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Abstract Multi-criteria decision aid (MCDA) methods have been around for quite1

some time. However, the elicitation of preference information in MCDA processes,2

and in particular the lack of practical means supporting it, is still a significant problem3

in real-life applications of MCDA. There is obviously a need for methods that neither4

require formal decision analysis knowledge, nor are too cognitively demanding by5

forcing people to express unrealistic precision or to state more than they are able to.6

We suggest a method, the CAR method, which is more accessible than our earlier7

approaches in the field while trying to balance between the need for simplicity and the8

requirement of accuracy. CAR takes primarily ordinal knowledge into account, but,9

still recognizing that there is sometimes a quite substantial information loss involved10

in ordinality, we have conservatively extended a pure ordinal scale approach with the11

possibility to supply more information. Thus, the main idea here is not to suggest a12

method or tool with a very large or complex expressibility, but rather to investigate13

one that should be sufficient in most situations, and in particular better, at least in some14

respects, than some hitherto popular ones from the SMART family as well as AHP,15

which we demonstrate in a set of simulation studies as well as a large end-user study.16
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1 Introduction19

A multitude of methods for analysing and solving decision problems with multiple3 20

criteria have been suggested during the last decades. A common approach is to make21

preference assessments by specifying a set of attributes that represents the relevant22

aspects of the possible outcomes of a decision. Value functions are then defined over23

the alternatives for each attribute and a weight function is defined over the attribute24

set. One option is to simply define a weight function by fixed numbers on a normalised25

scale and then define value functions over the alternatives, where these are mapped26

onto fixed values as well, after which these values are aggregated and the overall27

score of each alternative is calculated. The most common form of value function28

used is the additive model V (a) =
∑m

i=1 wivi (a), where V (a) is the overall value29

of alternative a, vi (a) is the value of the alternative under criterion i , and wi is the30

weight of this criterion (cf., e.g., Keeney and Raiffa 1976). The criteria weights, i.e.,31

the relative importance of the evaluation criteria, are thus a central concept in most32

of these methods and describe each criterion’s significance in the specific decision33

context.34

Despite having been around for some decades and despite having turned out to be35

highly useful (cf., e.g., Bisdorff et al. 2015), multi-criteria decision aids (MCDA),36

supporting decision making processes are still under-utilised in real-life decision37

problems. This situation seems to be at least partly due to a combination of lack38

of convergence between time constraints, and cognitive abilities of decision-makers39

versus the requirements of the decision aid. Several attempts have been made to solve40

these issues. For instance, methods allowing for less demanding ways of assessing41

the criteria, such as ordinal rankings or interval approaches for determining criteria42

weights and values of alternatives, have been suggested. The underlying idea is, as43

far as possible, not to force decision-makers to express unrealistic, misleading, or44

meaningless statements, but at the same time being able to utilise the information45

the decision-maker is able to supply. Similar issues are present when eliciting and46

assessing values for alternatives under each criterion.47

In this article, we provide a brief survey over some central and widespread MCDA48

methods. We then suggest a new method, the CAR (CArdinal Ranking) method, with49

the particular aim that weight and value functions can be reasonably elicited while50

preserving the comparative simplicity and correctness of the approach. Using theoret-51

ical simulations and a large user study, we investigate some properties of the method52

and conclude that, according to the results, it seems to be a highly competitive and53

applicable method for MCDA as well as group decision making when the opinions of54

the group members can be weighted in the same manner as the criteria.55

2 MCDA Methods56

There are several approaches to multi-criteria decision making, the key characteristic57

being that there are more than one perspective (criterion, aspect) to view the alter-58

natives and their consequences from. For each perspective, the decision-maker must59

somehow assign values to each alternative on some value scale. Typically, a multi-60

criteria decision situation could be modelled like the tree in Fig. 1.61
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The CAR Method for Using Preference Strength in…

Fig. 1 A multi-criteria tree

To express the relative importance of the criteria, weights are used restricted by62

a normalization constraint
∑

w j = 1, where w j denotes the weight of a criterion63

G j and the weight of sub-criterion G jk is denoted by w jk . The value of alternative64

Ai under sub-criterion G jk is denoted by vi jk . Then the weighted overall value of an65

alternative Ai (from the example in Fig. 1) can be calculated by:66

E(Ai ) =

2
∑

j=1

w j

2
∑

k=1

w jkvi jk,67

This is straightforwardly generalized and multi-criteria decision trees of arbitrary depth68

can be evaluated by the following expression:69

E(Ai ) =

ni0
∑

i1=1

xii 1

ni1
∑

i2=1

xi i1i2 · · ·

nim−2
∑

im−1=1

xi i1i2 · · ·im−2im−170

nim−1
∑

im=1

xi i1i2 · · ·im−2im−1im xi i1i2 · · ·im−2im−1im ,71

where x···i j ..., j ∈ [1, . . . , m] denote criteria weights and x···i j ...1 denote alternative72

(consequence) values.73

One very important practical issue is how to realistically elicit criteria weights (and74

also values) from actual decision-makers, see Riabacke et al. (2012) for an overview.75

Considering the judgement uncertainty inherent in all decision situations, elicitation76

efforts can be grouped into (a) methods handling the outcome of the elicitation by pre-77

cise numbers as representatives of the information elicited; and (b) methods instead78

handling the outcome by interval-valued variables. A vast number of methods have79

been suggested for assessing criteria weights using exact numbers. These range from80

relatively simple ones, like the commonly used direct rating and point allocation meth-81

ods, to somewhat more advanced procedures. Generally in these approaches, a precise82

numerical weight is assigned to each criterion to represent the information extracted83

from the user. There exist various weighting methods that utilise questioning proce-84

dures to elicit weights, such as SMART (Edwards 1977) and SWING weighting (von85
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Winterfeldt and Edwards 1986). However, the requirement for numeric precision in86

elicitation is somewhat problematic. For instance, significant information is in prac-87

tice always more or less imprecise in its nature. People’s beliefs are not naturally88

represented in numerically precise terms in our minds (Barron and Barrett 1996b; von89

