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Disentangling genetic and 
environmental risk factors for 
individual diseases from multiplex 
comorbidity networks
Peter Klimek1, Silke Aichberger1 & Stefan Thurner1,2,3

Most disorders are caused by a combination of multiple genetic and/or environmental factors. If 
two diseases are caused by the same molecular mechanism, they tend to co-occur in patients. Here 
we provide a quantitative method to disentangle how much genetic or environmental risk factors 
contribute to the pathogenesis of 358 individual diseases, respectively. We pool data on genetic, 
pathway-based, and toxicogenomic disease-causing mechanisms with disease co-occurrence data 
obtained from almost two million patients. From this data we construct a multiplex network where 
nodes represent disorders that are connected by links that either represent phenotypic comorbidity of 
the patients or the involvement of a certain molecular mechanism. From the similarity of phenotypic 
and mechanism-based networks for each disorder we derive measure that allows us to quantify the 
relative importance of various molecular mechanisms for a given disease. We find that most diseases 
are dominated by genetic risk factors, while environmental influences prevail for disorders such as 
depressions, cancers, or dermatitis. Almost never we find that more than one type of mechanisms is 
involved in the pathogenesis of diseases.

Multifactorial diseases are disorders that involve multiple disease-causing mechanisms, such as genes acting in 
concert with environmental factors. They represent one of the most significant challenges that medical research 
faces today1. Disease-causing mechanisms may be (and typically are) involved in more than one disorder2. If two 
diseases are related to the same mechanism (say, a single point mutation, SNP, or an altered metabolic pathway), 
they have a tendency to co-occur in the same patients3,4. Here we develop a novel network-medicine approach to 
quantify the relative contributions of genetic and environmental risk factors for diseases. The central idea of the 
approach is illustrated in Fig. 1. We consider three diseases i, j, k (circles) and assume that diseases i and j co-occur 
very frequently in patients (thick line), whereas diseases i and k rarely coincide within patients (thin line). Assume 
further that i can arise through two different disease-causing mechanisms, A and B, where mechanism A is also 
responsible for (or involved in) disease k and mechanism B for disease j. Obviously, mechanism B explains the 
observed disease phenotype i (the frequent co-occurrence with disease j) much better than mechanism A and is 
therefore a more probable causes for disease i. Using this idea we are able to identify the most likely causes and are 
able to disentangle genetic and environmental disease-causing mechanisms for individual disease phenotypes.

Here we construct a multiplex comorbidity network that combines phenotypic comorbidity networks with 
those given by different types of shared disease-causing mechanisms (genes, pathways, or exposure to chemi-
cals), the human disease multiplex network (HDMN) (see Fig. 2). Multiplex networks are given by a set of nodes 
connected by multiple sets of links5,6. One set of links in the HDMN corresponds to phenotypic comorbidity 
relations, whereas the other sets of links represent different classes of genetic or environmental mechanisms. We 
quantify how similar the phenotypic links of a particular disease are to its links in other layers in the HDMN. This 
allows us to derive scores for each disease of how well its phenotypic comorbidities can be explained by genetic, 
pathway-based, or toxicogenomic mechanisms. In this sense the derived scores quantify “how genetic” or how 
strong environmental influences are for a given disease.
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The construction and analysis of networks of diseases that are connected by different comorbidity rela-
tions has recently lead to substantial progress in our understanding of the etiologies of various diseases2,7,8. For 
instance, gene-disease associations collected in the Online Mendelian Inheritance in Man (OMIM) database9 

Figure 1.  Consider three diseases i, j, k (blue circles) and assume that disease i co-occurs very frequently 
with j (thick line) but only in rare cases with k (thin line). Further, assume that there are two different disease-
causing mechanisms for i, A and B, where mechanism A (B) is also known to be involved in disease k (j). Since 
i is very often observed together with j, but not with k, mechanism B explains the disease phenotype i much 
better than A.

