protection is endogenized and allowed to
depend on global demand. For instance, the price of vaccines or computer security solutions
may increase (e.g. vaccines may be produced in limited supplies) if demand increases. It is
important to understand the impact that this may have on agents’ behavior as the introduc-
tion of such a global externality (e.g. see the global congestion case in Arribasa & Urbanoa
(2014)) may conflict with the cascading failure process affecting an agent through his local
connections. We characterize the equilibrium after introducing this price feedback and show
that the results derived previously still hold with minor changes.

Acemoglu et al. (2013) and Lelarge & Bolot (2008b) are perhaps the closest work to
ours. The former paper, in a setting similar to ours, shows that under random and targeted
attacks both over- and underinvestment (as compared to the socially optimal level) are
possible. Furthermore, the authors show that optimal investment levels are defined by
network centrality measures, whereas our characterization of equilibrium investment is based
on degree centrality. Additionally, we further explore the role of the network structure in
defining agents’ incentives to invest in protection. In particular, we study comparative statics
by varying the degree distributions of the underlying network. Lelarge & Bolot (2008b) also
consider different types of protection against contagion risk in trees and sparse random
graphs. As compared to their probabilistic approach, the equilibrium concept we use allows
for a characterization of behavior in terms of an agent’s degree. We also deal with a common
(possibly endogenized) cost of investment as opposed to their randomized costs. Finally, our
paper contributes to the rapidly expanding stream of literature on games on networks5.

The paper is organized as follows: Section 2 introduces the concept of cascading failures in
networked systems. Section 3 develops the game theoretic framework that allows us to study
the problem in a tractable way while imposing a realistic cognitive burden on agents. Section
4 characterizes the equilibrium for the three broad classes of games previously mentioned.
Implications for risk and welfare are discussed. Comparative statics results in terms of the
network structure (as captured by the degree distribution) and other model parameters are
also presented. An extension in which the cost of protection is endogenized is also studied.
Section 5 concludes with a critical evaluation of our model and a discussion of possible
extensions. For clarity of exposure, all the proofs are relegated to an appendix.

5The reader is referred to Jackson & Zenou (2014) for a survey of the existing literature on games on
networks.
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Figure 1: Example of a Contagion Cascade: individuals labeled 1 and 2 contract the disease from exogenous
sources. From then on, a contagion cascade takes place in discrete steps: all their neighbors become infected.
This then leads to their neighbors’ neighbors to become infected and so on.

2. Cascading Failures in Networks

2.1. Overview

In this section we will discuss how cascades of failures can propagate through networks. A
cascade of failures is defined as a process involving the subsequent failures of interconnected
components. A failure is a general term that may represent different kinds of costly events.
Let us consider, for example, the spread of a disease in a human population. Initially,
some individuals get infected through exogenous sources such as livestock, mosquitos or the
mutation of a pathogen. These individuals can then transmit the disease through contacts
with other humans. Let us suppose that an individual is sure to catch the disease if one of
his neighbors is infected. Figure 1 illustrates this process. We can see the impact of network
structure on contagion. Some people lying in certain components remain healthy whereas
others are infected by their neighbors. We also see that individuals with a high number
of contacts tend to facilitate contagion. This is a simplified model of contagion. A more
realistic model could, for example, transmit the disease only to randomly selected neighbors,
depending on its virulence.

Now let us imagine that some individuals are vaccinated and therefore are not susceptible
to becoming infected, neither by exogenous sources nor by contacts with other people. This
will have an impact on the cascading process. Indeed, it will effectively ‘cut’ certain contagion
channels, thereby impeding the spread of the disease. Figure 2 illustrates this. We see that
the importance of the network structure becomes even more striking. In Fig. 2a), immunized
individuals have been selected randomly, whereas in Fig. 2b) individuals with 4 or more
contacts have been immunized. It is clear that those more connected individuals often
act as hubs through which contagion can spread more easily. When these individuals are
immunized, the effect of impeding the propagation of the disease tends to be much greater
than when the immunized individuals are chosen at random.

In this example, the ‘failure’ of an individual means he becomes infected by the disease.
In other applications, ‘failure’ can mean infection by malware. The nodes then no longer
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Figure 2: Examples of Contagion Cascades in the Presence of Immunized Individuals: individuals labeled 1
and 2 contract the disease from exogenous sources. The contagion cascade then propagates. In part (a), a
randomly-chosen subset of agents were vaccinated against the disease. In part (b), individuals with at least
4 contacts were vaccinated against the disease.
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represent individuals but computers (or local subnetworks or autonomous systems). An-
tivirus software or other sorts of computer security solutions are means by which the spread
of malware can be impeded.

We saw in the simple example of Fig. 2 that the configuration of the vaccinated nodes
was crucial to impeding contagion. An important question is to study the incentives that
an individual may have to become vaccinated. How does the network structure affect his
decision to become vaccinated? What roles other individuals play in influencing that decision
through their own vaccination behavior?

Given the range of applications, we will talk of an investment in protection. This refers
to an investment made by a node in order to protect itself against the risk of failure. In
the next section, we build a model of strategic investment in protection against cascading
failures in networked systems. We will refer to nodes as agents, since they make decisions
regarding this investment in protection. More generally, we will be interested in how the
network structure and the failure propagation mechanism influence those decisions through
the externalities that they generate.

2.2. Network

A network, as the one described previously, can be formally defined as follows. There is
a set of nodes (or agents) N = {1, 2, ..., n}. The connections between them are described by
an undirected network that is represented by a symmetrical adjacency matrix g ∈ {0, 1}n×n,
with gij = 1 implying that i and j are connected. i can thus be affected by the failure of
j and vice versa. By convention, we set gii = 0 for all i ∈ N . The network realization
g is drawn from the probability measure P : {0, 1}n×n → [0, 1] over the set of all possible
networks with n nodes. We assume that P is permutation-invariant, i.e. that changing node
labels does not change the measure. Each agent i has a neighborhood Ni(g) = {j|gij = 1}.
The degree of agent i, di(g), is the number of i’s connections, i.e. di(g) = |Ni(g)|.

3. A Bayesian Network Security Game

3.1. Informational Environment

We study an informational environment similar to the one presented in Galeotti et al.
(2010). Agents are aware of their proclivity to interact with others, but do not know who
these others will be when taking actions. Formally, this means that an agent knows only his
degree di. For example, a bank may have a good idea of the number of financial counter-
parties it has but not the number of counter-parties the latter have, let alone the whole
topology of the interbank system. In applications to the spread of contagious diseases, an
individual may know the number of people he interacts with, but not the number of people
the latter interact with. Likewise, in the case of an email network, someone may know the
number of contacts he has, but not the number of contacts his contacts have.

First, since P is permutation invariant (cf. Section 2.2), we can define the degree dis-
tribution of P as the probability a node has degree d in a graph drawn according to P ;
we denote the degree distribution6 by f(d) for d ≥ 1. Note that we are not interested in

6Throughout, we use the term degree distribution to mean degree density. When referring to the cumu-
lative distribution function (CDF), we will do so explicitly.
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modeling agents of degree 0 (since they do not play a game) and we therefore always assume
that f(0) = 0. We assume a countably infinite set of agents. An agent’s type is his degree
d and it is drawn i.i.d. according to the degree distribution f(d). Likewise, the degree of
each of an agent’s neighbors is drawn i.i.d. according to the density function f̃(d). This

is the edge-perspective degree distribution and can be written as f̃(d) = f(d)d∑
d′≥1 f(d

′)d′
. This

expression follows from a standard calculation in graph theory (see Jackson (2008) for more
details). f̃(d) is the probability that a neighbor has degree d. It therefore takes into account
the fact that a higher-degree node has a higher chance of being connected to any agent and
thus of being his neighbor. Thus agents reason about the graph structure in a simple way
through the degree distribution.

3.2. Action Sets and Strategies

In order to protect himself against the risk of failure, we allow an agent i to make a costly
investment in protection. This is a one-shot investment that can be made in anticipation
of a cascade of failures, which may take place in the future. This investment in protection
is represented by an action ai, which is part of a binary action set A = {0, 1}. The latter
represents the set of possible investments in protection against failure: ai = 1 means that
the agent invests in protection while ai = 0 means that the agent remains unprotected. In
an application to computer security, ai can represent an investment in computer security so-
lutions or anti-virus software. In applications to disease spread, ai can represent vaccination,
whereas in the case of airport security, ai can represent an investment in security personnel
or equipment. We assume throughout that A is the same for all agents. The exact effect of
this action on an agent’s actual failure risk will be formalized later in Definition 5.

Note that all agents have access to the same information about the network (only its
degree distribution f(d)). An agent does not know his position in the network, only the
number of neighbors he has (an agent’s degree is his type). An agent i’s behavior is thus
governed only by his degree di and not by his label i. We can then define a strategy in the
following way.

