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Abstract—The research is focused on the question of proportional development in economic
growth modeling. A multilevel dynamic optimization model is developed for the construction
of balanced proportions for production factors and investments in a situation of changing
prices. At the first level, models with production functions of different types are examined
within the classical static optimization approach. It is shown that all these models possess the
property of proportionality: in the solution of product maximization and cost minimization
problems, production factor levels are directly proportional to each other with coefficients of
proportionality depending on prices and elasticities of production functions. At the second
level, proportional solutions of the first level are transferred to an economic growth model to
solve the problem of dynamic optimization for the investments in production factors. Due to
proportionality conditions and the homogeneity condition of degree 1 for the macroeconomic
production functions, the original nonlinear dynamics is converted to a linear system of dif-
ferential equations that describe the dynamics of production factors. In the conversion, all
peculiarities of the nonlinear model are hidden in a time-dependent scale factor (total factor
productivity) of the linear model, which is determined by proportions between prices and
elasticities of the production functions. For a control problem with linear dynamics, analytic
formulas are obtained for optimal development trajectories within the Pontryagin maximum
principle for statements with finite and infinite horizons. It is shown that solutions of these two
problems differ crucially from each other: in finite horizon problems the optimal investment
strategy inevitably has the zero regime at the final stage, whereas the infinite horizon problem
always has a strictly positive solution. A remarkable result of the proposed model consists in
constructive analytical solutions for optimal investments in production factors, which depend on
the price dynamics and other economic parameters such as elasticities of production functions,
total factor productivity, and depreciation factors. This feature serves as a background for the
productive fusion of optimization models for investments in production factors in the framework
of a multilevel structure and provides a solid basis for constructing optimal trajectories of
economic development.
Keywords: optimal control, Pontryagin maximum principle, multilevel optimization, propor-
tional economic growth.
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INTRODUCTION

The paper is devoted to the construction and analysis of the model of proportional devel-

opment within the theory of economic growth. The proposed approach combines elements of

†Deceased.
1Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Ko-
valevskoi 16, Yekaterinburg, 620990 Russia; International Institute for Applied Systems Analysis, Schlossplatz 1,
A-2361 Laxenburg, Austria
e-mail: tam@imm.uran.ru, tarasiev@iiasa.ac.at

S101



S102 KRYAZHIMSKII, TARAS’EV

the classical models [1–5] and the ideas of the proportionality of optimal solutions of static mi-

croeconomic and macroeconomic models [6] with the dynamic optimization constructions in the

Pontryagin maximum principle [7] and its generalizations for optimal control problems with infinite

horizon [8–11].

The model implements the results of investigating the optimization of investments in production

factors [12–21] and essentially supplements and renews them by applying multilevel optimization

constructions.

It should be noted that similar approaches to studying economic growth models based on

proportional constructions were developed in [22].

The main idea of the paper consists in designing an economic growth model with multilevel

optimization constructions.

At the first level, we consider an optimization procedure for a static problem if the current

time period is fixed. Here, two standard statements are possible: the cost minimization problem

with a fixed production level and the dual product maximization problem with specified costs. For

models with the classical exponential Cobb–Douglas production functions, production functions

with constant elasticity of substitution, and input–output production functions [6], it is shown that

solutions of both static optimization problems possess the properties of proportionality: proportions

between optimal production factors are determined by proportions between prices and elasticities

of the production functions.

At the second level, we study an optimal control problem under proportionality conditions

within the theory of economic growth. To pass to this problem, the solutions of the first optimization

level are substituted into the equations of production factor dynamics. In such a passage, the

homogeneity property of degree 1 for the production function (the property of constant return

to scale) combined with the proportionality properties of the production factors generate a linear

dynamics of production factors and costs.

An optimal control problem is posed for an integral utility function with logarithmic consump-

tion index on trajectories of the obtained linear system describing the dynamics of production

factors. Note that the use of the logarithmic consumption index is a basic construction in the

theory of endogenous economic growth [3, 6]. In addition, a utility function of this type is closely

related to the notion of entropy of a dynamic system.

The solution of the optimal control problem is obtained within the Pontryagin maximum

principle [7] for finite horizon and its generalizations for statements with infinite horizon [8]. An

important property of the solution is that it is given by analytic formulas for a wide range of model

parameters including prices and elasticities depending on time. Note that such a time dependence

can have a complicated character and can provide for growth trends, transition periods, cycles, and

crises in the model.

It is worth noting that analytic solutions for the optimal control are obtained in both problems,

with finite and infinite horizons. The structure of these solutions clearly shows that the optimal

control always has a zero investments regime at the final stage in the problem with finite horizon.

In contrast to this case, the solution of the problem with infinite horizon may have no zero values

for the optimal investments on the whole time interval.

For the first and second optimization levels, a feedback is established by transferring the optimal

solution from the second level to the first one, where the investments are redistributed between

production factors in accordance with the proportionality principle.

Based on the proposed approach, optimal analytic solutions are constructed for both opti-
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mization levels. The corresponding optimal levels of investment generate a system of differential

equations for the production factors similar to the replicator dynamics of evolutionary games [23,24].

It should be noted that, in the context mentioned above, the optimal solutions obtained can be

analyzed within the theory of positional differential games [25].

Due to the effective construction, the proposed technique of multilevel optimization can be

applied to the econometric identification and prognostic simulation of optimal scenarios of propor-

tional growth in multidimensional economic systems.

The paper is organized as follows.

In the beginning, we form the first level of the model optimization, at which the time period is

fixed.