Figure 2.  Illustration of the HDMN for a disease i. In the HDMN, nodes correspond to disease phenotypes 
that are connected by four different types of links which can be visualized as network layers. The first layer, φMij , 
encodes phenotypic comorbidity relations. The link-weights in this layer are given by the comorbidity strengths 
φij that measure how often two diseases i and j co-occur within the same patients, i.e. the numbers of patients 
with either disease i (red individuals) or j (blue) are compared to the numbers of patients with both diseases 
(green). The second layer, Mij

G, contains genetic comorbidities (blue links) where two different phenotypes 
(illustrated as blue and red individuals) are related to the same genetic defect or alteration. The third type of 
links are pathway-based comorbidities (green links), layer Mij

P. Here, two different alterations occur in a 
pathway that is involved in two or more different diseases. Finally, the fourth layer, Mij

T, is given by 
toxicogenomic comorbidities (red links), where a chemical substance is known to trigger different disease-
causing mechanisms. Disorder i is shown as a red node in the HDMN, together with other phenotypes (blue 
nodes) that are in i’s neighborhood in at least one of the layers. The relative comorbidity risks αRRi  measure to 
which extent shared disease-causing mechanisms between two diseases lead to their phenotypic comorbidity. 
αRRi  is the average comorbidity strength of all neighbors of i in layer α, normalized to the average comorbidity 

strength over all phenotypes that share no disease-causing mechanism of any type with i. In the above example 
the greatest similarity to the phenotype network φij has obviously the genetic one, Mij

G, and disease i is most 
likely of genetic origin.
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can be used to construct a network where diseases are linked if they are related to the same mutations in one or 
several genes10. This network allowed for the identification of clusters of diseases, such as cancers, which are held 
together by a small number of genes11. Another approach is to connect diseases if they are both associated with 
enzymes that catalyze reactions in the same pathway4. Protein-protein interaction data can be integrated with 
toxicogenomics data to construct a network where two diseases are linked if they are both caused by exposure to 
the same chemical, which has led to the successful identification of novel chemical-protein associations12. It has 
recently been shown that diseases that are comorbid in the population tend to be related with clusters of proteins 
that are close to each other in the human protein-protein interaction network13. Different types of genomic, 
metabolomic, and proteomic disease-disease relations have also been combined to form an “integrated disease 
network”14,15. In phenotypic comorbidity networks, nodes correspond to disease phenotypes that are linked if the 
two diseases tend to co-occur in the same patients16. Chronic, multifactorial disorders often assume the role of 
hubs in such networks (i.e. nodes that are strongly connected with a large number of other diseases)17.

We consider the three most important classes of disease-causing mechanisms. (i) Genetic mechanisms relate 
a disease to a specific defect or alteration in the genome. If one such defect is related to two or more pathologies, 
then those diseases share a genetic comorbidity. For example, it was shown that the phenotypic comorbidity 
between schizophrenia and Parkinson’s disease is almost entirely accounted for by SNPs in loci near NT5C2 and 
HLA-DRA18. (ii) Pathway-based mechanisms are given by a defective pathway (e.g. metabolic or signal trans-
duction pathway) that is involved in the etiology of the disease. Pathway-based comorbidities indicate that two 
diseases are related to different defects in the same pathway. For instance, it is known that the Pi3K/AKT pathway 
up-regulates anti-inflammatory cytokines and inhibits proinflammatory cytokines such as IL-1b, IL-6, TNF-α, 
and IFN-γ that show increased levels in patients with major depressive disorder19. Also, inactivation of the Pi3K/
AKT pathway through the suppression of insulin receptor substrates (IRS) may act as the underlying mechanism 
for the metabolic syndrome (i.e. the frequent concurrence of metabolic disorders such as hypertension, obesity, 
or diabetes)20. Indeed, depression has been identified as an important comorbidity of the metabolic syndrome 
in various cross-sectional surveys21,22. Finally, (iii) toxicogenomic mechanisms characterize diseases caused by 
exposure to chemical substances that change the activity of certain genes. Two diseases share a toxicogenomic 
comorbidity if each of them is related to a gene that interact with the same chemical. For example, the immuno-
suppressive chemical methoxychlor is used as pesticide and can cause atopic dermatitis, possibly by expressing 
IL-13 in the skin23. Methoxychlor also promotes the epigenetic transgenerational inheritance of kidney disease. 
Upon prenatal exposure to methoxychlor during fetal gonadal development, offspring show increased incidence 
of adult-onset kidney disease that was related to differentially DNA methylated regions24. Kidney disease and 
atopic dermatitis are therefore, both, related to methoxychlor and connected in the toxicogenomic comorbidity 
network. Atopic dermatitis is indeed associated with the nephritic syndrome25.