Winterfeldt and Edwards 1986). There are several versions within the SMART family90

of methods with seemingly small differences that have been shown to have important91

effects for the actual decision making. For instance, SMART and SWING were later92

combined into the SMARTS method. In general, trade-off methods appear to be quite93

reasonable for weight elicitation but can nevertheless be very demanding due to the94

number of required judgments by the decision-maker.95

As responses to the difficulties in eliciting precise weights from decision-makers,96

other approaches, less reliant on high precision on the part of the decision-maker97

while still aiming at non-interval representations, have been suggested. Ordinal or98

other imprecise importance (and preference) information could be used for deter-99

mining criteria weights (and values of alternatives). One approach is to use surrogate100

weights which are derived from ordinal importance information (cf., eg., Stewart 1993;101

Arbel and Vargas 1993; Barron and Barrett 1996a, b; Katsikopoulos and Fasolo 2006;102

Ahn and Park 2006; Sarabando and Dias 2009; Mateos et al. 2014; Aguayo et al.103

2014). In such methods, the decision-maker provides information on the rank order4 104

of the criteria, i.e., supplies ordinal information on importance, and thereafter this105

information is converted into numerical weights consistent with the extracted ordinal106

information. Several proposals on how to convert the rankings into numerical weights107

exist, e.g., rank sum weights and rank reciprocal weights (Stillwell et al. 1981), and108

centroid (ROC) weights (Barron 1992). Barron and Barrett (1996b) found the latter109

superior to the other two on the basis of simulation experiments, but Danielson and110

Ekenberg (2014b) demonstrate that this holds only under special circumstances and111

instead suggest more robust weight functions.112

In interval-valued approaches to the elicitation problem, incomplete information113

is handled by allowing the use of intervals (cf., e.g., Danielson and Ekenberg 1998,114

2007, where ranges of possible values are represented by intervals and/or compar-115

ative statements). Such approaches also put less demands on the decision-maker116

and are suitable for group decision making as individual differences in importance117

weights and judgments can be represented by value intervals (sometimes in combina-118

tion with orderings). Similarly, Mustajoki and Hämäläinen (2005) suggest an extended119

SMART/SWING method, where they generalize the SMART and SWING methods120

into a method allowing interval judgments as well. The decision-maker is allowed to121

enter interval assessments to state imprecision in the judgments. The extracted weight122

information is represented by constraints for the attributes’ weight ratios, which in123

addition to the weight normalization constraint determine the feasible region of the124

weights in the interpretational step, see, e.g., Larsson et al. (2005) for a description of125

such techniques.126

There are ways of simplifying the elicitation, e.g., the idea of assigning qualitative127

levels to express preference intensities in the MACBETH method (Bana e Costa et al.128

2002), ranking differences using a delta-ROC approach (Sarabando and Dias 2010) or129

Simos’s method of placing blank cards to express differences (Figueira and Roy 2002).130

There are also methods such as Smart Swaps with preference programming (Mustajoki131
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The CAR Method for Using Preference Strength in…

and Hämäläinen 2005). Other researchers mix various techniques, as in the GMAA132

system (Jiménez et al. 2006) which suggests two procedures for weights assessments.133

The extraction can either be based on trade-offs among the attributes, where decision-134

makers may provide intervals within which they are indifferent with respect to lotteries135

and certain consequences, or on directly assigned weight intervals to the respective136

criteria. The extracted interval values are then automatically computed into an average137

normalized weight (precise) or a normalized weight interval for each attribute. Such138

relaxations of precise importance judgments usually seem to provide a more realistic139

representation of the decision problem and are less demanding for users in this respect140

(cf., e.g., Park 2004; Larsson et al. 2005). However, there are several computational141

issues involved that restrict the kind of statements that can be allowed in these repre-142

sentations and often the final alternatives’ values have a significant overlap, making143

the set of non-dominated alternatives too large, which must be handled, e.g., using144

more elaborated second order techniques (Ekenberg and Thorbiörnson 2001; Eken-145

berg et al. 2005; Danielson et al. 2007). There are also various approaches to modify146

some classical, more extreme, decision rules, e.g., the ones discussed in Milnor (1954)147

and absolute dominance as well as the central value rule. The latter is based on the mid-148

point of the range of possible performances. Ahn and Park (2008), Sarabando and Dias149

(2009), Aguayo et al. (2014) and Mateos et al. (2014) discuss these as well as some150

alternative dominance concepts. Similarly, Puerto et al. (2000) addresses an approach151

for utilising imprecise information and also applies it to some extreme rules as above as152

well as to the approach by Cook and Kress (1996). Salo, Hämäläinen, and others have153

suggested a set of approaches for handling imprecise information in these contexts,154

for instance the PRIME method for preference ratios (Salo and Hämäläinen 2001).155

The handling of decision processes could be efficiently assisted by software pack-156

ages. The SMART method has been implemented in computer programs (see e.g.,157

Mustajoki et al. 2005). AHP techniques (Saaty 1980) have been implemented in,158

e.g., EXPERT CHOICE (Krovak 1987). There are many other software packages as159

well, such as M-MACBETH requiring only qualitative judgements about differences160

between alternatives (Bana e Costa et al. 1999) and VIP Analysis which allows impre-161

cise scaling coefficients since the coefficients are considered variables subject to a162

set of constraints (Dias and Clímaco 2000). Computer support is even more neces-163

sary for computationally significantly more demanding methods, such as Danielson164

and Ekenberg (1998), that have to be heavily supported by the use of computer tools165

(Danielson et al. 2003). In conclusion, there are several approaches to elicitation in166

MAVT problems and one partitioning of the methods into categories is how they167

handle imprecision in weights (or values).168

1. Weights (or values) can only be estimated as fixed numbers.169

2. Weights (or values) can be estimated as comparative statements converted into170

fixed numbers representing the relations between the weights.171

3. Weights (or values) can be estimated as comparative statements converted into172

inequalities between interval-valued variables.173

4. Weights (or values) can be estimated as interval statements.174

Needless to say, there are advantages and disadvantages with the different methods175

from these categories. Methods based on categories 1 and 2 yield computationally176
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simpler evaluations because of the weights and values being numbers while categories177