Definition 1. A strategy µ : N+ → [0, 1] is a scalar-valued function that specifies, for every
d > 0, the probability that an agent of degree d invests in protection. We denote by M the
set of all strategies.

Thus µ(d) is the symmetric mixed strategy played by an agent of degree d. Note that
M = [0, 1]∞, the space of [0, 1]-valued sequences. Throughout, we endow M with the
product topology and [0, 1] with the Euclidean topology.

3.3. Failure Probabilities and Utility Functions

We start with the following definition:

Definition 2. An agent’s intrinsic failure probability is denoted by p ∈ [0, 1].

We thus assume all agents can fail intrinsically with the same probability p. The inter-
pretation of intrinsic failure depends on the application. In the context of malware, intrinsic
failure means a computer becoming infected as a result of a direct hacking attack. In the
context of the spread of contagious diseases, intrinsic failure means being infected by a
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virus through non-human sources, such as contact with livestock or insects. In the context
of airport security, intrinsic failure can mean a suspicious luggage being checked in at the
airport.

We now state a property of this network security game, which addresses how an agent
reasons about the failure probability of his neighbors.

Property 1. Each agent conjectures that each of his neighbors fails with probability T (µ) ∈
[0, 1], independently across neighbors.

This setting is similar to that of Jackson & Yariv (2007), where each neighbor adopts
a product or an opinion with a certain probability that depends on the strategy played by
the population. Note that the dependence of a neighbor’s failure probability T (µ) on the
strategy µ played by other agents was made explicit. An agent’s cascading failure probability
can now be defined in terms of T (µ), as seen in the following definition.

Definition 3. For any d, let the function qd : [0, 1] → [0, 1] denote a degree-d agent’s
cascading failure probability, i.e. qd(T (µ)) is the probability that an agent of degree d will
fail as a result of a cascade of failures, given that his neighbors each fail independently
with probability T (µ). For any d, qd(T (µ)) is strictly increasing and continuous in T (µ).
Moreover, we explicitly set q0(T (µ)) = 0 and thus an agent with no neighbor cannot fail as
a result of a cascade of failures.

The actual expression for qd(T (µ)) depends on the type of cascade we are considering.
We will consider only a situation where {qd}d is an increasing sequence of functions. That
is, when d′ > d, then qd′(T (µ)) > qd(T (µ)) for any T (µ) ∈ [0, 1]. In other words, the
cascading failure risk is higher when an agent has more connections7. For convenience, we
will sometimes write qd(T (µ)) simply as qd.

Since an agent of degree d either fails intrinsically with probability p or in a cascade with
probability qd, we can define his total probability of failure as follows.

Definition 4 (Total probability of failure). The total probability of failure of an agent of
degree d is

βd = p+ (1− p)qd. (1)

Thus an agent can either fail intrinsically (i.e. by himself) or as a result of the failures
of a subset of his neighbors. Those neighbors who have failed may have done so intrinsically
or as a result of the failure of a subset of their own neighbors.

We study a static setting, in which agents make decisions simultaneously, in anticipation
of a cascade of failures that may happen in the future. Therefore each agent is healthy when
he chooses an action a ∈ A representing a costly investment in protection against failure.
This is a good decision model for the applications that we cover. E.g., vaccines are taken by
healthy individuals in anticipation of an epidemic that may spread in the future. Likewise,
investments in computer security solutions are taken for healthy computers or autonomous
systems in anticipation of the spread of malware, which may take place at a later date.

7The reader is referred to Chapter 4 of Leduc (2014) for the case where qd(T (µ)) is decreasing in d. This
can model a form of diversification of failure risk across neighbors.
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Similar long-term security decisions are taken in other contexts, such as airport security, for
example.

We now describe how this action affects an agent’s failure probability.

Definition 5. Let the mapping B : [0, 1] × [0, 1] × A → [0, 1] denote the effective failure
probability of an agent. We assume that B(p, qd, a) is continuous in all arguments, increasing
in p and in qd and that it is decreasing in a.

Thus, B(p, qd, a) is the total failure probability of an agent (defined in (1)) when he has
invested a in protection against failure. Note that this definition allows this action to operate
separately on p and qd, as will be seen in Section 4. This will become useful as we study
different kinds of protection. We can now state an agent’s expected utility function, which
will capture his decision problem.

A degree-d agent’s expected utility function is given by

Ud(a, µ) = −V · B(p, qd(T (µ)), a)− C · a. (2)

where C > 0 is the cost of investing in protection, V > 0 is the value that is lost in the event
of failure and B(·, ·, ·) is the effective failure probability (cf. Definition 5).

This utility function captures the tradeoff between the expected loss V · B(p, qd(T (µ)), a)
and the cost8 C of investing in protection. Notice again that an agent’s expected utility
depends on the actions of others only through the cascading failure probability qd(T (µ)),
since they will affect the probability of failure T (µ) of a randomly-picked neighbor. Note
also that the expected utility function9 Ud(·, ·) depends on the agent’s degree d but not on
his identity i. Therefore, any two agents i and j who have the same degree have the same
expected utility function. From the assumptions on B, Ud is continuous in all arguments.
An agent is risk-neutral and will thus maximize this expected utility function by choosing
the appropriate action a. The game thus models security decisions under contagious random
attacks in a network where each agent (node) knows only his own degree and the probability
that a neighbor has a certain degree.

While the cascading failure probability qd can take many functional forms, we provide sev-
eral examples which can all be modeled using the particular form qd(T (µ)) = 1−(1−rT (µ))d.
This functional form results from a contact process.

Malware or Virus Spread: Let a computer be infected by a direct hacking attack with
probability p. Assume that malware (i.e. computer viruses) can spread from computer
to computer according to a general contact process: if a neighbor is infected, then the
computer will be infected with probability r. If each neighbor is infected with probability
T (µ) and this infection spreads independently across each edge with probability r, then
qd(T (µ)) = 1− (1− rT (µ))d. This contact process can also serve as a model for the spread

8The cost of investing in protection may represent the price of airport security equipment or computer
security solutions. It may also represent the possible side-effects that may be associated with a vaccine (e.g.
The Economist (4 February 2015)).

9Note that we could write a degree-d agent’s expected utility function as U(a, µ, d). We write it with d
as a subscript simply because it is a convenient notation.
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of viruses among human populations. In this case, p is the probability of being infected by
non-human sources (e.g. insects, livestock, etc.) and qd(T (µ)) is the probability of being
infected by neighbors (i.e. other persons with whom the agent interacts). The parameter r
models the virulence or infectiousness of the process: given that a neighbor is infected, r is
the probability10 that he will infect the agent.

Airport and European Union Security: The contact process described above can also
be applied to airport or EU security. The exogenous failure (with probability p) can mean a
security event such as the failure to stop a suspicious luggage from being checked in on a flight
or a terrorist entering the European union from outside through one of the EU countries with
weaker border control. In these scenarios, the agents represent airports or countries, and the
edges linking them represent flights and connecting routes between countries. The suspicious
luggage or terrorist can then cascade, i.e. travel to one or more other airports/countries,
exposing them to security risks. qd(T (µ)) = 1−(1−rT (µ))d can then model the risk of an en-
tity coming into contact with a security threat coming from a neighboring country or airport.

In the next two sections we develop both the optimal response of an agent to the environ-
ment described previously, as well as the consistency check that T (µ) should satisfy given
the strategic choices of the agents.

3.4. Consistency

We will now develop a consistency check that guarantees that a randomly-picked neigh-
bor’s failure probability T (µ) is consistent with the strategy µ played by the population.

Definition 6. Let the function F :M× [0, 1]→ [0, 1] be defined as

F(µ, α) =
∑
d≥1

f̃(d)B(p, qd−1(α), µ(d)). (3)

In the above definition11, F(µ, α) is the failure probability of a randomly-picked neighbor
given that agents play strategy µ and this neighbor’s other neighbors fail with probability α.
A fixed point α = F(µ, α) ensures that α is the same across all agents and consistent with
µ. We consider F(µ, α) with the following property:

Property 2. For any µ ∈M, F(µ, α) has a unique fixed point in α.

Note that Property 2 is not particularly stringent. It is easy to verify in the contact
process models of the examples described in Section 3.3.