Data and Methods
Data.  Phenotypic disease-disease associations were obtained from a database of the Main Association of 
Austrian Social Security Institutions that contains pseudonymized claims data of all persons receiving inpatient 
care in Austria between January 1st, 2006 and December 31st, 200717,26. The data contains age, sex, main- and 
side-diagnoses (ICD10 codes)27 for each hospital stay from N =​ 1, 862, 258 patients. Not all ICD codes represent 
disorders, they may also indicate general examinations, injuries, collections of unspecific symptoms or disorders 
that are not classified elsewhere. Unspecific codes are excluded and we work with the remaining 1,252 diagnoses 
on the three-digit ICD levels in chapters (i.e. first-digit-levels) A-Q, labeled by the capital index I. We use the 
words disease, disorder and diagnosis interchangeably whenever referring to an ICD entry.

Molecular disease-disease associations were obtained from molecular data of three types, namely purely 
genetic associations and two different types of environmental associations. (i) Genetic disease associations were 
extracted from the OMIM dataset9, which provides a collection of gene-phenotype relationships. It contains for 
instance currently more than 30 genes that are known to play a role in type 2 diabetes, e.g. the aforementioned IRS 
2 gene. (ii) Pathway-based disease associations we took from the UniProtKB database28,29. The UniProtKB data-
base contains protein sequence and functional information that is cross-referenced with pathways in which the 
proteins play a role and the protein’s involvement in diseases. For instance, an UniProt entry for the PI3-kinase 
protein cross-references about 40 different pathways, including the PI3K/AKT activation pathway, in addition to 
three different disease phenotypes from the OMIM dataset. (iii) Toxicogenomic disease associations were obtained 
from the Comparative Toxicogenomic Database (CTD)30. Entries in the CTD correspond to chemicals that are 
linked to diseases caused by exposure to the substance and with disease genes that are differentially expressed 
under exposure to it. For instance, according to this data the chemical methoxychlor is involved in more than ten 
different diseases, including atopic dermatitis where its influence is mediated by eight different genes, including 
IL-13. To link the molecular to the phenotypic data, a mapping between ICD10 and OMIM disease identifiers had 
to be established. To obtain such mappings we compiled three different data sources, namely the Human Disease 
Ontology database31, OrphaNet32, and Wikipedia33. Note that from these definitions it follows that we only focus 
on disorders that have a heritable component. For more information on data extraction and the construction of 
the ICD10-OMIM mappings see supporting information, Text S1. Each of the three molecular datasets can be 
represented by a bipartite network αBi j , where α labels the classes of mechanisms, i.e. genetic (α =​ G), 
pathway-based (α =​ P), or toxicogenomic (α =​ T), index i labels disorders (ICD10 codes) and j labels unique 
genes (if α =​ G), pathways (if α =​ P), or chemicals (if α =​ T). We set =αB 1i j , if there exists is at least one relation 
between disease i and gene/pathway/chemical j, =αB 0i j , otherwise.

Heritability and drug approvals.  Information on the broad-sense heritability (see supporting information,  
Text S2) of individual diseases i, Hi

2, was taken from the SNPedia database34. As a source for drug approvals we 
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used the Drugs@FDA database35 from which we obtained FDA-approved brand names and approval dates for all 
drug products approved since 1939. These drugs were mapped via known molecular targets to diseases36 to obtain 
the number of newly approved drug products of the last twenty years for the specific disease i, Di.

Construction of the HDMN.  We constructed a multiplex network that encodes disease-disease associations 
of four different types, the HDMN, αMij . This network contains one phenotypic layer, α =​ φ, and three layers that 
encode molecular disease-disease associations, α ∈​ {G, P, T}. The layer of phenotypic disease associations, φMij , is 
given by the contingency coefficient, φij, between diseases i and j: Here Ni is the number of patients with disease i 
and N is the total number of patients. For each pair of diseases (i, j) we counted the number of patients that have 
both diseases (Nij), only disease i or j (N i j,  or N i j, , respectively), or neither disease (N i j, ). Here, the bar denotes 
“not”. Entries in the phenotypic disease network, φMij , are then given by the contingency coefficient,