In Section 1, we consider the cost minimization problem with a fixed production level for models

with the classical production functions: exponential Cobb–Douglas functions and functions with

constant elasticity of substitution. It is proved that the solutions of these problems possess the

proportionality property: the optimal costs of production factors should be proportional to each

other with coefficients depending on proportions between prices and elasticities.

In Section 2, we analyze the product maximization problem, which is dual to the cost mini-

mization problem. Similar proportions of optimal solutions are obtained for the statements with

the Cobb–Douglas production functions and functions with constant elasticity of substitution.

In Section 3, proportionality conditions are naturally derived also for the models with input–

output production functions.

In Section 4, we establish connections between the optimal production and costs. Under the

condition of constant return to scale (the unit production elasticity), it is shown that the optimal

production can be linearly expressed in terms of costs with a scale coefficient specified by proportions

between prices and elasticities. Therefore, nonlinear dependencies in the production functions

can be hidden in the structure of the scale coefficient and can be expressed in terms of current

proportions.

In Section 5, we introduce balance equations for consumption and investment in both absolute

and relative variables. This construction completes the first optimization level for the model of

proportional economic growth.

Then, we pass to the second optimization level, where the time period is unlocked and becomes

the main variable.

In Section 6, the dynamics of production factors is given by a system of differential equations

describing the influence of investments as control parameters on the economic development. We

also introduce a utility function for the economic growth in the integral form (on the finite or

infinite horizon) of the discounted logarithmic consumption index defined on trajectories of the

system. It is proved that there exists a possibility to redistribute investments in the current time

period in such a way that the proportions of optimal solutions of the cost minimization or product

maximization problems at the first model level are sustained. It should be noted that the obtained

system of differential equations for the dynamics of production factors has characteristic features

of the replicator dynamics from the theory of evolution games.

In Section 7, at the second model optimization level, the optimal control problem for the

integral logarithmic consumption index is posed on trajectories of the linear cost dynamics. For

this problem, the Pontryagin maximum principle is formulated for both statements (with finite and

infinite horizons).

In Section 8, we analyze the Hamiltonian systems arising in the Pontryagin maximum principle
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and construct optimal solutions. Analytical formulas for the optimal control are derived for the

problems with finite and infinite horizons. Sufficient optimality conditions based on the concavity

properties of the maximized Hamiltonian are specified for the obtained solutions. It is shown that

the optimal control structure in the problem with finite horizon inevitably has the zero regime

at the final stage. On the contrary, the optimal control in the problem with infinite horizon is,

as a rule, strictly positive on the whole time interval. This result shows the advantages of the

optimal control problems with infinite horizon in models of economic growth in comparison with

the problems with finite horizon.

1. PROPORTIONALITY IN THE COST MINIMIZATION PROBLEM

In this section, we study the cost minimization problems of the first level for models with

production functions of different types. It is shown that the solutions of these problems possess

the property of proportionality: the production factor levels are directly proportional to each other

with coefficients of proportionality depending on prices and elasticities of the production functions.

At the first level, we fix a time period t, t ∈ [t0, T ], t0 ≤ T ≤ +∞, and consider static

optimization problems. To simplify the computations, we omit the time symbol t. However, one

should keep in mind that all the parameters and model variables may depend on time.

1.1. Cost minimization for the Cobb–Douglas production function. Let us consider

an economy model equipped with a Cobb–Douglas production function

y = a
n∏

j=1
x
αj

j . (1.1)

Here, y is the production level, and the symbols x1, . . . , xn denote the sizes of the production factors

1, . . . , n, respectively. The parameter a, a > 0, plays the role of a scale coefficient (the total factor

productivity). For the elasticities αj of the production function with respect to the factors, we

assume that the following conditions are fulfilled:

α1, . . . , αn > 0,
m∑
j=1

αj = ε.

Here, the parameter ε stands for the elasticity of production with respect to the investment. In

macroeconomic models, as a rule, it is assumed that the constant return to scale is used in the

form of the homogeneity of degree 1 for the production function; i.e., the elasticity of production

is equal to one, ε = 1.

Let us introduce the prices of the production factors. The symbol pj , pj > 0, stands for the

price of the unit of production factor j.

Consider the cost minimization problem with a fixed production level. It is required to find

optimal values of the production factors x1, . . . , xn that minimize the total costs C:

Minimize C =
n∑

j=1
pjxj

under the following constraints on a fixed production level y > 0:

x1, . . . , xn ≥ 0, y = a
n∏

j=1
x
αj

j .
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Here, it is convenient to pass to the logarithmic type constraints ln y = ln a+α1 lnx1+. . .+an lnxn.

According to the method of Lagrange multipliers, one can construct the Lagrange function

L(x1, . . . , xn, λ) = p1x1 + . . . + pnxn + λ(ln y − ln a− α1 lnx1 − . . .− an lnxn).

Here, the parameter λ denotes the Lagrange multiplier corresponding to the logarithmic constraints

for the Cobb–Douglas production function.

The necessary optimality conditions in the cost minimization problem imply the following

system of relations:
∂L

∂xj
= pj − λ

αj

xj
= 0, j = 1, . . . , n,

which provide the current proportions between the production factors:

cik =
xi
xk

=
αipk
αkpi

, i = 1, . . . , n, k = 1, . . . , n. (1.2)

It is possible to derive the values of demand functions for the production factors in the following

form:

xj =
(y
a

) 1
ε
(αj

pj

) n∏
k=1

( pk
αk

)αk
ε
, j = 1, . . . , n.

In the case of the constant return to scale, ε = 1, we obtain the following expressions for the

demand functions:

xj =
y

a

(αj

pj

) n∏
k=1

( pk
αk

)αk

, j = 1, . . . , n.