3 and 4 yield systems of constraints in the form of equations and inequalities that need178

to be solved using optimisation techniques. If the expressive power of the analysis179

method only permits fixed numbers (category 1), we usually get a limited model that180

might affect the decision quality severely. If intervals are allowed (categories 3 and 4),181

imprecision is normally handled by allowing variables, where each yi is interpreted182

as an interval such that wi ∈ [yi − ai , yi + bi ], where 0 < ai ≤ 1 and 0 < bi ,≤ 1 are183

proportional imprecision constants. Similarly, comparative statements are represented184

as wi ≥ w j .185

In another tradition, using only ordinal information from category 2 and not numbers186

from category 1, comparisons replace intervals as an elicitation instrument handling187

imprecision and uncertainty. The inherent uncertainty is captured by surrogate weights188

derived from the strict ordering that a decision-maker has imposed on the importance189

of a set of criteria in a potential decision situation. However, we might encounter190

an unnecessary information loss using only an ordinal ranking. If, as a remedy, we191

use both intervals and ordinal information, we are faced with some rather elaborate192

computational problems. Despite the fact that they can be solved, when sufficiently193

restricting the statements involved (cf. Danielson and Ekenberg 2007), there is still a194

problem with user acceptance and these methods have turned out to be perceived as too195

difficult to accept by many decision-makers. Expressive power in the form of intervals196

and comparative statements lead to complex computations and loss of transparency197

on the part of the user.198

It should also be noted that multi-attribute value theory (MAVT), despite being199

the main focus in this paper, is not the only suggestion for handling multi-criteria200

decision problems, even if it is one of the most popular approaches today. Steuer (1984)201

presents a variety of other methods, including outranking methods, such as ELECTRE202

(Roy 1968) and PROMETHEE (Brans and Vincke 1985) in various versions, where203

decision-makers are asked to rank information to find outranking relations between204

alternatives.205

Validation within this field is somewhat difficult, to a large extent due to difficulties206

regarding elicitation. In this paper, we look at MCDM methods with less complex207

requirements (categories 1 and 2) but with the dual aim of achieving both high effi-208

ciency and wide user acceptance. The question of what constitutes a good method is209

multifaceted, but it seems reasonable that a preferred method should possess some210

significant qualities to a higher degree than its rivals:211

• Efficiency The method should yield the best alternative according to some decision212

rule in as many situations as possible.213

• Easiness of use The steps of the method should be perceived as relatively easy to214

perform.215

• Ease of communication It should be comparatively easy to communicate the results216

to others.217

• Time efficiency The amount of time and effort required to complete the decision218

making task should be reasonably low.219

• Cognitive correctness The perceived correctness of the result and transparency of220

the process should be high.221
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• Return rate The willingness to use the method again should be high.222

Below we will investigate to what extent some classes of methods from categories223

1 and 2 fulfil these six qualities, where the first is measured in a simulation study224

(Sect. 4) and the others in a real-life user study (Sect. 5).225

3 Three Classes of MCDM Methods226

This section discusses three classes of value function methods that allow a relaxation227

of the requirement of precision, but keeping with simplicity and without resorting to228

interval or mixed approaches. Instead, we will here discuss if good decision quality229

can be obtained without significantly increasing either the elicitational or the compu-230

tational efforts involved, or both, and without making it difficult for a decision-maker231

to understand the process. To investigate this, we will consider three main classes of232

methods and compare them in Sects. 4 (theoretically) and 5 (empirically). The classes233

are:234

• Proportional scoring methods, here represented by the SMART family,235

• Ratio scoring methods, here represented by the widely used AHP method, and236

• Cardinal ranking methods, here represented by the CAR method proposed in this237

paper.238

In the following, if not explicitly stated, we assume a set of criteria {G1, . . . , G N }239

where each criterion Gi corresponds to a weight variable wi . We also assume additive240

criteria weights, i.e., �wi = 1, and 0 ≤ wi for all i ≤ N . We will, without loss of241

generality, simplify the presentation by only investigating problems with a one-level242

criteria hierarchy and denote the value of an alternative A j under criterion Ci by vi j .243

3.1 Proportional Scoring244

One of the most well-known proportional scoring methods is the SMART family.245

SMART as initially presented was a seven-step procedure for setting up and analysing246

a decision model. Edwards (1971, 1977) proposed a method to assess criteria weights.247

The criteria are then ranked and (for instance) ten points are assigned to wN , i.e., the248

weight of the least important criterion. Then, wN−1 to w1 are given points according249

to the decision-maker’s preferences. This way, the points are representatives of the250

(somewhat uncertain) weights. The overall value E(a j ) of alternative a j is then a251

weighted average of the values vij associated with aj:252

E(a j ) =

N
∑

i=1

wivi j

/

N
∑

i=1

wi .253

In an additive model, the weights reflect the importance of one criterion relative to254

the others. Most commonly, the degree of importance of an attribute depends on its255

spread (the range of the scale of the attribute), what we call the weight/scale-dualism.256

This is why elicitation methods like the original SMART, which do not consider the257
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spread specifically, have been criticized (see, e.g., Edwards and Barron 1994). As a258

result, SMART was subsequently amended with the SWING technique (and renamed259

SMARTS), addressing the weight/scale-dualism by changing the weight elicitation260

procedure. Basically, SWING works like this:261

• Select a scale, such as positive integers (or similar)262

• Consider the difference between the worst and the best outcomes (the range) within263

each criterion, where the best level is 1264

• Imagine an alternative (the zero alternative) with all the worst outcomes from each265

criterion, thus having value 0 (if we have defined 0 as the lowest value)266

• For each criterion in turn, consider the improvement (swing) in the zero alternative267

by having the worst outcome in that criterion replaced by the best one268

• Assign numbers (importance) to each criterion in such a way that they correspond269

to the assessed improvement from having the criterion changed from the worst to270

the best outcome271

As mentioned above, one approach, which avoids some of the difficulties associated272

with the elicitation of exact values, is to merely provide an ordinal ranking of the cri-273

teria. It is allegedly less demanding on decision-makers and, in a sense, effort-saving.274

Most current methods for converting ordinal input to cardinal, i.e., convert rankings to275

exact surrogate weights, employ automated procedures for the conversion and result in276

exact numeric weights. Edwards and Barron (1994) proposed the SMARTER (SMART277

Exploiting Ranks) method to elicit the ordinal information on importance before being278

converted to numbers and thus relaxed the information input requirements from the279

decision-maker. An initial analysis is carried out where the weights are ordered such as280

w1 > w2 > · · · > wN and then subsequently transformed to numerical weights using281

ROC weights whereafter SMARTER continues in the same manner as the ordinary282

SMART method.283

3.2 Ratio Scoring284

One of the most well-known ratio scoring methods is the Analytic Hierarchy Process285