φ= =
−

− −
.φM

N N N N

N N N N N N( )( ) (1)
ij ij

ij ij ij ij

i j i j

Values of φij are within the range [−​1, +​1] and measure the phenotypic comorbidity strength between dis-
eases i and j. The higher (lower) φij, the higher (lower) the probability that a patient with disease i also suffers 
disease j. φij =​ 0 indicates that occurrences of i and j are independent from each other. We set =φM 0ij , whenever 
the patient numbers are too low to allow for a reliable estimate of φij, i.e. whenever one of the possible outcomes 
for Nij, N i j, , N i j, , or N )i j,  was below 5. An age-dependent version of the phenotypic disease network for a given age 
interval t is denoted by φM t( )ij . Patients fall within one of 11 age groups, 0y–7y, 8y–15y, …​, 80y–87y.

The layers 2, 3, and 4 of the HDMN encode three different types of molecular associations, α ∈​ {G, P, T}. Each 
of these layers, αMij , is obtained from the bipartite network αBij  as follows,
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Note that this definition ensures that associations between pathologies i and j in the pathway, Mij
P, and toxi-

cogenomic, Mij
T , layers are indeed due to shared pathways or exposure to the same chemical that can not be 

explained by direct genetic causes (i.e. =M 1ij
G ). It is therefore guaranteed that comorbidity relations in the toxi-

cogenomic or pathway-based layers are due to gene-by-environment interactions.
The numbers of non-isolated nodes, Nα, and links, Lα, for each layer α are shown in the SI, Table S1. Diseases 

are not included in the HDMN if they are isolated in every molecular layer α =​ G, P, or T. This constraint reduces 
the number of nodes in the phenotypic network from about 900–1000 (depending on patient age) to 358 disor-
ders. Links in the phenotypic layer Mφ are weighted and typically close to zero16,17. Numbers for Nα are between 
200 and 300 for the molecular layers. Note that disease codes in the (phenotypic) ICD10 classification are typi-
cally coarser than, for instance, the OMIM disease phenotype classification that has about 1,800 entries. Many of 
these OMIM codes, however, map to the same ICD10 entry which leads to the substantial reduction of nodes in 
the molecular layers, see the supporting information, Text S1.

Disease risks from shared pathophysiological mechanisms.  We introduce a relative risk indicator 
αRRi  that measures how similar the phenotypic comorbidities of disease i are to its genetic, pathway-based, or 

toxicogenomic comorbidities. In this sense αRRi  quantifies how much a specific class of disease-causing mecha-
nisms contributes to the phenotype i. αRRi  is the quotient of the average comorbidity strengths, φMij , of all diseases 
that are linked to i in layer αMij , and the comorbidity strengths of those diseases that are linked to i in none of the 
pathophysiological layers, i.e.,
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Here αki  is the degree of disease i in layer α given by = ∑α αk Mi j ij  and i
C is a control set of links for disease i 

that contains all links j, i ≠​ j, for which α∀ ∈ =αG P T M{ , , }: 0ij .
Let us illustrate the relative risk indicator proposed in equation 3 by considering disease i in the example 

shown in Fig. 1. In this case we have two different pathophysiological processes that are represented in layers, A 
and B. Each layer contains the respective mechanism only; for the degrees of i follows = =k k 1i

A
i
B . We further 

assume that there are two other diseases, m and n (not shown in Fig. 1), that are not connected to i by any mech-
anism. These diseases are therefore contained in the control set for disease i, i.e. = m n{ , }i

C  and  = 2i
C . For 

the layer with disease mechanism A we get the relative risk =
φ
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. Since we assumed that φik >​ φij it follows that >RR RRi
A

i
B and therefore mechanism 

A explains the observed comorbidities of disease i better than B. The relative risk indicators in equation 3 also 
covers cases with more than one mechanism in a given layer, i.e. >αk 1i , as it will be typically the case for the 
pathopyhsiological layers considered in this work. Further, since αRRi  re-scales the observed comorbidity 
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strengths for a given layer by the typical strengths observed in the control set for disease i, it is meaningful to 
compare these indicator values for different diseases, even in the presence of statistical biases that in φij that may 
occur when very rare and frequent diseases are compared16,17.

For convenience we also defined the logarithmic relative comorbidity risk, =α αr RRlogi i . A value of αri  close 
to zero indicates that the presence of pathophysiological comorbidities of type α have no relation whatsoever to 
the actual, phenotypic comorbidities of i. With increasingly positive values of αri , the probability increases that the 
pathophysiological comorbidities of i are indeed observed in the population.