1.2. Cost minimization for the CES production function. Consider a model based on

a production function with constant elasticity of substitution (CES):

y = e0
(
e1x

−β
1 + . . .+ enx

−β
n

)− h
β . (1.3)

Here, the parameter e0 > 0 specifies the total factor productivity, the parameters ej ≥ 0, j =

1, . . . , n, are share coefficients, the parameter h > 0 defines the degree of homogeneity of the

production function, and the parameter β, β > −1, is the coefficient of substitution. The elasticity

of production is defined by the degree of homogeneity h, ε = h. For the constant return to scale,

the condition h = 1 should be fulfilled.

Let us analyze the cost minimization problem for the CES production function. In this case,

the Lagrange function is of the form

L(x1, . . . , xn, λ) = p1x1 + . . .+ pnxn + λ
(
ln y − ln e0 +

h

β
ln

(
e1x

−β
1 + . . .+ enx

−β
n

))
.

The necessary optimality conditions in the cost minimization problem are given by the relations

∂L

∂xj
= pj − λ

h

β

−βejx
−(β+1)
j

(e1x
−β
1 + . . .+ enx

−β
n )

= 0, j = 1, . . . , n.

These conditions provide the proportionality for the production factors

cik =
xi
xk

=
(eipk
ekpi

) 1
(β+1)

, i = 1, . . . , n, k = 1, . . . , n. (1.4)
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Using these conditions, we derive the demand functions for the production factors in the model

with the CES production function:

xj =
( y

e0

) 1
h
(ej
pj

) 1
(β+1)

(
e

1
(β+1)

1 p
β

(β+1)

1 + . . . + e
1

(β+1)
n p

β
(β+1)
n

) 1
β
, j = 1, . . . , n.

For the constant return to scale, h = 1, the following relations for the demand functions are

obtained:

xj =
y

e0

(ej
pj

) 1
(β+1)

(
e

1
(β+1)

1 p
β

(β+1)

1 + . . .+ e
1

(β+1)
n p

β
(β+1)
n

) 1
β
, j = 1, . . . , n.

1.3. Sufficient optimality conditions for proportional solutions. In order to establish

sufficient optimality conditions for the proportional solutions obtained, one should calculate the

matrix of second derivatives (the Hessian matrix) of the Lagrange function L(x, λ) with respect to

the production factors x and then verify that this matrix is positive definite.

For the model with Cobb–Douglas production function (1.1), we have the matrix of second

derivatives

∂2L

∂x2j
=

λαj

x2j
> 0,

∂2L

∂xj∂xk
= 0, j = 1, . . . , n, j = 1, . . . , n, k �= j.

Obviously, this diagonal matrix satisfies the Sylvester criterion and, consequently, is positive

definite.

In the model with CES production function (1.3), the matrix of second derivatives has the

following structure:

∂2L

∂x2j
=

λhej((β + 1)x
−(β+2)
j (

∑
k �=j ekx

−β
k ) + ejx

−2(β+1)
j )

(e1x
−β
1 + . . . + enx

−β
n )2

> 0,

∂2L

∂xj∂xk
= −

λhβejx
−(β+1)
j ekx

−(β+1)
k

(e1x
−β
1 + . . .+ enx

−β
n )2

< 0,

j = 1, . . . , n, j = 1, . . . , n, k �= j.

For this matrix, it is also possible to verify that the Sylvester criterion holds and the matrix is

positive definite. For example, in the case of two production factors for n = 2, the determinant of

the matrix of second derivatives of the Lagrange function is positive:

Δ =
∂2L

∂x21

∂2L

∂x22
−
( ∂2L

∂x1∂x2

)2
=

λ2h2(β + 1)e1e2x
−(β+2)
1 x

−(β+2)
2

(e1x
−β
1 + e2x

−β
2 )2

> 0,

and, consequently, the matrix of second derivatives is positive definite.

Thus, for both classical production functions, sufficient minimum conditions for proportional

solutions are fulfilled.

2. PROPORTIONALITY IN THE PRODUCT MAXIMIZATION PROBLEM

Proportionality conditions take place not only for the cost minimization problem but also for

the dual product maximization problem.
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2.1. Maximal solutions for the Cobb–Douglas production function. In the model

with a Cobb–Douglas production function, it is required to maximize the product

y = axα1
1 . . . xαn

n −→ max

under cost constraints

p1x1 + . . .+ pnxn = C. (2.1)

Here, the parameter C, C > 0, denotes the total costs.

The Lagrange function in the product maximization problem has the form

L(x1, . . . , xn, λ) = axα1
1 . . . xαn

n + λ(C − p1x1 − . . .− pnxn).

In this case, the necessary optimality conditions generate the system of equations

∂L

∂xj
= aαjx

−1
j xα1

1 . . . xαn
n − λpj = 0, j = 1, . . . , n.

The Lagrange multiplier is represented by the relation λ =
α1

p1x1
y = . . . =

αn

pnxn
y.

The latter conditions, in turn, imply the proportionality properties in the production maxi-

mization problem:

cik =
xi
xk

=
αipk
αkpi

, i = 1, . . . , n, k = 1, . . . , n.

These properties are similar to the proportionality properties in cost minimization problem (1.2).

In this case, we obtain the following optimal solutions for the demand functions:

xj = C
αj

pj
, j = 1, . . . , n.

In addition, the values of optimal production are derived from the given costs:

y = aC
(α1

p1

)α1

. . .
(αn

pn

)αn

= axj
pj
αj

(α1

p1

)α1

. . .
(αn

pn

)αn

, j = 1, . . . , n.