We can now formally define T (µ), the failure probability of a randomly-picked neighbor
given that strategy µ is played by other agents:

10In Fig. 1 and Fig. 2, r was assumed to be 1 for simplicity of exposure.
11Note that an agent does not internalize the effect of his own failure on others when forming his belief

about the failure risk of a neighbor. Hence the presence of qd−1(α) on the right-hand side of (3) instead of
qd(α): the cascading failure risk of a given neighbor of degree d is only due to his d− 1 other neighbors.
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Definition 7. Given F : M× [0, 1] → [0, 1] satisfying Property 2, let T : M → [0, 1] be
defined as follows: for any µ ∈M,

T (µ) = F(µ, T (µ)). (4)

3.5. Optimal Response

It is now straightforward to solve for the optimal strategy of an agent of degree d: an
agent invests in protection, does not invest, or is indifferent if Ud(1, µ) is greater than, less
than, or equal to Ud(0, µ), respectively. We thus have the following definition.

Definition 8. Let Sd(T (µ)) ⊂ [0, 1] denote the set of optimal responses for a degree-d agent
given T (µ); i.e.:

Ud(1, µ) > Ud(0, µ) =⇒ Sd(T (µ)) = {1};
Ud(1, µ) < Ud(0, µ) =⇒ Sd(T (µ)) = {0};
Ud(1, µ) = Ud(0, µ) =⇒ Sd(T (µ)) = [0, 1].

We can now let S(T (µ)) ⊂M denote the set of optimal strategies given T (µ); i.e.,

S(T (µ)) =
∏
d≥1

Sd(T (µ)).

Note that at least one optimal response always exists and is essentially uniquely defined,
except at those degrees where an agent is indifferent.

3.6. Equilibrium

We now formally define the equilibrium concept and state our first proposition.

Definition 9 (Mean-Field Equilibrium). A strategy µ∗ constitutes a mean-field equilibrium
(MFE) if µ∗ ∈ S(T (µ∗)).

This equilibrium definition ensures that both the optimality and consistency conditions
are satisfied. Also note that to any equilibrium µ∗, there corresponds a unique equilibrium
neighbor failure probability α∗ = T (µ∗).

Proposition 1 (Existence). Any network security game that satisfies Properties 1 and 2 has
a mean-field equilibrium.

An MFE is a symmetric equilibrium with the property that an agent’s neighbors fail
independently with the same probability T (µ∗) under µ∗. An MFE is particularly easy
to compute. In fact, α∗ = T (µ∗) is obtained from a one-dimensional fixed-point equation
resulting from the composition of T and S, i.e. α∗ = T (S(α∗)). µ∗ is then found from the
map S(α∗) (cf. Definition 8). Allowing for correlations between the failures of neighbors
would considerably complicate the analysis12.

12For some work in that direction, see Chapter 3 of Leduc (2014).

12



4. Characterizing Equilibria

In this section, we will study three classes of games in which agents make decisions
to invest in protection. We will start with games of total protection, in which an agent’s
investment decreases his total risk of failure. We will then proceed with games of self
protection, in which an agent’s investment in protection only protects him against his own
intrinsic risk of failure. We will finally study an intermediate case: a game of networked-risk
protection, in which an agent’s investment in protection only protects him against the risk
of failure of his neighbors

4.1. Games of Total Protection

In games of total protection, the investment protects both against the intrinsic failure
risk and the cascading failure risk.

Examples of applications covered by this class are the spread of contagious diseases and
the decision to vaccinate or malware and the investment in anti-virus or computer security
solutions. Vaccination, for example, protects against both the risk of being infected by
non-human (intrinsic failure risk) and human sources (cascading failure risk). It is also the
case for standard anti-virus software featuring a firewall protection. This protects an agent
against both direct hacking attacks (intrinsic failure risk) and malware spread through the
Internet/e-mail networks (cascading failure risk).

We have the following definition:

Definition 10 (Games of total protection). In a game of total protection, the effective failure
probability has the following form

B(p, qd(T (µ)), a) =
(
p+ (1− p)qd(T (µ))

)
· (1− ka) (5)

for some k ∈ [0, 1] and

F(µ, α) =
∑
d≥1

f̃(d)
(
p+ (1− p)qd−1(α)

)
· (1− kµ(d)). (6)

In games of total protection, as can be seen in (5), an agent’s investment in protection
decreases his total probability of failure p + (1 − p)qd(T (µ)). The parameter k governs
the effectiveness of the investment in protection. The higher k, the more an investment in
protection reduces the failure probability.

Before stating our first theorem, we introduce the following definition.

Definition 11 (Upper-threshold strategy). A strategy µ is an upper-threshold strategy if
there exists dU ∈ N+

⋃
{∞}, such that:

d < dU =⇒ µ(d) = 0;

d > dU =⇒ µ(d) = 1.

Thus, under an upper-threshold strategy, agents with degrees above a certain threshold
invest in protection whereas agents with degrees below that threshold do not invest. Note
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that the definition above does not place any restriction on the strategy at the threshold dU
itself; we allow randomization at this threshold.

Games of total protection are submodular. In other words, they are of strategic substitutes:
the more other agents invest in protection (the lower T (µ)), the less an agent has an incentive
to invest in protection. A nice property of games of total protection is that they have a unique
equilibrium that is characterized by an upper-threshold strategy.

Theorem 1 (Total Protection). In a game of total protection, the equilibrium µ∗ is unique.
Moreover, µ∗ is an upper-threshold equilibrium, i.e. µ∗ is an upper-threshold strategy.

The intuition behind this result is that, higher-degree agents are more exposed to cascad-
ing failures than lower-degree agents, thus making an investment in total protection relatively
more rewarding. The implications of this theorem are important as higher-degree agents are
more likely to act as hubs though which contagion can spread. This result can thus be seen
as a satisfactory outcome since more connected agents have higher incentives to internalize
the risk they impose on the system. In equilibrium, the total cost of protection is thus
born by those who have a maximal effect on decreasing T (µ). For example, in the case of
malware, agents with a higher level of interaction (higher degree) have a higher incentive
to invest in computer security (i.e. anti-virus software). The same principle applies in the
case of human-born viruses: individuals who interact more have a higher incentive to get
vaccinated.

Note that in spite of the above, agents tend to underinvest in equilibrium compared to
the socially optimal investment level. This is the result of free-riding and is in line with
classical results of moral hazard in economics and the failure of agents to take into account
negative externalities.

In the next section, we study the second class of games: Games of self protection.

4.2. Games of Self Protection

In games of self protection, the investment protects only against the intrinsic failure risk.
Examples of applications covered by this class of games include airport security when

luggage/passengers are only scanned at the originating airport. Airports then otherwise rely
on each other’s provision of security for transiting passengers/luggage. The same principle
applies to security within the European Union, where travelers are only inspected at their
point of entry. EU countries otherwise rely on each other’s security for travelers within the
EU.

Another important example is two-factor authentication (2FA) in computer networks.
Consider an e-mail network and a provider such as Gmail. The latter allows its users to
use such a two-factor authentication (2FA) feature. Users who take advantage of this option
are asked to enter a security code sent to their mobile phone in addition to their password
entered upon authentication. 2FA thus effectively protects against direct hacking attacks (a
user’s personal intrinsic risk). Indeed, access to the account with 2FA can only be granted
conditional on the user having access to the mobile phone linked to this account. Yet, 2FA
does not diminish the user’s exposure to cascading failure risk (i.e. malware transmitted
through the e-mail network): carelessly opening an infected e-mail attachment from a friend
can fully compromise his account.

We now have the following definition:
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Definition 12 (Games of self protection). In a game of self protection, the effective failure
probability has the following form

B(p, qd(T (µ)), a) = p · (1− ka) + (1− p · (1− ka)) · qd(T (µ)) (7)

for some k ∈ [0, 1] and

F(µ, α) =
∑
d≥1

f̃(d)
(
p · (1− kµ(d)) +

(
1− p · (1− kµ(d))

)
· qd−1(α)

)
. (8)

In games of self protection, as can be seen in (7), an agent’s investment in protection
only decreases his intrinsic probability of failure p. It has no effect on his cascading failure
probability qd(T (µ)). Again, the parameter k governs the effectiveness of the investment in
protection corresponding to the action a.

Before stating our second theorem, we introduce the following definition.

Definition 13 (Lower-threshold strategy). A strategy µ is a lower-threshold strategy if there
exists dL ∈ N+

⋃
{∞}, such that:

d > dL =⇒ µ(d) = 0;

d < dL =⇒ µ(d) = 1.

Under a lower-threshold strategy, agents with degrees below a certain threshold invest in
protection whereas agents with degrees above that threshold do not invest. Note that the
definition above does not place any restriction on the strategy at the threshold dL itself; we
allow randomization at this threshold.

Games of self protection are supermodular. In other words, they are of strategic comple-
ments: the more other agents invest in protection (the lower T (µ)), the more an agent has an
incentive to invest in protection. Since games of self protection are effectively coordination
games, there can be multiple equilibria. The next result shows that any equilibrium can
be characterized by a lower-threshold strategy. In other words, the thresholds are reversed
when compared to games total protection (cf. Theorem 1).