Note that the relative comorbidity risk αri  can be large due to a single comorbidity j of type α with a very high 
phenotypic comorbidity strength φMij , or because there are a large number of comorbidities with only moderately 
increased comorbidity strengths. In particular, αri  might favor diseases that have a large number of connections of 
type α to diseases that are physiologically very similar and that have similar ICD10 diagnosis codes, see Text S1. 
To adjust for these biases we rescaled αri  by the node degree αki  to obtain a measure that favors diseases with a 
smaller number of highly relevant disease-causing mechanisms. The re-scaled comorbidity risk, αqi , is given by 
=α

α

αqi
r
k

i

i
.

We performed two different statistical tests to evaluate whether αri  is significantly greater than zero. First, a 
Wilcoxon rank sum test for equal medians of two samples was performed. The samples were given by the set of 
comorbidity strengths φMij  of all diseases j that share a link of type α with i, = |∃ =φ αS M j M{ : 1}ij ij1 , and the set 
= | ∈φS M j{ }ij i

C
2  . The p-value for αri , αpi , was obtained from the one-sided Wilcoxon rank sum test against the 

alternative hypothesis that the median of S1 is smaller than the median of S2. A Benjamini-Hochberg multiple 
hypothesis testing correction was applied on each layer using an exploratory threshold for the false discovery rate 
of α =​ 0.25 (which corresponds to thresholds for the adjusted p-values in the range between 0.1 and 0.05). Second, 
we performed a randomization test for αri  where we replace αMij  by a random permutation of its elements, denoted 
by ∼

α
Mij . The randomized αri  was computed from equation 3 where αMij  was replaced by ∼

α
Mij . For a given α, ∼

α
Mij  has 

the same number of nodes and links as αMij , but is otherwise completely randomized.

Results and Discussion
The estimates of the most probable disease causes can be visualized in a three-dimensional representation where 
the axes show the genetic (G), pathway-based (P), and toxicogenomic comorbidity risks (T). Each disease corre-
sponds to a point with coordinates r r r( , , )i

G
i
P

i
T , see Fig. 3(a) and its projections onto the (b) G −​ P, (c) G −​ T, and 

(d) P −​ T planes. The size of each marker is proportional to the frequency Ni/N of disease i. For this visualization 
we do not include diseases that are only present in one of the molecular layers, G, P, or T. For the remaining 254 
pathologies we set =αr 0i  for all diseases where αri  is not significantly different from zero after the multiple 

Figure 3.  Classification of diseases (circles) according to the dominant causes of their phenotypic 
comorbidities. Results are shown for (a–d) the relative comorbidity risks αri  and (e–h) their re-scaled versions, 
αqi . Circle size is proportional to the number of disease occurrences. Re-scaling the risks by the degrees leads to 

almost perfect clustering of the diseases around one of the axes. The per-link contribution to the relative 
comorbidity risk is always dominated by one specific mechanism. Only a comparably small number of diseases 
cluster around the toxicogenomic axis. The comorbidity risks for most pathologies are dominated by genetic 
disease-causing mechanisms.
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hypothesis testing correction. The majority of disorders are clearly dominated by genetic risk factors (many points 
are close to the G-axis). Some disorders cluster around the P and T axes indicating purely pathway-based and 
toxicogenomic origins. Intriguingly, there is precisely no disease that has a significant pathway-based and toxi-
cogenomic comorbidity risk at the same time, see Fig. 3(d). However, a number of disorders with significant 
pathway-based or toxicogenomic risks have also significant genetic contributions, see Fig. 3(b) and (c). This can 
also be seen in Table 1, where for instance the chronic nephritic syndrome ranks high in genetic and toxicog-
enomic comorbidity risks.