2.2. Maximal solutions for the CES production function. Consider the product max-

imization problem for a CES production function:

y = e0
(
e1x

−β
1 + . . .+ enx

−β
n

)− h
β −→ max

under cost constraints (2.1).

In this case, the Lagrange function has the form

L(x1, . . . , xn, λ) = e0
(
e1x

−β
1 + . . .+ enx

−β
n

)− h
β + λ(C − p1x1 − . . .− pnxn).

The necessary optimality conditions in the product maximization problem with the CES pro-

duction function are given by the relations

∂L

∂xj
= e0

(
− h

β

)(
e1x

−β
1 + . . . + enx

−β
n

)− h
β
−1

ej(−β)x
−(β+1)
j − λpj = 0, j = 1, . . . , n.
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These relations imply the proportionality conditions for the CES production function in the

product maximization problem:

cik =
xi
xk

=
(eipk
ekpi

) 1
(β+1)

, i = 1, . . . , n, k = 1, . . . , n.

These conditions are completely identical to the proportionality conditions in the cost minimization

problem, see (1.4).

The demand functions for the production factors are obtained in the form of the relations

xj = C
(ej
pj

) 1
(β+1)

(
e

1
(β+1)

1 p
β

(β+1)

1 + . . .+ e
1

(β+1)
n p

β
(β+1)
n

)−1
, j = 1, . . . , n.

To represent the optimal production in terms of the given costs, we derive the formula

y = e0C
h
(
e

1
(β+1)

1 p
β

(β+1)

1 + . . .+ e
1

(β+1)
n p

β
(β+1)
n

)−h (β+1)
β

= e0x
h
j

(pj
ej

) h
(β+1)

(
e

1
(β+1)

1 p
β

(β+1)

1 + . . . + e
1

(β+1)
n p

β
(β+1)
n

)h
β
, j = 1, . . . , n.

In the case of the constant return to scale, h = 1, we have the following relations for the optimal

production:

y = e0C
(
e

1
(β+1)

1 p
β

(β+1)

1 + . . .+ e
1

(β+1)
n p

β
(β+1)
n

)− (β+1)
β

= e0xj

(pj
ej

) 1
(β+1)

(
e

1
(β+1)

1 p
β

(β+1)

1 + . . . + e
1

(β+1)
n p

β
(β+1)
n

) 1
β
, j = 1, . . . , n.

3. PROPORTIONALITY FOR THE INPUT–OUTPUT PRODUCTION FUNCTION

In this section, we consider the case when an economy is described by an input–output produc-

tion function:

y(t) = min
{x1(t)

c1
, . . . ,

xn(t)

cn

}
. (3.1)

Here, the parameters cj , cj > 0, specify productivity coefficients of the production factors xj,

j = 1, . . . , n.

For the balanced state of the economy, the proportionality conditions realizing the minimum in

the input–output production function

y =
x1
c1

, . . . ,
xn
cn

should be fulfilled.

The latter condition implies the proportionality of the production factors:

cik =
xi
xk

=
ci
ck

, i = 1, . . . , n, k = 1, . . . , n,

and specifies the balanced levels of the production factors xj = ycj , j = 1, . . . , n.
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Taking into account cost constraints (2.1), one can derive the following condition for the optimal

production:

y = C
1

(p1c1 + . . .+ pncn)
.

Thus, the proportionality conditions are an inherent property of the input–output production

function.

4. UNIVERSAL PRODUCTION FUNCTION

Starting from this section, we pass to the second optimization level and consider a dynamic

process; i.e., we assume that all the parameters of production functions, prices of production factors,

and main variables (namely, production levels, costs of production factors, and consumption and

investment levels) may depend on the time period t, t ∈ [t0, T ], t0 ≤ T ≤ +∞.

Summarizing the conclusions from the previous sections on the proportionality conditions in

the cost minimization problem and in the production maximization problem, we can establish a

linear dependence of the optimal production y(t) on the costs C(t) and can call this dependence a

universal production function of the model:

y(t) = A(t)C(t). (4.1)

In addition, we can derive a linear dependence of the costs of the production factors pj(t)xj(t),

j = 1, . . . , n, on the costs C(t):

pj(t)xj(t) = γj(t)C(t), (4.2)

with weight coefficients γj = γj(t) satisfying the simplex relations

n∑
j=1

γj(t) = 1, γj(t) ≥ 0, j = 1, . . . , n. (4.3)

Here, the new scale coefficient A = A(t) and the weight coefficients γj = γj(t), j = 1, . . . , n, are

defined by the type of the production function.

Namely, for Cobb–Douglas production function (1.1), the scale coefficient A is defined by the

relation for the total factor productivity a = a(t), by the prices pj = pj(t), and by the elasticities

αj = αj(t), j = 1, . . . , n:

A = A(t) = a(t)
(α1(t)

p1(t)

)α1(t)
. . .

(αn(t)

pn(t)

)αn(t)
.

The weight coefficients γj , j = 1, . . . , n, for the Cobb–Douglas production function are given by

the formulas

γj(t) = αj(t), j = 1, . . . , n.

For CES production function (1.3), the scale coefficient A = A(t) is determined by the following

relation including the total factor productivity e0 = e0(t), the prices pj = pj(t), the coefficient of

substitution β = β(t), and the share coefficients ej = ej(t), j = 1, . . . , n:

A = A(t) = e0(t)

(
e1(t)

1
(β(t)+1)p1(t)

β(t)
(β(t)+1) + . . .+ en(t)

1
(β(t)+1)pn(t)

β(t)
(β(t)+1)

)− (β(t)+1)
β(t)

.
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The weight coefficients γj, j = 1, . . . , n, for the CES production function are given by the

relations

γj(t) = ej(t)
1

(β(t)+1)pj(t)
β(t)

(β(t)+1)

(
e1(t)

1
(β(t)+1)p1(t)

β(t)
(β(t)+1) + . . .+ en(t)

1
(β(t)+1)pn(t)

β(t)
(β(t)+1)

)−1

.