(AHP). The basic idea in AHP (Saaty 1977, 1980) is to evaluate a set of alternatives286

under a criteria tree by pairwise comparisons. The process requires the same pairwise287

comparisons regardless of scale type. For each criterion, the decision-maker should288

first find the ordering of the alternatives from best to worst. Next, he or she should289

find the strength of the ordering by considering pairwise ratios (pairwise relations)290

between the alternatives using the integers 1, 3, 5, 7, and 9 to express their relative291

strengths, indicating that one alternative is equally good as another (strength = 1) or292

three, five, seven, or nine times as good. It is also allowed to use the even integers293

2, 4, 6, and 8 as intermediate values, but using only odd integers is more common.294

Much has been written about the AHP method and a detailed treatment of these is295

beyond the scope of this article, but we should nevertheless mention two properties296

that are particularly problematical. Belton and Stewart (2002) have questioned the297

conversion between scales, i.e., between the semantic and the numeric scale, and298

the employment of verbal terms within elicitation on the whole have been criticized299

throughout the years as their numerical meaning can differ substantially between300
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different people (cf., e.g., Kirkwood 1997). There are also particularly troublesome301

problems with rank reversals known since long (Belton and Gear 1983). Furthermore,302

the method is cognitively demanding in practice due to the large number of pairwise303

comparisons required as the number of attributes increases, and there are several304

variations of AHP, such as in Ginevicius (2009), where the method FARE (Factor305

Relationship) is suggested in cases when the number of attributes is large in order to306

reduce the number of required comparisons between pairs of attributes.307

3.3 Ordinal and Cardinal Ranking Methods308

As with other multi-attribute value based methods, ranking methods contain one alter-309

native (consequence) value part and one criteria weight part. Since weights are more310

complicated, we will mainly discuss them in this paper. Values are handled in a com-311

pletely analogous but less complex way. There is no need for values to be transformed312

into surrogate entities since values are not restricted by an upper sum limit.313

Rankings are normally easier to provide than precise numbers and for that reason,314

various criteria weight techniques have been developed based on rankings. One idea315

mentioned above is to derive so called surrogate weights from elicitation rankings.316

The resulting ranking is converted into numerical weights and it is important to do317

this with as small an information loss as possible while still preserving the correctness318

of the weight assignments. Stillwell et al. (1981) discuss the weight approximation319

techniques rank sum and rank reciprocal weights. A decade later, Barron (1992) sug-320

gested a weight method based on vertices of the simplex of the feasible weight space.321

The so called ROC (rank order centroid) weights are the average of the corners in the322

polytope defined by the simplex Sw = w1 > w2 > · · · > wN , �wi = 1, and 0 ≤ wi .323

The weights are then simply represented by the centroid (mass point) of Sw, i.e.,1324

wi = 1/N
∑N

j=i

1

j
, for all i = 1, . . . , N.325

For instance, in the case of four criteria and where w1 > w2 > w3 > w4, the cen-326

troid weight components become w1 = 0.5208, w2 = 0.2708, w3 = 0.1458, w4 =327

0.0625. Despite there being a tendency that the highest ranked criterion has a strong328

influence on the result, as has been pointed out by, e.g., Belton and Stewart (2002),329

ROC weights are nevertheless representing an important idea regarding averaging330

the weights involved and in the aggregation of values. Of the conversion methods331

suggested, ROC weights have gained the most recognition among surrogate weights.332

However, pure ranking is sometimes problematic. For example, Jia et al. (1998)333

state that due to the relative robustness of linear decision models regarding weight334

changes, the use of approximate weights often yields satisfactory decision quality,335

but that the assumption of knowing the ranking with certainty is strong. Instead, they336

believe that there can be uncertainty regarding both the magnitudes and ordering of337

weights. Thus, although some form of cardinality often exists, cardinal importance338

1 We will henceforth, unless otherwise stated, presume that decision problems are modelled as simplexes

Sw generated by w1 > w2 > · · · > wN , �wi = 1, and 0 = wi .
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relation information is not taken into account in the transformation of rank orders into339

weights, thus not making use of available information.340

3.4 The Delta Method341

Most methods handling imprecise information try to reduce the constraint sets of fea-342

sible values, typically by delimiting the available space by linear constraints, through343

various elicitation procedures and a main problem in that respect is to find a balance344

between not forcing the decision-maker to say more than is known in terms of preci-345

sion, but at the same time obtain as much information as is required for the alternatives346

to be discriminated from each other. Furthermore, the model must be computationally347

meaningful. As an example, the Delta method is a method for solving various types of348

decision problems when the background information is numerically imprecise. It has349

been developed over the years (cf., e.g., Danielson and Ekenberg 1998, 2007; Daniel-350

son et al. 2007, 2009; Ekenberg et al. 1995, 2001a, 2005, 2014). The basic idea of351

the method (relevant for the context in this paper) is to in one way or another construct352

polytopes for the feasible weights and the feasible alternative values involved and353

evaluate decision situations with respect to different decision rules.354

The Delta method and software has successfully been used in numerous applica-355

tions regarding everything from tactical hydropower management to business risks and356

applications for participatory democracy. However, a common factor in the applica-357

tions of the method that has complicated the decision making process is the difficulties358

for real-life decision makers to actually understand and use the software efficiently,359

despite various elicitation interfaces and methods developed, such as in Riabacke et al.360

(2012), Danielson et al. (2014) and Larsson et al. (2014). Therefore, we have started361

to investigate how various subsets of the method can be simplified without losing362

much precision and decision power for general decision situations and can measur-363

ably perform well in comparison with the most popular decision methods available at364

the moment.365

3.5 The CAR Method366

One of the simplified methods for cardinal ranking is CAR, which extends the idea of367

surrogate weights as one of the main components (Danielson et al. 2014a; Danielson368

and Ekenberg 2014b, 2015). The idea is to first assume that there exists an ordinal rank-369

ing of N criteria, obtained by any elicitation method such as, for example, SWING.2370

To make this ordering into a cardinal ranking, information should be obtained about371

how much more or less important the criteria are compared to each other. Such rank-372

ings also take care of the problem with ordinal methods of handling criteria that are373

found to be equally important, i.e., resisting pure ordinal ranking.374

We use >i to denote the strength (cardinality) of the rankings between criteria,375

where >0 is the equal ranking ‘=’. Assume that we have a user induced ordering376

w1 >i1 w2 >i2 · · · >in−1 wn . Then we construct a new ordering, containing only the377

symbols = and >, by introducing auxiliary variables xi j and substituting378

2 To be more precise, a strict ordering is not required since ties are allowed.
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The CAR Method for Using Preference Strength in…