The per-link contributions, αqi , of three types of pathophysiological mechanisms are shown in Fig. 3(e)–(h). 
Almost all disorders show one dominant comorbidity risk contribution, i.e. they cluster around a single axis. As 
we have excluded here all diseases for which only one type of data exists, this clustering can not be trivially 
explained by incomplete or missing data. Our results are particularly relevant for “complex diseases” where we 
focus on disorders that have not only a genetic component as defined by OMIM9, but also pathway-based and/or 
toxicogenomic contributions. It can be shown that the observation that disorders cluster around a single axis in 
Fig. 3(d) also holds for the 120 diseases that are present in each of the layers. Again, most diseases show large 
genetic risks, while some cluster around the P and T axes. In the supporting information, SI Fig. 1, we show results 
for αqi  where we allow comorbidities that are at the same time genetic and pathway-based/toxicogenomic (i.e. we 
drop the second condition for αMij  in equation 2). We also include diseases that are only present in one of the 
molecular layers and therefore fall by construction on one of the axis. There are now disorders with, both, signif-
icant pathway-based and toxicogenomic comorbidity risks. For these comorbidities, however, there exists also a 
direct genetic mechanism that may account for the phenotypic comorbidities.

Table 1 shows the diseases with the largest genetic, pathway-based, or toxicogenomic comorbidity risks, 
ranked by statistical significance. The top genetic diseases include schizo-affective and delusional disorders, as 
well as schizophrenia. Different forms of osteoarthritis and chronic bronchitis, as well as nephrotic and nephritic 
syndromes also show high genetic comorbidity risks. The top pathway-based diseases are major depressive 

rank genetic, α = G αri
αpi

1 F25, Schizo-affective disorders 2.4 <​10−4

2 F20, Schizophrenia 2.4 <​10−4

3 M19, Osteoarthritis (unspecified) 2.9 <​10−4

4 N04, Nephrotic syndrome 2.2 <​10−4

5 J41, Simple, mucopurulent chronic bronchitis 2.1 <​10−3

6 J42, Chronic bronchitis (unspecified) 2.0 <​10−3

7 M15, Polyosteoarthritis 2.6 <​10−3

8 N03, Chronic nephritic syndrome 2.3 <​10−3

9 F22, Delusional disorders 2.6 <​10−3

10 M18, Osteoarthritis (first carpometacarpal joint) 2.5 <​10−3

pathway-based, α = P

1 F32, Major depressive disorder, single episode 1.1 <​10−3

2 F33, Major depressive disorder, recurrent 0.81 0.002

3 M85, Disorders of bone density and structure 1.8 0.003

4 G40, Epilepsy and recurrent seizures 0.65 0.003

5 E66, Overweight and obesity 0.83 0.006

6 E85, Amyloidosis 0.58 0.009

7 G25, Other extrapyramidal and movement disorders 0.66 0.010

8 H90, Conductive and sensorineural hearing loss 0.56 0.010

9 M21, Other acquired deformities of limbs 1.3 0.010

10 C90, Multiple myeloma, plasma cell neoplasms 0.90 0.011

toxicogenomic, α = T

1 I71, Aortic aneurysm and dissection 0.75 0.002

2 L21, Seborrheic dermatitis 0.65 0.002

3 L24, Irritant contact dermatitis 0.99 0.002

4 K52, Gastroenteritis and colitis 0.64 0.002

5 N03, Chronic nephritic syndrome 1.7 0.004

6 L20, Atopic dermatitis 1.2 0.004

7 L28, Lichen simplex chronicus and prurigo 0.69 0.006

8 L30, Unspecified dermatitis 0.58 0.006

9 I89, Noninfective disorders of lymphatic vessels and nodes 0.84 0.008

10 G91, Hydrocephalus 0.96 0.009

Table 1.   Top 10 diseases in every class of disease-causing mechanisms, α, and their relative comorbidity 
risks αri , ranked by the significance of its overlap with the phenotypic disease layer, αpi .
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disorders, endocrine disorders such as obesity and amyloidosis, diseases of the nervous systems including epi-
lepsy and extrapyramidal and movement disorders, as well as disorders of bone density and multiple myeloma. 
The top toxicogenomic diseases include various forms of dermatitis and other skin diseases such as lichen simplex 
chronicus and prurigo, but also aortic aneurysms, and the chronic nephritic syndrome.