In the case of input–output production function (3.1), the scale coefficient A = A(t) is expressed

in terms of the productivity coefficients cj = cj(t) and the prices pj = pj(t) according to the formulas

A = A(t) =
1

(p1(t)c1(t) + . . .+ pn(t)cn(t))
.

The weight coefficients γj , j = 1, . . . , n, for the input–output production function are specified

by the relations

γj(t) =
pj(t)cj(t)

(p1(t)c1(t) + . . .+ pn(t)cn(t))
, j = 1, . . . , n.

5. BALANCE EQUATIONS

Let us introduce the following notation for the investment levels. The symbol I = I(t) denotes

the total investment, and the symbols Ij = Ij(t) mean the levels of investment in the production

factors xj = xj(t), j = 1, . . . , n. Thus, we have the balance relation for the investments:

I(t) = I1(t) + . . . + In(t).

Introducing the relative investment levels with respect to the total production y(t), we obtain

for them the following connection:

s(t) =
I(t)

y(t)
, sj(t) =

Ij(t)

y(t)
, s(t) = s1(t) + . . .+ sn(t),

0 ≤ s(t) < 1, 0 ≤ sj(t) ≤ s(t), j = 1, . . . , n.

The symbol Ç = Ç(t) stands for the absolute consumption level.

Taking into account the balance equation for the investment and consumption, we get the

relation y(t) = Ç(t)+ I(t) = Ç(t)+ I1(t)+ . . .+ In(t). Similarly, passing to the relative variable for

the consumption level c(t) = Ç(t)/y(t), we derive basic balance equations in the form

1 = c(t) + s(t) = c(t) + s1(t) + . . . + sn(t). (5.1)

6. DYNAMICS OF THE MODEL AND THE UTILITY FUNCTION

In this section, we describe the dynamics of the main variables of the model.

6.1. Dynamics of the production factors. Having the information on the prices pj =

pj(t) and investment levels Ij = Ij(t), j = 1, . . . , n, one can recalculate the physical costs of the

production factors:

Δxj(t) =
Ij(t)

pj(t)
=

sj(t)y(t)

pj(t)
. (6.1)

We assume that the production factors xj = xj(t) are subject to depreciation with specified

coefficients δj = δj(t).
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Further, treating the investments Δxj(t) in the production factor j during the current period t

as control parameters, we can write differential equations for the dynamics of the production factors:

ẋj(t) = Δxj(t)− δj(t)xj(t), j = 1, . . . , n. (6.2)

Using relation (6.1), which connects the costs of production factors and the production y(t), we

represent dynamics (6.2) in the following form:

ẋj(t) =
sj(t)y(t)

pj(t)
− δj(t)xj(t), j = 1, . . . , n.

Based on relations (4.1) for the optimal value of production, we can derive equations for the

dynamics of the production factors written in terms of the costs C(t):

ẋj(t) =
sj(t)A(t)C(t)

pj(t)
− δj(t)xj(t), j = 1, . . . , n. (6.3)

We can also obtain the dynamics of the production factors in the form standard for optimal control

problems, using relation (4.2):

ẋj(t) = xj(t)
(sj(t)
γj(t)

A(t)− δj(t)
)
, j = 1, . . . , n. (6.4)

6.2. Dynamics of the costs. The equations describing the dynamics of the costs C(t) are

derived from the dynamics of production factors (6.3):

Ċ(t) = ṗ1(t)x1(t) + . . . + ṗn(t)xn(t) + p1(t)ẋ1(t) + . . .+ pn(t)ẋn(t)

=
( 1

p1(t)
ṗ1(t)− δ1(t)

)
p1(t)x1(t) + . . .+

( 1

pn(t)
ṗn(t)− δn(t)

)
pn(t)xn(t) + s(t)y(t)

=
( 1

p1(t)
ṗ1(t)− δ1(t)

)
p1(t)x1(t) + . . .+

( 1

pn(t)
ṗn(t)− δn(t)

)
pn(t)xn(t) + s(t)A(t)C(t). (6.5)

In view of the linear dependence of the costs of the production factors pj(t)xj(t), j = 1, . . . , n,

on the total costs C(t) (see (4.2)), we obtain the basic differential equation for the dynamics of the

costs:

Ċ(t) = C(t)
(
s(t)A(t) +

n∑
j=1

γj(t)
( 1

pj(t)
ṗj(t)− δj(t)

))
.

Let us introduce the notation for the change rate (rise or fall) of the prices:

rj(t) =
1

pj(t)
ṗj(t), j = 1, . . . , n.

Based on the weights γj(t), j = 1, . . . , n, given by relations (4.3), we introduce the average price

rate

r(t) =
n∑

j=1
γj(t)rj(t)

and define the average depreciation coefficient

δ(t) =
n∑

j=1
γj(t)δj(t).
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Using this notation, we obtain the final relation for the dynamics of the costs:

Ċ(t) = C(t)
(
s(t)A(t) + (r(t)− δ(t))

)
. (6.6)

Note that the only condition for the existence of solutions of the dynamics (6.6) of the costs

that should be imposed on the dynamics of the prices pj(t), depreciation coefficients δj(t), and

weight coefficients γj(t), j = 1, . . . , n, is the requirement of measurable dependence on time t.