Theorem 2 (Self Protection). In a game of self protection, any equilibrium µ∗ is a lower-
threshold equilibrium. That is, µ∗ is a lower-threshold strategy.

Higher cascade risk thus leads to lower incentives to invest in protection. This is because
an agent remains exposed to the failure risk of others irrespectively of whether he invests
in protection. An investment in protection thus has lower returns as the cascading failure
risk increases. An agent’s cascading failure risk increases in degree, and thus higher-degree
agents invest less in protection than lower-degree agents. The intuition is that higher-degree
agents are more exposed to cascading failure risk than lower-degree agents, thus making an
investment in their own self protection relatively less rewarding.

In the example of airport security, an airport that interacts with a high number of other
airports has smaller incentives to invest in its own security, since it remains exposed to a high
risk of being hit by an event coming from a connecting flight. This, as before, is assuming
that the passengers/luggage are only inspected at their point of origin and not at points of
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transit. In the example of two-factor authentication (2FA) in an email network, it is the
users with a high number of contacts who have lower incentives to enable this security feature
since they remain exposed to infected email attachments from their many contacts.

The fact that, in games of self-protection, the incentives are reversed has important impli-
cations. In fact, the more connected (higher-degree) agents have a lesser incentive to invest
in protection even though they are more vulnerable and more dangerous, i.e. they are hubs
through which cascading failures can spread. More central agents thus have lower incentives
to internalize the risk they impose on the system, pointing to an inefficient outcome. More-
over, in equilibrium, the total cost of protection is born by lower-degree agents: those who
have the smallest effect on decreasing T (µ).

4.3. Games of Networked-Risk Protection

In games of networked-risk protection, the investment protects only against the cascading
failure risk. It does not protect against intrinsic failure risk.

Examples of applications include protection against many sexually transmitted diseases.
For instance, the use of condoms protects against the transmission of HIV/AIDS through
sexual partners. Nevertheless, such practices leave agents exposed to the external risk of
being infected through a medical mistake in a hospital (e.g. with an infected syringe).

We have the following definition:

Definition 14 (Games of networked-risk protection). In a game of networked-risk protec-
tion, the effective failure probability has the following form

B(p, qd(T (µ)), a) = p+ (1− p) · qd(T (µ)) · (1− ka) (9)

for some k ∈ [0, 1] and

F(µ, α) =
∑
d≥1

f̃(d)
(
p+

(
1− p

)
· qd−1(α) · (1− kµ(d))

)
. (10)

We now show that a game of networked-risk protection is structurally equivalent to a
game of total protection.

Corollary 1. A game of networked-risk protection is structurally equivalent to a game of
total protection. Particularly, an equilibrium strategy µ∗ in any game of networked-risk
protection is unique and is characterized by an upper threshold.

It is easy to see that agents have lesser incentives to invest than in the case of a game
of total protection. Indeed, the marginal utility of investing in the latter case is always
V pk higher, because an investment also protects against the intrinsic failure risk. We thus
conclude that µ∗tp � µ∗np, where µ∗tp and µ∗np are the investment profiles in games of total and
networked-risk protection, respectively. In other words, if an agent of some degree invests in
the case of networked-risk protection, then he will necessarily also invest in the case of total
protection. In the interest of space, we skip further in-depth discussion of the results in this
section as they mainly replicate the results of Section 4.1.
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4.4. Welfare, Risk and Comparative Statics

The next proposition states when the equilibrium expected utility and effective failure
risk of an agent are monotone in degree.

Proposition 2 (Risk and Welfare I). Let ad ∈ µ∗(d):

• (i) The equilibrium expected utility Ud(ad, µ
∗) is non-increasing in d.

• (ii) In a game of self protection, the equilibrium effective failure probability
B(p, qd(T (µ∗)), ad) is non-decreasing in d.

Note that there is no analogue to Part (ii) for games of total protection or networked-risk
protection. The equilibrium effective failure probability can be non-monotone in degree.
Indeed, the upper-threshold strategy means that higher-degree agents invest in protection
and may thus have a lower effective failure probability than lower-degree agents.

We will now state a welfare result for games of self protection. These games are easier
to analyze because they are of strategic complements. In games of self-protection, agents
effectively pool their investments in protection and, as said earlier, there can be multiple
equilibria. These equilibria can however be ordered by level of investment. Suppose there
are m possible equilibria. Then, they can be ordered in the following way

µ∗1 � µ∗2 � ... � µ∗m.

Since (8) is decreasing in µ, it follows that T (µ∗1) ≥ T (µ∗2)... ≥ T (µ∗m).
We then have a second welfare result.

Proposition 3 (Welfare II). In a game of self protection, let µ∗k � µ∗l be two equilibria
ordered by level of investment. Then µ∗l weakly Pareto-dominates µ∗k.

This result is not trivial. It effectively states that in the high-investment equilibrium, the
decrease in risk resulting from higher investments outweighs the cost of those investments.
This is due to the positive externality stemming from the effect of pooled investments in
protection, which reduce all agents’ failure risk.

We can focus our attention on the minimum-investment equilibrium µ∗ and the maximum-
investment equilibrium µ̄∗. In the former, T (µ∗) is actually maximal since agents invest least,
while in the latter, T (µ̄∗) is actually minimal since agents invest most. From Proposition 3,
agents playing the minimum-investment equilibrium can be thus considered a coordination
failure.

In Fig. 3, we illustrate Theorems 1 and 2 on a complex network. We see how the upper
(resp. lower) threshold nature of equilibria in games of total (resp. self) protection affects
the spread of cascading failures differently.

We now state a result comparing the welfare in games of total and self protection.

Proposition 4 (Welfare III). Let W (µ) =
∑

d f(d)Ud(µ(d), µ) be the utilitarian welfare
under strategy µ. Specifically, we denote by W tp(·) the utilitarian welfare in a game of
total protection and by W sp(·) the utilitarian welfare in a game of self protection, when all
other model parameters are held fixed. Then W tp(µ∗) > W sp(µ̄∗), where µ∗ is the unique
equilibrium in a game of total protection and µ̄∗ be the maximum-investment equilibrium in
a game of self protection.
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Figure 3: Illustration of Theorems 1 and 2 on a complex network with the cascading process of Fig. 1:
possible equilibrium strategies in (a) a game of total protection and (b) a game of self protection. In (a), we
see that the upper-threshold strategy insulates contagion hubs whereas in (b) we see that the lower-threshold
strategy insulates periphery nodes and leaves contagion hubs vulnerable.
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The above proposition states that the unique equilibrium in a game of total protection
welfare-dominates the higher-investment equilibrium in a game of self protection. This result
is mainly due to the fact that the return on investment in a game of total protection is higher
than in a game of self protection, since it protects against the total risk of failure (not just
the intrinsic risk of failure).

An advantage of our informational setting is that we can relate equilibrium behavior to
network properties as captured by the edge-perspective degree distribution f̃(d). We can
then ask questions such as “does a higher level of connectedness13 increase or decrease the
incentives to invest in protection?” This is examined in the next proposition.

Proposition 5 (Shifting Degree Distribution). Let µ∗ and µ̄∗ be the minimum- and maximum-
investment equilibria in a game of self protection, when the edge-perspective degree distribu-
tion is f̃ . Then, a first-order distributional shift14 f̃ ′ � f̃ results in µ′∗ � µ∗ and µ̄′∗ � µ̄∗

and thus in T ′(µ′∗) ≥ T (µ∗) and T ′(µ̄′∗) ≥ T (µ̄∗).

Thus in a game of self protection, a higher level of connectedness leads to lower incen-
tives to invest in protection: each of the new maximum- and minimum-investment equilibria
are weakly dominated by the corresponding equilibria in the less connected network. The
intuition behind this result is that an agent is more likely to be connected to a high-degree
neighbor (high contagion risk and unprotected). This increases the agent’s cascading failure
risk and therefore lowers the incentive to invest in self protection. We note that in equilib-
rium, the corresponding neighbor failure probabilities are larger, i.e. T ′(µ′∗) ≥ T (µ∗) and
T ′(µ̄′∗) ≥ T (µ̄∗).

Note that there is no straightforward analogue to Proposition 5 in the case of total
protection or networked-risk protection. In fact shifting f̃(d) may in this case increase the
probability of having a protected neighbor or an unprotected one, depending on the extent
of the shift in f̃(d) and on the threshold dU in the upper-threshold strategy. A shift in f̃(d)
could thus potentially have non-monotone effects.

When cascading failures follow a contact process as in the examples of Section 3.3, it is
interesting to study the effect of a change in the infectiousness parameter r on equilibria.
The following two propositions illustrate that a change in r has opposite effects, depending
on whether the game is one of self protection or total protection.