Cardinal ranking Ordinal ranking

A     B       C            D,E                      F A            B            C            D            E           F

Fig. 2 Ordinal and cardinal ranking of the same information

• wk >0 wk+1 with wk = wk+1379

• wk >1 wk+1 with wk > wk+1380

• wk >2 wk+1 with wk > xk1 > wk+1 (1)381

• . . .382

• wk >i wk+1 with wk > xk1 > · · · > xki−1
> wk+1383

The substitutions yield new spaces defined by the simplexes generated by the new384

orderings. In this way, we obtain a computationally meaningful way of representing385

preference strengths.386

To see how the weights work, consider the cardinality expressions as distance steps387

on an importance scale. The number of steps corresponds straight-forwardly to the388

strength of the cardinalities above such that ‘>i ’ means i steps. This can easily be389

displayed as steps on an importance ruler as suggested by Fig. 2, where the following390

relationships are displayed on a cardinal (left) and an ordinal (right) importance scale391

respectively:392

• wA >2 wB.393

• wB >1 wC.394

• wC >2 wD.395

• wD >0 wE.396

• wE >3 wF.397

The decision-maker’s statements are then converted into weights. One reasonable398

candidate for a weight function is a function that is proportional to the distances on399

the importance scale (Fig. 2, left). This is analogous to the equidistant criteria placed400

on the ordinal importance scale (Fig. 2, right). To obtain the cardinal ranking weights401

wC AR
i , proceed as follows:402

1. Assign an ordinal number to each importance scale position, starting with the most403

important position as number 1 (see Fig. 3).404

2. Let the total number of importance scale positions be Q. Each criterion i has405

the position p(i) ∈ {1, . . ., Q} on this importance scale, such that for every two406

criteria ci and c j , whenever ci >si
c j , si = |p(i) − p( j)|. The position p(i) then407

denotes the importance as stated by the decision-maker.408

3. Then the cardinal ranking weights W C AR
I are found by the formula3

409

3 In Danielson et al. (2014a) and Danielson and Ekenberg (2014b), ordinal weights are introduced that are

more robust than other surrogate weights, in particular. Using steps 1–3 above, cardinal weights can anal-

ogously be obtained. This is explained in detail in Danielson and Ekenberg (2015) where the performance

of a set of cardinal weights are compared to ordinal weights.
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M. Danielson, L. Ekenberg

Fig. 3 Cardinal ranking with

scale positions

A  B      C              D,E                      F

1        2       3       4       5       6       7       8       9

wCAR
i =

1/p(i)
+

Q+1−p(i)
Q

∑N
j=1

(

1/p( j)
+

Q+1−p( j)
Q

) .410

The CAR method follows a three-step procedure, much in analogy with the two411

other classes of MCDA methods. First, the values of the alternatives under each crite-412

rion are elicited in a way similar to the weights described above:413

1. For each criterion in turn, rank the alternatives from the worst to the best outcome.414

2. Enter the strength of the ordering. The strength indicates how strong the separation415

is between two ordered alternatives. Similar to weights, the strength is expressed416

in the notation with ‘>i’ symbols.417

Second, the weights are elicited with a swing-like procedure in accordance with the418

discussion above.419

1. For each criterion in turn, rank the importance of the criteria from the least to the420

most important.421

2. Enter the strength of the ordering. The strength indicates how strong the separation422

is between two ordered criteria. The strength is expressed in the notation with ‘>i’423

symbols.424

Third, a weighted overall value is calculated by multiplying the centroids of the weight425

simplex with the centroid of the alternative value simplex. Thus, given a set of criteria426

in a (one-level) criteria hierarchy, G1, . . ., Gn and a set of alternatives a1, . . ., am .427

A general value function U using additive value functions is then428

U (a j ) =

n
∑

i=1

wC AR
i

vC AR
i j

,429

where W C AR
I is the weight representing the relative importance of attribute Gi , and430

V C AR
I J : a j → [0, 1] is the increasing individual value function of a j under criterion431

Gi obtained by the above procedure. This expression is subject to the polytopes of432

weights and values. This means that the feasible values are the ones in the extended433

polytopes defined by (1) above. Now, we define the value434

Ū (a j ) =

n
∑

i=1

w̄i v̄i j ,435

for the general value, where w̄i is the centroid component of criteria weight wi in436

the weight simplex and v̄i j is the centroid component of the value of alternative a j437
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The CAR Method for Using Preference Strength in…

under the criteria Gi in the simplex of values. Since we only consider non-interval438

valued results; the centroid is the most representative single value of a polytope. This439

three-step procedure contains a simple workflow that exhibits a large user acceptance,440

see Sect. 5.441

4 Assessing the Methods442

We will assess the abovementioned three classes of methods relative to our list of443

desired properties (qualities) at the end of Sect. 2. The first quality, efficiency, will444

be assessed in this section and the others in the next section. The classes will be445

represented by the methods SMART, AHP, and CAR respectively.446

Simulation studies similar to Barron and Barrett (1996b), Ahn and Park (2008),447

Butler et al. (1997) and others have become a de facto standard for comparing multi-448

criteria weight methods. The underlying assumption of most studies is that there449

exist a set of ‘true’ weights in the decision-maker’s mind which are inaccessible450

in its pure form by any elicitation method. We will utilise the same technique for451

determining the efficacy, in this sense, of the three MCDM methods suggested above.452

The modelling assumptions regarding decision-makers’ mind-sets are mirrored in the453

generation of decision problem vectors by a random generator. In MCDM, different454

elicitation formalisms have been proposed by which a decision-maker can express455

preferences. Such formalisms are sometimes based on scoring points, as in point456

allocation (PA) or direct rating (DR) methods. In PA, the decision-maker is given a457

point sum, e.g., 100, to distribute among the criteria. Sometimes, it is pictured as putty458

with the total mass of 100 that is divided and put on the criteria. The more mass, the459

larger weight on a criterion, and the more important it is. In PA, there is consequently460

N–1 degrees of freedom (DoF) for N criteria. DR, on the other hand, puts no limit to461

the number of points to be allocated.4 The decision-maker allocates as many points as462

desired to each criterion. The points are subsequently normalized by dividing by the463

sum of points allocated. Thus, in DR, there are N degrees of freedom for N criteria.464