Let us show that, for specified levels of the total investment s(t), the dynamics of production

factors (6.5) and the dynamics of total costs (6.6) determine uniquely the structure of investments

in the production factors sj(t), j = 1, . . . , n. More exactly, the following statement is valid.

Proposition 1. If the level of the total investment s(t) is given, then the structure of invest-

ments in the production factors sj(t), j = 1, . . . , n, which is necessary to provide the proportionality

in the dynamics of the model, is recalculated by the relations

sj(t) = γj(t)s(t) +
γj(t)

A(t)

(
(r(t)− rj(t))− (δ(t)− δj(t))

)
+

1

A(t)
γ̇j(t), j = 1, . . . , n. (6.7)

Proof. Consider the dynamics of the factors (6.3), which implies that

pj(t)ẋj(t) = sj(t)A(t)C(t)− δj(t)γj(t)C(t), j = 1, . . . , n. (6.8)

Using formula (4.2) for the costs of production factors, we can derive relations for the growth rates

of the factors:

pj(t)ẋj(t) = γj(t)Ċ(t) +C(t)γ̇j(t)− C(t)γj(t)rj(t), j = 1, . . . , n. (6.9)

Taking into account the dynamics of the costs (6.6), we obtain from formula (6.9) the following

expression:

pj(t)ẋj(t) = γj(t)C(t) ((r(t)− δ(t)) + s(t)A(t))− C(t)γj(t)rj(t) + C(t)γ̇j(t), j = 1, . . . , n. (6.10)

Excluding similar terms in formulas (6.8) and (6.10), we obtain required relations (6.7) for the

structure of investments in production factors. �
Remark 1. Note that, if obtained investment levels (6.7) are nonnegative (sj(t) ≥ 0, j =

1, . . . , n), then these investments can be implemented based on the current production y(t); in this

sense, they should be called feasible investments.

However, the negative signs of the investment levels (sj(t) < 0, j = 1, . . . , n) are also possible.

Here, we should say that, in principle, negative levels can be allowed in the model. We mean that

it is possible to invest in a production factor xj not only due to the production y(t) obtained in

the current period but also using the stocks of other production factors xk, k = 1, . . . , n, k �= j.

Remark 2. It is important that, according to dynamics (6.4), the trajectories of the production

factors are nonnegative, xj(t) ≥ 0, j = 1, . . . , n, on the whole time interval t ∈ [t0, T ], irrespective

of the signs of investments sj(t), j = 1, . . . , n.

6.3. Constraints on the investment and consumption. We assume that there exists a

constraint on the lower consumption level c0 (the living wage) measured as a percentage of the

production:

0 < c0 ≤ c(t) ≤ 1.

From balance equation (5.1), it follows that there is an upper possible investment level s0:

0 ≤ s(t) ≤ s0 < 1, s0 = 1− c0.
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6.4. Utility function. Let us introduce a utility function to examine the quality of model

trajectories at the second optimization level. Toward this aim, we use the integral logarithmic

index of discounted consumption, which, according to balance equation (5.1) and the structure of

universal production function (4.1), can be presented by the relations

J =

T∫
t0

e−ρt ln c(t)dt =

T∫
t0

e−ρt
(
ln y(t)+ ln(1− s(t))

)
dt =

T∫
t0

e−ρt
(
lnA(t) + lnC(t)+ ln(1− s(t))

)
dt.

Here, the parameter ρ, ρ > 0, specifies the discount rate.

7. OPTIMAL CONTROL PROBLEM

Consider the optimal control problem for the investment process at the second optimization

level. The statement of this problem implies the maximization in the controlled system of the

utility function

J(C(·), s(·), T ) =
T∫

t0

e−ρt
(
lnA(t) + lnC(t) + ln(1− s(t))

)
dt (7.1)

on trajectories generated by the dynamics

Ċ(t) = C(t) (A(t)s(t)− σ(t)) . (7.2)

Here, the parameter of “generalized” cost depreciation σ = σ(t) is defined by the formula

σ(t) = δ(t) − r(t).

The control investment parameter is subject to the constraints

0 ≤ s(t) ≤ s0 < 1. (7.3)

The phase variable C(t) of system (7.2) satisfies the initial conditions

C(t0) = C0. (7.4)

Note that problem (7.1)–(7.4) is a classical optimal control problem both with finite horizon

T < +∞ and with infinite horizon T = +∞ (see [7, 8]).

8. OPTIMAL SOLUTIONS

In this section, we consider the application of the Pontryagin maximum principle equipped with

transversality conditions to solving the formulated optimal control problem.
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8.1. Hamiltonian functions of optimal control problems. Let us start to solve the

optimal control problem with compiling the Hamiltonian function of controlled system (7.1)–(7.4):

H̃(t, C(t), s(t), ψ̃(t)) = e−ρt
(
lnA(t) + lnC(t) + ln(1− s(t))

)
+ ψ̃(t)C(t) (s(t)A(t)− σ(t)) .

Here, the parameter ψ̃ = ψ̃(t) stands for the adjoint variable.

Using the substitution for the adjoint variable

ψ(t) = eρtψ̃(t), (8.1)

we obtain the stationary (not discounted) Hamiltonian

H(t, C(t), s(t), ψ(t)) = lnA(t) + lnC(t) + ln(1− s(t)) + ψ(t)C(t) (s(t)A(t)− σ(t)) , (8.2)

which is connected with the original Hamiltonian by the relation

H̃(t, C(t), s(t), ψ̃(t)) = e−ρtH(t, C(t), s(t), ψ(t)).