Proposition 6 (Varying Infectiousness). Suppose cascading failures follow a contact process
with infectiousness parameter r, as in the examples of Section 3.3. Let µ∗ and µ̄∗ be the
minimum- and maximum-investment equilibria in a game of self protection and let µ∗ be
the unique equilibrium in a game of total (or networked-risk) protection. Then, an increase
r′ > r in infectiousness results in:

• (i) µ′∗ � µ∗ and µ̄′∗ � µ̄∗ and thus in T ′(µ′∗) ≥ T (µ∗) and T ′(µ̄′∗) ≥ T (µ̄∗).

• (ii) µ′∗ � µ∗ and r′T ′(µ′∗) ≥ rT (µ∗).

13Note that by a higher level of connectedness, we mean an edge-perspective degree distribution placing
higher mass on higher-degree nodes. We do not mean the presence of short paths between any two nodes.

14Here f̃ ′ � f̃ means that f̃ ′ first-order stochastically dominates f̃ .
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Part (i) says that in a game of self protection, when cascading failures follow a contact
process, a higher level of infectiousness creates lower incentives for agents to invest in pro-
tection: the initial increase in T (µ) caused by higher infectiousness causes an even greater
increase in T (µ) as a result of strategic interactions. The situation is very different in a
game of total (or networked-risk) protection, as shown in Part (ii), where a higher level of
infectiousness creates higher incentives for agents to invest in protection. This investment in
protection is however not enough to counter the increase in rT (µ) caused by a higher level
of infectiousness. This is because agents free-ride on the protection provided by others and
thus an increase in rT (µ) cannot be completely compensated.

The next result examines the effect of an increase in the parameter k, which governs the
extent of the protection resulting from an investment.

Proposition 7 (Varying the Quality of Protection). Let µ∗ and µ̄∗ be the minimum- and
maximum-investment equilibria in a game of self protection and let µ∗ be the unique equi-
librium in a game of total (or networked-risk) protection with parameter k. Then, k′ > k
results in:

• (i) µ′∗ � µ∗ and µ̄′∗ � µ̄∗, and thus in T ′(µ′∗) ≤ T (µ∗) and T ′(µ̄′∗) ≤ T (µ̄∗).

• (ii) µ′∗ � µ∗, but T ′(µ′∗) ≤ T (µ∗).

Thus in a game of self protection, an increase in the protection quality results in a higher
investment and a reduction in a neighbor’s probability of failure. Strategic interactions
thus further add to the benefits of an improvement in the protection technology. On the
contrary, in a game of total (or networked-risk) protection, such an increase in the protection
quality results in a lower investment. However, it still results in a reduction of a neighbor’s
probability of failure, which is due entirely to the increase in protection quality.

4.5. Endogenizing the Cost of Protection

So far, we have only examined network effects. That is, a utility function depends
on other agents only through the failure probability of one’s neighbors. In reality, global
feedback effects might also influence an agent’s utility. By ‘global feedback effects’, we
mean effects that impact an agent’s utility in other ways than through its neighbors on
the network. For instance, prices of vaccines, computer security solutions or airport security
equipment might be affected by demand (i.e. by µ). Likewise, if protection is provided under
the form of insurance15, the insurance premium might depend on the overall failure level in
the population, which itself depends on the overall level of investment in protection. Such
price feedback effects, in addition to network effects, are also considered in Jackson & Zenou
(2014). Gagnon & Goyal (2015) also build a model in which agents’ utilities are affected
both by their neighbors on a social network and by effects unrelated to that network.

In this section, we introduce such global feedback effects to the model developed in the
previous sections. We focus on global feedback through the cost of protection, which can
take the form of a price to be paid.

15See, for example, Reuters (12 October 2015): ”Cyber insurance premiums rocket after high-profile
attacks”. Oct 12, 2015. Reuters. The reader may also see Johnson et al. (2011) and Lelarge & Bolot (2009)
for some work on insurance provision.
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We will introduce the following function, which maps a strategy µ to the corresponding
probability that a randomly-picked agent invests in protection:

Definition 15. Let the function G :M→ [0, 1] be defined as:

G(µ) =
∑
d≥1

f(d)µ(d). (11)

Thus to each strategy µ corresponds a fraction G(µ) of agents who invest in protection.
Furthermore, it is easy to notice that this function G increases in µ.

We will explore a setting in which the cost of protection is influenced by global de-
mand. Namely, when the cost of protection depends monotonically on total demand: Cg =
C ·g(G(µ)), where g(·) is either an increasing or a decreasing continuous function of the total
fraction of people G(µ) willing to invest in protection. In the following examples, we outline
two situations that can be modeled by the function g(·).

Example 1 (g(·) increasing). This case corresponds to the situation where the product is
scarce or there are global congestion effects. For instance, a vaccine might be produced in
limited quantity and thus, the more people demand it, the harder it may be to obtain it,
which will have an increasing effect on price.

Example 2 (g(·) decreasing). This corresponds to the case of economies of scale. For in-
stance, a new airport security technology might require significant initial R & D investments.
Producing it in large numbers may thus lead to a lower cost per unit, which may lower the
price.

We will slightly modify a degree-d agent’s expected utility function in order to introduce
the global feedback effect:

Ud(a, µ) = −V · B(p, qd(T (µ)), a)− C · g(G(µ)) · a. (12)

Note that the cascading failure probability qd(T (µ)) does not depend explicitly on the global
fraction of agents who invest in protection, as it is solely driven by network effects, i.e.
through an agent’s neighborhood. It is also important to mention that the introduction of a
global externality does not affect the definition of T (µ). The latter function was defined to
be the failure probability of a randomly-picked neighbor, which does not depend explicitly
on the total fraction of agents investing in protection G(µ).

We will now modify the optimality condition in order to ensure that this fraction G(µ)
arises in equilibrium. We can redefine the set of optimal responses as follows:

Definition 16. Let Sd(T (µ),G(µ)) ⊂ [0, 1] denote the set of optimal responses for a degree-d
agent given T (µ) and G(µ); i.e.:

Ud(1, µ) > Ud(0, µ) =⇒ Sd(T (µ),G(µ)) = {1};
Ud(1, µ) < Ud(0, µ) =⇒ Sd(T (µ),G(µ)) = {0};
Ud(1, µ) = Ud(0, µ) =⇒ Sd(T (µ),G(µ)) = [0, 1].
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Let S(T (µ),G(µ)) ⊂M denote the set of optimal strategies given T (µ) and G(µ); i.e.,

S(T (µ),G(µ)) =
∏
d≥1

Sd(T (µ),G(µ)).

We now only need to slightly modify the equilibrium condition:

Definition 17 (Mean-Field Equilibrium with Endogenized Cost of Protection). A strategy
µ∗ constitutes a mean-field equilibrium (MFE) if µ∗ ∈ S(T (µ∗),G(µ∗)).

It turns out that the main results that were stated in the previous sections of the paper
are robust to the introduction of this global externality. We summarize those more general
results in the following proposition.

Proposition 8 (Network Security Game with Endogenized Cost of Protection).

• (i) (Existence): There exists a mean-field equilibrium in the game with endogenized
cost or protection.

• (ii) (Threshold Strategies): The threshold characterization of equilibria is robust to
the endogenization of the cost of protection. The equilibrium is of: (1) an upper-
threshold nature for a game of total protection and networked-risk protection; (2) a
lower-threshold nature for a game of self protection.

• (iii) (Uniqueness): In a game of total protection or of networked-risk protection, the
mean-field equilibrium µ∗ is unique if g(·) is an increasing function.

As before, there can be multiple equilibria for games of self protection.

5. Conclusion

In this paper, we developed a framework to study the strategic investment in protection
against cascading failures in networked systems. Agents connected through a network can fail
either intrinsically or as a result of a cascade of failures that may cause their neighbors to fail.
We studied three broad classes of games covering a wide range of applications. We showed
that equilibrium strategies are monotone in degree (i.e. in the number of neighbors an agent
has on the network) and that this monotonicity is reversed depending on whether (i) an in-
vestment in protection insulates an agent against the risk of failure of his neighbors (games of
total protection and games of networked-risk protection) or (ii) only against his own intrinsic
risk of failure (games of self protection). The first case covers the important examples of
vaccination, anti-virus software as well as protection against sexually-transmitted diseases.
Here it is the more connected agents who have higher incentives to invest in protection. The
second case, on the other hand, covers examples such as airport/EU security as well as other
types of computer security solutions such as two-factor authentication (2FA). Here it is the
less connected agents who have higher incentives to invest in protection. Our analysis reveals
that it is the nature of strategic interactions (strategic substitutes/complements), combined
with a network structure that leads to such strikingly different equilibrium behavior in each
case, with important implications for the system’s resilience to cascading failures.
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Our model is simple and the incomplete information framework that we use allows for a
tractable treatment. The unobservability of the network is a credible assumption for many
applications. In the applications of vaccination or computer security, agents typically do
not know the topology of the social network or email network, for example. They merely
know the number of connections that they have. Our equilibrium concept then predicts the
behavior of the agents based on their level of interaction with the population (their degree).