Regardless of elicitation method, the assumption is that all elicitation is made relative465

to a weight distribution held by the decision-maker.5466

The idea in both cases is to construct a set of unknowable weights that are distributed467

over the possible weight space. When simulating using DR the generated weights tend468

to cluster near the centre of the weight space. The first step in randomly generating469

random weights in the PA case for N attributes is to select N–1 random numbers from a470

uniform distribution on (0, 1) independently, and then rank these numbers. Assume that471

the ranked numbers are 1 > r1 > r2 · · · > rn−1 and then let w1 = 1 − r1, wn = rn−1472

and wi = ri+1 − ri for 1 < i ≤ N − 1. These weights are uniform on the simplex473

(cf., e.g., Devroye 1986, Theorem 2.1, p. 207). The DR approach is then equivalent to474

generating N uniform [0,1] variates and setting wi =
ri

∑

ri
. For instance, under both475

approaches, the expected value of w1 is 1/3 when there are three attributes. However,476

4 Sometimes there is a limit to the individual numbers but not a limit to the sum of the numbers.

5 For various cognitive and methodological aspects of imprecision in decision making (see, e.g., Danielson

et al. 2007, 2013).
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M. Danielson, L. Ekenberg

the resulting distributions of the weights are very different and the weights for DR are477

clustered in the centre of the weight space and it is much less likely that we observe a478

large weight on w1.479

4.1 Simulation Studies and Their Biases480

In the simulations described below it is important to realize which background model481

we utilise. As discussed above, when following an N–1 DoF model, a vector is gener-482

ated in which the components sum to 100 %. This simulation is based on a homogenous483

N -variate Dirichlet distribution generator. Details on this kind of simulation can be484

found, e.g., in Rao and Sobel (1980). On the other hand, following an N DoF model,485

a vector is generated without an initial joint restriction, only keeping components486

within [0, 100 %] yielding a process with N degrees of freedom. Subsequently, they487

are normalised so that their sum is 100 %. Details on this kind of simulation can be488

found, e.g., in Roberts and Goodwin (2002).489

We will call the N–1 DoF model type of generator an N–1-generator and the490

N DoF model type an N-generator. Depending of the simulation model used (and491

consequently the background assumption of how decision-makers assess weights), the492

results become very different. For instance, ROC weights in N dimensions coincide493

with the mass point for the vectors of the N–1-generator over the polytope Sw, which494

is why the ROC method fares the best in simulation studies where an N–1-generator495

is employed (such as Barron and Barrett 1996b) and not so good in simulation studies496

where an N -generator is employed (such as Roberts and Goodwin 2002). In reality, we497

cannot know whether a specific decision-maker (or even decision-makers in general)498

adhere more to N–1 or N DoF representations of their knowledge. Both as individuals499

and as a group, they might use either or be anywhere in between. A, in a reasonable500

sense, robust rank ordering mechanism must therefore perform well under both end-501

points of the representation spectrum and anything in between. Thus, the evaluation502

of MCDM methods in this paper will use a combination of both types of generators503

in order to find the most efficient and robust method.504

4.2 Comparing the Methods505

Barron and Barrett (1996b) compared surrogate weights, where the idea was to mea-506

sure the validity of the weights by simulating a large set of scenarios utilising surrogate507

weights and see how well different weights provided results similar to scenarios util-508

ising true weights. The procedure is here extended with the handling of values in order509

to evaluate MCDM methods.510

4.2.1 Generation Procedure511

1. For an N-dimensional problem, generate a random weight vector with N compo-512

nents. This is called the TRUE weight vector. Determine the order between the513

weights in the vector. For each MCDM method X′ ∈ {SMART,AHP,CAR}, use514

the order to generate a weight vector wx′
.515
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The CAR Method for Using Preference Strength in…

2. Given M alternatives, generate M × N random values with value vi j belonging516

to alternative j under criterion i . For each MCDM method X′, use the order to517

generate a set of value vectors vx′

i .518

3. Let wx
i be the weight from the weighting function of MCDM method X for criterion519

i(where X is either X′ or TRUE). For each method X, calculate Vx
j =

∑

i wx
i vx

i j .520

Each method produces a preferred alternative, i.e., the one with the highest Vx
j .521

4. For each method X′, assess whether X′ yielded the same decision (i.e., the same522

preferred alternative) as TRUE. If so, record a hit.523

This is repeated a large number of times (simulation rounds). The hit rate (or524

frequency) is defined as the proportion of times an MCDM method made the same525

decision as TRUE.526

4.3 Simulations527

The simulations were carried out with a varying number of criteria and alternatives.528

There were four numbers of criteria N = {3, 6, 9, 12} and four numbers of alternatives529

M = {3, 6, 9, 12} in the simulation study, creating a total of 16 simulation scenarios.530

Each scenario was run 10 times, each time with 10,000 trials, yielding a total of531

1,600,000 decision situations generated. An N -variate joint Dirichlet distribution was532

employed to generate the random weight vectors for the N–1 DoF simulations and a533

standard normalised random weight generator for the N DoF simulations. Unscaled534

value vectors were generated uniformly since no significant differences were observed535

with other value distributions. The value vectors were then used for multiplying with536

the obtained weights in order to form weighted values VX
j to be compared.537

The results of the simulations are shown in Table 1 below, where we show a subset538

of the results with a selection of pairs (N , M). The measure of success is the hit ratio539

as in earlier studies by others (“winner”), i.e., the number of times the highest evalu-540

ated alternative using a particular method coincides with the true highest alternative.6541

The tables below show the winner frequency utilising an equal combination of the542

simulation generators N–1 DoF and N DoF.543

4.4 Comparing the Three MCDA Methods544

Table 1 below shows the winner frequency for the three MCDA methods. SMART,7545

AHP,8 and CAR are compared utilising an equal combination of N–1 and N DoF. The546

6 A second success measure we used is the matching of the three highest ranked alternatives (“podium”),

the number of times the three highest evaluated alternatives using a particular method all coincide with the

true three highest alternatives. A third set generated is the matching of all ranked alternatives (“overall”),

the number of times all evaluated alternatives using a particular method coincide with the true ranking of

the alternatives. The two latter sets correlated strongly with the first and are not shown in this paper. Instead,

we show the Kendall’s tau measure of overall performance.