Lemma 1. The Hamiltonian H(t, C, s, ψ) (8.2) is a strictly concave function in the vari-

ables C and s for all values of the variables t and ψ.

Proof. The proof of the statement follows immediately from the fact that the matrix of second

derivatives of Hamiltonian (8.2) is strictly negative definite. This property is verified by means of

Sylvester’s criterion in the variables C and s for all values of the variables t and ψ.

8.2. The Pontryagin maximum principle. Note that the conditions of the existence

theorem (see [8, 11]) are fulfilled for control problem (7.1)–(7.4). Moreover, we can formulate the

necessary optimality conditions for the control problems with finite horizon [7] and with infinite

horizon [8, 14] in the form of the Pontryagin maximum principle.

Theorem 1. Let (s∗, C∗) be an optimal process in the control problem. Then, there exists an

adjoint variable ψ̃ corresponding to the process (s∗, C∗) and satisfying the adjoint equation

˙̃ψ(t) = −∂H̃

∂C
(t, C∗(t), s∗(t), ψ̃(t))

such that

(1) the process (s∗, C∗) and the adjoint variable ψ̃ satisfy the condition of the Pontryagin

maximum principle:

H̃(t, C∗, s∗, ψ̃) = max
{
H̃(t, C∗, s, ψ̃), s ∈ [0, s0]

}
;

(2) the adjoint variable ψ̃ takes strictly positive values:

ψ̃(t) > 0 ∀t, t0 ≤ t < T, T ≤ +∞;

(3) the adjoint variable ψ̃ satisfies the transversality condition for the problem with finite

horizon:

ψ̃(T ) = 0

and for the problem with infinite horizon:

lim
t→∞

ψ̃(t)C∗(t) = 0.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 293 Suppl. 1 2016



OPTIMAL CONTROL S115

Remark 3. Note that, for the Hamiltonian H(t, C, s, ψ) (8.2), the dynamics of adjoint variable

ψ(t) (8.1) is described by the differential equation

ψ̇(t) = ρψ(t)− ∂H

∂C
(t, C∗(t), s∗(t), ψ(t)). (8.3)

In this case, the maximum condition has the form

H(t, C∗, s∗, ψ̃) = max
{
H(t, C∗, s, ψ̃), s ∈ [0, s0]

}
. (8.4)

The adjoint variable ψ is strictly positive:

ψ(t) > 0 ∀t, t0 ≤ t < T, T ≤ +∞.

The transversality condition is given by the relation

ψ(T ) = 0 (8.5)

for the problem with finite horizon, and it is represented in the form

lim
t→∞

e−ρtψ(t)C∗(t) = 0 (8.6)

for the problem with infinite horizon.

8.3. Maximized Hamiltonian. Let us calculate the values of the maximized Hamiltonian

in optimal control problem (7.1)–(7.4):

H̄(t, C(t), ψ(t)) = max
0≤s≤s0

Ĥ(t, C(t), s, ψ(t))

= lnA(t) + lnC(t)− ψ(t)C(t)σ(t) + max
0≤s≤s0

{ln(1− s) + ψ(t)C(t)A(t)s}. (8.7)

8.4. Structure of optimal control. Using the necessary optimality conditions, we can

obtain the structure of the optimal control, which provides the maximum value of Hamiltonian (8.7):

s =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, 1− 1

ψ(t)A(t)C(t)
< 0;

1− 1

ψ(t)A(t)C(t)
, 0 ≤ 1− 1

ψ(t)A(t)C(t)
≤ s0;

s0, 1− 1

ψ(t)A(t)C(t)
> s0.

(8.8)

Remark 4. Note that solution (8.8) of the necessary optimality conditions is indeed the unique

maximum point due to the fact (established in Lemma 1) that the Hamiltonian Ĥ(t, C, s, ψ) (8.2)

is strictly concave in the variable s.

8.5. Structure of the maximized Hamiltonian. The relations for the optimal control

given by (8.8) define the structure of the maximized Hamiltonian; the latter is specified by three

branches. The first branch corresponds to the zero extremal control regime, s1 = 0:

H̄1(t, C(t), ψ(t)) = lnA(t) + lnC(t)− ψ(t)C(t)σ(t),

1− 1

ψ(t)A(t)C(t)
< 0.
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The second branch corresponds to the regular control regime, s2 = 1− 1/(ψ(t)A(t)C(t)):

H̄2(t, C(t), ψ(t)) = − lnψ(t) + ψ(t)C(t)(A(t) − σ(t))− 1,

0 ≤ 1− 1

ψ(t)A(t)C(t)
≤ s0.

The third branch is determined by the extremal regime of the highest control level, s3 = s0:

H̄3(t, C(t), ψ(t)) = lnA(t) + lnC(t) + ln(1− s0) + ψ(t)C(t)(A(t)s0 − σ(t)),

1− 1

ψ(t)A(t)C(t)
> s0.

It turns out that the maximized Hamiltonian H̄(t, C, ψ) (8.7) is concave in the variable C; this is

established below.

Lemma 2. The maximized Hamiltonian H̄(t, C, ψ) (8.7) is concave in the variable C.

Proof. One can obtain the result of Lemma 2 from the fact that all three branches H̄i(t, C, ψ),

i = 1, 2, 3, are concave functions in the variable C, which are smoothly (with continuous deriva-

tives) joined together generating the maximized Hamiltonian H̄(t, C, ψ) for all fixed values of the

variables t and ψ.