The property that neighbors fail independently imposes a realistic cognitive burden on
agents and allows for a tractable way to express an agent’s expected cascading failure prob-
ability. This property is similar to the local tree-like assumption used in other models such
as Lelarge & Bolot (2008a) and is valid for large or relatively sparse networks. In spite of its
advantages, this property may no longer be realistic for small or dense networks. However,
as long as an agent’s cascading failure probability is monotone in degree (which may still
be approximately the case, even in some smaller/denser networks), our monotonicity results
could hold, at least approximately.

In the case of airport security or EU security, the topology of the network of airports
or countries can credibly be known and influence the decisions of the agents. It would
be interesting to extend our analysis to the case where agents know the topology of the
network. While it is likely that equilibrium behavior would still be monotone in the level of
interaction of the agents with the rest of the population, degree centrality may no longer be
the appropriate measure. It would be interesting to see if in this case, one could somehow
relate equilibrium behavior to some other measure of network centrality as in Acemoglu et al.
(2013). Such extensions are left for future work.

Appendix A. Proofs

Proposition 1. Note that we endow [0, 1] with the Euclidean topology.
For any α ∈ [0, 1] define the correspondence Φ by Φ(α) = T (S(α)). Any fixed point

α∗ of Φ, with the corresponding µ∗ ∈ S(α∗) such that T (µ∗) = α∗ constitute a MFE. We
thus need to show that the correspondence Φ has a fixed point. We employ Kakutani’s fixed
point theorem on the composite map Φ(α) = T (S(α)).

Kakutani’s fixed point theorem requires that Φ have a compact domain, which is trivial
since [0, 1] is compact. Further, Φ(α) must be nonempty; again, this is straightforward, since
both S and T have nonempty image.

Next, we show that Φ(α) has a closed graph. We first show that S has a closed graph,
when we endow the set of strategies with the product topology on [0, 1]∞. This follows easily:
if αn → α, and µn → µ, where µn ∈ S(αn) for all n, then µn(d)→ µ(d) for all d. Expressing
utility as a function of α, i.e. Ud(a, α) = −V · B(p, qd(α), a)−C · a, we see that Ud(1, α) and
Ud(0, α) are continuous, and it follows that µ(d) ∈ Sd(α), so S has a closed graph. Note also
that with the product topology on the space of strategies, T is continuous: if µn → µ, then
T (µn)→ T (µ) by the bounded convergence theorem.

To complete the proof that Φ has a closed graph, suppose that αn → α, and that
α′n → α′, where α′n ∈ Φ(αn) for all n. Choose µn ∈ S(αn) such that T (µn) = α′n for all n.
By Tychonoff’s theorem, [0, 1]∞ is compact in the product topology; so taking subsequences
if necessary, we can assume that µn converges to a limit µ. Since S has a closed graph, we
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know µ ∈ S(α). Finally, since T is continuous, we know that T (µ) = α′. Thus α′ ∈ Φ(α),
as required.

Finally, we show that the image of Φ is convex. Let α1, α2 ∈ Φ(α) , and choose µ1, µ2 ∈
S(α) such that α1 = T (µ1) and α2 = T (µ2). Since F is continuous in µ and since T is
unique (this follows from Property 2), then T is continuous in µ. Now since S(α) is convex,
it follows that for any δ ∈ (0, 1),

δT (µ1) + (1− δ)T (µ2) ∈ [ min
µ∈S(α)

T (µ), max
µ∈S(α)

T (µ)]

= Φ(α)

and thus δα1 + (1− δ)α2 ∈ Φ(α)—as required.
By Kakutani’s fixed point theorem, Φ possesses a fixed point α∗. Letting µ∗ ∈ S(α∗) be

such that T (µ∗) = α∗, we conclude that µ∗ is an MFE.

Theorem 1. For convenience, since the expected utility Ud(a, µ) depends on µ only through
α = T (µ), we may write it as a function of α as follows.

Ud(a, α) = −V · B(p, qd(α), a)− C · a (A.1)

Consider the incremental expected utility for an agent of degree d, i.e.

∆Ud(α) = Ud(1, α)− Ud(0, α) (A.2)

= −V · (p+ (1− p)qd(α))(1− k)− C − (−V · (p+ (1− p)qd(α))

= V ·
(
p+ (1− p)qd(α)

)
k − C

We will first show that any equilibrium is an upper-threshold strategy.
Consider ∆Ud(α) as a function of the continuous variable d over the connected support

[1,∞). From (A.2), we can write

∆Ud(α) = V ·
(
p+ (1− p)qd(α)

)
k − C

Since qd(α) is non-decreasing in d, for any α ∈ (0, 1), ∆Ud(α) is a non-decreasing function
of d. It follows that the inverse image of (−∞, 0) is ∅ if ∆U1(α) > 0 or an interval [1, x)
where x ≥ 1 otherwise. The integers in such intervals (i.e. ∅

⋂
N

+ or [1, x)
⋂
N

+) represent
the degrees of agents for whom not investing in protection is a strict best response, i.e.
{d : Sd(α) = {0}}. It follows that the degrees of agents for whom investing in protection is
a strict best response (i.e. {d : Sd(α) = {1}}) are located at the rightmost extremity of the
degree support.

Thus we may write µ(d) = 1, for all d > dU and µ(d) = 0, for all d < dU . This is valid
for any best-responding strategy µ and it is therefore valid for any equilibrium strategy µ∗.

We now prove equilibrium uniqueness. We prove it in a sequence of steps:
Step 1: For all d ≥ 1, ∆Ud(α) is strictly increasing in α ∈ [0, 1]. This follows directly

from Definition 3.
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Step 2: For all d ≥ 1, and α′ > α, Sd(α′) � Sd(α).16 This follows immediately from Step
1 and the definition of Sd in Definition 8.

Step 3: If µ′, µ are strategies such that µ′(d) ≥ µ(d), then T (µ′) ≤ T (µ). This follows
from the fact that F(µ, α) (cf. (6) in Definition 10) is non-increasing in µ and that it is also
continuous in both µ and α. Thus the unique fixed point ᾱ = F(µ, ᾱ) is non-increasing in
µ. Therefore, T (µ′) ≤ T (µ).

Step 4: Completing the proof. So now suppose that there are two mean-field equilibria
µ∗ and µ′∗, with T (µ′∗) = α′∗ > α∗ = T (µ∗). By Step 2, since µ∗ ∈ S(α∗) and µ′∗ ∈ S(α′∗),
we have µ′∗(d) ≥ µ∗(d). By Step 3, we have α∗ = T (µ∗) ≥ T (µ′∗) = α′∗, a contradiction.
Thus the α∗ = T (µ∗) in any MFE must be unique, as required.

It then follows from the threshold nature of the equilibrium strategy µ∗ that to α∗, there
corresponds a unique µ∗ ∈ S(α∗) such that α∗ = T (µ∗).

Theorem 2. For convenience, we do as in the proof of Theorem 1 and write the expected
utility Ud(a, α) as a function of α.

In a game of self protection, consider now ∆Ud(α) as a function of the continuous variable
d over the connected support [1,∞). From (7) and (2), we can write

∆Ud(α) = Ud(1, α)− Ud(0, α)

= −V · (p(1− k) + (1− p(1− k))qd(α))− C + V · (p+ (1− p)qd(α))

= V · (pk − pkqd(α))− C

Since qd(α) is non-decreasing in d, for any α ∈ (0, 1), ∆Ud(α) is a non-increasing function
of d. It follows that the inverse image of (−∞, 0) is an interval [1,∞) if ∆U1(α) < 0 or
an interval (x,∞) where x ≥ 1 otherwise. The integers in such intervals (i.e. [1,∞)

⋂
N

+

or (x,∞)
⋂
N

+) represent the degrees of agents for whom not investing in protection is a
strict best response, i.e. {d : Sd(α) = {0}}. It follows that the degrees of agents for whom
investing in protection is a strict best response (i.e. {d : Sd(α) = {1}}) are located at the
leftmost extremity of the degree support.

Thus we may write µ(d) = 1, for all d < dL and µ(d) = 0, for all d > dL. This is valid
for any best-responding strategy µ and it is therefore valid for the equilibrium strategy µ∗.