7 SMART is represented by the improved SMARTER version by Edwards and Barron (1994).

8 AHP weights were derived by forming quotients wi /w j and rounding to the nearest odd integer. Also

allowing even integers in between yielded no significantly better results.
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Table 1 Winner frequencies in

percent
N M SMART AHP CAR

3 criteria 3 alternatives 87.7 83.9 91.9

3 criteria 12 alternatives 78.2 82.5 85.8

6 criteria 6 alternatives 81.4 79.6 88.0

6 criteria 9 alternatives 79.4 80.9 86.6

9 criteria 6 alternatives 81.3 79.2 86.6

9 criteria 9 alternatives 78.9 80.2 85.1

12 criteria 3 alternatives 85.7 81.3 89.2

12 criteria 12 alternatives 77.6 81.0 82.7

Table 2 Matching of entire

rankings (Kendall’s tau)
N M SMART AHP CAR

3 criteria 3 alternatives 0.766 0.632 0.831

3 criteria 12 alternatives 0.410 0.522 0.543

6 criteria 6 alternatives 0.589 0.547 0.682

6 criteria 9 alternatives 0.474 0.505 0.585

9 criteria 6 alternatives 0.576 0.524 0.647

9 criteria 9 alternatives 0.463 0.484 0.542

12 criteria 3 alternatives 0.728 0.564 0.771

12 criteria 12 alternatives 0.376 0.428 0.437

hit ratios in the table are given in per cent and are the mean values of 10 scenario runs,547

i.e., 100,000 decision situations. Table 2 shows the Kendall’s tau measure from the548

simulations (Winkler and Hays 1985). Kendall’s tau is a pairwise ordering measure,549

measuring the number of ordered pairs of alternatives compared to the unordered550

ones. The tau lies in [−1, 1] where 0 indicates no correlation between TRUE and the551

decision method measured and +1 is a perfect match.552

It is clear from Table 1 that the CAR method outperforms the other methods. While553

CAR averages 87 %, the other two perform at around 81 %. Similarly, in Table 2 CAR554

displays better overall ranking compared to the other methods. The other two methods555

fare about equal, with SMART being somewhat stronger when fewer alternatives are556

involved and AHP being somewhat stronger when more alternatives are involved.557

This is not surprising since a very large amount of information is requested for AHP’s558

pairwise comparisons when the number of criteria and alternatives increase. The gap559

up to CAR for both of the other methods is substantial considering the already high560

hit rate level that the methods operate at.561

4.5 Noise562

In the simulations above, rankings were induced from the true weights. However, the563

underlying assumption is that the decision-maker is able to convert beliefs into order-564

ings almost perfectly and that the elicitation result is very accurate. The assumption565
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The CAR Method for Using Preference Strength in…

Table 3 The effect of noise on

hit rate in percent for N=9

criteria and M=6 alternatives

Noise (%) SMART AHP CAR

9 criteria and 6

alternatives

0 81.3 79.2 86.6

2 81.0 78.4 86.2

5 79.9 75.8 84.7

10 76.3 67.1 79.7

Table 4 The effect of noise on

overall ranking (Kendall’s tau)

for N = 9 criteria and M = 6

alternatives

Noise (%) SMART AHP CAR

9 criteria and 6

alternatives

0 0.576 0.524 0.647

2 0.557 0.519 0.637

5 0.510 0.484 0.606

10 0.462 0.388 0.517

of knowing the ranking with certainty is rather strong. Distortions usually affect the566

results, but these can to a large extent be taken into account by slightly altering the567

generated true weights before the order is generated. For instance, we can introduce568

5 % noise by—after the generation of a true weight vector in step 1 of the genera-569

tion procedure—multiplying the weights by a uniformly distributed random factor570

between 0.95 and 1.05 for the generation of the ranking order (not for the true test).571

Then the generated order simulates that the decision-maker exhibits some uncertainties572

regarding the true weight ordering.573

Tables 3 and 4 clearly show that the behaviour of the respective methods are similar574

and the hit percentage naturally decreases when the amount of noise increases, espe-575

cially above a couple of percent noise. The three methods are affected in much the576

same way and by approximately the same proportion, with AHP faring a little worse.577

Thus, SMART and CAR are similarly resistant to elicitation errors.578

4.6 Discarding Unnatural Decision Situations579

Obviously, it can be argued that the vectors generated by the simulations do not always580

constitute natural decision problems. For instance, the simulator could generate a581

weight vector with one component as high as 0.95 and the others correspondingly582

low. But that would probably not constitute a real-world decision problem since the583

decision-maker would in that case often make the decision only considering the heavily584

dominant criterion. Likewise, the simulator could generate a problem with a weight585

as low as 0.001 and such a criterion would probably not be considered at all in real586

life. Therefore, two filters were designed to discard weight vectors deemed unnatural.587

The weak filter discarded all generated true vectors with a component larger than588

0.7 + 0.3/N or smaller than 0.05/N . The strong filter discarded all generated true589

vectors with a component larger than 0.6 + 0.25/N or smaller than 0.1/N . If a vector590
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Table 5 The effect of filtering

on hit rate in percent for N=9

criteria and M=6 alternatives

Cut-off SMART AHP CAR

9 criteria and 6

alternatives

None 81.3 79.2 86.6

Weak 81.3 79.2 87.2

Strong 81.4 79.2 87.6

was discarded, a new vector was generated assuring that the total number of trials591

remained constant in each simulation.592

While the exact choices of cut-off limits may seem arbitrary, the tendencies dis-593

played are general in their nature. Table 5 shows the results from applying the cut-off594

filters to the selected decision simulation.595

The effect of cut-off filters on the simulation results were that while SMART and596

AHP were to a large extent unaffected, CAR improved 1–2 % when the strong filter597

was applied. In particular, the ratio based AHP method seems not to improve by the598

filtering of generated extreme decision situations. Thus, the CAR method may be even599

more superior if faced only with reasonable decision situations.600

5 Empirical Study601

While the simulation study clearly points to CAR being theoretically preferable, a602

useful method must nevertheless be accepted by users in real-life decision situations.603