Schizophrenia is indeed a highly heritable disorder that is associated with more than hundred gene loci37. The 
large pathway-based risk for depressions is corroborated by strong and supposedly bi-directional associations 
between the metabolic syndrome and depression, which have been a long-standing puzzle in epidemiological 
studies38. Depressions also exhibit strongly significant genetic comorbidity risks ( = .r 2 3i

G , < .p 0 01i
G ) in consist-

ency with the finding of a gene-by-environment interaction where individuals with a functional polymorphism 
in the promoter region of the serotonin transporter (5-HT T) gene exhibited more depressive symptoms in rela-
tion to stressful life events39. The high toxicogenomic risks for aortic aneurysms are in line with the effects of 
chemicals such as nicotine and prostaglandin on related disease-genes40. In summary, for most of the top ranking 
diseases for each layer there are indeed known and highly relevant pathobiological mechanisms of the given type, 
which validates our approach.

We next answer the question if there is a relation between pairs of diseases that tend to be mutually exclusive 
in individual patients, i.e. φij <​ 0, and the pathophysiological layers in the HDMN. To do so one can define an 
“anti-comorbidity” network, η, as ηij =​ −​φij iff φij <​ 0 and ηij =​ 0 otherwise. The relative comorbidity risks that are 
obtained using η instead of φ, ηαr ( )i , are not significantly different from zero in all but two cases (pathway-based 
risk for D86, sarcoidosis, η = .r ( ) 1 54D

P
86  and η = .p ( ) 0 003D

P
86 , and the toxicogenomic risk for G30, Alzheimer’s 

disease, η = .r ( ) 1 22G
T

30  and η = .p ( ) 0 003G
T

30 ). An overlap between anti-correlations of diseases and shared mech-
anisms is therefore not a significant feature of the data for the vast majority of disorders.

Since phenotypic disease networks are known to undergo large changes in their topology as a function of the 
age of the underlying patient cohorts17, we first clarified how the relative comorbidity risks αri  depend on patient 
age. The age-dependent relative risks, αr t( )i , were computed using equation 3 and by replacing φMij  with its 
age-dependent counterpart, φM t( )ij . Results for the average relative comorbidity risks over all diseases i, denoted 
by αr t( )i i

, are shown in Fig. 4(a). Note that this average is also taken over diseases with comorbidity risks αr t( )i  
that are not significantly different from zero. The genetic comorbidity risk averaged over all diseases i, r t( )i

G
i
, is 

substantially higher than the pathway-based or toxicogenomic risks and assumes values above 1 for ages between 
30 and 90. Effects are considerably smaller for the average pathway-based (toxicogenomic) comorbidity risks that 
reach values around 0.5 at ages around 30 (50). These age differences in the peaks of the environmental comor-
bidity risks are driven by the age-dependence in the prevalences of the diseases that provide the most dominant 
contributions to r t( )i

P T
i

( ) . In all cases, results for αr t( )i i
 clearly exceed the expectation values from the rand-

omized risks α
r t( )i i

, obtained from ∼
α

Mij . Note that we have confirmed that the dominance of genetic disorders 
can not be a simple consequence of the exclusion of genetic comorbidities in the other molecular layers in equa-
tion 2. Removing this constraint would increase the average environmental contributions by a factor of about 1.5, 
while the genetic comorbidity risks exceed them by a factor between four and five. From now on we consider only 
the time-independent HDMN.

Figure 4.  Contributions of genetic, pathway-based, and toxicogenomic comorbidity risks. (a) The genetic 
risks, r t( )i

G , clearly exceed the pathway-based, r t( )i
P , and toxicogenomic, r t( )i

T , risks across all ages of patients. 
The results for all three types of mechanisms exceed their expectations from the randomization test (markers 
connected by dotted lines, error bars show the standard deviation over 5,000 randomizations). (b) Averages of 
the relative risks are shown for the chapters of the ICD10 classification, the solid vertical lines show the values of 
genetic (blue), pathway-based (green) and toxicogenomic (red) risks averaged over all diseases. Diseases of the 
digestive system, mental disorders, and infections show the highest genetically caused comorbidity risk, whereas 
cancers, diseases of the skin, eye, and ear show the lowest genetic risks. Pathway-based contributions are also 
highest for mental disorders and toxicogenomic contributions assume their maximum for diseases of the 
genitourinary system.
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Figure 4(b) shows how much genetic, pathway-based, and toxicogenomic risks contribute to the observed 
comorbidities for subgroups of diseases that are given by the chapters of the ICD10 classification, the disease 
groups I. Clear differences between groups of diseases are revealed. Genetically caused comorbidities include 
mental disorders, disorders of the digestive system, but also susceptibility to infections. Genetic mechanisms 
are least relevant for disorders of the eye, ear, skin, and for cancers. Pathway-based comorbidity risks are largest 
for, again, mental disorders and diseases of the genitourinary system. This shows that the group of mental disor-
ders comprises heterogeneous phenotypes that have either genetically caused or pathway-based comorbidities. 
Toxicogenomic comorbidity risks are largest for diseases of the skin, the genitourinary and the respiratory system, 
as well as for congenital malformations.