Corollary 1. The result follows from comparing the incremental expected utility of an agent
of degree d in the case of networked-risk protection (see (A.3) below) with the one in the
case of total protection (see (A.2) in the proof of Theorem 1):

∆Ud(α) = V (1− p)qd(α)k − C (A.3)

By comparing (A.3) to (A.2), it is easy to see that the incremental utility of investing in
protection is V pk > 0 higher in the case of total protection. Otherwise, ∆Ud(α) is increasing
in d and a similar argument as in the proof of Theorem 1 leads to the conclusion that the
equilibrium strategy µ∗ is of an upper-threshold nature.

16Here the set relation A � B means that for all x ∈ A and y ∈ B, x ≤ y.
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Proposition 2. Part (i):
Note that qd(T (µ∗)) is non-decreasing in d. Thus for d′ > d, ad′ ∈ µ∗(d′) and ad ∈ µ∗(d),

we have
Ud(ad, µ

∗) ≥ Ud(ad′ , µ
∗) ≥ Ud′(ad′ , µ

∗) (A.4)

where the first inequality follows from ad ∈ µ∗(d), while the second inequality follows from
qd(T (µ∗)) being non-decreasing in d. Thus Ud(ad, T (µ∗)) is non-increasing in d.

Part (ii):
From Theorem 2, the equilibrium strategy µ∗ is non-increasing in d. From (7), it thus fol-

lows that for ad ∈ µ∗(d), B(p, qd(T (µ∗)), ad) is non-decreasing in d (since B is non-decreasing
in qd(T (µ∗)) and non-increasing in ad).

Proposition 3. For convenience, we do as in the proof of Theorem 1 and write the expected
utility Ud(a, α) as a function of α.

Let α∗l = T (µ∗l ) and α∗k = T (µ∗k). We then have µ∗l ∈ S(α∗l ) and µ∗k ∈ S(α∗k). Then for
any d,

Ud(al, α
∗
l ) ≥ Ud(ak, α

∗
l ) ≥ Ud(ak, α

∗
k) (A.5)

where al ∈ µ∗l (d) and ak ∈ µ∗k(d).
The first inequality follows from al being a best response to α∗l (i.e. al ∈ µ∗l (d)) for an

agent of degree d. The second inequality follows from Ud being decreasing in α∗.
Since (A.5) holds for any d, all agents have expected utility that is weakly greater in the

higher-investment equilibrium µ∗l . We therefore conclude that µ∗l weakly Pareto-dominates
µ∗k.

Proposition 4. First note that the expected utilities in all possible cases are

U tot
d (1, µ∗) = −V

(
p+ (1− p)qd(T (µ∗))

)
(1− k)− C

U tot
d (0, µ∗) = −V

(
p+ (1− p)qd(T (µ∗))

)
U s.p.
d (1, µ̄∗) = −V

(
p(1− k) + (1− p(1− k))qd(T (µ̄∗))

)
− C

U s.p.
d (0, µ̄∗) = −V

(
p+ (1− p)qd(T (µ̄∗))

)
.

Also note that the incremental utilities from investing in each class of games are

∆U tot
d (µ∗) = U tot

d (1, µ∗)− U tot
d (0, µ∗)

= V
(
p+ (1− p)qd(T (µ∗))

)
k − C (A.6)

and that

∆U s.p.
d (µ̄∗) = U tot

d (1, µ̄∗)− U tot
d (0, µ̄∗)

= V
(
p− pqd(T (µ̄∗))

)
k − C. (A.7)

Suppose V pk > C. Then, from (A.6) we see that in a game of total protection ∆U tot
d (µ∗) >

0 for all d and thus µ∗(d) = 1 for all d. Thus

W tot(µ∗) =
∑
d

f(d)U tot
d (1, µ∗). (A.8)
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Also, from (A.7) we see that in a game of self protection not all agents may find it optimal
to invest and thus µ̄∗ is some lower-threshold strategy. Therefore,

W s.p.(µ̄∗) =
∑
d<dL

f(d)U s.p.
d (1, µ̄∗) +

∑
d>dL

f(d)U s.p.
d (0, µ̄∗)

+f(dL)µ(dL)U s.p.
d (1, µ̄∗) + f(dL)(1− µ(dL))U s.p.

d (0, µ̄∗). (A.9)

Since µ∗ � µ̄∗, then T (µ∗) ≤ T (µ̄∗). Examining the expressions for the utilities allows
us to conclude that U s.p.

d (1, µ̄∗) < U tot
d (1, µ∗) and that U s.p.

d (0, µ̄∗) < U tot
d (0, µ∗) < U tot

d (1, µ∗),
where the last inequality follows from the fact that ∆U tot

d (µ∗) > 0. Comparing the expres-
sions for the welfare then allows us to conclude that W s.p.(µ̄∗) < W tot(µ∗).

Now suppose V pk ≤ C. Then in a game of total protection, examining (A.6) tells us
that not all agents may find it optimal to invest. µ∗ is thus some upper-threshold strategy
and thus

W tot(µ∗) =
∑
d>dU

f(d)U tot
d (1, µ∗) +

∑
d<dU

f(d)U tot
d (0, µ∗)

+f(dU)µ(dU)U tot
d (1, µ∗) + f(dU)(1− µ(dU))U tot

d (0, µ∗). (A.10)

Also, in a game of self protection, µ̄∗(d) = 0 for all d. Indeed ∆U s.p.
d (µ̄∗) < 0 (see (A.7)).

Thus

W s.p.(µ̄∗) =
∑
d

f(d)U s.p.
d (0, µ̄∗) (A.11)

Since µ∗ � µ̄∗, then T (µ∗) ≤ T (µ̄∗). Noting that U s.p.
d (0, µ̄∗) < U tot

d (0, µ∗) and that
U s.p.
d (0, µ̄∗) < U tot

d (0, µ∗) ≤ U tot
d (1, µ∗) for all d such that µ∗(d) > 0, we conclude by comparing

the expressions for the welfare that W s.p.(µ̄∗) < W tot(µ∗).
Thus for all parameter ranges, W s.p.(µ̄∗) < W tot(µ∗). This completes the proof.

Proposition 5. Let F ′(µ, α) and F(µ, α) denote (8) under f̃ ′ and f̃ respectively. qd(α) is
non-decreasing in d and we know from Theorem 2 that in a game of self-protection, any
equilibrium strategy is a lower-threshold strategy. We therefore only need to consider such
strategies. It then follows from (8) that given any lower-threshold strategy µ, F ′(µ, α) ≥
F(µ, α) for all α ∈ [0, 1]. Since by Property 2, (8) has a single fixed point in α and we
conclude that T ′(µ) ≥ T (µ), where T ′(µ) and T (µ) denote (4) under f̃ ′ and f̃ respectively.

It then follows that

Φ′(α) = T ′(S(α))

� T (S(α))

= Φ(α)

It therefore follows that α′∗ = min{α : α = Φ′(α)} ≥ min{α : α = Φ(α)} = α∗ and that
ᾱ′∗ = max{α : α = Φ′(α)} ≥ max{α : α = Φ(α)} = ᾱ∗.

Thus, the equilibrium strategies are such that µ′∗ = S(ᾱ′∗) � S(ᾱ∗) = µ∗ and µ̄′∗ =
S(α′∗) � S(α∗) = µ̄∗. Likewise, T ′(µ̄′∗) = α′∗ ≥ α∗ = T (µ̄∗) and T ′(µ′∗) = ᾱ′∗ ≥ ᾱ∗ =
T (µ∗).

27



Proposition 6. Part(i):
Let F ′(µ, α) and F(µ, α) denote (8) under r′ and r respectively. In the case of the contact

process described in the examples of Section 3.3, q′d(α) > qd(α) for all α ∈ [0, 1], d > 0. It
then follows from (8) that given any strategy µ, F ′(µ, α) ≥ F(µ, α) for all α ∈ [0, 1]. Since
by Property 2, (8) has a single fixed point, we conclude that T ′(µ) ≥ T (µ), where T ′(µ) and
T (µ) denote the correspondence (4) under r′ and r respectively.

It then follows that

Φ′(α) = T ′(S(α))

� T (S(α))

= Φ(α)

It therefore follows that α′∗ = min{α : α = Φ′(α)} ≥ min{α : α = Φ(α)} = α∗ and that
ᾱ′∗ = max{α : α = Φ′(α)} ≥ max{α : α = Φ(α)} = ᾱ∗.

Thus, the equilibrium strategies are such that µ′∗ = S(ᾱ′∗) � S(ᾱ∗) = µ∗ and µ̄′∗ =
S(α′∗) � S(α∗) = µ̄∗. Likewise, T ′(µ̄′∗) = α′∗ ≥ α∗ = T (µ̄∗) and T ′(µ′∗) = ᾱ′∗ ≥ ᾱ∗ =
T (µ∗).