To find out how the three methods are perceived in real-life decision making, we made a604

study involving 100 people9 that made one large real-life decision each. The decisions605

ranged from selecting country or area to live in, choosing a university program, or606

buying an apartment to acquiring goods like cars, motorcycles, computers, or smart607

phones. A requirement was that it was an important decision for that individual that he608

or she would be making in the near future. They were asked to consider problems with609

around 4 criteria and 6 alternatives. Furthermore, the report should contain only real610

facts and data together with the decision made. Each individual was given 2–3 weeks611

to complete the task and made the decision using all three methods available and was612

subsequently asked to reflect on their respective traits and characteristics. The methods613

were assisted by very similar and equally functional computer tools ensuring that all614

three methods were applied correctly. Adequate help with the methods was available615

throughout the processes.616

Their reports contained decision data and results from all three methods and a com-617

parison between the methods. In particular, the decision-makers ranked the methods on618

five attributes (qualities): (A) easiness of use; (B) communicating the results to others;619

(C) amount of time and effort required; (D) perceived correctness and transparency;620

and (E) willingness to use the method again. For each attribute, each decision-maker621

ranked the methods as 1, 2, or 3 with 1 being the foremost in each attribute, e.g., the622

easiest to use. The Avg. column shows the average position each method obtained for623

this attribute.624

9 The subjects had 2–4 years of university studies with no or little mathematical background. Thus, their

level of education corresponds to an average decision making manager in many organisations.
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The CAR Method for Using Preference Strength in…

Table 6 Easiness of use
A 1 2 3 Avg.

SMART 24 69 7 1.83

AHP 1 9 90 2.89

CAR 75 22 3 1.28

Table 7 Communicating the

results to others
B 1 2 3 Avg.

SMART 48 35 16 1.68

AHP 4 17 78 2.75

CAR 47 47 5 1.58

Table 8 Amount of time and

effort required
C 1 2 3 Avg.

SMART 31 61 7 1.76

AHP 10 8 81 2.72

CAR 58 30 11 1.53

Table 9 Perceived correctness

and transparency
D 1 2 3 Avg.

SMART 26 50 23 1.97

AHP 25 13 61 2.36

CAR 48 36 15 1.67

In Table 6, the results of the attribute easiness of use can be seen. For example, 75625

respondents found CAR to be the easiest to use while 90 found AHP to be the hardest626

to use. It is notable that only three respondents considered the CAR method to be the627

hardest to use.628

Similarly, Table 7 shows the results for ease of communicating the results to others.629

In this case, CAR and SMART were almost equal, followed by AHP far behind.630

In the same manner, the remaining tables show the results for the attributes amount631

of time and effort required to complete the decision making task (Table 8), perceived632

correctness of the result and transparency of the process (Table 9), and the decision-633

maker’s willingness to use the method again (Table 10). CAR turned out to be the least634

time-consuming method, followed by SMART and with AHP far behind.635

The perceived correctness is in conformity with the simulation results. CAR is the636

preferred method followed by SMART and with AHP last.637

Regarding the willingness to use the method again, CAR clearly outperforms the638

others639

For attributes B, C, and D, there were 99 valid responses and for E there were 97 out640

of 100 respondents. From the tables, it can be seen that CAR clearly is the preferred641

method while AHP is the least preferred in all five attributes. The largest difference642
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Table 10 Willingness to use the

method again
E 1 2 3 Avg.

SMART 20 52 25 2.05

AHP 10 20 67 2.59

CAR 67 25 5 1.36

between CAR and the other methods was found in willingness to use the method643

again, while the smallest was found in communicating the results, where SMART was644

almost equally favoured. These results were not contradicted by the free text parts645

of the reports. The results of the user study in conjunction with the simulation study646

indicate the usefulness of the CAR method.647

6 Conclusion648

There is a need of methods striking a balance between formal decision analysis and649

reasonable cognitive demands. We have suggested a method that seems to constitute650

such a reasonable balance between the need for simplicity and the requirement of651

accuracy in MCDA and the weighting of group member opinions in group decision652

making. We also compared this approach (the CAR method) to methods from the653

popular SMART family as well as AHP. The CAR method takes ordinal knowledge654

into account, but recognizing that there is sometimes quite substantial information655

loss involved with this, we have quite conservatively extended a pure ordinal scale656

approach with the possibility to supply cardinal information as well. We found that657

the CAR method outperforms the others, both in terms of simulation results as well as658

in user studies, pointing to CAR as a very competitive candidate to the other hitherto659

more widespread methods.660

Its efficiency was measured by simulation results for various numbers of alter-661

natives and criteria, along the classical lines for assessing surrogate weights. These662

results show that CAR is superior regarding correctness. We also conducted a real-663

life user study. We studied 100 individuals previously not particularly familiar with664

MCDA methods, where each individual was given 2–3 weeks to complete an impor-665

tant decision making task. They made the decision using all three methods available666

and were subsequently asked to reflect on the methods’ respective traits and charac-667

teristics. The study clearly showed that the CAR method generally and significantly668

was top-of-the-form for all the criteria above.669

In conclusion, the goal was to find a more useful MCDA method with a reasonable670

elicitation component, which would reduce some of the applicability issues with exist-671

ing more elaborate methods that we and others have developed over the years, but at the672

same time being able to capture more information than pure ordinal approaches. The673

CAR method extends rank-order weighting procedures, by taking both ordinal infor-674

mation as well as some cardinal relation information of the importance of the attributes675

into account. By this, we can sometimes avoid employing methods we and others have676

previously suggested for handling imprecision in decision situations, and which have677

turned out to be difficult to understand for normal decision-makers. The suggested678

method nevertheless gives significantly better simulation results than commonly used679
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competitors, such as SMART and AHP, while still seemingly being reasonably easy680

to understand. It was perceived not to require too much time nor be very demanding.681

Thus, a method utilising cardinal rankings such as CAR seems to be a serious candi-682

date to consider. This said, it is always difficult to estimate the correctness of various683

methods. There is further need for empirical testing in real-life cases to determine how684

suitable this method is for a wider spectrum of domains and this method should be685

benchmarked against several others. But this article clearly demonstrates a potential686

advantage over some prevailing methods, but there exist a large amount of MCDA687

methods suggested and all of these have not been compared systematically against688

each other and in the future we will compare the CAR method with other approaches689

suggested over the years, in particular the promising dominance rules suggested in690

Sarabando and Dias (2009), Aguayo et al. (2014) and Mateos et al. 2014. Still, so far691

it seems that the CAR method has some very interesting features and provides decent692

decision quality.693
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