8.6. Hamiltonian systems. According to the structure of the maximized Hamiltonian

H̄(t, C, ψ) (8.7), we can construct a family of three Hamiltonian systems, i = 1, 2, 3, defined by

conditions (8.3), (8.4) of the Pontryagin maximum principle:⎧⎨
⎩

Ċ(t) = C(t) (A(t)si(t)− σ(t)) ,

ψ̇(t) = ρψ(t)− ∂Hi

∂C
(t, C(t), ψ(t)).

(8.9)

Here, the derivatives of the maximized Hamiltonian H̄(t, C, ψ) (8.7) are calculated in accordance

with its branches, i = 1, 2, 3:

∂H̄i

∂C
(t, C(t), ψ(t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

C(t)
− σ(t)ψ(t), i = 1,

(A(t)− σ(t))ψ(t), i = 2,

1

C(t)
+ (A(t)s0 − σ(t))ψ(t), i = 3.

(8.10)

8.7. Analysis of Hamiltonian systems. Let us introduce a new variable x = x(t), which

means generalized costs of the production factors in the Pontryagin maximum principle:

x = x(t) = C(t)ψ(t).

One can derive the equation of Hamiltonian dynamics for the generalized costs x(t).

Proposition 2. According to Hamiltonian dynamics (8.9), the generalized costs x(t) satisfy

the differential equation

ẋ(t) = ρx(t)− 1. (8.11)

Proof. The proof of this statement immediately follows from the fact that, according to

relations (8.10), which define all branches of the Hamiltonian dynamics, i = 1, 2, 3, there is the

following chain of equalities:

ẋ(t) = Ċ(t)ψ(t) + C(t)ψ̇(t) = (ρ− σ(t) +A(t)si(t))C(t)ψ(t) − C(t)
∂Hi

∂C
(t, C(t), ψ(t)) = ρx(t)− 1.
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�
One can also obtain the general solution of equation (8.11) describing the dynamics of general-

ized costs.

Proposition 3. The general solution for the generalized costs subject to Hamiltonian dynam-

ics (8.9) is represented by the relation

x(t) =
1

ρ
+Beρt.

Here, the symbol B denotes a constant that can be found either from transversality conditions (8.5)

for the problem with finite horizon B = −e−ρT

ρ
or from transversality conditions (8.6) for the

problem with infinite horizon B = 0.

Proof. The proof of this statement follows from the Cauchy formula for differential equa-

tion (8.11).

Remark 5. Note that the solution of Hamiltonian dynamics equation (8.9) for the generalized

costs is described by the relation

x(t) =
1

ρ

(
1− eρ(t−T )

)
(8.12)

for the problem with finite horizon and by the formula

x(t) =
1

ρ
(8.13)

for the problem with infinite horizon.

8.8. Optimal control. Now, we obtain analytic relations for the optimal open-loop control.

In order to do this, it is necessary to substitute solutions (8.12) and (8.13) of Hamiltonian dynamics

equation (8.9) into the structure of optimal control (8.8).

In the case of the problem with finite horizon, the optimal open-loop control is expressed in the

form

s∗(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 1− ρ

A(t)(1− eρ(t−T ))
< 0;

1− ρ

A(t)(1 − eρ(t−T ))
, 0 ≤ 1− ρ

A(t)(1 − eρ(t−T ))
≤ s0;

s0, 1− ρ

A(t)(1− eρ(t−T ))
> s0.

(8.14)

In the case of the problem with infinite horizon, the optimal open-loop control is described by

the relations

s∗(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 1− ρ

A(t)
< 0;

1− ρ

A(t)
, 0 ≤ 1− ρ

A(t)
≤ s0;

s0, 1− ρ

A(t)
> s0.

(8.15)

Note that, given the optimal investments s∗(t), we can make a reverse transfer from the second

optimization level to the first one and can determine the structure of optimal investments s∗j(t)

in production factors according to the proportionality conditions. We can formulate the following

result more exactly.
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Proposition 4. If the optimal investments s∗ = s∗(t) are determined either by relation (8.14)

for the problem with finite horizon or by relation (8.15) for the problem with infinite horizon, then

the optimal investments s∗j(t) in production factors, which sustain the proportional development of

the system, are recalculated by formulas (6.7) in the following form:

s∗j (t) = γj(t)s
∗(t) +

γj(t)

A(t)
((r(t)− rj(t))− (δ(t) − δj(t))) +

1

A(t)
γ̇j(t), j = 1, . . . , n.

Let us make an important remark on the structure of optimal control (8.14) for the problem

with finite horizon.

Remark 6. If the scale coefficient A = A(t) (4.1) in the universal production function satisfies

the boundedness property in the problem with finite horizon T , i.e.,

0 < A(t) ≤ A0, t0 ≤ t ≤ T,

then there exists a nonempty time interval

T − 1

ρ
ln

( A0

A0 − ρ

)
≤ t ≤ T,

where the optimal investments s∗(t) take zero values:

s∗(t) ≡ 0.

Therefore, in problems with finite horizon, the optimal investments inevitably degenerate to zero

levels, whereas the product should be completely consumed, y(t) = Ç(t), on some time interval

close to the termination time T of the control process.

8.9. Sufficient optimality conditions in the maximum principle. Let us formulate

a result that provides sufficient optimality conditions for trajectories satisfying the Pontryagin

maximum principle.

Proposition 5. In virtue of the concavity of maximized Hamiltonian H̄(t, C, ψ) (8.7) in the

variable C obtained in Lemma 2, the Pontryagin maximum principle sorts out trajectories that are

optimal for control problem (7.1)–(7.4).

Proof. This statement is proved by analogy with the argument proposed in [14].
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