Part (ii):
We prove by contradiction. Suppose r′T ′(µ′∗) < rT (µ∗). Then S(T ′(µ′∗)) � S(T (µ∗))

and thus µ′∗ � µ∗. Since F ′(µ, α) ≥ F(µ, α) for any µ ∈ M and α ∈ [0, 1] and since F ′
and F are decreasing in µ, we have that F ′(µ′∗, α) ≥ F(µ∗, α) for any α ∈ [0, 1]. Therefore,
T ′(µ′∗) ≥ T (µ∗) and thus, since r′ > r, we have that r′T ′(µ′∗) > rT (µ∗), a contradiction.
We conclude that r′T ′(µ′∗) ≥ rT (µ∗).

It then follows that S(T ′(µ′∗)) � S(T (µ∗)) and thus µ′∗ � µ∗.
The result extends to games of networked-risk protection by their structural equivalence

to games of total protection (see Corollary 1). This completes the proof.

Proposition 7. Part (i):
Let F ′(µ, α) and F(µ, α) denote (8) under k′ and k respectively. It follows from (8) that

given any strategy µ, F ′(µ, α) ≤ F(µ, α) for all α ∈ [0, 1]. Since under by Property 2, (8)
has a single fixed point, we conclude that T ′(µ) ≤ T (µ), where T ′(µ) and T (µ) denote the
correspondence (4) under k′ and k respectively.

It then follows that

Φ′(α) = T ′(S(α))

� T (S(α))

= Φ(α)

It therefore follows that α′∗ = min{α : α = Φ′(α)} ≤ min{α : α = Φ(α)} = α∗ and that
ᾱ′∗ = max{α : α = Φ′(α)} ≤ max{α : α = Φ(α)} = ᾱ∗.

Thus, µ′∗ = S(ᾱ′∗) � S(ᾱ∗) = µ∗ and µ̄′∗ = S(α′∗) � S(α∗) = µ̄∗. Likewise, T ′(µ̄′∗) =
α′∗ ≤ α∗ = T (µ̄∗) and T ′(µ′∗) = ᾱ′∗ ≤ ᾱ∗ = T (µ∗).

Part (ii):
We prove by contradiction. Suppose T ′(µ′∗) > T (µ∗). Then S(T ′(µ′∗)) � S(T (µ∗)) and

thus µ′∗ � µ∗. Since F ′(µ, α) ≤ F(µ, α) for any µ ∈ M and α ∈ [0, 1] and since F ′ and
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F are decreasing in µ, we have that F ′(µ′∗, α) ≤ F(µ∗, α) for any α ∈ [0, 1]. Therefore,
T ′(µ′∗) ≤ T (µ∗), a contradiction. We conclude that T ′(µ′∗) ≤ T (µ∗).

It then follows that S(T ′(µ′∗)) � S(T (µ∗)) and thus µ′∗ � µ∗.
The result extends to games of networked-risk protection by their structural equivalence

to games of total protection (see Corollary 1). This completes the proof.

Proposition 8. Part (i):
The proof is analogous to that of Proposition 1, with only minor modifications.
Denote the function T(µ) = (T (µ),G(µ)) and let the correspondence Ψ be such that

Ψ(α, ω) = T(S(α, ω)), with the correspondence S(α, ω) defined as in Definition 16.
First, note that Ψ still has a compact domain [0, 1]× [0, 1] and a nonempty image.
Furthermore, it is also simple to show that Ψ has a closed graph. First, note that

S(α, ω) has a closed graph when we endow the set of strategies with the product topology
on [0, 1]∞. Indeed, choose any (αn, ωn) → (α, ω) and µn → µ such that µn ∈ S(αn, ωn).
Then µn(d)→ µ(d) for any d. Expressing utility as a function of α and ω, i.e. Ud(a, α, ω) =
−V ·B(p, qd(α), a)−C ·g(ω) ·a, we note that by the continuity of Ud(1, α, ω) and Ud(0, α, ω),
it follows that µ(d) ∈ Sd(α, ω). Thus, S has a closed graph. Note also that with the product
topology on the space of strategies, T is continuous: by the bounded convergence theorem,
both T (µn)→ T (µ) and G(µn)→ G(µ) and therefore it is also true that T(µn)→ T(µ). We
now only need to consider the sequences (αn, ωn) → (α, ω) and (α′n, ω

′
n) → (α′, ω′) where

(α′n, ω
′
n) ∈ Ψ(αn, ωn). By choosing µn ∈ S(αn, ωn) such that T (µn) = α′n and G(µn) = ω′n,

and by the same argument as in the proof of Proposition 1, we can conclude that (α′, ω′) ∈
Ψ(α, ω), as desired.

Finally, the image of Ψ is convex. Indeed, T(µ) is continuous in µ. Furthermore, S(α, ω)
is convex (which follows from convexity of Sd(α, ω) for any d). Convexity of the image of Ψ
thus follows from an argument analogous to that presented in the proof of Proposition 1.

By Kakutani’s fixed point theorem, Ψ has a fixed point (α∗, ω∗). Letting µ∗ ∈ S(α∗, ω∗)
be such that T(µ∗) = (α∗, ω∗), we conclude that µ∗ is an MFE.

Part (ii):
Note that the incremental expected utilities for an agent of degree d in games of total

and self protection are respectively:

∆Ud(µ) = V · (p+ (1− p)qd(T (µ))) k − Cg(G(µ)) (A.12)

and
∆Ud(µ) = V · (pk − pkqd(T (µ)))− Cg(G(µ)) (A.13)

It is obvious that for any given T (µ) and G(µ), these functions preserve the properties (i.e.
monotonicity in d) that were discussed in the proofs of Theorems 1 and 2. The threshold
nature of equilibria is thus maintained. By an argument analogous to that of the proof of
Corollary 1, it also follows that a game of networked-risk protection is structurally equivalent
to a game of total protection and thus the upper-threshold nature also follows in that case.

Part (iii):
For convenience, since the expected utility Ud(a, µ) depends on µ only through α = T (µ)

and ω = G(µ), we may write it as a function of α and ω as follows:

29



Ud(a, α, ω) = −V · B(p, qd(α), a)− C · g(ω) · a (A.14)

For a game of total protection, the incremental expected utility for an agent of degree d
is

∆Ud(α, ω) = V · (p+ (1− p)qd(α)) k − C · g(ω) (A.15)

We will consider the case when g(ω) is an increasing function. As in the proof of Theorem 1,
we will conduct the analysis in 4 steps.

Step 1: For all d ≥ 1, ∆Ud(α, ω) is strictly increasing in α ∈ [0, 1] and strictly decreasing
in ω ∈ [0, 1].

Step 2: Notice that α and ω are moving ∆Ud(α, ω) in opposite directions. Hence, if both
α and ω increase, we cannot conclude anything about the change in Sd(α, ω). However for
α′ > α and ω′ > ω it holds Sd(α′, ω) � Sd(α, ω′).

Step 3: For any strategies µ′, µ such that µ′(d) ≥ µ(d),∀d ≥ 1, then G(µ′) ≥ G(µ) and
T (µ′) ≤ T (µ). As we have noted before, the global externality does not have a direct impact
on F(µ, α) and thus the behavior of T (µ) remains as in step 3 of the proof of Theorem 1.

Step 4: Suppose that there are two mean-field equilibria (µ∗, α∗, ω∗) and (µ′∗, α′∗, ω′∗).
Without loss of generality assume that α′∗ > α∗. We need to consider two cases. First, if
ω′∗ ≤ ω∗, then it is true that S(α′∗, ω′∗) � S(α∗, ω∗). As µ∗ ∈ S(α∗, ω∗) and µ′∗ ∈ S(α′∗, ω′∗),
then it follows that µ′∗ � µ∗. However that leads to the contradiction: α∗ = T (µ∗) ≥
T (µ′∗) = α′∗. Finally consider the case of ω′∗ > ω∗. By Proposition 8(ii), due to the
threshold nature of the equilibrium, the equilibrium strategies can be ordered as either
µ′∗ � µ∗ or µ′∗ � µ∗. If µ′∗ � µ∗ then ω∗ = G(µ∗) ≥ G(µ′∗) = ω′∗, which is a contradiction.
If µ′∗ � µ∗, it follows that α∗ = T (µ∗) ≥ T (µ′∗) = α′∗ and we arrive at a contradiction.

Thus, we showed that in a game of total protection with both endogenized cost (with
g(·) increasing), any MFE must be unique. Uniqueness in the case of a game of networked-
risk protection follows by its structural equivalence to a game of total protection (Corollary
1).
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