The “nurture index”, Ii, quantifies to which extent comorbidities of phenotype i are caused by environmental, 
i.e. pathway-based or toxicogenomic, mechanisms,

= + .I q q( ) ( ) (4)i i
P

i
T2 2

Figure 5 shows results for (a) the heritability and (b) the number of new drug approvals Di as a function of Ii. 
Each circle in Fig. 5 corresponds to a disease phenotype, labeled by its ICD10 code. The colors of the circles refer 
to their chapter in the ICD classification. The highest values of Ii are found for diseases of the genitourinary  
system (N03 and N05 nephritic syndrome, N02 hematuria, N08 glomerular disorders), depressions (F32, F33), 
several cancers (C84 T/NK-cell lymphoma, C74 adrenal gland, C61 prostate), as well as bronchiectasis (J47). 
Figure 5(a) shows that there is a significant negative correlation between the nurture index, Ii, and the broad-sense 
heritability, Hi

2, of disorder i. This corroborates that Ii is indeed related to the plasticity of phenotype i, i.e. Ii 
increases with the influence of environmental risk factors. There is also a strong significant negative correlation 
between the logarithms of Ii and Di shown in Fig. 5(b). We found this result to be very robust for a large variety of 
choices of this time span, ranging from five years upwards. Note that Dlog i and Hi

2 show no significant correla-
tion among them (ρ =​ 0.19, p =​ 0.17). This indicates a significant bias in pharmaceutical R&D that favors market 
placements of drugs that target disorders with low environmental risk factors. It has indeed been shown that the 
success rates for drug development vary dramatically among disease areas41. These rates have been found to 
increase with the existence of direct genetic evidence, which in particular applies to diseases of the musculoskel-
etal system and infections, which we also identified as predominantly genetic in Fig. 3(b).
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Figure 5.  Heritability Hi
2, (a) and the number of newly developed drugs Di (b) are negatively correlated with 

the relevance of environmental risk factors for diseases. Each circle corresponds to one disease phenotype, 
labeled by its three-digit ICD10 code. Both, Hi

2 and Di are shown as a function of the nurture index. Colors 
indicate the main ICD chapter to which the diseases belong. We observe particularly high Ii values for diseases 
of the genitourinary system, various cancers, depression, and bronchiectasis.
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Conclusions
We developed a novel approach to quantitatively disentangle the most relevant genetic or environmental 
disease-causing mechanisms for a large number of particular disorders. This has become possible through recent 
advances in observing networks of phenotypic comorbidity relations with unprecedented precision16,17. We con-
sidered three different classes of mechanisms that can be at the core of these observed comorbidities, namely 
genetic, pathway-based, and toxicogenomic mechanisms that cause more than one disorder. By constructing the 
HDMN we have been able to identify the most probable causes for 358 different phenotypes by measuring the 
overlap between phenotypic and pathophysiological comorbidities, the relative comorbidity risks αri . We find that 
the different environmental disease-causing mechanisms do not mix; we found no pathologies that have signifi-
cant pathway-based and toxicogenomic comorbidity risk contributions at the same time. By considering only 
diseases for which at least two different types of molecular comorbidities are known, we can rule out that this 
result is due to missing data. While for most of the studied diseases genetic risk factors dominate, we identify a 
number of disorders with significant environmental contributions which typically coincides with low heritability 
and lower rates of successful market placements of drugs.

Our approach cross-validates pathophysiological mechanisms by whether their predicted comorbidities are 
indeed directly observed in the population. Moreover we can rule out certain types of disease-causing mech-
anisms when the comorbidities that they predict are not observed. The methodology developed here can be 
extended to decide on a quantitative basis if the comorbidities predicted by a particular individual pathophysio-
logical mechanism are also phenotypically relevant. The new technology can be used as a novel and data-driven 
way to validate potential drug targets.
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